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Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape
Knowledge and Convolutional Neural Networks:

Data from the Osteoarthritis Initiative

Felix Ambellana,1,∗, Alexander Tacka,1, Moritz Ehlkeb,a, Stefan Zachowa,b

aTherapy Planning Group, Zuse Institute Berlin, Germany
b1000shapes GmbH, Berlin, Germany

Abstract

We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI)
that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed
approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate
segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained
using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge “Segmentation of Knee Images 2010”
(SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.
For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.
Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e.
507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields
sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup
publicly available to further aid research in the field of medical image segmentation. In conclusion, combining localized
classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method
for knee bones and cartilage from MRI data.

Keywords: Semantic Segmentation, Magnetic Resonance Imaging, Statistical Shape Models, Deep Learning

1. Introduction

Knee osteoarthritis (OA) is a chronic, degenerative joint
disease affecting a significant fraction of the human popu-
lation (Lawrence et al., 2008). Due to the rising average
life expectancy, an increasing obesity, and a prolonged5

desire for an active lifestyle, research to understand and
prevent OA will become even more important. Magnetic
Resonance Imaging (MRI) is commonly used to assess knee
joint degeneration, especially of the femoral bone (FB),
tibial bone (TB), and the respective femoral and tibial10

cartilage (FC,TC) (Conaghan et al., 2011). Quantitative
image-based biomarkers from MRI such as the apparent
bone volume divided by total bone tissue volume (Eck-
stein et al., 2006a) or the volume of the articular cartilage
(Eckstein et al., 2006b), show potential for diagnosis of15

OA, treatment planning, and prognostic purposes. How-
ever, clinical studies with a large number of subjects are
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required to extract quantitative image-based biomarkers
indicating pathogenesis of OA and to evaluate the efficacy
of therapeutic approaches. Both, the determination of such20

biomarkers, as well as computer-based surgical planning
of interventions affecting the knee require precise segmen-
tations of the respective anatomical structures. Manual
segmentation of the knee joint is, however, tedious, sub-
jective, and labor intensive, which renders the analysis25

of larger cohorts or an individualized therapy planning
in clinical routine impractical. Hence, the performance
and quality of automated segmentation methods are being
constantly improved.

The general development in the field of MRI and Com-30

puted tomography (CT) segmentation methods is outlined
e.g. in Balafar et al. (2010) and Heimann et al. (2009).
In the recent decade especially two effective segmentation
approaches have raised attention, Statistical Shape Model
(SSM) based segmentation (Heimann and Meinzer, 2009)35

as well as segmentation methods employing Convolutional
Neural Networks (CNNs) (Litjens et al., 2017). The aim
of this work is to improve segmentation accuracy of exist-
ing approaches even further by combining the strengths
of SSM-based and CNN-based methods to render them40

suitable for individual therapy planning as well as the pro-
cessing of large cohort data, e.g. the databases of the
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Osteoarthritis Initiative2 (OAI) or the Study of Health in
Pomerania3 (SHIP). Therefore we propose a method that
utilizes 2D CNNs for full resolution images and 3D CNNs45

for local regions of interest to incorporate information at
different levels of detail into the segmentation process, as
well as SSMs to support decision making in regions of high
uncertainty in the image intensities. The accuracy of our
segmentation approach is validated based on a large pool of50

diverse datasets from the MICCAI challenge “Segmentation
of Knee Images 2010” (SKI10)4 described by Heimann et al.
(2010) and from the OAI database. Via utilizing SSMs
as anatomical shape prior for regularization and CNNs
for learning descriptors of local appearance, our method55

robustly segments varying MRI sequences, even when the
images show subjects with severe OA grades.

We consider the main contributions of this work as
follows:

(1) Integration of SSM-based anatomical knowledge in60

an CNN-based segmentation of FB and TB via a
voting scheme

(2) SSM-based postprocessing for segmentation of knee
bones

(3) 3D CNNs for segmentation of TC and FC65

(4) A thorough assessment of segmentation quality on
three different datasets and publication of 507 manual
reference segmentations (FB, TB, FC, TC)

2. Related work

Previous methods often employed SSMs (Heimann and70

Meinzer, 2009) to segment knee bones and cartilage. Vin-
cent et al. (2010) presented a method based on an active
appearance model, which was created using a minimum de-
scription length approach to optimize correspondences. In
the same year, Seim et al. (2010) presented a method that75

utilizes SSMs for bone segmentation and a multi-object
graph optimization for cartilage segmentation. SSM-based
methods employ anatomical knowledge via geometric pri-
ors, which allows for a robust segmentation even in the
presence of artifacts or low image contrast. Such methods80

usually require heuristically designed models of appearance
to adjust the SSM to the image data (Kainmueller, 2014).
Often, appearance models are manually taylored to one
specific image modality and cannot be easily generalized to
cope with differing ones. To alleviate this problem, Cootes85

et al. (2012) utilized random forest regression voting in 2D
which was enhanced to 3D by Norajitra and Maier-Hein
(2017). Mukhopadhyay et al. (2016) proposed to derive
appearance models directly from the image data via joint
dictionary learning.90

2 oai.epi-ucsf.org
3 medizin.uni-greifswald.de/cm/fv/ship.html
4organized by Tobias Heimann and Bram van Ginneken (ski10.org)

Meanwhile, CNNs have been employed successfully for
medical image segmentation, but only few of these methods
address the domain of musculoskeletal research. Prasoon
et al. (2013) presented an approach for tibial cartilage seg-
mentation from MRIs using three separate 2D CNNs. Each95

CNN independently classifies foreground and background
pixels from slices in either the axial, coronal, and sagittal
image planes of the 3D MRI dataset. In a similar fashion,
Liu et al. (2017) applied 2D U-Nets (Ronneberger et al.,
2015) as well as the 2D CNN architecture “SegNet” in com-100

bination with 3D simplex deformable modeling to obtain
3D segmentations from MRIs. Both methods train 2D
convolutional filters from individual slices in the 3D MRI
data, since the memory consumption of deep 3D CNNs is
often too excessive at the scale of full-resolution 3D medical105

datasets. Consequently, the image information available to
the CNNs is strictly localized and lacks context w.r.t. the
surrounding voxel intensities in neighboring slices. This
is in contrast to previous SSM-based approaches, where
anatomical shape information regularizes the segmentation110

outcome due to its inherent 3D nature across several neigh-
boring slices or even the whole MRI stack. Ideally, one
would train a geometrically constrained CNN, such that an
anatomically plausible segmentation result is guaranteed
even if the anatomy’s boundary cannot be clearly outlined115

in the image data. However, this is a challenging task and
still subject to ongoing research.

A frequently employed strategy (Chen et al., 2014;
Christ et al., 2016; Kamnitsas et al., 2017) is to refine
the segmentation of a fully convolutional neural network120

using 3D conditional random fields for postprocessing.
Ravishankar et al. (2017) proposed a method in which

the deviation of a U-Net-based binary segmentation to the
ground truth is penalized by using a shape regularization
network. The encoder-decoder shape regularization net-125

work predicts the correct segmentation from a previous
(incomplete) one, employing a loss function which considers
the resulting mask as well as the encoded representation.
A different approach is shape regularization of the CNN-
learning-process as proposed by Oktay et al. (2018) through130

employing an auxiliary network that connects 2D images
of objects with 3D binary voxel fields representing the re-
spective objects shape. They introduce shape knowledge
during training of CNNs, whereas the method proposed
in this work employs shape knowledge explicitly via SSMs135

during inference.
Tack et al. (2018) showed that 2D CNNs, 3D SSMs, and

3D CNNs can be successfully combined for the segmentation
of knee menisci. However, the 2D CNNs and 3D SSMs are
merely used as a preprocessing to define a region of interest140

for the 3D CNNs. SSMs are fitted to the outcome of an
initial CNN-based segmentation in order to define regions
of interest for a 3D CNN that segments the menisci. The
final segmentation outcome via 3D CNNs is not regularized
any further.145
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Figure 1: Proposed pipeline for knee bone and cartilage segmentation. A cascade of CNN and SSM steps yields 3D segmentation masks of the
femoral and tibial bone. These masks define the region of interest for a consecutive cartilage segmentation based on 3D CNNs.

3. Automated segmentation of bone and cartilage

In this work, we integrate the shape knowledge from
SSMs further into the segmentation pipeline. Our aim is
to establish an automated method that produces highly
accurate segmentations of knee bones and cartilage. The150

approach should be robust against pathological data, imag-
ing artifacts, as well as the varying image appearance in
different MRI sequences. For this purpose, we consecutively
apply 2D CNNs, sub-regional 3D CNNs and SSM-based
techniques in a segmentation pipeline that operates on155

knee MRIs as input and generates voxel masks for each
segmented structures as output. Application of SSMs is
important not only to regularize but also to link both
convolutional components in a consistent fashion for the
segmentation of bones. Given the margins of the bones, we160

extract subvolumes along the femoral condyles and tibial
plateaus and segment the cartilage in these regions using
3D CNNs.

Figure 1 depicts the individual stages of the proposed
pipeline.165

– The first step CNN-2D creates initial segmentation
masks of FB and TB.

– The second step SSM adjustment regularizes the re-
sults of step CNN-2D by fitting SSMs to these masks.

– The third step CNN-3D is a refinement step that170

employs 3D CNNs to segment small MRI subvol-
umes at the bone surfaces as given by the preceding
SSM adjustment.

– The fourth step SSM postprocessing uses regions pre-
defined on SSMs to enhance the results of CNN-3D.175

– After bone segmentation is finished the FC and TC
are segmented using 3D CNNs.

Each step is performed separately for femur and tibia.
Thus, CNNs and SSMs are developed independently and
individually for both structures.180

3.1. CNN-2D
We augment the idea of slice-wise segmentation (Liu

et al., 2017) and apply a variant of the 2D U-Net (Fig. 2
left) in order to segment femur and tibia in each slice of the
input MRI independently. The number of input channels185

of the 2D CNN was extended compared to the standard
architecture in order to improve spatial consistency of seg-
mentation results between individual slices of the MRI
stack. Eight adjacent slices on both sides of the one that
is to be segmented are additionally supplied resulting in190

17 channels in total. Training is carried out using the
(slice-wise) Dice similarity coefficient (Dice, 1945) as a
loss function (3). Note that while this method provides
additional context information to the CNN, it cannot sub-
stitute for true volumetric input as processed by 3D CNNs,195

since the additional channels are only directly visible to
the first convolutional layer. The memory requirements
are, however, significantly reduced compared to 3D U-Nets
with a similar architecture.

3.2. SSM adjustment200

Due to our observation that segmentations of the previ-
ous step show inaccuracies in areas of low intensity contrast
or imaging artifacts (Fig. 6 left column and Fig. 7 left col-
umn) we decided to add an SSM step. The aim of the
SSM adjustment step is to regularize and to fill holes and205

notches in the segmentation mask by means of statistical
knowledge about the global variation of anatomical shape.
For this purpose, an SSM is fitted to the segmentation
results from the CNN-2D stage. The output is guaranteed
to be anatomically plausible (i.e. within the shape span of210

the SSM) and given as one connected component. Further
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Figure 2: Architectures of the 2D and 3D U-Nets employed in this work.

details on SSMs, their construction and adjustment can be
found e.g. in Kainmueller (2014).

The SSM matching procedure is as follows: The side
of the knee (left/right) is initially unknown. In order215

to initialize the SSM considering the side of the knee a
template mesh of the condyle region is fitted to the mask,
one time affinely and a second time additionally mirrored
along the epi-condyle axis. The correct knee side is detected
according to the lower distance between template and data220

of both solutions. Similarity transformation and shape
modes of the SSM are adjusted iteratively to fit the vertex
positions to the mask:

arg min
v(bi+1,T i+1)

∥∥(v (bi, T i
)

+ ∆vi
)
− v

(
bi+1, T i+1

)∥∥ , i← i+ 1, (1)

where ∆vi is the displacement along the normals of the
vertices resulting from the i-th step, s.t. they are placed225

as close as possible to the interface between segmentation
mask (intensity value = 1) and background (intensity value
= 0). The vertex positions, obtained from the SSM w.r.t.
shape weights bi and transformation T i, are denoted by
v
(
bi, T i

)
. The process is iterated until the relative change230

of the vertex positions is below a certain threshold value
or the maximum number of iterations is reached.

3.3. CNN-3D
SSMs, as utilized in the previous stage of the pipeline,

cannot express osteophytic details completely (Fig. 6 middle235

column) since these deformations are highly patient-specific
and might not be derived from the training cohort. We
approach this issue in the CNN-3D step by employing
3D U-Nets (Fig. 2 right) trained on small subvolumes
(64x64x16 voxels) localized along the bone contours within240

the MRI scan. The subvolume’s dimensions are chosen by
compromising between the input fields size and the memory
consumption of the 3D CNNs. This step is carried out
utilizing the same 3D architecture, but individual training
for every structure to capture anatomical details of bone245

as well as cartilage tissue. Similar to the 2D-U-Nets, the
networks are trained via a loss function based on the Dice
similarity coefficient. The loss is, however, defined on
volumetric subvolumes in the MRI rather than individual

2D slices, which generally leads to better classification250

accuracy in local regions of the knee compared to the 2D
slicing approach (Fig. 6 left vs. right column).

To get a feasible number (≈1000) of subvolumes they are
randomly sampled following a Poisson distribution for the
FB and TB segmentation along the outline of the adjusted255

SSM’s mask. The subvolumes for FC segmentation are
extracted along the outline of the condyle region in a similar
manner. To obtain the subvolumes for TC segmentation,
we utilize that the tibial plateaus are almost planar and
sample at the superior margin of each sagittal slice in the260

TB mask, s.t. the in-plane overlap of subvolumes is half
its size. A visualization of all sampling procedures is given
in Fig. 3.

Since the subvolumens are partially interfering with
each other, conflicting labels might be assigned in overlap-265

ping regions. A voting scheme solves this ambiguity by
summarizing voxel-wise decisions in a voting mask V (2).
The outcome of the SSM adjustment stage (G) is thereby
taken into account, biasing the FB and TB segmentations
towards the SSM shape when votes conflict for a voxel. The270

contribution of the SSM is set to zero for the segmentation
of cartilage.

The voting is formularized as follows: Let x = (i, j, k)
be a (global) index triplet of an image voxel. Let further
Is be the mapping from local indices of subvolume Bs to
global indices in the image, and let Im(Is) be the set of all
global indices covered by Bs. The voting mask is computed
as:

V (x) = ω ·G(x) +
∑
s

x∈Im(Is)

(
2 ·Bs

(
I−1
s (x)

)
− 1
)
, (2)

with factor ω set to 25, weighting the contribution of
SSM and CNNs roughly equal. The higher ω is chosen, the
more emphasis is set on the SSM-based regularization. We
have chosen ω considering the density and the expected
number of overlaping subvolumes. This choice is based
on high trust into the SSM’s classification in the sense
that almost all subvolumes containing a certain voxel have
to agree in order to overrule its decision. This tolerance
value is independent of the imaging data and depends on
the anatomy of interest only as far as its shape affects
the amount of overlapping subvolumes. Finally, a label
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Figure 3: CNN-3D segmentation step: OAI subject ID 9793168. Exemplary sampling of subvolumes. From left to right: FB (1052 points), TB
(825 points), FC (845 points) and TC (228 points). Each yellow sphere marks the center of a subvolume.

is assigned to each voxel by means of majority voting,
resulting in a segmentation mask U :

U(x) =

{
1, if V (x) ≥ τ
0, if V (x) < τ,

where the threshold parameter τ has a fixed value of 1.
This way, a simple majority of CNN-classified subvolumes
has to up-vote a voxel in order to include it into the final275

result, if it is not already captured by the SSM. Parameter
τ further adjusts the influence of the CNN-3D step. The
higher its value the more up-votes are needed to classify a
voxel as foreground. The choice of τ is indirectly influenced
by the anatomy’s shape as the number of overlapping280

subvolumes depends on it.

3.4. SSM postprocessing
The SSM postprocessing step finalizes the segmentation

of femur and tibia bones. SSM-based postprocessing as
utilized in our approach follows the idea to remove false285

positive voxels from the FB and TB segmentations that
are located outside the typical range of osteophytic growth.
Voxels are excluded from the segmentation mask depending
on their surface distance to the SSM. We found that a
conservative regularization after processing the subvolumes290

with the proposed voting method (CNN-3D stage) helps
to remove segmentation errors due to the localized nature
of the 3D CNN-based classification and low image contrast
or noise (Fig. 7, middle and right column).

We identified regions on the SSMs of FB and TB that295

show higher or lower inter-patient variability in shape
(Fig. 4). Regions of higher variability are typically as-
sociated with osteophytic growth. To identify these regions
in the segmentation, SSMs are matched to the masks ob-
tained from the CNN-3D stage and the distance between300

bone voxel centers and fitted surface is calculated, s.t. ev-
ery voxel is assigned a distance value either to areas of low
or high variability on the SSMs. This leads to a maximum
distance in areas of low variability dlv and to a maximum
distance in areas of high variability dhv.305

If dhv ≥ dlv, the postprocessing is terminated since no
unexpected deviation is identified. Otherwise, the matched
surface is converted to a mask denoted by Ũ and the set

difference D = U \ Ũ is calculated. D naturally consists
of its 3D connected components Dj . Every component is310

considered as a candidate for removal, if there exists a voxel
x ∈ Dj , s.t. its distance to the surface dx is realized in the
area of low variability fulfilling dx ≥ dhv and dx ≥ tol. The
tolerance was empirically determined as 5.5mm based on
the observation that deviations below this value represent315

normal morphological variation. Osteophytes and artefacts
typically appear with larger distances. Thus this choice
is due to anatomical morphology and independent of the
imaging modality. For components that fulfill the former
rule, every voxel that realizes its distance in the area of320

low variability is removed from the mask. See Fig. 4 for a
schematic depiction.

Figure 4: Predefined regions of high (yellow) and low (blue) variability
on SSM surfaces of FB (left) and TB (middle). Right: Schematic
visualization of a typical postprocessing situation. A large deviation
from the SSM (region B) in an area of high confidence in shape (blue)
is removed from the segmentation mask.

4. Experiments and results

We evaluate the accuracy of our method on three differ-
ent publicly available MRI datasets SKI10, OAI Imorphics325

and OAI ZIB (Table 1) employing measures that consider
the volumetric overlap of segmented structures and the
manual segmentations as well as the distances between the
respective boundaries.

4.1. MRI datasets330

Dataset SKI10 consists of 60 training, 40 validation,
and 50 submission MRIs from the MICCAI SKI10 challenge.
All scans were acquired for surgery planning of partial or

5



Table 1: Summary of the datasets used for training and validation. Images were acquired either once per patient (baseline) or twice with an
additional 12-month follow-up (12m).

SKI10 OAI Imorphics OAI ZIB

MRI scanner GE, Siemens, Philips, Toshiba, Hitachi.
Mostly 1.5T, some 3T, a few 1T Siemens 3T Trio Siemens 3T Trio

MRI sequence Many (T1, T2, GRE, Spoiled-GRE)
partly with fat suppression DESS DESS

Acquisition plane sagittal sagittal sagittal
Image resolution [mm] 0.39×0.39×1.0 0.36×0.36×0.7 0.36×0.36×0.7
Manual segmentations bones and cartilage cartilage bones and cartilage

Number of subjects
60 training
40 validation
50 submission

88 507

Sex (male,female) n.a. (45,43) (262,245)
Age [years] n.a. 61.24±9.98 61.87±9.33
BMI [kg/m2] n.a. 31.06±4.61 29.27±4.52
rOA grade (0,1,2,3,4) n.a. (0,0,15,56,17) (60,77,61,151,158)
timepoints baseline baseline, 12m baseline

complete knee replacement, and thus show a high degree
of pathological deformations in the knee region.335

Dataset OAI Imorphics consists of MRI sequences from
the OAI database with manual segmentations supplied by
Imorphics (N = 88). The dataset contains only cases of
moderate and severe OA.

Dataset OAI ZIB consists of additional data from the340

OAI database for which manual segmentations were car-
ried out thoroughly by experienced users at Zuse Institute
Berlin (N = 507) starting from automatic segmentations
employing (Seim et al., 2010). The data covers the full
spectrum of OA grades, with a strong tendency towards345

severe cases.
The OAI ZIB segmentations are made publicly available

as part of the supplementary material of this manuscript5.
An overview of the datasets is given in Table 1.

4.2. Experimental setup350

The employed SSMs consist of 15,172 vertices and
30,220 faces (FB), and 16,244 vertices and 32,351 faces
(TB) independent of the dataset. Construction was done
following (Seim et al., 2010). For the SKI10 dataset, train-
ing of CNNs and construction of SSMs is carried out using355

the 60 training cases. Our method is evaluated for the
validation and the submission cases separately.

Two-fold cross-validation studies are performed for data-
sets OAI ZIB and OAI Imorphics. For OAI ZIB, decompo-
sition is done by random choice (253/254). The resulting360

groups of 253 and 254 subjects are used for construction
of SSMs and for training of CNNs. For OAI Imorphics the
cohort’s subject ids are sorted numerically and split into
upper and lower half (44/44). However, since no manual
segmentations of bones are available for the OAI Imorphics365

dataset, the SSMs built from the SKI10 training data are
employed. The CNNs are trained using the OAI Imorphics

5 doi.org/10.12752/4.ATEZ.1.0

baseline data only. Thus, the OAI Imorphics 12-month
follow-up data (12m) is exclusively used for evaluation still
within the cross-validation setting.370

Since the covered variability of SSMs is known to vary with
the number of training samples, we perform an experiment
to investigate this effect. In this experiment we apply our
segmentation method to the OAI ZIB dataset using the
SSM developed from the SKI10 training data that consists375

of 60 shapes instead of 253/254. It is noteworthy that the
SSMs employed in this work could be constructed indepen-
dently from the image data that is to be segmented. The
SSMs can be build e.g. from CT scans, since their role is to
provide a geometric prior (i.e. a prior on anatomical shape)380

that is independent of the underlying imaging modality.
This means that the SSM related parts of the segmentation
pipeline trivially generalize over all imaging modalities.

Implementation of CNNs is done employing Keras (Chol-
let et al., 2015) using Theano (Al-Rfou et al., 2016) as the385

backend. The optimization of the CNNs is carried out
using the ADAM optimizer (Kingma and Ba, 2014) with
a learning rate of 10−4 for 2D bone and 3D cartilage as
well as 10−5 for 3D bone CNNs. All calculations regarding
SSMs are carried out using Amira ZIB Edition 42.2017 6

390

(Stalling et al., 2005).

4.3. Measures of segmentation accuracy
The accuracy of our method is evaluated using the

Dice Similarity Coefficient (DSC), average surface dis-
tance (ASD), root mean square distance (RSD), maximum
distance (MSD), volume difference (VD), and volume over-
lap error (VOE). All these measures are symmetric apart
from VD that is considered relative to the manual seg-
mentation. Volumetric measures (3, 4, 5) are suitable
for assessing the segmentation results globally. However,
volume-based measures provide limited sensitivity to errors

6 amira.zib.de/download.html

6
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Table 2: Segmentation accuracy for the SKI10 validation dataset. Re-
sults for FB, TB are reported for different steps of our segmentation
pipeline: Step one (CNN-2D), step three (CNN-3D), and for the com-
plete pipeline including the postprocessing (Full).

ASD (mm) RSD (mm) VD (%) VOE (%)

CNN-2D
FB 0.47 ± 0.23 0.90 ± 0.48 — —
TB 0.68 ± 1.58 1.36 ± 3.28 — —

CNN-3D
FB 0.43 ± 0.13 0.75 ± 0.28 — —
TB 0.37 ± 0.11 0.63 ± 0.26 — —

Full FB 0.43 ± 0.13 0.74 ± 0.27 — —
TB 0.35 ± 0.07 0.59 ± 0.19 — —
FC — — 7.18 ± 10.51 20.99 ± 5.08
TC — — 4.29 ± 12.34 19.06 ± 5.18
Total score as computed employing the SKI10 metrics:

71.2 ± 11.2 (CNN-2D), 73.6 ± 7.6 (CNN-3D), 74.0 ± 7.7 (Full)

Table 3: SKI10 validation data: Our approach (bold) yields the
best of all published results as of November 2018.

Imorphics ZIB (2010) BioMedIA
(Vincent et al., 2010) (Seim et al., 2010) (Wang et al., 2013)

52.3 ± 8.6 54.4 ± 8.8 56.5 ± 9.2

Liu et al. Biomediq ZIB (2018)
(Liu et al., 2017) (Dam et al., 2015)

64.1 ± 9.5 67.1 ± 8.0 74.0 ± 7.7

on the boundaries of the segmentation if the segmented
volume is relatively large. Thus, small features that are
important e.g. for diagnostic purposes (osteophytes) are
not adequately represented by these measures alone. We
therefore also include surface distance measures (6, 7, 8) in
the evaluation, which are sensitive to segmentation errors
on the anatomical boundary. Within the following formulas,
A denotes the set of manually segmented (ground-truth)
voxels and B denotes the segmentation result from the
automated method; ∂A and ∂B represent the boundary of
A and B. The boundary contains every voxel with at least
one neighbor that is not part of the respective segmentation
mask. The number of voxels on the boundary ∂A, ∂B is
written as n∂A, n∂B . Lastly | · | denotes a volume and ‖·‖2
the usual Euclidean norm.

DSC = 100 ·
2 | B ∩ A |

| B | + | A |
(3)

VOE = 100 ·
(
1 −

DSC

200 − DSC

)
(4)

VD = 100 ·
| B | − | A |

| A |
(5)

ASD =
1

n∂A + n∂B

n∂A∑
i=1

min
b∈∂B

∥∥ai − b
∥∥
2 +

n∂B∑
j=1

min
a∈∂A

∥∥∥bj − a
∥∥∥
2

 (6)

RSD =

√√√√√ 1

n∂A + n∂B

n∂A∑
i=1

min
b∈∂B

∥∥ai − b
∥∥2
2 +

n∂B∑
j=1

min
a∈∂A

∥∥∥bj − a
∥∥∥2
2

 (7)

MSD = max

(
max

a∈∂A
min

b∈∂B
‖a − b‖2, max

b∈∂B
min

a∈∂A
‖b − a‖2

)
(8)

4.4. Results
Table 2 summarizes our results for the SKI10 validation

dataset. Results are reported for the bones after step one395

(CNN-2D), step three (CNN-3D), as well as for the complete
segmentation pipeline (Full). Our proposed method reaches
a total score of 74.0±7.7 in terms of the SKI10 metrics
(Heimann et al., 2010). This is a notable improvement w.r.t.
scores reported in previous works (Table 3). Moreover, our400

method achieves a total score of 75.73 on the SKI10 submit
data and is currently ranked first as of November 20187.

The results for the OAI Imorphics dataset are shown in
Table 4. For FC the DSC is 89.4% for baseline and 89.1%
for 12m. For medial tibial cartilage (MTC) and lateral405

tibial cartilage (LTC) the DSC is 86.1% resp. 90.4% for

7 ski10.org/results.php

baseline, and 85.8% resp. 90.0% for 12m. The ASD is
smaller than the image resolution (<0.36mm) for both, FC
and TC. Figure 5 compares the results obtained from the
method proposed in this work to the results reported by410

Dam et al. (2015). For the OAI Imorphics dataset, our
method shows an improvement in segmentation accuracy by
approx. 5 percentage points for FC, approx. 5 percentage
points for MTC, and approx. 4 percentage points for LTC
w.r.t. the DSC.415

The accuracy evaluation for the OAI ZIB dataset is
summarized in Table 5. The DSC is 98.6% for FB, 98.5%
for TB, 89.9% for FC, and 85.6% for TC. Again, the ASD
is smaller than the image resolution for bone as well as
for cartilage (<0.36mm). Additionally, the results of an420

ablation study are shown as well in Table 5 including
the accuracy employing the SKI10 SSM, containing less
training shapes than the OAI ZIB ones. The usage of a
smaller SSM is not changing the magnitude of the results
for any distance measure. However, performing t-tests425

between the results of the OAI ZIB and the SKI10 SSM,
the SSM containing more training data yields significantly
better (P< 0.0001) results for all measures but the MSD
(tibial bone, P= 0.08).

Figure 5: OAI Imorphics dataset: Our results compared to those
reported in Dam et al. (2015) w.r.t. Dice similarity coefficient (DSC).
The evaluation of their method was done for baseline timepoint only.

Computation for the whole segmentation pipeline is mea-430
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Table 4: Cartilage segmentation accuracy for the OAI Imorphics dataset at baseline (00m) and 12-month follow-up (12m).
DSC (%) ASD (mm) RSD (mm) MSD (mm) VD (%) VOE (%)

00m FC 89.4 ± 2.41 0.19 ± 0.08 0.50 ± 0.30 6.65 ± 2.99 7.0 ± 6.04 19.1 ± 3.88
MTC 86.1 ± 5.33 0.26 ± 0.23 0.63 ± 0.55 5.16 ± 2.93 8.0 ± 17.15 24.1 ± 7.74
LTC 90.4 ± 2.42 0.17 ± 0.06 0.41 ± 0.16 3.93 ± 2.07 6.9 ± 7.14 17.5 ± 3.96

12m FC 89.1 ± 2.41 0.20 ± 0.09 0.53 ± 0.33 6.86 ± 3.16 7.6 ± 6.78 19.6 ± 3.86
MTC 85.8 ± 5.00 0.28 ± 0.22 0.67 ± 0.55 5.25 ± 3.06 6.6 ± 16.38 24.5 ± 7.37
LTC 90.0 ± 2.57 0.18 ± 0.06 0.44 ± 0.19 4.08 ± 2.11 7.2 ± 7.74 18.1 ± 4.16

Table 5: Bone and cartilage segmentation accuracy for the OAI ZIB dataset. Results are reported for different steps of our segmentation
pipeline: Step one (CNN-2D), step three (CNN-3D), and for the complete pipeline including the postprocessing (Full). Additionally, results are
shown employing the SKI10 SSM containing 60 training shapes instead of the OAI ZIB SSM, which was constructed using 253/254 training
shapes, depending on the cross-validation group.

DSC (%) ASD (mm) RSD (mm) MSD (mm) VD (%) VOE (%)

Full

FB 98.6 ± 0.30 0.17 ± 0.05 0.35 ± 0.09 2.93 ± 1.24 -0.09 ± 0.87 2.8 ± 0.58
TB 98.5 ± 0.33 0.18 ± 0.06 0.37 ± 0.18 3.16 ± 2.03 -0.03 ± 0.82 2.9 ± 0.63
FC 89.9 ± 3.60 0.16 ± 0.07 0.38 ± 0.17 5.35 ± 2.50 1.5 ± 5.87 18.1 ± 5.90
TC 85.6 ± 4.54 0.23 ± 0.12 0.60 ± 0.38 6.35 ± 4.36 -1.0 ± 11.92 24.9 ± 6.79

CNN-3D
FB 98.4 ± 0.44 0.18 ± 0.05 0.35 ± 0.11 3.02 ± 1.57 0.01 ± 0.89 2.8 ± 0.61
TB 98.3 ± 0.44 0.19 ± 0.09 0.41 ± 0.33 3.45 ± 2.80 0.01 ± 0.93 3.0 ± 0.75

CNN-2D
FB 98.6 ± 0.36 0.18 ± 0.07 0.40 ± 0.22 4.17 ± 2.93 0.07 ± 0.87 2.7 ± 0.69
TB 98.6 ± 0.40 0.17 ± 0.08 0.38 ± 0.22 3.58 ± 2.44 -0.07 ± 1.00 2.7 ± 0.76

SKI10 SSM
FB 98.4 ± 0.31 0.19 ± 0.05 0.38 ± 0.09 3.10 ± 1.28 -0.04 ± 0.89 3.1 ± 0.60
TB 98.4 ± 0.35 0.20 ± 0.07 0.39 ± 0.19 3.27 ± 2.16 -0.03 ± 0.85 3.1 ± 0.66

sured as 9m 22s (exemplarily) on a consumer-grade work-
station (CPU: Intel Xeon E5-2650 v3, 2.30GHz; GPU:
GeForce GTX 980 Ti).

5. Discussion

The presented method was evaluated thoroughly using435

datasets from the SKI10 challenge as well as from the OAI
database. Accuracy was evaluated using volume-based
and distance-based measures to provide a sound analysis
w.r.t. global and local level of detail. The proposed method
consistently achieved a high segmentation accuracy, despite440

severely arthritic knees and various different MRI sequences.
For the first time, a total score greater than 75 was reached
on the SKI10 submission data, which is comparable to the
inter-observer variability of two expert readers (Heimann
et al., 2010). Moreover, better results were achieved for445

the SKI10 validation data compared to the total scores
reported by previous methods. Although our score was
below 75 for this dataset, a relative improvement of approx.
10% was achieved compared to the previously best result
reported by Dam et al. (2015) (74.0 vs. 67.1).450

They also gave results for the segmentation of FC as well as
TC of the OAI Imorphics dataset (Fig. 5). For the baseline
timepoint, the 3D CNN-based method proposed in this
work achieves a higher segmentation accuracy. We believe
this is possibly due to the application of deep learning455

methods instead of the feature detectors used previously.
In two ablation studies we have shown the influence of

each proposed step of our segmentation pipeline (see Table
2 and Table 5). Especially for the SKI10 validation data the
increase of the total score with each step is noticeable (71.2460

vs. 73.6 vs. 74.0). For the OAI ZIB dataset the clearest

trend within the accuracy measures can be observed for
the maximum error. Each step of our pipeline is decreasing
the mean error as well as the standard deviation. We
evaluated the influence of the SSM’s training data size465

on our segmentation results and found that for SSMs of
different size a similar magnitude of quality is reached.
However, the results differed significantly in the statistical
sense between the smaller SKI10 and the OAI ZIB SSMs
containing more training data. It was thus shown that470

more variability covered in the employed SSMs leads to
better segmentation accuracy. This is a typical behavior
working with SSMs in segmentation (Lamecker et al., 2004)
and as such an expected phenomenon. Moreover, the
SKI10 data was acquired using different MRI scanners475

and different MRI sequences compared to the OAI ZIB
data. We note that to employ an SSM for the task of knee
bone segmentation within the presented method, it is not
necessary to build it from geometries reconstructed of the
target imaging modality, since SSMs rely on geometrical480

information only and are not connected to MRI images in
any way.

An interesting option could be to change the type of
SSM used within the second step of the pipeline, since
other kinds of SSMs will give different modes of variation485

for the same input data. Recently, von Tycowicz et al.
(2018) presented a Riemannian shape model based on dif-
ferential coordinates that has proven to be more sensitive
to OA related pathological changes in bony tissue. Such
non-linear model could improve the SSM fit in step two490

and therefore lead to an increased overall segmentation
accuracy especially for osteoarthritic knees. The adjust-
ment algorithm itself of the SSM fit could potentially be

8



Figure 6: Segmentation of osteophytic regions in different stages (colored contours). CNN-2D stage (left) is error prone, SSM adjustment
(middle) smoothly regularizes and CNN-3D (right) segments osteophytes precisely.

Figure 7: Left column: An image artifact results in an erroneous CNN-2D classification (top). An anatomically plausible segmentation
(bottom) is achieved employing SSM adjustment regularization. Middle and right column: CNN-3D segmentation introduces errors in the
shaft region due to insufficient image contrast (top). SSM postprocessing corrects in an anatomically plausible manner (bottom).
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improved by consideration of anisotropic covariances, as
proposed by Bernard et al. (2017).495

Within the SSM postprocessing step of our method, specific
regions are defined manually. In order to make the proposed
segmentation approach applicable for other anatomies as
well applying a learning technique to characterize these
trust regions for the SSM is desirable. Moreover, an evalu-500

ation of 3D conditional random fields can be performed in
this context (Kamnitsas et al., 2017).

In our experience, the automated method reduces the
time effort for an accurate segmentation of knee bones and
cartilage at least by a factor of six compared to manual505

segmentations by an experienced reader (>1h). However,
large scale databases for studying the OA disease, such as
provided by the OAI, can contain 50.000 or more MRIs.
Using our implementation, it would take 43 weeks to seg-
ment the full OAI database on a singe computational node.510

We therefore aim at reducing the computational time of
the algorithm further as well as distributing the work-load
over several nodes. Our goal is to segment the full OAI
database and to make the results publicly available in the
near future.515

6. Conclusion and future work

We presented a new method which achieved for the first
time a segmentation accuracy as good as human experts
on the SKI10 dataset by combining CNNs with statistical
shape knowledge. The results prove that explicit anatomi-520

cal information notably augments the segmentation process
and that a close incorporation between CNNs and shape
knowledge is desirable.

Thus, a promising line of future work is to investigate
approaches that couple CNNs and SSMs more directly, e.g.525

by introducing learned appearance from CNNs to an SSM
segmentation framework. One way of combining CNNs
and SSMs could be to solve a well known problem: The
manual design of appearance models as described e.g. in
Kainmüller et al. (2007), which are driving the SSM to a530

given MRI dataset. These appearance models are usually
evaluated for each vertex of an SSM and can be learnt for
a given population as shown by Norajitra and Maier-Hein
(2017). Instead of random regression forests a CNN could
be used, which then decides for each vertex, to which target535

position it should be adjusted in order to minimize the
distance between the SSM and the ground truth object
boundary.
Interesting as well is an investigation whether a connec-
tion can be established between the method of Oktay540

et al. (2018) and ours. The coefficients of the SSM-shape-
representation could probably be connected to a voxel
representation of that shape in order to augment it or
maybe even to replace it within their setting. This could
lead to an approach that includes shape knowledge during545

training and inference. A rather different focus is set in
Maron et al. (2017), who developed a technically sound

method employing a convolution operator directly on sur-
faces and thus allowing for learning geometrical features of
certain shapes with CNNs. Their approach is interesting as550

shape based regularization although some research has to
be done in order to incorporate it into a CNN segmentation
framework.

We chose the dimensions of the subvolumes used as
input for the 3D CNNs in a compromise between size and555

memory consumption. Recently, Heinrich et al. (2018)
proposed a very memory efficient solution for 3D image
segmentation. This approach could be employed to utilize
larger subvolumes or even the full image for segmentation
of knee bones and cartilage, which could consecutively be560

refined by shape knowledge.
Apart from that, shape information might be added

to the CNN-training-procedure by integrating the surface
distance to the ground-truth into the loss function.

In the future, a more direct (end-to-end) combination565

of SSMs and CNNs might preserve the benefits of shape
knowledge and offers potential of CNN training for diverse
and low-scale datasets. To aid this development the manual
segmentations created by experienced users at the Zuse
Institute Berlin are made publicly available as part of this570

publication. These segmentation masks (as well as our sup-
plied cross-validation setting) can be utilized for training
of new methods and for subsequent benchmarking.

Acknowledgments575

We would like to thank Heiko Ramm (née Seim,
1000shapes GmbH) for valuable insights into SSM-based
segmentation methods. We also thank Irene Ziska, Ag-
nieszka Putyra, and Robert Joachimsky for revising au-
tomated presegmentations of the OAI ZIB dataset. The580

authors gratefully acknowledge the financial support by the
German federal ministry of education and research (BMBF)
research network on musculoskeletal diseases, grant no.
01EC1408B (Overload/PrevOP) and grant no. 01EC1406E
(TOKMIS). The Osteoarthritis Initiative is a public-private585

partnership comprised of five contracts (N01-AR-2-2258;
N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-
2-2262) funded by the National Institutes of Health, a
branch of the Department of Health and Human Services,
and conducted by the OAI Study Investigators. Private590

funding partners include Merck Research Laboratories; No-
vartis Pharmaceuticals Corporation, GlaxoSmithKline; and
Pfizer, Inc. Private sector funding for the OAI is managed
by the Foundation for the National Institutes of Health.
This manuscript was prepared using an OAI public use595

data set and does not necessarily reflect the opinions or
views of the OAI investigators, the NIH, or the private
funding partners.

10



References

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau,600

D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A.,
et al., 2016. Theano: A python framework for fast computation of
mathematical expressions. arXiv preprint .

Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S., 2010. Review
of brain mri image segmentation methods. Artificial Intelligence605

Review 33, 261–274.
Bernard, F., Salamanca, L., Thunberg, J., Tack, A., Jentsch, D.,

Lamecker, H., Zachow, S., Hertel, F., Goncalves, J., Gemmar, P.,
2017. Shape-aware surface reconstruction from sparse 3d point-
clouds. Medical image analysis 38, 77–89.610

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.,
2014. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv preprint arXiv:1412.7062 .

Chollet, F., et al., 2015. Keras.
Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M.,615

Bilic, P., Rempfler, M., Armbruster, M., Hofmann, F., D’Anastasi,
M., et al., 2016. Automatic liver and lesion segmentation in ct using
cascaded fully convolutional neural networks and 3d conditional
random fields, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 415–423.620

Conaghan, P., Hunter, D., Maillefert, J., Reichmann, W., Losina, E.,
2011. Summary and recommendations of the oarsi fda osteoarthritis
assessment of structural change working group. Osteoarthritis and
Cartilage 19, 606–610.

Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P., 2012. Robust and625

accurate shape model fitting using random forest regression voting,
in: European Conference on Computer Vision, pp. 278–291.

Dam, E.B., Lillholm, M., Marques, J., Nielsen, M., 2015. Automatic
segmentation of high-and low-field knee MRIs using knee image
quantification with data from the osteoarthritis initiative. Journal630

of Medical Imaging 2, 024001.
Dice, L.R., 1945. Measures of the amount of ecologic association

between species. Ecology 26, 297–302.
Eckstein, F., Burstein, D., Link, T.M., 2006a. Quantitative MRI of

cartilage and bone: degenerative changes in osteoarthritis. NMR635

in Biomedicine 19, 822–854.
Eckstein, F., Cicuttini, F., Raynauld, J.P., Waterton, J.C., Peterfy, C.,

2006b. Magnetic resonance imaging (MRI) of articular cartilage in
knee osteoarthritis (OA): morphological assessment. Osteoarthritis
and Cartilage 14, 46–75.640

Heimann, T., Meinzer, H.P., 2009. Statistical shape models for 3d
medical image segmentation: A review. Medical Image Analysis
13, 543–563.

Heimann, T., Morrison, B.J., Styner, M.A., Niethammer, M.,
Warfield, S.K., 2010. Segmentation of knee images: a grand645

challenge, in: MICCAI Workshop on Medical Image Analysis for
the Clinic, pp. 207–214.

Heimann, T., Van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich,
V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., et al.,
2009. Comparison and evaluation of methods for liver segmentation650

from ct datasets. IEEE transactions on medical imaging 28, 1251–
1265.

Heinrich, M.P., Oktay, O., Bouteldja, N., 2018. Obelisk-one kernel to
solve nearly everything: Unified 3d binary convolutions for image
analysis, in: International conference on Medical Imaging with655

Deep Learning.
Kainmueller, D., 2014. Deformable Meshes for Medical Image Segmen-

tation: Accurate Automatic Segmentation of Anatomical Struc-
tures. Springer.

Kainmüller, D., Lange, T., Lamecker, H., 2007. Shape constrained660

automatic segmentation of the liver based on a heuristic intensity
model, in: Proc. MICCAI Workshop 3D Segmentation in the Clinic:
A Grand Challenge, pp. 109–116.

Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane,
A.D., Menon, D.K., Rueckert, D., Glocker, B., 2017. Efficient665

multi-scale 3d cnn with fully connected crf for accurate brain
lesion segmentation. Medical image analysis 36, 61–78.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic opti-
mization. arXiv:1412.6980.

Lamecker, H., Lange, T., Seebass, M., 2004. Segmentation of the670

Liver using a 3D Statistical Shape Model. Technical Report 04-09.
ZIB. Takustr. 7, 14195 Berlin.

Lawrence, R.C., Felson, D.T., Helmick, C.G., Arnold, L.M., Choi,
H., Deyo, R.A., Gabriel, S., Hirsch, R., Hochberg, M.C., Hunder,
G.G., et al., 2008. Estimates of the prevalence of arthritis and675

other rheumatic conditions in the united states: Part ii. Arthritis
& Rheumatology 58, 26–35.

Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F.,
Ghafoorian, M., van der Laak, J.A., Van Ginneken, B., Sánchez,
C.I., 2017. A survey on deep learning in medical image analysis.680

Medical image analysis 42, 60–88.
Liu, F., Zhou, Z., Jang, H., Samsonov, A., Zhao, G., Kijowski,

R., 2017. Deep convolutional neural network and 3d deformable
approach for tissue segmentation in musculoskeletal magnetic reso-
nance imaging. Magnetic Resonance in Medicine 79, 2379–2391.685

Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N., Yumer,
E., Kim, V.G., Lipman, Y., 2017. Convolutional neural networks
on surfaces via seamless toric covers. ACM Trans. Graph 36, 71.

Mukhopadhyay, A., Victoria, O.S.M., Zachow, S., Lamecker, H., 2016.
Robust and accurate appearance models based on joint dictionary690

learning data from the osteoarthritis initiative, in: International
Workshop on Patch-based Techniques in Medical Imaging, pp.
25–33.

Norajitra, T., Maier-Hein, K.H., 2017. 3d statistical shape models
incorporating landmark-wise random regression forests for omni-695

directional landmark detection. IEEE transactions on medical
imaging 36, 155–168.

Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Ca-
ballero, J., Cook, S.A., de Marvao, A., Dawes, T., O‘Regan, D.P.,
et al., 2018. Anatomically constrained neural networks (ACNNs):700

application to cardiac image enhancement and segmentation. IEEE
transactions on medical imaging 37, 384–395.

Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E.B., Nielsen,
M., 2013. Deep feature learning for knee cartilage segmentation
using a triplanar convolutional neural network, in: International705

Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 246 – 253.

Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudhakar,
P., Vaidya, V., 2017. Learning and incorporating shape models for
semantic segmentation, in: International Conference on Medical710

Image Computing and Computer-Assisted Intervention, pp. 203–
211.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional
networks for biomedical image segmentation, in: International
Conference on Medical Image Computing and Computer-Assisted715

Intervention (MICCAI), pp. 234–241.
Seim, H., Kainmueller, D., Lamecker, H., Bindernagel, M., Mali-

nowski, J., Zachow, S., 2010. Model-based auto-segmentation of
knee bones and cartilage in MRI data, in: MICCAI Workshop
Medical Image Analysis for the Clinic, pp. 215 – 223.720

Stalling, D., Westerhoff, M., Hege, H.C., 2005. Amira: a highly
interactive system for visual data analysis, in: The Visualization
Handbook, pp. 749–767.

Tack, A., Mukhopadhyay, A., Zachow, S., 2018. Knee menisci seg-
mentation using convolutional neural networks: Data from the725

Osteoarthritis Initiative. Osteoarthritis and Cartilage 26, 680–688.
von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S., 2018.

An efficient riemannian statistical shape model using differential
coordinates: With application to the classification of data from
the Osteoarthritis Initiative. Medical Image Analysis 43, 1–9.730

Vincent, G., Wolstenholme, C., Scott, I., Bowes, M., 2010. Fully
automatic segmentation of the knee joint using active appearance
models, in: MICCAI Workshop Medical Image Analysis for the
Clinic, pp. 224 – 230.

Wang, Z., Donoghue, C., Rueckert, D., 2013. Patch-based segmenta-735

tion without registration: application to knee MRI, in: MICCAI
Workshop Machine Learning in Medical Imaging, pp. 98 – 105.

11

http://arxiv.org/abs/1412.6980

