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Abstract

Osteoarthritis (OA) is a degenerative joint disease with increasing prevalence that involves
pain symptoms, reduction of functionality, and constitutes one of the most common causes
of disability in adults. It occurs most often in the knee joint. Since there exists no cure
and only insufficient diagnostic methods, hopes for improvement are based on automated
approaches. In this context, the Osteoarthritis Initiative collected data on the progress of
OA including many images from magnetic resonance tomography (MRI). This MRI data
was used by the Zuse Institute Berlin to develop a fully automated segmentation method
for knee bone and cartilage to better extract biomarkers from the images as a starting
point to automated diagnosis and further research on OA. In this thesis, I present two
convolutional neural networks (CNNs) for classification of the input MRI scan’s laterality
with 100% accuracy on the testing set, which can be included in the segmentation pipeline
to make it more efficient, faster, and less data dependent. Using spatial data with high
resolution like MRI scans as input to CNNs poses certain problems since the convolutions
of most ready-to-use CNNs work on two-dimensional grids, three-dimensional convolution
operations are computationally more expensive, and most ready-to-use CNNs work with
input images of lower resolution. In this thesis, I explored, compared, and evaluated three
different approaches that meet this challenge. To achieve this, I selected one pretrained CNN
implementation from each of the solution approach categories (i) 2D CNN with manual slice
selection, (ii) multi view CNN, and (iii) 3D CNN, prepared the raw MRI scans featuring
one knee joint to be suitable inputs for each CNN, fine-tuned each CNN on the MRI input
images to solve the task of classifying their laterality, and evaluated their performance.
Then I compared the three approaches and their representation implementations in terms of
network architecture, training progress, and test performance and discussed their suitability
for the desired task. I conclude that the less complicated models, 2D CNN with manual
slice selection and 3D CNN, are both well-suited to solve the task with perfect accuracy.
2D CNN with one slice as input requires less data to converge, while 3D CNN has the
advantage of not needing manual slice selection.





Summary

The subject of this thesis is comparing 2D and 3D CNNs for classification of laterality in
knee joint MRI scans. Its main accomplishment is the presentation of two CNNs that solve
this task with 100% accuracy. Steps to achieve this:

• Literature research on 2D and 3D CNNs, medical image analysis, machine learning in
medicine, anatomy of the knee joint, and osteoarthritis.

• Manual exemplary visual analysis of knee MRI scans identifying the visible range and
laterality-specific anatomical features.

• Categorization of solution approaches to handling 3D data with CNNs into three
categories: 2D CNN with manual slice extraction, multi view 2D CNN, and 3D CNN.

• Selection of one CNN implementation per category for analysis: VGG19, AlexNet
multi view, and VoxNet.

• Development of tools for data partitioning into training, validation, and test set, image
loading, and preprocessing, i.e. normalization, downsampling, change in medical
orientation plane, and slice extraction.

• Grid search for preselection of slice input for VGG19.

• For each of the three CNN implementations: preprocessing, training, validation of
training progress, evaluation, and analysis of results.

• Comparison of the three CNNs in regard to test set accuracy, training and validation
accuracy, convergence, and duration of preprocessing, training, and evaluation.

• Assessment of the three CNNs’ suitability for utilization in ZIB knee segmentation
pipeline and other medical applications.

• Classification of results in a broader context and outlook to future possibilities.
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1 Introduction

Imaging methods in medical research as well as in everyday medicine produce image data that
is traditionally analyzed manually by trained specialists, such as radiologists. Alternative
methods were introduced by the application of computer-aided image analysis with at first
rather fruitless attempts as early as in the 1960s (Meyers et al. 1964; Doi 2007; Engle 1992).
Machine learning (ML) approaches on expert problems in various fields multiplied and
became increasingly successful in the 1980s. This, along with the increasing amount of
available data, built the foundation for the progress in computer vision at that time and of
it growing ever since (Freeman et al. 2008; Sebag 2014). In the 1990s, computer scientists
began to apply the mathematical methods that had proven successful in solving non-medical
image analysis problems to medical images, thereby founding the field of medical image
analysis (MIA), a subfield of computer vision, as we understand it today (Wells 2016).

Automated approaches to MIA help improve our understanding and treatment of diseases
in many ways. Computer-aided diagnosis (CAD) can help radiologists find a better diagnosis
(Doi 2007). For example, the CAD of vertebral fractures on lateral chest radiographs,
which are missed in more than 30% to 50% by medical personnel, can help recognize
osteoporosis early (Doi 2007; Kasai et al. 2006). Similarly, pulmonary nodules in lung
computer tomography (CT) scans can be classified into different levels of solidity, helping to
categorize them as benign or malignant as early as possible to hopefully decrease lung cancer
mortality (Jacobs et al. 2014). Computer-based image analysis is also a prerequisite for
most computer-assisted surgery tasks such as implant placement (Bover-Ramos et al. 2018;
Hernandez et al. 2017), as well as it can be a part of surgical planning e.g. in rhinoplasty
(Singh & Pearlman 2017). As can be seen by this wide range of examples, MIA has diverse
application possibilities in therapy planning.

MIA, as described, above employs a variety of different techniques, such as the morphing
of images (Singh & Pearlman 2017), enhancement filtering or segmentation followed by
feature extraction and classification of feature input (Jacobs et al. 2014; Kasai et al. 2006).
Especially the latter method was state of the art and used frequently in MIA before
the triumphant advance of deep learning including convolutional neural networks (CNNs)
(LeCun et al. 1990; Suzuki 2017). CNNs have been widely popular and well-used to
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1 Introduction

process and analyze complex pictures for computer-based image analysis in general (Suzuki
2017). This trend started in 2012 with a CNN-based method, AlexNet (Krizhevsky et al.
2012), overwhelmingly winning at the prestigious ’ImageNet Large Scale Visual Recognition
Competition’ (ILSVRC) (Russakovsky et al. 2015). Since then, their use has successfully
been explored in many other applications, for instance in the game of Go (Silver et al. 2016;
Google Deepmind 2019), in video analysis (Karpathy et al. 2014; Wang et al. 2018), and
drug discovery (Wallach et al. 2015).

1.1 Background and Motivation

’Osteoarthritis (OA) is a long-term chronic disease characterized by the deterioration of
cartilage in joints which results in bones rubbing together and creating stiffness, pain, and
impaired movement.’ (World Health Organization 2012) OA ’accounts for more disability
among the elderly than any other disease’ (European Musculoskeletal Conditions Surveil-
lance and Information Network 2012). Due to impairment of functionality and pain in the
patient ’it places a major burden on individuals, communities, health systems, and social
care systems.’ (Tanna 2013). OA prevalence in developed countries is mostly around 10%
to 20% in adults (Fuchs et al. 2017; Helmick et al. 2008; European Musculoskeletal Condi-
tions Surveillance and Information Network 2012) and will rise further in the future due
to the population growing and aging as well as to risk factors such as obesity increasing.
At the moment, no cure exists and treatment is mostly palliative. Therefore, research
on understanding, diagnosing and treating OA will become even more important in the
future. At present, OA is diagnosed by physical examination and manual radiographic
detection of pathological changes such as ’loss of joint space, subchondral sclerosis, cysts and
osteophytes’ (European Musculoskeletal Conditions Surveillance and Information Network
2012). However, ’these diagnostic tools have low sensitivity and specifity’ (World Health
Organization 2012). Automated approaches to diagnosis and research of OA are hoped to
improve this situation in the future.

The research group for Therapy Planning headed by Dr. Stefan Zachow at the Department
of Visual Data Analysis is a part of the Division for Mathematics for Life and Materials
Sciences at the Zuse Institute Berlin (ZIB) who aim at ’identify[ing] needs and possibilities
for computer assisted, model-guided treatment planning in close collaboration with domain
experts in view of improved therapeutic results, and [strive to] implement interactive and
intuitive, graphics-based software prototypes for decision support and therapy planning
in order to demonstrate clinical applicability’ (Research Group Therapy Planning at Zuse
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1.2 General Solution Approach

Institute Berlin 2019).
In this context, they developed a ’fully automated segmentation method for knee bone

and cartilage [from magnet resonance imaging (MRI)] by combining the advantages of
Statistical Shape Model-based regularization with CNN-based classification of voxel in-
tensities’ (Ambellan et al. 2019). Such ’precise segmentations are [...] a prerequisite for
computer-based surgical planning of interventions affecting the knee’ (Ambellan et al. 2019).
To use biomarkers found in radiographic images for a computer-based diagnosis of OA
of the knee, segmentation is a necessary prestep. Since ’manual segmentation is tedious,
time-consuming, and labour intensive’, automated approaches need to be developed (Tack
et al. 2018). This development is very data dependent because it needs manually segmented
MRI scans for construction and training.

Structures to be found by segmentation of radiographic images that feature exactly one
left or right knee are obviously vaguely symmetric to the median plane, but asymmetric
within one knee. Therefore, the general form of segments differs depending on laterality.
With this in view, it is desirable to know before segmentation if the input is of a left or a
right knee.

Hence, a method distinguishing left from right knees, if accurate enough, could be included
in the segmentation pipeline to hopefully make the algorithm more efficient, faster, and less
data dependent due to more available data with labels on MRI laterality than segmentation.
In this connection, my task was researching methods to classify the laterality of knee joint
MRI scans.

1.2 General Solution Approach

At first sight, the knee joint appears to be vaguely symmetric to its middle sagittal plane.
However, at closer examination, certain anatomical structures in one knee joint are visibly
asymmetric to this plane, and can therefore be used to infer laterality. As shown in Fig. 1.1,
the knee is composited of the tibiofemoral joint that articulates thigh bone (femur) and
shin bone (tibia), and the patellofemoral joint that articulates the kneecap (patella) and the
thigh bone. In the tibiofemoral joint, the femoral medial and lateral condyles are biconvex,
and the tibial plateaus are slightly concave. This shape incongruence is compensated by
two crescent-shaped menisci in-between the femoral condyles and the tibial plateaus. The
medial part of the distal femur epiphysis with the medial condyle is bigger and located
more distal than the lateral epiphysis with the lateral condyle, presenting a reference point
for deducing laterality. Another femur structure that can be used for this is the sulcus
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popliteus on the lateral epiphysis, the groove where the popliteus muscle originates (Zilles
& Tillmann 2010, pp. 255-256). Additionally, the posterior patella is asymmetrical with
a small, convex medial facies and a bigger, concave lateral facies (Zilles & Tillmann 2010,
p. 245).

Figure 1.1: Anatomical knee structure (Muhic 2016).

The tibiofibular articulation that connects tibia and calf bone (fibula) is also shown in
a knee MRI scan due to its spatial proximity, though not technically a part of the knee
joint. This articulation is on the lateral side of the tibia and therefore gives another hint
for distinguishing a left from a right knee (Zilles & Tillmann 2010, p. 246). Furthermore,
the cruciate and collateral ligaments of the tibiofemoral joint, which have a stabilizing and
kinetic function, are asymmetrical, too (Zilles & Tillmann 2010, p. 257). As can be seen by
all these laterality-specific anatomical structures, classifying the three-dimensional image of
a knee as left or right is a well-defined problem. Moreover, these anatomical structures can
be seen in MRI scans of the knee (Fig. 1.2). Generally speaking, an appropriate method
should therefore be able to learn decision making on laterality from the input knee joint
MRI scans.
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(a) axial-193

(b) coronal-194 (c) coronal-258

(d) sagittal-81 (e) sagittal-120

Figure 1.2: Exemplary slices from a raw MRI scan of resolution dimensions (sagittal-160,
axial-384, coronal-384) that illustrate the laterality-specific anatomical struc-
tures.
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MRI measures the spin relaxation time of excited atoms ’(most notably hydrogen which
is abundant in the human body), which varies with tissue type, molecular composition
and functional status.’ (Toennies 2012, p. 23) These distribution measurements are then
projected onto multiple, ordered, two-dimensional slices through the human body, forming a
cubical voxel grid that represents the volume (Toennies 2012, pp. 44-51). In analyzing MRI
scans, one of the main challenges is handling the three-dimensionality, because it is a unique
feature in medical 3D scans. Medical as well as everyday 2D images are obviously distinct
from medical 3D scans due to their lack of a third dimension. Moreover, 3D representations
of everyday objects differ from medical 3D images in terms of the distribution of their
information content. The main information of an object in an ordinary 3D image is its
surface and shape, whereas in medical 3D images, it is tissue distribution.

To classify the MRI scans, I had to research methods that met the challenge of handling
this kind of three-dimensionality. In order to find a technical solution to this problem, in
this thesis, I compare CNNs with different approaches to handling spatial data.
CNNs exploit the grid-like structure of their input data. A CNN for classification is

usually comprised of several convolutional layers followed by at least one fully connected
layer forming the classification part of the network (see Fig. 1.3). Each convolutional
layer typically contains three stages: First, a convolution stage producing a set of linear
activations by performing multiple convolutions in parallel. Second, a detector stage where
a nonlinear activation function is applied to each linear activation e.g. rectified linear
activation function (ReLU). Third, a pooling stage that ’replaces the output of the net at a
certain location with a summary statistic of the nearby output’ (Goodfellow et al. 2016,
p. 330).

Figure 1.3: The structure of a typical convolutional neural network (Geron 2017, p. 327,
Fig. 13.9).

CNNs use sparse interactions: The sliding window (and the weight matrix/kernel) in the
convolutional layers is smaller than the input and deployed only locally. The weights in the
convolutional layers are tied, meaning that the same kernels are used on every location in
the picture. By this parameter sharing, the same features are being extracted on different
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parts of the picture, facilitating an equivariance of the data to translation (Goodfellow et al.
2016, p. 332).

1.3 Literature Review of Related Work

As an initial point of my work, I caught up on the articles already gathered by the ZIB
Therapy Planning Research Group on 2D and 3D CNNs (Çiçek et al. 2016; Dubost et
al. 2017; Qi et al. 2016). I also performed searches on PubMed (US National Library of
Medicine at the National Institutes of Health 2019), Google Scholar (Google Scholar 2019),
Arxive (Cornell University 2019) and the online library catalogues of the Freie Universität
(Universitätsbibliothek der Freien Universität Berlin 2019), Technische Universität (Uni-
versitätsbibliothek der Technischen Universität Berlin 2019) and Humboldt Universität
Berlin (Universitätsbibliothek der Humboldt Universität Berlin 2019) with combinations of
different search terms such as CNN, multi view, 3D, 2D, review, and MRI already filtering
for publishment within the last ten years. In doing so, I found about 500 papers. Then
I filtered these papers in two steps by title and then abstract, extracting 25 papers that
seemed suitable for my approach. Additionally, I followed articles’ references that sounded
promising, thereby accumulating more sources.
Most CNNs partaking at ILSVRC and other computer vision competitions are readily

available with pretrained weights, eg. AlexNet (Krizhevsky et al. 2012), VGG16, VGG19
(Simonyan & Zisserman 2014), ResNet (He et al. 2016), and Inception (Szegedy et al.
2015). Using spatial data like MRI or CT scans as input to CNNs poses certain problems
since the convolutions of most ready-to-use CNNs work on two-dimensional grids and
three-dimensional convolution operations are computationally more expensive (Qi et al.
2016). The simplest approach is to use one 2D projection (one slice) of the 3D image as
input to a simple 2D CNN (S2DCNN ). Current CNNs for 3D image data that actually
take up the challenge of a three-dimensional input can be categorized into two widespread
approaches: multi view CNNs (MVCNNs) and three-dimensional CNNs (3DCNNs).
In a MVCNN approach, at first, multiple views of one 3D image, such as recordings

from a perspective rotation around the image’s object, are processed independently. In a
second step, the outcomes are combined to result in a classification or segmentation of the
input image. The first widely cited publication using a MVCNN successfully was Su et al.
(2015). Since then, this approach has also proven to be suitable for MIA, among others for
segmentation of left atrium and proximal pulmonary veins (Mortazi et al. 2017), as well as
estimation of ventricular volume (Luo et al. 2018), both on cardiac MRI scans.
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The concept of a 3DCNN approach is using three-dimensional convolutions. Initially,
input images to CNNs with more than two dimensions were often depth images originating
from RGB-D cameras and commodity range sensors (Gupta et al. 2014; Qi et al. 2016). In
contrast to MRI, raw RGB-D images have only up to three additional values. Therefore, they
have less complexity in the third dimension and are usually labeled as 2.5D. Since 3DCNNs
are often used for object recognition in robotics, object-detection should be independent from
the viewing angle. For this reason, subsequent CNN methods for more than two-dimensional
images usually reconstructed volumetric voxel grids from the RGB-D images for input
(Wu et al. 2015; Maturana & Scherer 2015). Numerous 3DCNN -based approaches have
been implemented to solve MIA problems, including classification of Alzheimer’s disease
(Basaia et al. 2018; Khvostikov et al. 2018), tumor segmentation (Chen et al. 2018), liver
segmentation (Çiçek et al. 2016) as well as brain lesion (Dubost et al. 2017) and pulmonary
nodule detection (Zhu et al. 2017).

When working with either of the two approaches, ’there is an inherent trade-off between
increasing the amount of explicit depth information (3D models [3DCNN ]) and increasing
spatial resolution (projected 2D models [MVCNN ])’ (Su et al. 2015). One general advantage
of using MVCNNs when training CNNs from scratch is the vastly available amount of image
data that can be used for learning low-level features in pre-training (Su et al. 2015). Qi
et al. (2016) noticed and investigated a performance gap with MVCNNs outperforming
3DCNNs in literature. They succeeded in replicating the result and suggested that different
input resolution is probably not the only reason, but also 3DCNNs being relatively new
and their architectures not yet as sophisticated as two-dimensional CNNs.
Tajbakhsh et al. (2016) showed that it is usually not necessary to train a CNN from

scratch on medical image data if pre-trained weights for the desired network architecture
exist. On the contrary, using a pre-trained CNN with adequate fine-tuning in many cases
even outperformed a CNN trained from scratch. Additionally, ’fine-tuned CNNs were more
robust to the size of training sets CNNs than trained from scratch’ (Tajbakhsh et al. 2016).

1.4 Task

In my thesis, I explore, compare and evaluate the different categories of handling spatial
input data carved out above. To achieve this, I selected one well-established, pre-trained
CNN implementation with good documentation from each of the categories S2DCNN,
MVCNN and 3DCNN to represent the respective approach. I prepared the raw MRI scans
of knee articulations to be suitable inputs for each CNN, fine-tuned each CNN on the
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1.4 Task

preprocessed MRI scans to solve the task of classifying their laterality, and evaluated their
performance. Then I compare the three approaches and their selected implementations in
terms of network architecture, training progress, and test performance and discuss their
suitability for the desired task. Finally, I generalize my findings and give an outlook. This
thesis assumes that the reader has a basic knowledge of ML, especially of deep neural
networks.
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2 Data and Implementation Prerequisites

I had access to 9494 MRI scans obtained from an already existing local repository of the
Osteoarthritis Initiative (OAI) (Osteoarthritis Initiative 2019) database at the ZIB. My
general approach was using published, pretrained CNNs that had proven successful at a
similar task. Then, broadly speaking, I finetuned the network weights in the fully connected
as well as in some convolutional layers. For the finetuning process, I used 70% of the MRI
scans as training set and 20% as validation set. The remaining 10% of the images were used
for evaluation as a holdout data set. This split has proven to be effective in general for big
amounts of data (Amazon 2019; Google Machine Learning 2019; Olivier Moindrot 2018).

2.1 Analyzed MRI Scans

The OAI is a longitudinal cohort study documenting the natural history of knee OA incidence
and progression from 2003 until 2014 and providing public access to clinical and radiographic
image data of their participants. The study recruited approximately 4800 people with, or at
high risk of, symptomatic femoral-tibial knee OA at four clinical centers in the USA. The
participants had various ethnic backgrounds, were aged 47-79 years, and 58% of them were
female (Eckstein et al. 2014). The MRI scans were produced by using standardized 3 Tesla
MRI (3T-MRI) scanners and protocols. The imaging technique used for recording the scans
used in this thesis was 3D double-echo steady-state (DESS) sagittal with selected water
excitation with 0.7 mm slice thickness and 0.37 mm × 0.37 mm in-plane area (Eckstein et
al. 2007). When the ZIB obtained the data from the OAI, the data were already labeled by
the radiologist who performed the MRI. Of the 9494 given images 4735 featured left and
4759 featured right knees. All but five MRI scans of left and four MRI scans of right knees
had exactly 160 slices. I excluded those which differed from 160 slices due to concerns of
corrupt data. Each slice had a resolution of (384 × 384) voxels.

2.2 Technical Prerequisites

The selection of tools and models was generally based on the preference for open source
software and aspects of consistency across all approaches to maximize comparability of
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results and enable reusability of implementation. All new code was written in Python.
TensorFlow and CUDA made the code run on GPU. The GPU used for measurements of
preprocessing and training time was an NVIDIA GeForce GTX 1080 Ti. In this context,
eight Intel Xeon X5550 CPUs were utilized. Other experiments also used a ZIB GPU cluster
with four NVIDIA Tesla P 100.

2.3 Image Loading and Preprocessing Prerequisites

Training the models required the development of tools to load, prepare and deliver the MRI
scans to each network. For representation of image data, I used Numpy arrays and Pandas
data frames. Using pretrained models with a generally fixed architecture meant that the
model could not be easily changed to conform with the raw MRI data format. Instead,
the MRI scans had to be preprocessed to fit into the input layer of each network. To that
end, I used various Python site packages: Dicom was used for loading the original image.
Open-cv/Cv2 provides functions to squeeze and resize the image to the desired dimensions
and to project it from grayscale to RGB if needed. A Numpy function normalized the
images. More details will be given at each solution approach’s chapter.

The training data set of 6639 MRI scans is too big to be loaded into RAM, then GPU and
fed to a CNN at once. Therefore, I implemented a data generator filling out the blueprint
I found in a tutorial for data generator use in Keras. The data generator facilitates the
loading of MRI scans ’on multiple cores in real time and feed[ing] it right away to your deep
learning model’ (Amidi 2017). Furthermore, it provided a frame work to contain all my
preprocessing steps.
Using Amira ZIB Edition Version 2018.10 (Stalling et al. 2005) on a variety of over 50

MRI scans, I identified the range of slices from 25 to 135 from a total of 160 slices to be
the highly visible range, i.e. visibly displaying the knee joint in all three orientation planes.
This was even the case in MRI scans that showed the knee in a slightly shifted position
probably due to inconsistencies in recording. In every orientation plane, the information
of slices near one another is redundant since they show much of the same physiological
features. A slice distance of 10 to 30 slices from a total of 160 slices was observed to ensure
enough variety as well as to not miss important anatomical structures.
To reduce image preprocessing and thereby human bias to a reasonable amount, the

original dimensions were kept whenever possible. Axial planes are counted from proximal
to distal, coronal planes from anterior to posterior and sagittal planes from proper right to
proper left.
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3 2D One Slice Approach

The simplest method was fine-tuning a S2DCNN pretrained on planar non-medical images
by feed-forwarding one MRI slice through the network and then applying backpropagation
to the non-convolutional layers. I used the pretrained VGG19 network (Simonyan &
Zisserman 2014). This CNN was developed for and came in second place at the 2012
ILSVRC (Russakovsky et al. 2015). It has a classical CNN architecture as described in the
Introduction. I chose VGG19 due to its architectural simplicity and good performance in
comparison to other 2D CNNs (Krizhevsky et al. 2012; Szegedy et al. 2015; He et al. 2016).
Since the CNN is fed with only one two-dimensional input image, it requires to choose

manually which slice and plane (given sagittal plane or transforming it into coronal or axial
plane) the CNN is initialized with. This choice filters the information input to the network
and thereby already assumes that the selected slice is representative of the laterality of
the whole MRI scan. To decide which plane and slice works best, I did a test series with
reduced scope. The configuration with the best result was then trained properly.

3.1 Network Architecture of VGG19

The pretrained VGG19 network was retrieved from the Keras library (Simonyan & Zisserman
2014). The convolutional layers of the net used the weights pretrained on ImageNet (Deng
et al. 2009; Russakovsky et al. 2015). The other layers’ weights were initialized pseudo-
randomly.
The architecture of VGG19 consists of 19 weight layers organized in five convolutional

and one fully connected block (Fig. 3.1). The convolution’s kernels all have size (3 × 3)
and ReLU is used as activation function in all layers except for the output layer. The
number of filters in a convolutional layer, as well as the number of convolutional layers in a
block, increases throughout the network from input to output layer. At the end of every
convolutional block, a maxpooling operation is performed by a kernel of (2×2) voxels. After
the last convolutional block, the output tensor is flattened and fed forward through two
ReLU-activated fully connected layers of size 4096 and one softmax-activated output layer
of size two. For more details please see Fig. 3.1. Compared to other CNNs (Krizhevsky et al.
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2012; Szegedy et al. 2015; He et al. 2016), VGG19 has many parameters and is moderately
deep.

Figure 3.1: Architecture of VGG19.

3.2 Image Loading and Preprocessing for VGG19

As input, VGG19 takes a batch of two-dimensional RGB images with dimensions (224 ×
224×3). To conform to this requirement, the raw MRI scan was transposed to fit the desired
plane in preprocessing. Then it was squeezed and resized to dimensions (160 × 224 × 224)
in two steps using the bilinear interpolation resize function from Open-cv: First, along the
last two axes, second, along the first two axes. The resulting array was converted to RGB
with an Open-cv function that triples the grayscale intensity value, and normalized using
L2-norm with a Numpy function (Fig. 3.2). After this, the desired slice was extracted and
saved as future input or directly fed to the network.

In the context of my test series, preprocessing was carried out during training time because
every slice was only used once during training and, therefore, total temporal advantages for
preprocessing before training time would have been minimal to non-existing.
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3.3 Grid Search for Preselection of Input

In contrast, for training more thoroughly on the best configuration of the test series, all
MRI scans were preprocessed before training and the desired slice was extracted and saved
as a npy file. This preprocessing took about six hours on one CPU. During training the
slice was loaded from npy file, improving training time by avoiding repeated preprocessing
of the same MRI scan in every epoch.

(a) Before preprocessing (size 320x384) (b) After preprocessing (size 224x224)

Figure 3.2: Exemplary comparison of one slice (coronal-105) of the original (a) and the
corresponding slice in the preprocessed image (b) for VGG19.

3.3 Grid Search for Preselection of Input

To be able to make an informed choice of input slice, I compared fifteen different input
image configurations in a grid search, more precisely, five different slices from each of
the three planes. I limited the search space because training one network on each of the
≥ 3·160 possible slices from all three orientation planes would have been too time-consuming.
Moreover, an exhaustive search space is neither necessary nor sensible due to information
redundancy in neighboring slices. I chose the five slices in each plane evenly distributed
from the highly visible range (25, 135), resulting in working with slices 30, 55, 80, 105 and
130 (see Fig. 3.3).
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3 2D One Slice Approach

For each of the fifteen input configurations, the network was trained partially on 40
batches each consisting of 70 MRI image slices from the respective plane and position.
This corresponds to about 41% of the training set. Training aimed at minimizing binary
cross entropy loss using stochastic gradient descent with momentum 0.9 as in the original
paper (Simonyan & Zisserman 2014). Starting with a learning rate of 0.01, like Simonyan
et al., led to fast divergence, as did 0.005. Thus, I used an initial learning rate of 0.001.
I reinitialized the weights with the same values every time before training on another
configuration. During training the order of MRI scans was shuffled in every training epoch
pseudo-randomly, but always setting the same seed ensured that the images were fed into
every network in the same order leading to greater comparability. The training part of the
grid search took on average 1:45 hours per configuration and about 26 hours in total. Then
all trained CNNs were evaluated using the validation set, which took on average another 32
minutes per configuration and eight hours in total.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.3: MRI slices used for the test series: sagittal slices (a) 30, (b) 55, (c) 80, (d) 105
and (e) 130; coronal slices (f) 30, (g) 55, (h) 80, (i) 105 and (j) 130; axial slices
(k) 30, (l) 55, (m) 80, (n) 105 and (o) 130.
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3.3 Grid Search for Preselection of Input

As can be seen in Table 3.1, the CNN converged on all but one input configuration. Four
configurations even led to a validation accuracy of 100%. The only input that did not lead
to convergence of CNN was the slice 80 of the sagittal plane. This should not be surprising
as this slice represents the middle sagittal plane in each knee and is therefore anatomically
the same in left and right knee joint. In the best performing input configurations, all
images showed at least one laterality-specific anatomical feature: The coronal-80 and the
coronal-105 slices both show the asymmetric condyles of the tibiofemoral joint. Additionally,
the coronal-105 slice’s view includes a small part of the fibular epiphysis. The axial-130
slice features cross sections of tibia and fibula. Similarly, the sagittal-30 slice shows the
sagittal plane next to the tibia with the tibiofemoral joint in the right knee. It should be
noted that the sagittal-130 slice in one knee is anatomically identical to the sagittal-30
in the other knee. Its slightly inferior performance may be explained by the limited and
different training instances that it has been shown in the grid search. Although they were
from the same original MRI, the instances each featured different slices and were therefore
not identical.

Plane Slice Validation Accuracy [%] Validation loss
(see fig. 3.3)

sagittal 30 (a) 100.00 0.014191
55 (b) 99.47 0.043422
80 (c) 50.21 0.928622
105 (d) 99.95 0.025857
130 (e) 99.89 0.017925

coronal 30 (f) 96.14 0.166646
55 (g) 99.89 0.029023
80 (h) 100.00 0.016887
105 (i) 100.00 0.014808
130 (j) 99.95 0.026045

axial 30 (k) 99.89 0.042842
55 (l) 99.89 0.031137
80 (m) 99.31 0.064924
105 (n) 99.20 0.058969
130 (o) 100.00 0.019104

Table 3.1: Results from validation of the S2DCNN test series.
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3 2D One Slice Approach

3.4 Training of VGG19

From the configurations examined in the grid search that had achieved 100% accuracy, I
picked one as input to train the CNN again with the same optimizer, loss function, learning
rate and batch size, this time on all data, and asses it in detail. For this, I chose the
coronal-105 slice because it was the only one that included two laterality-specific anatomical
structures. I trained VGG19 on four epochs of 84 batches with 70 images each, validating
performance on the validation set after each of the first five and after every five batches. This
took about 20 minutes. As it is wide-spread in analyzing simple 2D CNNs, the activations
of the trained network in the last convolutional layer were visualized using Keras-vis to
create heatmaps with the input coronal-105 slices.

3.5 Results of Training VGG19

As shown in Fig. 3.4, the network’s validation accuracy converged towards 100% after about
five batches. Validation loss and accuracy converged approximately as fast as training
accuracy and loss, indicating no overfitting. To ensure better comparability with the other
approaches, I did not evaluate the model checkpoint after only 5 batches, but the first
checkpoint after having trained on all training data, i.e. after the first epoch. At this
checkpoint, VGG19 had a test accuracy of 100%.

(a) Training progress of accuracy (b) Training progress of loss

Figure 3.4: Convergence of loss and accuracy during training of VGG19.

The activation heatmap (Fig. 3.5) shows that VGG19 mainly uses the MRI scan’s slice
region where the absence of the fibula is expected to be, i.e. left bottom for a left knee
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3.5 Results of Training VGG19

and right bottom for a right knee MRI scan, for classification. Additionally, the network
activates the outer border areas of the femoral and tibial epiphyses. This illustrates that
VGG19 indeed extracted the assumed laterality-specific anatomical features from the input
slice.

(a) Left knee (b) Right knee

Figure 3.5: Activation heatmaps for trained VGG19 with exemplary coronal-105 slices.
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4 2D Multiview Approach

The second two-dimensional method was a multi-view approach inspired by the MVCNN
for 3D shape recognition published by (Su et al. 2015). Simply put, this approach is about
’learn[ing] to combine information from multiple views using a unified CNN architecture
that includes a view-pooling layer’ (Su et al. 2015). This network uses multiple simple
2D CNNs each being forward fed separately with one two-dimensional view of the three-
dimensional image, producing an autonomous representation for each view. These single-view
representations are aggregated at a view-pooling layer and then passed through another
CNN combining all views for classification (see Fig. 4.1).

Figure 4.1: Different views of a 3D shape are passed through CNN 1 to extract view based
features. These are then pooled across views and passed through CNN 2 to
obtain a compact shape descriptor. (Su et al. 2015, Fig. 1).

In the context of my work, this technique regards the various MRI slices as different
views. In the first step it analyzes all slices equally. More precisely, it extracts structure
information only within the sliced planes of the input image ignoring the third dimension.
This includes analyzing at least one slice with relevant information as manually selected in
the S2DCNN approach (see Chapter 3). The second part now uses convolutions to gradually
merge the information of the single slices. Since this is done using a CNN starting with a
pooling layer, the way the slices in the original MRI scan were linked is respected in this
step.
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4 2D Multiview Approach

I worked with a TensorFlow- and Caffe-based python implementation (Lee 2018) by
Tang Lee of the MVCNN, originally developed in MATLAB by Su et al. (2015) that I
found cited in the original project’s GitHub repository (Su 2019) (AlexNetMV). In contrast
to Su’s implementation that is based on VGG19, my tested model was built on AlexNet
(Krizhevsky et al. 2012) as the default CNN that is arranged in parallel in the architecture
to independently process the multiple views. AlexNet simplified handling the training of
this model because it has less than half of the number of parameters of VGG19 and the
resolution of MRI slices is slightly lower.

4.1 Network Architecture of AlexNetMV

Lee’s AlexNetMV implementation differs slightly from the original implementation in terms
of network architecture: One AlexNet CNN in the first part of the MVCNN consists only
of convolutional and max pooling layers, passing on the max pooled convolutional layer’s
output tensor to the view pooling layer. In contrast, Su’s implementation includes fully
connected layers at the end of every CNN in the first part of the network and pools the
predicted probabilities for each label of every view as a two-dimensional tensor in the pooling
layer.
To go into detail of the network architecture (see Fig. 4.2), each one of the twelve

parallelized AlexNets consists of three convolution blocks each containing convolutional
layers activated by ReLU followed by a max pooling layer. The input layer is fed with an
image of dimensions (227 × 227 × 3). The first two blocks each have one, and the third
block has three convolutional layers. The max pooling layers use a (3 × 3) kernel size and a
stride of (2 × 2) voxels. The convolutional layers’ number of kernels, as well as their stride,
decreases from input towards view pooling layer while the size of the kernel increases. The
max pooled output from each of the twelve CNNs is aggregated and again max pooled at a
view pooling layer. Then the resulting tensor is passed through two fully connected inner
layers with tensor size 4096 and the fully connected output layer with tensor size 2. All
fully connected layers have a ReLU as activation function. The AlexNetMV’s initial weights
were already pretrained on ImageNet (Deng et al. 2009; Russakovsky et al. 2015).
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4.1 Network Architecture of AlexNetMV

Figure 4.2: Architecture of AlexNetMV.
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4 2D Multiview Approach

4.2 Image Loading and Preprocessing for AlexNetMV

AlexNetMV takes twelve RGB images, each of dimensions (227 × 227 × 3), as input loaded
from a png file. I used the data generator from my S2DCNN implementation to preprocess
the raw MRI scan and comply to the input format in a preprocessing step before training.
At first, it was squeezed and resized to dimensions (160 × 227 × 227) with sagittal plane as
first dimension in two steps along two planes and converted to RGB in the same manner as
in the S2DCNN approach (see Fig. 4.3).

(a) Before preprocessing (size 384x384) (b) After preprocessing
(size 227x227)

Figure 4.3: Exemplary comparison of one slice of the original (a) and the corresponding
slice in the preprocessed image (b) for AlexNetMV.

Then the slices 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125 and 135 were saved in local
storage creating a new smaller data base as input to AlexNetMV (see Fig. 4.4). I chose
exactly twelve slices for input as in the original paper (Su et al. 2015) such that they were
evenly distributed in the highly visible range (25, 135). Note that this selection of slices
does not contain the 80th sagittal slice that is anatomically identical in both knees and
proved to be unsuitable for distinguishing between left and right in the VGG19 grid search
(see Table 3.1). Preprocessing on one CPU took about 16:30 hours.
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4.3 Training of AlexNetMV

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.4: MRI slices used for AlexNetMV: sagittal slices (a) 25, (b) 35, (c) 45, (d) 55, (e)
65, (f) 75, (g) 85, (h) 95, (i) 105, (j) 115, (k) 125 and (l) 135.

4.3 Training of AlexNetMV

At first, I trained on a subset of 140 (training) + 40 (validation) MRI scans to see if the
network started to converge. But there was no change in accuracy when training with
different learning rates (0.1, 0.01, 0.001, 0.0001), different optimizers (Adam, Momentum
and gradient descent optimizers) and different loss functions (cross entropy loss with
sparse softmax and sigmoid function). Therefore, I removed the ReLU in the output layer
as suggested in a similar issue post on GitHub (rlczddl & Potuaud 2017). This led to
improvement of accuracy in the course of training on the subset. Experimenting with various
validation points during training on the whole training set revealed a problem inherent to
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4 2D Multiview Approach

the AlexNetMV code that leads to killing the process during a validation phase due to
RAM overuse. This did not allow me training continuously for more than nine to eleven
epochs nor validating at a different interval than on an epoch’s end. Unfortunately, I could
not reliably replicate this error. But when training was interrupted, I just resumed starting
from the last model checkpoint.
I trained the AlexNetMV with Adam Optimizer and learning rate 0.0001 on 21 epochs

with 66 batches of size 100, minimizing cross entropy loss with sparse softmax function.
Training was stopped when the test and validation accuracy both started to decrease. I
chose learning rate, optimizer and loss function as the defaults from the AlexNetMV project.
Finally, training including validation took about 6:25 hours.

4.4 Results of Training AlexNetMV

As can be seen in Fig. 4.5, the network converged towards approximately 99.89% validation
accuracy after eleven epochs. Afterwards, the loss continued to decrease, but validation
accuracy started declining slightly and changing inconsistently. A decrease in learning rate
after epoch eleven did not change this. When evaluating AlexNetMV from this step on the
test set, it showed an accuracy of 99.79%. Analyzing the MRI scans from all three sets that
could not be identified correctly, they did not appear to differ substantially from correctly
classified MRI scans and did not share specific common qualities.

(a) Training progress of accuracy (b) Training progress of loss

Figure 4.5: Convergence of loss and accuracy during training of AlexNetMV.
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5 3D Convolution Approach

My third approach was the usage of a pretrained CNN with spatial convolutions (Maturana
& Scherer 2015; Çiçek et al. 2016; Dubost et al. 2017; Wu et al. 2015; Zhu et al. 2017).
This 3DCNN takes a three-dimensional voxel grid as input and uses volumetric sliding
windows to create multiple three-dimensional heat maps in their convolutional layers. This
is followed by a pooling layer that downsamples the last convolutional layer’s outputs ’along
the spatial dimensions by replacing each [m3] non-overlapping block of voxels with their
maximum’ (Maturana & Scherer 2015). Then multiple fully-connected layers combine the
information extracted in the preceding layers.

Figure 5.1: The VoxNet Architecture. ’Conv(f,d,s) indicates f filters of size d and at stride
s, Pool(m) indicates pooling with area m, and Full(n) indicates fully connected
layer with n outputs’ (Maturana & Scherer 2015, Fig. 1).

In contrast to the two-dimensional approaches, the resolution and, consequently, the
complexity of the input to the 3DCNN is evenly distributed over three dimensions. Hence, for
memory and computational reasons, the resolution of each two-dimensional slice, regardless
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5 3D Convolution Approach

of its orientation plane, must be significantly smaller than in the two other approaches.
To achieve this, I had to downsample the MRI scans considerably. This CNN then uses
the downsampled volumetric data as input. As 3DCNN implementation I selected VoxNet
(Maturana & Scherer 2015) because of its simple architecture, superior performance to other
3DCNNs and its relatively small number of weights. Originally, VoxNet was created for
real-time object recognition e.g. on data RGBD cameras or range sensors.

5.1 Network Architecture of VoxNet

I used the TensorFlow implementation by Benjamin Kang Yue Sheng published on his
GitHub (Sheng 2018). Sheng’s VoxNet implementation was pretrained on the ModelNet40
data set (Princeton University 2019).

Figure 5.2: Architecture of VoxNet.

VoxNet’s architecture consists of four 3D convolutional and two fully connected layers
(Fig. 5.2). All layers except for the output layer employ batch normalization and ReLUs
as activation functions. In the convolutional part of the network, the number of kernels
increases from the input towards the fully connected layers, while the kernel size decreases.
The last convolutional layer’s output tensor is directly fed to the first fully connected
layer. With fewer than one million weights, the network has a remarkably small number of
parameters.
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5.2 Image Loading and Preprocessing for VoxNet

5.2 Image Loading and Preprocessing for VoxNet

VoxNet takes an occupancy grid with dimensions (32 × 32 × 32) as input. The original
VoxNet by Maturana et al. calculates its binary occupancy voxel grid input from point
clouds (see Fig. 5.1). However, the concept of a binary occupancy grid does not make much
sense for an MRI scan where most voxels are occupied, and the main information is in the
different intensities representing different types of tissue, which classify different anatomical
structures.

(a) (b)

(c) (d) (e) (f)

Figure 5.3: Slices from resizing steps on MRI scan: (a) shows slice sagittal-115 from raw
MRI scan with dimensions (160 × 384 × 384), followed by corresponding slices
of resizing steps (b) 1 (154 × 364 × 364), (c) 5 (128 × 288 × 288), (d) 10
(96 × 192 × 192), (e) 15 (64 × 96 × 96) and finally (f) 20 (32 × 32 × 32).
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5 3D Convolution Approach

Therefore, I downsampled the raw MRI scans directly in a preprocessing step before
training using the data generator from my simple 2D approach. For this approach, the
resizing method employed in the preprocessings of the two-dimensional CNNs could not
be used because the rapid downsampling to a much lower resolution let to a loss of all
information resulting in a nearly black image. Instead, I squeezed and downsampled the
MRI scan for VoxNet in 20 steps to an increasingly lower resolution. Each step was similar
to the whole resizing operation in the two-dimensional CNN approaches: In each step I used
the resize function from Opencv with bicubic interpolation over a (4×4) pixel neighborhood
twice: First, along the last two axes, second, along the first two axes. The images in
decreasing resolution can be seen in Fig. 5.3. The resized MRI scan (see Fig. 5.4) was then
saved to disc for future use. Preprocessing all input data took about 25 hours.

(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

(17) (18) (19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30) (31) (32)

Figure 5.4: MRI sagittal slices in reduced resolution (32 × 32) used for VoxNet.
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5.3 Training of VoxNet

5.3 Training of VoxNet

VoxNet was trained on 15 epochs with 66 batches consisting of 100 images each, using
Adam optimization to minimize softmax cross entropy loss. The initial learning rate
was 0.001. Stochastic gradient descent optimized L2 loss for weight decay. The current
network’s performance on the validation data set was evaluated every eleven batches. The
implementation decayed the learning rate gradually at every validation step. Training was
stopped when the decrease in validation loss stagnated. The entire training process took
about six minutes, with 2.5 seconds per epoch on average.

5.4 Results of Training VoxNet

As can be seen in Fig. 5.5, VoxNet’s validation accuracy converged to 100% after three
epochs. Training accuracy converged faster than validation accuracy and reached 100%
during the first epoch after having been presented with only 66.67% of the training data
set. Similarly, training loss converged faster than training loss.

(a) Training progress of accuracy (b) Training progress of loss

Figure 5.5: Convergence of loss and accuracy during training of VoxNet.

Learning rate decay was steep and approximately linear until after the eighth epoch
(Fig. 5.6). When evaluating the network’s model checkpoint after the fifth training epoch
on the test set, it had an accuracy of 100%.
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Figure 5.6: Decay of learning rate during training of VoxNet.
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6 Discussion and Conclusion

The motivation behind the comparison of different CNNs for classifying knee MRI scans in
terms of laterality was to find a method that could be included in the knee joint segmentation
pipeline, to hopefully make the algorithm more efficient, faster, and less data dependent.
The most important requirement for a classification method in this context is having a high
accuracy because subsequent steps in the pipeline depend on its predictions. Furthermore,
it is interesting to compare the total time of preprocessing and classifying an input MRI
scan with a trained model since this may affect evaluation and training durations of the
segmentation process.

6.1 Comparison of VGG19, AlexNetMV and VoxNet

VGG19 and VoxNet both achieved test, training and validation accuracies of 100%, meaning
they could classify every MRI scan in the data set correctly. AlexNetMV also achieved a
training accuracy of 100%, but it was less stable over different epochs. More importantly,
its validation and test accuracies only reached 99.79% in converged state.

(a) Validation accuracy (b) Validation loss

Figure 6.1: Comparison of training progress over number of epochs.
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(a) Validation accuracy (b) Validation loss

Figure 6.2: Comparison of training progress over time.

As can be seen in Fig. 6.1, relative to the number of epochs, VGG19 was the fastest to
converge, followed by VoxNet. Figure 6.2 shows that relative to time, VoxNet converged
nearly as fast as VGG19. From both perspectives, AlexNetMV was the slowest to converge.
This may be due to its lower initial learning rate compared to the other two approaches
(see Fig. 6.3).

Figure 6.3: Comparison of learning rate over number of epochs.

As can be seen in Table 6.1, duration of preprocessing is similar for VGG19 and
AlexNetMV, while it takes more than twice as long for VoxNet. Evaluation is fastest
in VGG19 and approximately twice as slow in AlexNetMV and VoxNet.

The chosen implementations differ substantially in terms of depth and number of parame-
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6.2 General Assessment

ters: VGG19 is the deepest model with the most parameters. AlexNetMV is approximately
half as deep and big in parameter size. VoxNet is only 25% less deep than AlexNetMV but
has considerably less parameters.

VGG19 AlexNetMV VoxNet
Test accuracy [%] 100.00 99.79 100.00
Validation accuracy [%] 100.00 99.79 100.00
Training Accuracy [%] 100.00 100.00 100.00
Time preprocessing/scan [s] 2.4060 2.4946 6.1152
Time evaluating/scan [s] 0.0613 0.0518 0.0532
Time preprocessing +
evaluating/scan [s]

2.4270 2.5464 6.1684

Epochs till convergence <1 11 3
Time till convergence 18s >3h 7.5s
Initial learning rate 0.001 0.0001 0.001
Input resolution (224 · 224) (12 · 227 · 227) (32 · 32 · 32)

= 50,176 = 618,348 = 32,768
Relative resolution after
preprocessing [%]

0.213 2.621 0.139

Network depth
(#layers with weights)

19 8 6

Number parameters
[million]

143 85 <1

Table 6.1: Comparative values.

The preprocessing for all three approaches reduces the resolution of the MRI scan
drastically. The input resolution of AlexNetMV is the highest, VGG19’s and VoxNet’s are
smaller by a factor of about 10 and 20, respectively. In the preprocessing for VoxNet, the
complexity of input data is reduced approximately equally along all three axes, whereas in
VGG19 and AlexNetMV, complexity is drastically reduced along the first axis and only
cut roughly in half along the other two axes. Another notable difference is that complexity
reduction in VoxNet is completely automatic, while partly and completely manually decided
in AlexNetMV and VGG19, respectively.

6.2 General Assessment

For classifying knee MRI scans in terms of laterality, both VGG19 and VoxNet perform
very well and are clearly superior to AlexNetMV. From these two best performing networks,
VGG19 has the advantage of converging after having been trained on only a small part of
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6 Discussion and Conclusion

the training set which would still make it qualified if less data were available. In contrast,
VoxNet needs more data and more iterations but nonetheless approximately the same time
for the same result. However, preprocessing for VoxNet is more time-consuming, resulting
in longer total evaluation times. But since these characteristics are only secondary for the
task assigned to the CNNs here, VGG19 and VoxNet can be both considered to be best
implementations in the context of this thesis.
This is mostly also true for utilization within the Therapy Planning Research Group’s

segmentation pipeline due to their perfect accuracy, which allows subsequent steps in the
pipeline to depend on the classification result. However, besides accuracy, results on total
evaluation time including preprocessing that favor VGG19 should also be taken into account
since they influence general training and evaluation time. Consequently, VGG19 is slightly
preferable for use in the segmentation pipeline.

Laterality is a type of information that can be found throughout the whole input image
because the human body is, with the exception of inner organs, symmetric to the median
plane and therefore every left or right body part is in itself asymmetrical. I strongly
suspect that this extensive information distribution in the input is the reason for the
S2DCNN implementation’s impressive performance independent from the chosen view.
This characteristic quality of laterality is probably also the cause for all non-medial slices
performing comparably well in the grid search for VGG19. Based on this observation, I
argue that other classifications of features that share this quality in the input data can be
solved equally well with approaches from the S2DCNN category.
In my employment of the S2DCNN implementation, a manual complexity reduction in

form of slice selection was necessary. Such a manual selection may reduce the extent to
which the method can be used within a different context, e.g. as a part of a pipeline that
is not the first element or reusing the model in the context of another MRI routine or a
different body part. However, if a classification task uses information distributed extensively
in the input image, this selection should not make a big difference in results.
3DCNNs are also an adequate choice for solving a general classification task on medical

3D data, as the extraordinary performance of VoxNet proves. In contrast to S2DCNNs, these
networks have the advantage of not needing manual complexity reduction and therefore
their input contains the whole information which makes them preferable as one building
block in the middle of a pipeline or if an even distribution of information in the whole 3D
image is uncertain. With the increasing capacity of GPUs, downsampling to low resolution
will be probably less and less necessary in the future.

I think it is noteworthy that in this comparison the worst performing model also had the
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6.2 General Assessment

most complicated architecture and the highest input data resolution. This may be due to
feeding the network not only with more information at higher resolution, but potentially
also with more noise or redundant information, increasing entropy in the input. Similarly,
Qi et al. (2016) attributed the observed superiority of MVCNN to a more straight-forward
model approach. Moreover, these result is in accordance with Occam’s razor since they
favor the simpler models.
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7 Outlook

I found two methods with phenomenal accuracy in classification of knee MRI laterality
that can be used as a tool before or within the segmentation process to make it more
efficient, faster and less data dependent, since MRI scans with laterality labels are available
in a substantially larger number than manually segmented ones. The more reliable this
segmentation, the better the biomarkers can be extracted and used for further research and
diagnosis of OA. It is reasonable to assume that similar tools for other additional features,
such as omics data obtained from patients’ biospecimen in the OAI study, can be developed
and included in segmentation and diagnosis pipelines to improve them.
Further work may study different implementation representations of the three main

categories to verify the results and refine the conclusions. Additionally, alternative input
projections, e.g. rotations around the three middle axes from each orientation plane or
rotated perspectives on a segmented knee bone structure around the 3D image, could be
tested as input to S2DCNN and MVCNN. This may result in input data that represents
the laterality even better, because laterality-specific anatomical structures that are not
within one anatomical plane could still be within one input image. Other ML approaches,
such as support vector machines or massive training networks (Suzuki 2017), could also
be studied and compared to investigate this thesis’ bias of preference for CNNs. Since all
investigated CNNs reached a very high accuracy score, it would be interesting to examine
the dependency of the approaches’ performance on the amount of training data. I used
knee MRI scans from the OAI that were within a certain norm. To continue, one could
examine the accuracy of the methods with input data outside this norm, e.g. from children
or younger adults, with fractures, other injuries or medical implants to analyze external
validity.

This thesis generally studied approaches on three-dimensional MIA with CNNs for a very
specific task. The very well-performing CNNs, namely the S2DCNN implementation VGG19
and the 3DCNN implementation VoxNet, have the potential to be used as a part of bigger
classification or segmentation pipelines for medical images since it can be assumed that
they can solve the laterality classification task similarly on other body parts as described
above. Furthermore, the 3DCNN approach can be easily adjusted to more complex tasks
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7 Outlook

by increasing input resolution and architectural complexity, e.g depth. Then a 3DCNN
could also extract information that is more locally concentrated, e.g. fractures or other
irregularities, and therefore cannot be represented properly in a low-resolution voxel grid.
Such computer-aided methods in medicine have become more and more common and will
in all probability continue to become even more widespread for diagnosis, therapy planning
and treatment in the future (Choy et al. 2018).
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DVD Attachment

Please find the file with MRI scan IDs, the code used to load and preprocess the data, to
train and evaluate the networks as well as the trained CNNs on this DVD. See Readme.txt
in the root directory.

The MRI scans cannot be provided here due to reasons of copyright. They can, however,
be obtained from https://data-archive.nimh.nih.gov/oai/.
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