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Abstract

Muscle fibre cross sectional area (CSA) is an important biomedical measure used to determine
the structural composition of skeletal muscle, and it is relevant for tackling research questions in
many different fields of research. To date, time consuming and tedious manual delineation of muscle
fibres is often used to determine the CSA. Few methods are able to automatically detect muscle
fibres in muscle fibre cross sections to quantify CSA due to challenges posed by variation of bright-
ness and noise in the staining images. In this paper, we introduce SLCV, a robust semi-automatic
pipeline for muscle fibre detection, which combines supervised learning (SL) with computer vision
(CV). SLCV is adaptable to different staining methods and is quickly and intuitively tunable by
the user. We are the first to perform an error analysis with respect to cell count and area, based on
which we compare SLCV to the best purely CV-based pipeline in order to identify the contribution
of SL and CV steps to muscle fibre detection. Our results obtained on 27 fluorescence-stained cross
sectional images of varying staining quality suggest that combining SL and CV performs signifi-
cantly better than both SL based and CV based methods with regards to both the cell separation-
and the area reconstruction error. Furthermore, applying SLCV to our test set images yielded fibre
detection results of very high quality, with average sensitivity values of 0.93 or higher on different
cluster sizes and an average Dice Similarity Coefficient (DSC) of 0.9778.

1 Introduction

Skeletal muscle and its adaptation to diverse stimuli plays a central role in various biological processes
and disease states. Analysing the structural composition of skeletal muscle specimens is essential in
many fields of research, ranging from basic developmental and physiological sciences to muscular and
metabolic diseases like myopathies [18]. In preclinical models and studies in humans, one of the central
elements in the characterization of muscle specimens is the analysis of the muscle fibre size (fibre cross
sectional area, CSA) [18,21,24]. CSA allows for the assessment of muscle hypertrophy, atrophy and
weakness. Despite its importance, the quantification of such muscle cell characteristics is still often
done manually by multiple blinded observers—the muscle fibres are delineated by hand using software
such as ImageJ [20]. This is a time consuming and labour intensive task, especially if multiple cross
sections have to be analysed for a research task. Methods which aid in automating the process are
available, but require large amounts of manual error correction and are often not free, for example
the Zeiss AxioVison software. Automatic classification of muscle fibre cross sections is a hard problem
due to variation with regards to staining quality and noise. There are three major factors which pose
challenges to automated muscle fibre detection approaches: brightness, borders, and image stitching.



Figure 1. A: Examples for variation in cell tissue intensity. Arrows point at holes in cell tissue
which disturb the cell detection process (left) and intensity variation within one cell (second from
left). B: Different intensities and distributions of noise. C: Examples for varying border staining
intensities. Arrows show irregularities, such as a border between two cells, which is so weakly
stained, that it is hardly visible (right). D: Examples of noise in gap regions: Sudden intensity
changes inside the cross section along a vertical line through the image, which is due to image
stitching (left). Low contrast between gap region and cell tissue due to ripped tissue poses a
challenge to cell detection (right). E: Other factors, such as non-continuous cell borders (left) and
very bright staining artifacts (right).

Firstly, in fluorescence-stained pictures, brightness of cell tissues varies strongly between and even
within pictures (see Figure 1A). As an example, we observed a general trend of small fibres appearing
brighter than big fibres. Biological reasons for the variation of brightness within a picture might be
the autofluorescence of tissue, or the wheat germ agglutinin (WGA) used for staining, which generally
binds to glycoproteins of the cell membrane [7]. It can thus also stain membrane vesicles, which would
show up as small bright spots in the cytosol of the fibres. This form of noise within the fibres is
differently distributed and is thus hard to filter out (see Figure 1B). Secondly, cell borders can contain
weakly stained areas, which appear as holes, and in extreme cases the whole border may be hard to
spot on the image (Figure 1C). Additionally, there are interstitial spaces (gaps) between the muscle
fibre bundles in most cross sections, which are expected to be devoid of the staining protein. However,
these areas often contain noise (Figure 1D) and the resulting low intensity contrast between the gap
and neighbouring cell tissue may hinder the correct detection of the cell borders. Another possible
source of variation is the process of picture recording. When the whole image is reconstructed from
multiple smaller pictures, these pictures are recorded separately using automatic brightness detection.
The stitched cross section may thus contain sudden changes in intensity, where two small pictures
recorded with different settings are assembled (Figure 1D). All of these aforementioned factors are
part of the challenge that needs to be overcome to realise effective and practical automatic fibre cross
sectional detection.

In the past years, methods for automatic or semi-automatic cell detection on different staining tech-
niques have been introduced: Smith et al. used immunohistochemical staining [22], Mula et al.
presented their method on examples of both immunohistochemical staining and WGA fluorescence-
staining [17], and Liu et al. used haematoxylin and eosin (H&E) staining [14]. While these algorithms
greatly facilitate cell detection in their respective settings, there is still no overall solution addressing
all three aforementioned challenges. Furthermore, the trade-off between automation and quick appli-



cation on the one hand, and the adaptability and possibility of human intervention on the other hand
is balanced differently between the methods, thus not each method might fit the respective needs of a
user.

The pipeline proposed in this paper is called SLCV, and combines supervised learning (SL) with
computer vision (CV). It does require human intervention, but is very intuitively and quickly adjustable
with respect to different staining methods and staining qualities, while being robust to noise and
variation. The novelty of this work is firstly to combine the adaptability and robustness of machine
learning methods with the accuracy of computer vision methods on images and secondly, to perform
a statistical error analysis with respect to cell separation and area reconstruction. We set up a
comparison study between our SLCV pipeline and that of Mula et al. [17], since to our knowledge it
is the best purely computer vision based automated fibre detection method to date. We present both
pipelines on the example of fluorescence-stained images, which Mula et al. have also used in their

paper.

We begin by introducing both the SLCV pipeline and the pipeline of Mula et al., highlighting their
key characteristics and similarities. Then, we describe how the test images were created, and define
the error measurements of cell separation and area reconstruction used for the statistical analysis.
Finally, we compare results we obtained using both pipelines on our image test set, and discuss these
results.

2 Methods

Big Fibre

Figure 2. Training set of Ilastik classifier 1 out of 2, which was applied to 25 out of 27 of the test
set images. Yellow: class “big fibre”, blue: class “small fibre”, white: class “border”, green: class
“gap”. A: First training image. B: Second training image.



2.1 SLCYV Pipeline
2.1.1 Step I: Supervised Learning

The first step to identifying cells in the muscle cross section picture is detecting the cell borders. To
do this, a random forest supervised learning model for pixel classification is used. Pixel classification
models are available as one of several workflows in Ilastik—an open-source image analysis, classification,
and segmentation software [23]. The trained model assigns every pixel of an image to one of several
previously defined classes, which describe the different textures within the cross sections to be analysed.
In fluorescence-stained images, we defined the classes to be “border” (very bright and thin regions),
“gap” (big dark areas), “big fibre” (bigger areas of low brightness) and “small fibre” (smaller bright
regions). Only pixels of the class “border” are used for the following steps, but defining all four classes
and training the model to distinguish them optimises the accuracy of the assignment of pixels to
the “border” class. The classification model is based on two selected image features: the eigenvalues
of the Hessian of Gaussian with oteprure = 1.6,3.5,5.0,10.0 px which are used to detect regions of
intensity changes, and Gaussian image smoothing with ojntensity = 0.3,0.7,1.0,1.6,3.5 px. The pixel
(px) breadth values of ¢ are chosen from 7 different values available in the feature selection dialogue of
Ilastik, and are selected to cover a range of pixel breadths for each feature. Based on these features, the
training is conducted on only few selected pixels from a set of example pictures. Ilastik features a visual
interface, where the training pixels can be drawn on the image, making the model easily adjustable
to different kinds of staining and quick and intuitive to create (see §A.1 for how an Ilastik classifier
is recommended to be created). All classification done in this work was performed using no more
than small amounts of training on two images, as shown in Figure 2. This Figure shows the training
of classifier 1, which was applied to 25 test set images. The two training images in the Figure are
examples of muscle fibre cross sections, and were chosen such that they cover the common intensity
and noise levels found in borders, gaps and fibres in the test set. The first image mostly contains
noise-free gaps, fibres with low, equally distributed noise and thin or faint borders. In contrast, the
second image contains noisy gaps, very bright borders and fibres with higher noise levels of different
distribution. Classifier 2 was trained on two images in a similar fashion, and was applied to 2 test
set images which showed much higher overall brightness and lower border quality than the other test
images. Both images chosen for the training of classifier 2 also mainly contained high brightness fibres
and thin and faint borders to match the test images and are shown in §A.2.

The output of step I are all pixels which Tlastik classified as “border”. We refer to these as the
initial borders or initial clusters, with both representations being equivalent. We define the clusters as
follows: clusters are the smallest objects (with respect to set inclusion) in the picture, which are each
completely encapsulated by a continuous sequence of touching border pixels. The clusters represent
initial fibre detection results and can consist of more than one true fibre if the borders contain holes.
An example of the relation between borders and clusters is shown in Figure 3, where Fig. 3B shows
the borders resulting from the classification of Fig. 3A, and Fig. 3C shows the cluster obtained from
the borders in Fig. 3B.

2.1.2 Step II: Watershed

The output of the previous step are the initial borders or clusters, where one cluster can contain
one or multiple true fibres. The aim of this second step is to identify single fibres by refining or
separating these initial clusters. This is achieved by filling holes in borders which were not completely
detected by the supervised learning pixel classification. First, very small holes are filled by dilating the
borders. The binary image is then subjected to the following distance transformation: Each non-border
pixel within a cluster is given a value according to its minimal distance to a border pixel [4]. This
transformation yields a “hill-like” structure, which has one local maximum if the cluster is round, or
several local maxima, if the boundary is irregular and the cluster is thus likely to contain multiple single
cells. A subsequent thresholding step removes small distance values and leaves connected components



representing the maxima. Let x and y be the coordinates of a pixel inside an image I. Then,

() = {I(x,y) if I(z,y) > 7 x maxz(I),
0 else

where [ is the thresholded image I. The bigger the threshold 7 € [0, 1] is selected, the more compo-
nents result and the easier small irregularities within the cluster boundary lead to cluster separation.
The connected components are subsequently input to the watershed algorithm [5]. The idea of the
watershed algorithm is to “flood”, that is, to steadily extend all connected components outwards.
Flooding is stopped in regions, where either the component touches a border pixel or two different
components touch each other. A visualization of input, distance transformation and output are shown
in Figure 3 C-E, respectively. The result of this step are the final cell clusters.

2.1.3 Step III: GAC Snake

The previous two steps separated touching muscle cells in order to obtain single true cells. However,
fibre area is lost in this process due to errors introduced by the approximations of previous steps and
thus the aim of the last step is to accurately reconstruct the fibre area. To do this, the geodesic active
contours (GAC) Snake model-an evolving 2-dimensional deformable curve-is used [2]. It is based on
a partial differential equation (PDE), which is solved repeatedly until its overall energy is minimized.
The PDE has the form:

balloon force image attraction force
5 = g(I)|Vuldiv Yl +g(D)|Vu| v+ Vg(I)Vu

smoothing force

It consists of three parts, which modify the deformable 2D curve u: a smoothing function, a balloon
force and an image attraction term. The balloon force is controlled by the parameter v and is used
to expand the snake u outward (or to contract it, if v < 0), while the image attraction term g(I)
draws the curve towards image features of interest and acts as a stopping criterion. We used Marquez-
Neila e al.’s implementation of the algorithm [16]. One factor that distinguishes the GAC Snake from
other Snake models is the usage of a morphological method for solving the PDE, which is quicker and
numerically more stable than conventional numerical methods [2].

When edges in a picture are used as an image attraction force like in our case, then

1

I)= 3
9(0) V14 alVG, @I

(1)

which results in ¢g(I) having its minima near regions with high intensity changes. In the above
equation, ® represents the convolution operator. There are two parameters to be set, and we chose
a = 2000 and o = 2 after testing different parameters on the image set. Additional parameter choices
are given in §A.3. The input of the Snake algorithm is called seed, and its boundary represents the
initial configuration of the curve w. Starting from the final clusters from step II as seeds, the cluster
boundaries are expanded iteratively until they reach the cell borders (see Figure 3F).

In summary, the SLCV pipeline starts by applying the Ilastik random forest supervised learning (SL)
method to an input image in order to obtain the initial clusters. The subsequent steps are computer
vision (CV) based and correct and refine the SL output. The clusters are submitted to distance
transformation and the watershed algorithm, with the aim of separating initial clusters into final
single-cell clusters. The area which is lost in the separation process is then reconstructed by applying
the GAC Snake model to each final cluster, where the resulting fibres are obtained by growing the
cluster using information from the original image. An example of an input and output of the pipeline
is shown in Figure 4.



Figure 3. A: Sector of an orlglnal image after manual thresholding. B: White pixels were classified
as “border” by the random forest segmentation model. C: Initial cluster. D: Distance transformation
of the non-border pixels. The following thresholding was conducted with parameter 7 = 0.3. E:
Results of applying the watershed algorithm to the thresholded image yields two final clusters. F:
GAC Snake reconstruction of the two final clusters.

2.2 Pipeline of Mula et al.

Similarly to the SLCV pipeline, Mula et al.’s pipeline consists of three phases which follow the same
objectives as the SLCV phases, respectively. In the first step, the algorithm detects ridges, which
are regions of intensity changes in the picture. This is achieved by first convoluting the input picture
with a Gaussian kernel and then calculating the eigenvalues of the Hessian matrix of this convoluted
image. From the eigenvalues, likelihood measures are obtained and subjected to automatic Otsu
Thresholding [19]. In the second step, the initial borders are morphologically closed to fill very small
holes. Then the resulting clusters are subjected to iterative erosion until their size falls below a given
threshold. This strategy tends to split all but very round clusters into multiple regions. Thus, touching
cells with medium-sized or big holes in their borders are separated, and a set of final clusters of similar
size is obtained. The third step applies the Snake algorithm to the final clusters to reconstruct the
cell area. We implemented the pipeline of Mula et al. according to the description in the paper [17].
Within the procedure, there were several parameters to be set. For some of them, a recommendation
was given, in which case we set them accordingly. All other parameters were set such that we reached
the best segmentation result on our test pictures. The parameters are given in §A.3. We also performed
some changes on the pipeline: We changed the described multi-scale ridge detection of step I to single-
scale detection with o* = 0.7, because this parameter captured the borders best and minimized the
noise in the resulting ridges. Furthermore, Mula et al. originally used the gradient vector flow (GVF)
version of snake [25,26] in step III, which is similar to the GAC Snake, because both use a smoothing
term and an image attraction force. However, GVF Snake lacks the balloon force term and does
not always converge to the edges, if the initial seed is too small. Furthermore, if it is implemented
according to the description in the original paper by Xu et al., it is less numerically stable than the
GAC Snake, since it doesn’t use morphological methods to solve the PDE. Therefore, and to simplify
the comparison of the two pipelines, we used the morphological GAC Snake model instead of the GVF
Snake in our implementation of Mula et al.’s pipeline.

2.3 Picture Test Set

Complete hindlimbs from male C57BL/6J mice aged 20 weeks were dissected and fixed in paraformalde-
hyde for 48 h at 4 °C' to keep the knee joint and muscles in their natural position. The specimens
were decalcified for 10 days in 14% EDT A at 4 °C on a shaker. After dehydration, joints were embed-
ded in paraffin and serial cross sections (5 um) through the whole hindlimb musculature were done.
Cross sections were mounted on slides, stained with fluorescent-labeled wheat germ agglutinin (WGA
Alexa-Fluor 555, Thermo) and visualised using a slide scanner (Hamamatsu NanoZoomer).

The fluorescence-stained images created by this method have very similar properties to immunohisto-
chemically stained images. Instead of fluorescence-labeled WGA, which binds to glycoproteins in the
membrane, two types of antibodies are used to create immunohistochemically stained images. The



first antibody binds to a specific protein, for example dystrophin, which appears in the membranes of
muscles. The second fluorescent protein binds to the first antibody to visualize the binding [9]. Hence,
noise and variation are comparable between both methods, and SLCV and Mula et al.’s pipeline can
be compared using only one of the two types of staining.

Our test set contains 27 images of different staining quality, including noisy and low-quality images.
This is evidenced by the examples from Figure 1, which are all taken from the test set. The raw
images are submitted to a manual thresholding step (see §A.4). The contrast between gaps and fibres
is maximized in this step in order to assure the best possible performance of the CV methods. In
each image, the maximum threshold was chosen such that no holes appeared in any muscle fibre.
The resulting images serve as the test set. Furthermore, a corresponding groundtruth picture was
created for each test set image by an experienced biologist who manually delineated all fibres. Any
fibre which was not completely contained in the picture was omitted in both the test set image and
the groundtruth image in order to obtain an unbiased fibre sample.

2.4 Error Measure: Cluster Separation

A simple image gradient analysis method was applied to each image to obtain the border pixels. We
then defined the reference clusters to be the smallest objects in the image fully encapsulated by border
pixels, equivalent to the definition in §2.1.2. The reference clusters were grouped by the number of
groundtruth cells n which they contain to represent separation difficulty. Only reference clusters with
n > 1 were kept in the considered test set. Furthermore, cluster sizes for which there were fewer than
5 samples in the test set were omitted from the statistical analysis. We chose ridge detection with one
additional dilation as the gradient analysis method (see §A.3). To assess the separation quality of a
particular pipeline, the reference clusters were compared to the fibres detected by the pipeline. The
cluster separation error is a sensitivity measure, which is computed for each picture and each reference
cluster size n using a contingency table as shown below:

Positive (P) Negative (N)
True (T) a c=2"—-1—-a—-b—d
False (F) b d=n-a

The term a denotes the number of true positives, meaning the number of true cells in the reference
cluster of size n, which were correctly detected by the algorithm. False negatives are denoted by
d = n — a and describe the number of true cells not detected by the algorithm, either because the cell
was missing completely in the result or because it could not be separated correctly. The false positives
b are the number of clusters found by the algorithm, which contain more than one groundtruth
cell. Finally, ¢ is based on the size of the result space including every possible way to separate the
reference cluster, from which all existing results are subtracted. The sensitivity is calculated as follows:
sensitivity = ai 5+ This measure captures how many cells within a reference cluster were separated
correctly and is thus representative of the separation quality of a pipeline. In order to quantify the
sensitivity difference between pipeline pl; and pipeline plo, we assume Hy: “The average sensitivity
of pls is > the average sensitivity of ply.” For each of the cluster sizes n, this hypothesis is tested by
bootstrapping: 10° bootstrap iterations are conducted on all reference cluster samples N. The p-value
of this test is defined to be the number of bootstrap iterations in which Hy is true, divided by the
total number of bootstrap resamples.




2.5 FError Measure: Area Reconstruction

The second type of error analysis in this work is based on the groundtruth of each test set image.
The area of the groundtruth cell is compared to the calculated cross sectional area (CSA) for each cell
that was correctly separated by all pipelines that are compared. This is done by calculating the Dice
similarity coefficient (DSC), which is defined as follows:

_ XY

DSC ,
| X[+ Y]

(2)
where X is the area of the groundtruth cell and Y the area of the reconstructed cell [6]. The DSC
is a measure for the similarity of two areas and punishes deviations of a reconstructed cell from
the original cell with respect to both size as well as location in the picture. Differences in area
reconstruction between two methods were quantified similar to sensitivity differences. We assumed
Hy: “The average DSC of Mula et al.’s pipeline is > the average DSC of SLCV”, and tested it in each
of the 10° bootstrapping iterations. The p-value is the fraction of bootstrapping resamples in which
Hj is true.

3 Results

Figure 4. Example cross section after manual thresholding and the final processed image, blended
into each other. Fibres touching the border are excluded from reconstruction.

3.1 Cluster Separation

The aim is to observe, how well SL, CV, and combined SL and CV perform with regards to separation of
clustered fibres (reference clusters) into their respective individual fibres. To understand the individual
contribution, we chose an Ilastik classifier as a representative for SL, the Mula et al. pipeline as the
representative of CV, and the SLCV method as the representative of the combined workflow. The
quality of the cluster separation of each of these methods is given in Table 1.

In the 27 test set pictures, 150 reference clusters of size 2, 58 clusters of size 3, 31 clusters of size
4, 8 clusters of size 5, and 15 cluster of size 6 were seen. Larger cluster sizes were also observed,



however, they were excluded from the analysis as there were less than 5 occurrences in the test set
pictures. Firstly, it can be seen that as the cluster size increases, there is a decrease in the average
sensitivity, that is, larger clusters are harder to separate. For small cluster sizes, such as 2 and 3,
Mula et al. (only CV) has an average sensitivity of higher than 85%. Interestingly, Ilastik (only SL)
has a similar average sensitivity as Mula et al.. Even though it appears that the sensitivity in Ilastik’s
cluster separation decays slower than the sensitivity of Mula et al.’s pipeline with growing cluster size,
there was no significant difference between the two methods (see Figure 5A). Considering the SLCV
(SL and CV) method, it can be seen that the average sensitivity is significantly higher than in both
Mula et al. and Ilastik. Only n = 5 is an outlier in this respect. Due to the low sample size of 8,
the bootstrapping could not detect a significant difference between SLCV and Ilastik. Furthermore,
the average sensitivity of the SLCV pipeline only decreased by approximately 0.05 between cluster
sizes two and six. In comparison, Mula et al. and Ilastik decreased by approximately 0.2 over the
same range. This shows that the combination of both SL and CV (SLCV) is significantly better
at cluster separation than either SL or CV alone, and that SLCV has a high chance of accurately
separating even large fibre clusters. In contrast to incomplete cluster separation, we also observed
oversegmentation in both pipelines causing separation errors (data not shown). That is, a cluster
representing a true cell is sometimes erroneously separated into two or more clusters. In the watershed
algorithm, oversegmentation is a known problem [10,13,14], while in Mula et al.’s pipeline, the cause
are errors introduced by erosion.

Sensitivity Analysis

Cluster Size 2(N=150) 3(N=58) 4(N=31) 5(N=8) 6(N=15)

Mula et al.
Mean 0.92 0.85 0.73 0.78 0.69
95% CI 0.88-0.96 0.78-0.92 0.60-0.83 0.60-0.95 0.49-0.88

Tlastik
Mean 0.93 0.86 0.84 (%) 0.80 0.76
95% CI 0.89-0.96 0.78-0.92 0.73-0.93 0.60-1.0 0.61-0.89

SLCV
Mean  0.99 (x) 0.97 (1) 0.95 (1) 0.98 (%) 0.93 ()
95% CI 0.97-1.0 0.93-0.99 0.90-0.99 0.93-1.0 0.82-1.0

() Average sensitivity SLCV > Mula et al with p-value < 0.05.
(1) Average sensitivity SLCV > Ilastik with p-value < 0.05.
($) Average sensitivity Ilastik > Mula et al with p-value < 0.05.

Table 1. Mean sensitivity values and 95% confidence intervals as visualized in Figure 5A.

3.2 Areas

Now, the aim is to study if combining SL and CV results in a more accurate reconstruction of muscle
fibre area than using CV only. In the analysis, only fibres which were correctly separated by all
compared methods were considered in order to clearly separate the cell separation error from the
area reconstruction error. Here, we only compare the Mula et al. reconstruction with the SLCV
reconstruction. The Ilastik method which we included in the cluster separation analysis is omitted,
since Ilastik yields less correctly separated single fibres than SLCV, but correctly separated true fibres
share the same cluster shape and size as in SLCV and thus, both methods are equivalent in this
comparison. It has to be noted that only correctly separated fibres are considered in the area error
analysis. However, omitting non-separated cells from the analysis underestimates the consequences
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Figure 5. A: Average sensitivity values of all compared cell separation methods. Error bars are
determined by bootstrapping. Raw p-values for significant difference are given in Table 3 in A.5,
while raw sensitivity values are listed in Table 1. B: DSC of Mula et al. and SLCV reconstructions
of all correctly separated samples of the test picture set. C: Mean DSC from 10° bootstrapping
iterations on the cell reconstruction results for Mula et al. and SLCV.

that incorrect cell separation has on area reconstruction, that is, the combined effect of both errors.
To address this phenomenon, an additional analysis step is presented in §A.6.

There were a total of 2603 fibres correctly separated by both Mula et al. and SLCV. For each fibre, the
Dice Similarity Coefficient (DSC, §2.5) between the groundtruth and the GAC Snake-reconstructed
fibre were calculated. The results are shown in Figure 5B. It was found that approximately 11.1% of the
fibres had a similar DSC in both the Mula et al. and the SLCV pipeline. Furthermore, approximately
35.5% of fibres had a higher DSC if they were reconstructed by the Mula et al. pipeline. The remaining
fibres (approximately 53.3%) had a higher DSC in the SLCV pipeline results.

Regarding the average reconstruction quality of fibres, the average DSC over the 2603 fibres was
approximately 0.9741 for Mula et al. and 0.9778 for SLCV (see Table 2). The two averages are very
close, however, when the samples are bootstrapped, it becomes clear that the average DSC of SLCV
reconstructions is significantly better (see Figure 5C and Table 2). The bootstrapping procedure

10



draws—with replacement—a new set of fibres from the original set in each iteration and calculates the
average DSC every time. A small p-value obtained by this procedure (as explained in §2.5) confirms
that the difference between two methods is not due to chance. Hence, combining SL and CV produces
a better reconstruction of a muscle fibre than a purely CV based method. Considering that Mula et
al. and the SLCV method both used the same GAC Snake implementation, the gain observed in the
reconstruction quality must be attributed to the size and shape of the cluster produced in the cluster
separation step of the respective method.

Area Reconstruction Analysis

Mula et al. SLCV
Average DSC 0.9741 0.9778 (%)
95% CI 0.9727-0.9754 0.9764-0.9790
Original Sample Size 2628 2735
Adapted Sample Size 2603 2603

() Average DSC SLCV > Mula et al. with p-value < 0.05.

Table 2. Comparison of the area reconstruction quality of SLCV and Mula et al. Including only the
reconstruction results of cells that were separated correctly by both pipelines.

4 Discussion

In this work, we introduced a semi-automatic muscle cell segmentation pipeline, which is robust
against variation of image features. The usage of the random forest classifier as a supervised learning
technique is critical, as it can cope with imaging variation and noise much better than CV strategies,
which solely use intensity changes for border detection. A beneficial effect of this is that SLCV does
not require any preprocessing of the raw images, which a computer vision only pipeline as Mula et
al. does, since otherwise fibres positioned on the outside of muscle fibre bundles can be lost due
to insufficient contrast. An example is shown in §A.7, Figure 9B. However, preprocessing using an
intensity threshold is still recommended to prevent or reduce the issue of gaps being detected as muscle
fibres.

We experimented with other supervised learning methods that could be used in the first phase to
replace the random forest model. We trained a Convolutional Neural network (CNN) on multiple
training images and found that no additional gains in the quality of the borders could be observed
(§A.8). The pipeline is thus adaptable to different supervised learning methods, but the random forest
performs best among the methods tested.

The SLCYV pipeline is quickly and intuitively adaptable due to the training and parameter tuning pro-
cess: Training requires no more than drawing a few lines onto a training image. Tuning of the pipeline
is very user-friendly, because apart from the training process, there is only one parameter which needs
to be set in order to obtain a good segmentation quality, which is the distance transformation cutoff
within the watershed algorithm. In contrast, Mula et al.’s pipeline needs several parameters to be
tuned in the first two phases. The GAC Snake algorithm used for both pipelines contains additional
parameters, which were relatively easy to set for our test images, since the best setting with respect
to the image test set was close to the parameters given in the implementation of [16]. This makes
the SLCV pipeline not only adaptable to different data sets, but also to different staining methods:
The classes of the segmentation classifier can be changed to represent the different typical textures
in images created by the staining method. Furthermore, the usage of SLCV is not restricted to mus-
cle segmentation problems, but can be applied to other problems, for example heart- or nerve cell
segmentation or the detection of any other tubular or rounded structure in stained images.

11



A positive characteristic is that the cell separation quality of the pipeline can be as accurate as the
user wishes. That is, little training on few pictures is sufficient to obtain a good result, but if a perfect
separation is required, the pipeline can be tuned to achieve this result by more training or by splitting
the picture set into multiple subsets of similar pictures, with one classifier for each subset. This
splitting could be automized by characteristics like average picture intensity or intensity distribution,
but it can also be done manually.

One limitation is that it is not possible to use the pipeline without human input. However, once
the respective classifiers have been created for the user’s different classes of imaging data and an
appropriate parameter for watershed is chosen, the algorithm can automatically be applied to new
data. Another limitation are the artifacts that are introduced because of the oversegmentation of the
watershed algorithm. In Mula et al.’s pipeline, where the oversegmentation originates from erosion,
these false segmentation results can not be removed easily due to the high level of automation of
the pipeline. In SLCV, oversegmentation can be lowered or even completely avoided by adding more
training lines to Ilastik or by splitting the image set as described above. However, a way to improve
the algorithm in the future would be to find a strategy that can circumvent the oversegmentation
problem which is inherent to the watershed algorithm (cf. [1,3,11]), and which is suitable for the type
of images used in the SLCV pipeline.

We found that the size and shape of the cluster input to the Snake algorithm has an impact on
the area reconstruction quality. In the fluorescence-stained images processed here, as well as in the
immunohistochemically stained images with similar characteristics, this is very likely due to the noise
present in the fibres. This noise can disturb the image attraction force used in the GAC Snake
algorithm, such that the area can not expand to the true cell borders. Since the fibre separation
strategy used in the SLCV pipeline does not involve shrinking of the cell-cluster, the resulting final
clusters are bigger than in shrinkage-based separation methods such as erosion (step II in Mula et
al.’s pipeline). These bigger clusters are already close to the original area and thus yield a better
DSC, if the cell can not be reconstructed correctly. Another factor which contributes to the bigger
size of final clusters in the SLCV pipeline is that the SL step without further CV correction already
provides reasonably good cluster separation. Thus, many clusters already represent single fibres and
are unchanged after the watershed algorithm. An example is shown in §A.7, Figure 9A.

With regards to cell separation quality, we showed that supervised learning (step I of the SLCV
pipeline) performs as well as two CV methods combined (step I and IT of two Mula et al.’s pipeline)
and thus outperforms pure CV. However, when SL was combined with a CV correction step (the
second step of SLCV), a significant improvement in the separation quality could be seen with regards
to both CV and SL. Hence, learning alone is a powerful method, but to reach optimal performance,
it has to be combined with computer vision.

With regards to area reconstruction, the combination of SL and CV also leads to a significant im-
provement compared to CV methods only, which is due to the more favourable characteristics of the
final clusters created by SL and CV as described above, and leads to an improved robustness to noise.
As a concluding remark, combining SL and CV creates a significant improvement with respect to all
muscle fibre detection quality criteria used in this work and is thus a superior method to both purely
SL- and CV-based methods.
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A  Appendix

A.1 Recommendations for the training of the Ilastik classifier

We recommend the training of a segmentation classifier on two cross sectional pictures, which taken
together contain the lower and upper end of the range of border intensity, cell plasma intensity, cell
plasma structure, noise amount and noise distribution of the pictures that the classifier will be applied
to. However, if the range of intensities is very big, the classifier will lose accuracy and two classifiers
should be trained on the lower and upper part of the intensity range, respectively. Training pixels
for “border” should be drawn in with a relatively small brush, and a border should be drawn in one
continuous stroke. It is especially recommended to add borders which contain areas of visibly lower
staining intensity to the training pixels, see Figure 1C. Additionally, borders which are not continuous
due to torn tissue or staining artifacts like in Figure 1E should imperatively be added to the training
set, drawn as a continuous object. In other words, borders which are flawed in the raw picture should
be drawn in the way they would optimally look like. The training dialogue features a live update,
which can be used to check if holes remain in the training picture borders. If so, these borders should
be added to the training set. Big fibre and small fibre training should include cells with different
structure (different intensity and noise distribution). The whole cell is recommended to be covered
with training pixels, and border pixels have to be excluded. The live update should be used to check
if border pixels are found within cell or gap regions. If so, it is recommended to add a few more cell
training pixels, drawing one fibre at a time. Training on gap regions can be sparse, but should include
intensity changes and artifacts that may be found in the gap regions, such as very bright objects or
background noise. In general, artifacts should be labeled as the object that they are supposed to
represent. When the classifier is applied to the training images and the result contains little to no
holes in the borders, and no border is predicted in gap or fibre regions, the classifier is fit to be applied
to test set images. If this state is not reached or can only be reached by drawing a lot of training lines,
the training images might be too different from each other and at least one image should be replaced.
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A.2 Training set of Ilastik Classifier 2

The full training set for classifier 2 is given in Figure 6. Fig. 6B shows a section that was cut out from
a cross sectional image, since no training lines were added to the rest of the image. The size of the
section remains the same as in the original image.

Big Fibre

- Small Fibre

Border

Gap

Figure 6. Training set of Ilastik classifier 2 out of 2, which was applied to 2 out of 27 of the test set
images which were of higher brightness and contained lower quality borders than the other test set
images. Yellow: class “big fibre”, blue: class “small fibre”, white: class “border”, green: class “gap”.
A: First training image. B: Second training image, which is a section from a full image.

A.3 Additional parameter choices in the implementation

Ridge Detection (Step I in Mula et al.) In contrast to the description in Mula et al., we performed
single-scale ridge detection, where the scale parameter is denoted by ¢*. We chose o* = 0.7. We first
constructed the Hessian matrix H:

8210*(:1:,3/) 8210-*(1‘7y)
*\ _ 2 8z0
H(@,y,0%) = | p210(wy)  0Le(zg) | (3)
dzdy oy?

where I,«(z,y) = I(z,y) ® G(x,y,0*) and ® represents the convolution operator. G(z,y,c*) is the
two-dimensional Gaussian kernel:
1 a2 4y?

72(0‘*)2 4
27 (0*)? € (4)

G(z,y,0%) =

Then, the two eigenvalues A1, Ay of H with [A;| > |A\2| were computed and each ridge obtained a

likelihood measure:
0 if A1 >0

2
Toxr = & _ERp =
e aZ (1 —e 8?2 else
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where Rp = |§—f\, S = A2+ )2 and we chose a = 0.5 following a recommendation from [8] and 3 = 0.03.

Erosion (Step II in Mula et al.) Ridges were submitted to a closing operation, where we chose
the kernel to be of rectangular shape with size 11 x 11 pixel (px). After that, Mula et al. state
that the inverse of the resulting edge map was used to detect the clusters. We implemented this as a
dilation step carried out in two iterations with a rectangular 3 x 3 px kernel followed by the inversion
of the edge map and a contour detection algorithm. Each detected cluster was then iteratively eroded
with an elliptical kernel as specified in Mula et al., of size 8 x 8 px, until it was smaller than a certain
threshold. We used the exemplary threshold of 5000 px given in Mula et al. Additionally to the proce-
dure described in the paper, we filtered out clusters which were smaller than 500 px to remove artifacts.

GAC Snake (Step III in SLCV and Mula et al.) Additional parameters for the Snake al-
gorithm are v, u and 6. v determines the strength of the balloon term and is used as v = —1 for a
deflating balloon and as v = 1 for an inflating balloon in the implementation of the GAC Snake by
Marquez-Neile et al. [16]. We used v = 1. p controls the number of repetitions of the smoothing
step in every iteration of Snake. We chose ;1 = 3 to obtain a smooth curve. 6 is related to the
discretization of g(I) and used to control the smoothing operation strength at different points of the
curve. We set § = 0.3 analogous to the parameter setting in all test cases given in the implementation
by Marquez-Neila et al.. For the algorithm to work correctly, the final cluster has to be completely
enclosed within the boundaries of the original cell, since we chose the balloon force to have an inflating
effect. Furthermore, the bigger the cluster is, the more robust the area detection is for muscle cells
which contain high concentrations of the staining protein. As mentioned in the Discussion, this form
of noise, especially close to the muscle bundle border, disturbs the image attraction term and leads to
an early stop of the snake contour and thus to an incomplete area reconstruction (see Figure 9A).

A.4 Pre/ Postprocessing

Muscle fibre bundles inside a picture are usually separated from each other by an interstitial area
which does not contain stained cells and which we refer to as gap region. In many pictures, this
area contains a certain concentration of the stained protein. The more protein the region contains,
the brighter it appears in the picture and the lower the contrast to the staining intensity of muscle
cells. Consequently, it is harder to properly detect the fibre bundle boundaries. While the training
step in our supervised learning strategy can be adapted to correct for the latter phenomenon, it is
problematic for computer vision (CV) based pipelines such as that of Mula et al. and often results
in gaps in the muscle fibre bundle boundary, such that outer muscle cells of the bundle may not be
identified correctly (see Figure 9B). Furthermore, staining noise in gap regions makes it impossible
to automatically distinguish gaps from muscle cells, such that spurious muscle cells detected in gap
regions would have to be removed in a post-processing step. Hence, a suggested strategy is to manually
choose an intensity threshold 7 € [0,255] (for 8-bit pictures) with

I(z,y) if I(z,y) > 7
I@.y) = 0 else

and to exclude regions of value zero from the cell detection.

A.5 Bootstrapping of cluster separation

Table 3 contains the p-values of sensitivity differences between the Ilastik random forest model, the
SLCV pipeline and Mula et al.’s pipeline (shown in Figure 5A in §3.1). These p-values were obtained
by bootstrapping, as described in section 2.4. A p-value smaller than 0.05 means that the sensitivity
of ply (left term) is significantly higher than the sensitivity of ply (right term).

Figure 7 shows the bootstrapping distribution over 10° resamples with respect to cluster separation
(similar to Figure 5 C in section 3.2, which show the same distributions with respect to DSC). The
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n | p-value SLCV vs. Mula | p-value SLCV vs. Ilastik | p-value lastik vs. Mula
2 1.5 x 1074 7x107° 0.383
3 5x107° 7x107° 0.466
4 < 0.05 9.2 x107* 0.0152
5 0.021 0.058 0.462
6 < 0.05 8 x 107° 0.275

Table 3. Raw p-values of the cell separation sensitivity differences in Figure 5 A, section 3.1. The
p-values are obtained by bootstrapping, Hp: “The average sensitivity of pipeline pls (right term) is
> the average sensitivity of pipeline pl; (left term)”.

Figures contain the bootstrapping results of the three pipelines with respect to cluster separation, and
they are included to visualize the small p-values given in Table 3 above.

A. B.
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Figure 7. A: Bootstrap distribution of average sensitivity values on cluster size 2. B: Bootstrap
distribution of average sensitivity values on cluster size 5.

A.6 Analysis of the combined cluster separation-area reconstruction error

The Kullback-Leibler (KL) divergence, first introduced by Kullback et al., is a measure for the distance
between two probability distributions [12]. If the distributions P(z) and Q(x) are discrete and they
are both defined on the same space, the KL divergence is defined as follows [15]:

P(x)
Q(z)
The distribution of groundtruth cell areas P(z) was compared to the distributions of areas Q(x)

reconstructed by SLCV and Mula et al.’s pipeline, respectively. The histograms of the distributions
were calculated using interval bin sizes hy, = {50, 100,200, 500, 1 x 10%,2 x 103,5 x 10%,1 x 104, 2 x 10%},

Dgr(PllQ) = P(x) log ()

Figure 8 A shows the mean KL divergence and the standard deviation calculated over all test set images.
The KL divergence shrinks exponentially with growing bin interval size, but the SLCV reconstruction
shows a consistently smaller deviation from the groundtruth cell area than Mula et al.’s reconstruction,
while the standard deviations are similar. The difference between the SLCV deviation- and the Mula
et al. deviation from the groundtruth grows with growing bin interval size. Figure 8B shows the
same calculation, only for the cell area distribution of all images taken together. The KL divergence
is smaller than in Figure 8A, where the mean value over the single images was considered. However,
the shrinking behaviour with growing bin interval size is similar in both Figures, while the difference
between the curves fluctuates more in Fig. 8 B. In conclusion, SLCV consistently reconstructs cell
areas better than Mula et al. for all histogram bin intervals considered and in both single images and
the overall test set; as it is always closer to the groundtruth cell area distribution.
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Figure 8. A: Kullback-Leibler divergence of SLCV and Mula et al. reconstructed cell area
distributions from groundtruth cell area distribution. Solid line represents the mean KL divergence
over all images, dotted lines represent the standard deviation. Both axes are plotted logarithmically.
B: Kullback-Leibler divergence of SLCV and Mula et al. reconstructed cell area distributions from
groundtruth cell area distribution over all images. C: Kernel density estimation of cell areas over all
images. D: Zoomed in tail region from C.

Figures 8C and 8D show a kernel density estimation of the cell area distributions over all test set
images. A kernel of bandwidth bwy = 0.2 was used to estimate the densities of the histograms, which
were constructed with bin interval hy = 800. As seen in Figure 8C, both SLCV and Mula et al.
are close to the original cell area distribution, while SLCV shows less deviation from the original
distribution in the peaks. In Figure 8D, the tail of the distributions is zoomed in. Again, SLCV is
closer to the groundtruth, while Mula et al. shows a longer and more pronounced tail, resulting from
the bigger cell separation error.

If individual test set images are considered, the deviation from the groundtruth distribution of SLCV
and Mula et al. varies more (data not shown): Mula et al.’s distribution shows a shift to the left
in a few images, which represents a tendency to incomplete area reconstruction in these images. In
most cross sections, both reconstructed area distributions have a tail on the right side, while the tail
of Mula et al.’s curve is more pronounced. Overall, SLCV is mostly close to the original distribution,
while Mula et al.’s area distribution tends to deviate from the original shape more due to the longer
tail.

In summary, a higher cell separation error leads to a bigger area reconstruction error, hence a low
cell separation error is a necessary condition for an automated cell separation pipeline to create cell
reconstructions of high quality and to yield good CSA estimates.

A.7 Examples for challenges in muscle fibre detection

Two representative examples for challenges we observed in automated muscle fibre detection are shown
below in Figure 9. Row A shows incompletely reconstructed cells, which appear in cases where the
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image attraction force used in the GAC Snake algorithm is disturbed by large amounts of noise. The
final clusters created by the SLCV pipeline are bigger and are thus not affected as much as the seeds
created by Mula et al.’s pipeline. Row B shows an example of the effect that a noisy gap region can
have on cell separation. The border between fibre and gap is not bright enough to be fully detected,
such that the cell is eventually lost in the purely CV based pipeline. The SL step of SLCV was able to
classify the border, because its training included noisy gap regions. In most images, this phenomenon
can be avoided by preprocessing with a thresholding step.

A. A1 A2 A3 A4 A5 A.6
B B.1 B.4 B.5 B.6

Figure 9. Examples of challenging cell reconstructions. 1: thresholded original picture, 2: final
clusters produced by Mula et al.’s pipeline, 3: final clusters produced by SLCV pipeline, 4:
groundtruth, 5: Mula et al.’s segmentation result, 6: SLCV segmentation result. A: missing cell area
in reconstruction of noisy cells due to small seeds, B: merging of cells and gap regions due to low
contrast.

A.8 Alternatives for Step I of the SLCV Pipeline

Alternative supervised learning techniques can also be used for the detection of the initial borders. We
trained a Convolutional Neural Network (CNN) on multiple images and could not detect any quality
gains in the detected borders. An example of the output of the CNN and that of the Ilastik Random
Forest classifier can be seen in Figure 10.

A. B.

Figure 10. Comparison of supervised learning methods to create the initial borders. A: Output of
the CNN. Red: borders, green: gap, blue: muscle fibre. B: Output of Ilastik. Only class “border” is
shown in light gray.
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