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Abstract

The problem of clustering data can often be transformed into the prob-
lem of finding a hidden block diagonal structure in a stochastic matrix.
Deuflhard et al. [9] have proposed an algorithm that states the number
k of clusters and uses the sign structure of k eigenvectors of the stochas-
tic matrix to solve the cluster problem. Recently Weber and Galliat [8]
discovered that this system of eigenvectors can easily be transformed into
a system of k membership functions or soft characteristic functions de-
scribing the clusters. In this article we explain the corresponding cluster
algorithm and point out the underlying theory. By means of numerical
examples we explain how the grade of membership can be interpreted.

Keywords: clustering, fuzzy clustering, stochastic matrix, almost invariant
sets.
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1 Introduction

Cluster analysis is a method for data reduction. Usually one distinguishes be-
tween partitioning and hierarchical cluster methods [2]. A well known par-
titioning cluster method is the C-means cluster analysis. In this method high
dimensional data is represented by a few prototypes. Each data point is assigned
to exactly one prototype. An improvement of this method is called Fuzzy-C-
Means (FCM) [7]. In this method a grade of membership 0 < vl(s) < 1 for each
data point [ = 1,...,m to each of the clusters s = 1,..., k is computed.

In this article we want to apply a similar improvement to a partitioning
cluster method called Perron Cluster Cluster Analysis (PCCA, or simply Per-
ron Cluster Analysis) [11, 9]. An advantage of PCCA is that the number of
clusters can be computed a priori from a spectral analysis of a stochastic matrix
T (see below). Deuflhard et al. used the sign structure of the corresponding
eigenvectors of T' to identify the clusters. The name Perron Cluster Analy-
sis derives from the Perron-Frobenius theorem for nonnegative matrices which
Deuflhard applied to the matrix T to get the so called Perron cluster of eigenval-
ues [12, 11]. This method leads to problems if components of some eigenvectors
are approximately 0.

Weber and Galliat [8] discovered that the values of the components of the
eigenvectors yield more information about the clusters than the signs of the



components. They proposed an algorithm that again computes the grade of
membership vl(s) for each data point [ to each of the clusters s. This algorithm
is faster and easier to understand and implement, and it has no problems if
components of some eigenvector are approximately 0 or 7" is not irreducible.

A sufficient condition for the solvability of the cluster problem with this
improved method (PCCA+) is, that after a certain transformation the data
will have the shape of a simplex. In this article we will show that this special
structure is also necessary for the solvability of the cluster problem. First we
will give some examples for possible cluster problems and the corresponding
transformation into the problem of finding a hidden block diagonal structure
of a stochastic matrix T. After a spectral analysis of 7' we show that the
transformation of the cluster problem indeed leads to a data set with simplex
structure.

We will describe the algorithm and give some numerical results. The numer-
ical examples will explain how the grade of membership can be interpreted.

2 The improved PCCA

Sources of the data sets. In this section we will give two examples for
possible sources of data. The first will be a dynamical cluster problem, the
second a geometrical cluster problem.

The dynamical cluster problem is defined as in [5, 10]: Assume we have a
state space (2 together with a dynamic process represented by a Markov opera-
tor. After decomposition of 2 into m pairwise disjoint subsets and a realization
of the Markov operator via Markov chains we get an m X m transition ma-
trix A counting the number of transitions between the discretization boxes. If
the Markov operator is reversible A will be symmetric. We are interested in
metastable subsets of (2, i.e. a clustering of the m discretization boxes in a way
that transitions between boxes of different clusters are rare.

The geometrical clustering is a quite similar problem. Galliat [13, 14, 15] uses
PCCA to identify clusters in a data set having a measure of similarity: After
reducing the data set, for example via self-organizing maps [16], one gets m
codebook vectors. The pairwise measure of similarity of these codebook vectors
can be written down in a symmetric m x m-matrix A. We are interested in a
clustering of the m codebook vectors in a way that similarity between vectors
of different clusters is small.

In both cases we get a symmetric matrix A and we are interested in the
hidden block diagonal structure of A.

Transformation of A into a stochastic matrix. In the following sections
we describe the derivation of the improved PCCA to identify clusters of similar
objects or a union of discretization boxes of a state space creating metastable
subsets.

The algorithm is designed for symmetric matrices A and for the case that
we have a representative for each cluster, that is an object which is only similar
to some objects inside the cluster but not to objects outside. The number m of
objects is limited by the computability of the m x m-matrix A and the solvability
of a symmetric m x m eigenvalue problem.



We are interested in a decomposition of the index set {1,...,m} into subsets
C; c{1,...,m},i =1,...,k, in a way that the entries a;; of A for I € C; and
j & C; are almost 0. In other words: After a permutation of the indexes A has a
block diagonal-like structure. We will call this simply a hidden block structure
of A.

In a first step we transform the nonnegative symmetric matrix A with a
diagonal matrix D~! into a stochastic matrix T = D~'A4, i.e. the sum of the
elements of T is 1 for each row. T has the same hidden block structure as A.
We will investigate the hidden block structure of T' via spectral analysis.

Reformulation of the eigenvalue problem. Since the condition of a sym-
metric eigenvalue problem is much better than the condition of a general one,
we transform the eigenvalue problem for 7" into a symmetric form.

Tu=

N (Dfl/ZAD*]-/Z)Dl/zu = /\D1/2u. (1)

Instead of solving the eigenvalue problem for T' we solve it for the symmetric
nonnegative matrix (D~'/24D~'/?) and reweight its eigenvectors with D~/2.

We will now give some results from spectral analysis of 7' which will be used
in the following sections. Since we can transform the eigenvalue problem into a
symmetric form, the stochastic m x m-matrix T has a real-valued spectrum with
1=X > X > A3... 0, > —1. T has got an eigenvalue Ay = 1 which is not
necessarily simple. The constant vector 1 is a corresponding right eigenvector.
For the weighted inner product < z,y >:= 27 D~ly the basis of eigenvectors
u, ..., 4™ can be chosen orthonormal.

From [9] we know that the eigenvectors are almost constant for each index
set corresponding to a hidden block of 7. This is the main tool to identify the
clusters.

Orthogonality condition for the representatives. In this section we will
deduce an orthogonality condition for a set of so called representatives of the
clusters. And we use this orthogonality condition to define a grade of mem-
bership for each row of T' to each of the representative rows. Assume that we
have an m x m-matrix T with k£ hidden blocks, each block ¢ with an index set
C; C {1,...,m}. Further, assume that for each block ¢ = 1,...,k there is an
index 7(i) € {1,...,m} and a row t,(; of T with t ¢ ; = 0 for j ¢ C;. We
will call such an index 7(¢) a representative for the corresponding block C;. We
have the following Kronecker delta relation

Lty =05, 6,5=1,....,k (2)

for the vector I, which is 1 for components I € C; and 0 elsewhere. 17, is the
transposed vector.
The probability p;,c; for a transition from state ! into the index set C; is
given by
o = 15t
Hence we get the following orthogonality condition

k
(tl_zpl,cstﬂ(s))TIlCi =0, i=1,....;k I=1,...,m. (3)
s=1



Equation (3) means that an approximation of a row ¢; of T' via a linear com-
bination of the representative rows t,(;) has an error, that is orthogonal to the
characteristic functions 1, of the clusters.

Since equation (3) holds for every i = 1,...,k we get for any a;; € IR and

@ = Ele aij]lcl.
k .
(tl _Zpl,cstﬂ(s))Ta(J) =0, j= 17"'7k7 l= L...,m. (4)
s=1

Definition of the grade of membership. We can use the orthogonality
condition to define a so called grade of membership vl(z) for row [ to the cluster 1.
Since we do not know the index sets C; a priori, but we know from perturbation
theory [9] that the eigenvectors u() are almost constant for each C; (i.e. they
are almost equal to the @) vectors), we can reformulate (4) into the defining
equation for v for a given choice 7 of representative rows

k
(tr =Y 0t Tu? =0, j=1,...k, I=1,...,m. (5)
s=1

For a dynamical cluster problem the nearly piecewise constant structure of the
eigenvectors u?) is also necessary for high metastability of the corresponding
sets [4].

Positiveness of vl(s). In this section we will discuss the conditions for

o mpLo, > 0. (6)

Comparing (4) with (5) we can conclude that the condition (6) is fulfilled if
tfu9) ~ @) for i = 1,...,m and j = 1,...,k, or equivalently, if the entries
in the rows t; are small for components where the constant level pattern of u(® is
violated. For dynamical clustering this means that transition states may occur
but the system passes through these states very fast.

For the general geometrical cluster problem we know: For any row ¢; of T
the diagonal element ¢;; is maximal, because each object is most similar to itself.
If the constant level pattern of u(?) is violated in some component I, the entry
ty is not small and equation (6) may not be fulfilled. To avoid this situation we
use the following trick. After computation of the similarity matrix A we replace
its diagonal elements with 0 before computing T". The hidden block diagonal
structure of A and T has not changed and equation (6) is fulfilled if the objects
which are similar to more than one cluster are well separated from other so
called transition objects.

Structure of the data. In this section we will show that the data we want
to cluster has nearly the structure of a simplex. And we will explain how the
set of representatives can be found.

Since u(? is an eigenvector of T the defining equation for v (5) is equivalent
to
Lk l=1,...,m. (7

(s) .

k
ul(z) = Zvl(s)u(z) i=1
s=1



The constant vector 1 is an eigenvector of T' corresponding to the eigenvalue
A1 = 1. With equation (7) this implies

k
Zvl(s): , Il=1,....,m. (8)
s=1

From equation (4) we expect that there is a set of representatives such that

vl(’) ~ pi,c; > 0. The positiveness of v together with equations (7) and (8) means

that the vectors u; = (ul(l), . ,ul(k)), for I =1,...,m, are convex combinations
of the representatives u,(;. In other words the m vectors u; € IRF lie inside
a simplex and the k representatives u,(;) are its vertices. Once one has found
the vertices of the simplex one can compute the grade of membership v via
inverting equation (7). Equation (8) together with the positiveness of v makes
it possible to interpret v(*) as space covering soft characteristic functions of the
corresponding clusters s.

PCCA+ algorithm. In this section we will explain the improved PCCA
algorithm to identify the representatives 7(¢),4 = 1,...,k, if the number k of
clusters is known. This is equivalent to searching for the vertices of a simplex-
like data set.

1. Compute the k highest eigenvalues of the m x m-matrix 7' and the cor-

responding eigenvectors u(Y), ... u®) via (1). This is the most time con-

suming step. The dataset we have to cluster comprises the vectors u; :=
1 k

(ul( ),...,ul( )),l: 1,...,m.

2. Find two vectors u,(1) and u,(2) maximizing the distance ||ug —w|, k,1 =

1,...,m among all data points.
3. For i = 3,...,k find the vector u,(; having the maximal distance to the
hyperplane spanned by the vectors (1), - -, Ur(i—1)-

4. Solve equation (7) to get the grade of membership Ul(i) of the I*" element
to the i** cluster.

In general the positiveness of v is not fulfilled. The deviation of the shape of
the data set from a simplex structure can be fixed by the indicator 6 [8]

0= miln vl(i) <0.
2,

Quantification of (6). The linear equation for vl(s) (7) can be interpreted
as perturbation of the linear equation for p;c, (4). Therefore the deviation
(6) depends on the relative error of tJu9) ~ ¢] @) and the relative condition
number of the matrix U := (ugf() j))i’jzl,_“,k, whereas the condition number de-
pends on the quality of the representatives. A well conditioned cluster problem

leads to well separated vertices in the PCCA+ algorithm and therefore to a low
condition number of U and to a good approximation (6).



Number of clusters k. In this section we will interpret the vectors v(?,i =
1,...,k, as soft characteristic functions of the clusters as in [6, 8]. In [6] we
have shown that for a dynamical two cluster problem the soft characteristic
functions we get from the above algorithm are optimal in the sence of maximizing
metastability of the corresponding clusters.

The vectors v(¥ span the same vector space as the eigenvectors u(? of T
because of equation (7). Therefore we have

k
o =3 ay ul®
s=1

with uniquely defined scalars «;,; € IR and

k
T = Z /\sai,su(s).

s=1

Almost invariance of v(9) with regard to T implies that A, & 1 for s =1,... k.
For a dynamical cluster problem this is a necessary condition for the number
of clusters k. From perturbation theory we expect a spectral gap between the
discrete spectrum of the Markov operator with eigenvalues near 1 and the con-
tinuous part of the spectrum bounded away from 1 [3]. This gap should be
visible in the spectrum of T, too.

In some numerical cases this gap is not visible. Therefore another condition
can be useful: For both, the geometrical and the dynamical cluster problem, the
data wu; has nearly the shape of a simplex, if the number of clusters k is fixed
correctly as we have shown above. In this case the necessary condition for the
number of clusters is § ~ 0. Note that always § = 0 for k = 2 [8].

3 Numerical Examples

Dynamical Data (3-butenal). In the first example we compute metastable
subsets for 3-butenal, see figure 1. We only examine configurational changes of
3-butenal which are indicated by the value of the marked C-C dihedral angle ¢.
Via Hybrid Monte Carlo (HMC) one computes 5 Markov chains representing
the dynamics of the molecule at a temperature of 300K with a characteristic
time span of 7 = 40fs. The computation was done with the software of Cordes
see [6]. The domain of the dihedral angle ¢ € [-180°,180°] was decomposed
into 90 equidistant intervals, the discretization boxes m = 90.

After the simulation one counts the transition number between each pair of
discretization boxes. A transition from box ¢ into box j is counted for A4;; and
Aj;, too. So we get a symmetric matrix A.

Then we apply PCCA+ as described above. Table 1 points out the results
for different numbers of clusters k.

The eigenvalues A < 0.50 where interpreted as continuous part of the spec-
trum of the discretized Markov operator. So the suggested number of clusters is
k = 3. Since the absolute value of 8 is low for k¥ = 3 this is a good choice. And
if we plot the transformed data points u,...,ugo, see figure 1, we can clearly
find the simplex structure.

One can see that the chosen dihedral has three so called conformations. The
simplex shows that there are transition states between any pair of conformations.
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Figure 1: L) One conformation of 3-butenal. Conformational changes corre-
spond to different dihedral angles ¢ of the marked C-C bond. R) The data
points u; € R3 for [ = 1,...,90. Since u(V) is constant, we have left out the
first coordinate of u; in this 2D-projection. In evidence we can see the simplex
structure of the data set.

Table 1: Indicator and eigenvalues for different k.
(k] 2 [ 3 | 4 | 5 [ 6 | 7 [ 8 [ 9 | 10|
0 0 -0.08 | -0.46 | -0.37 | -0.62 | -0.67 | -0.69 | -0.89 | -0.88
A 094 090 | 0.50 | 0.49 | 0.32 | 0.31 | 0.23 | 0.22 | 0.20

Geometrical Data (2D data set). In this section we want to give an exam-
ple for a geometrical clustering. We solve the cluster problem for a 2D data set
with m = 30 data points d;, 7 = 1,...,m, see figure 2. The measure of similarity
in this example is an exponential function

Aij Z:eXp(—/JHdi—de), iajzla"'7m7i¢j7

where A;; := 0 (see p.4). Another advantage of setting diagonal elements to 0
is, that for higher values of p the transition matrix does not converge to unity
and therefore not every eigenvalue of T' converges to 1. We tested the PCCA+
for different parameters p and found out that the higher p the closer A2 and As
move towards 1. Tables 2 and 3 point out the results for 4 = 2 and p = 6 and
different numbers of clusters k.

Table 2: Indicator and eigenvalues for different k. y = 2
[kl 2] 3 [ 4] 5 |6 [ 7 [8 ]9 |10]
0 0 |-0.04]-026|-0.26 | -0.14 | -0.92 | -0.92 | -0.92 | -0.96
Al 0.86 | 0.63 | 0.14 | -0.11 | -0.12 | -0.12 | -0.13 | -0.13 | -0.13

Since § =~ 0 for k = 3, this is the right number of clusters. Figure 2R shows
the corresponding simplex for 4 = 2 and k£ = 3. If we compute the grade of
membership v, then we can assign each index i to the cluster with the highest
grade of membership max;, ’UZ(S). The result of this cluster method for 4 = 2 and
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Figure 2: L) 30 data points for a geometrical clustering with k¥ = 3. R) Simplex
for the geometrical cluster problem: The data points u; € R3 for [ =1,...,30.
Since u(!) is constant, we have left out the first coordinate of u; in this 2D-
projection. We can see the simplex structure of the data set. pu = 2

Table 3: Indicator and eigenvalues for different k. y =6
(k[ 2 [ 3 [ 4[5 [6 [ 7 |87 ]9 [10]
0 0 |-0.004 | -0.04 | -0.04 | -0.20 | -0.18 | -0.24 | -0.24 | -0.24
A 0.99| 097 | 0.55 | 0.48 | 0.34 | 0.27 | 0.20 | -0.28 | -0.28

k = 3 is shown in figure 2L. For u = 6 we get the same result.

Comparison with FCM. We have clustered the example from figure 2 with
the Fuzzy-C-Means algorithm [1]. If we again assign each data point to the
cluster with the highest grade of membership the result is the same as in the
PCCA+ method. The main differences between FCM and PCCA+ are:

1) FCM generates prototypes which are located in the centers of their clus-
ters. PCCA+ computes representatives among the data points with max-
imal dissimilarity.

2) PCCA+ computes the number of clusters a priori.

4 Conclusion

The PCCA algorithm computes the number of clusters for dynamical cluster
problems via spectral analysis of a stochastic matrix. In this article we improved
PCCA by means of linear algebra.

PCCA+ is a useful and simple algorithm for many small sized cluster prob-
lems that can be transformed into the problem of finding a hidden block diagonal
structure in a stochastic matrix T'.

This article has shown that under certain conditions, existence of represen-
tatives and well behaving transition objects, the transformation leads to a data
set which has the shape of a simplex.



The vertices of the simplex are the representatives and the location of the
data points in the interior of the simplex determines their grade of membership
to each of the representatives.

Therefore PCCA+ can also be used to characterize transition states in dy-
namical cluster problems.
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