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A Concurrent Approach to the
Periodic Event Scheduling Problem

Ralf Borndörfer, Niels Lindner, Sarah Roth
Zuse Institute Berlin

We introduce a concurrent solver for the periodic event scheduling problem (PESP).
It combines mixed integer programming techniques, the modulo network simplex
method, satisfiability approaches, and a new heuristic based on maximum cuts.
Running these components in parallel speeds up the overall solution process. This
enables us to significantly improve the current upper and lower bounds for all bench-
mark instances of the library PESPlib.

1 Introduction

The optimization of periodic timetables is a major planning task in public transit. The stan-
dard mathematical model is the formulation as a periodic event scheduling problem (PESP,
[Serafini and Ukovich (1989)]). In 2005, the first mathematically optimized timetable has been
put into operation ([Liebchen (2008)]) on the Berlin subway network. However, computing op-
timal timetables on country-sized railway networks is notoriously hard. Therefore, the focus
lies usually on feasibility rather than on minimum passenger travel time or other optimization
goals ([Kümmling et al. (2015)]). In particular, solving the rather large benchmark instances
of the library PESPlib 1 to optimality seems currently out of reach.

The state-of-the-art methods for solving periodic timetabling problems comprise satisfiabil-
ity techniques (SAT, [Großmann et al. (2012)]) for feasibility questions, branch-and-cut in the
framework of mixed integer programming (MIP, [Liebchen (2006)]), and the modulo network
simplex algorithm (MNS, [Nachtigall (1998)]) as a local improving heuristic. In fact, the current
best solutions to the PESPlib instances have been found by running a MIP solver and an MNS
implementation alternatingly for 8 hours in total ([Goerigk and Liebchen (2017)]).

We introduce a new PESP solver based on concurrency, and integrating all three approaches.
The core idea is to run MIP, MNS and a new maximum cut based heuristic in parallel. This
way, the global nature of the search procedure underlying the MIP solver enables the other
algorithms to escape local optima. Moreover, our solver features additional ingredients, e.g., a
cutting plane separator for cycle and change-cycle inequalities.

In Section 2, we introduce PESP and two mixed integer programming formulations. The
architecture and the key ingredients of our PESP solver are illustrated in Section 3. The
features of the PESPlib set and the current solution status is described in Section 4. The
subsequent Section 5 contains the results of applying our solver to the PESPlib instances. We
conclude this paper with a short summary in Section 6.

1available at http://num.math.uni-goettingen.de/~m.goerigk/pesplib
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2 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP), going back to [Serafini and Ukovich (1989)],
is the default approach to model periodic timetabling problems. It seeks for an optimum
periodic slack respecting certain bounds in a given network. We refer to [Liebchen (2006)] for
an exhausting overview. Formally, the input for PESP is the following:

• a directed graph G with vertex set V and arc set A,

• a period time T ∈ N,

• lower bounds ` ∈ ZA≥0,

• upper bounds u ∈ ZA≥0, where ` ≤ u,

• weights w ∈ ZA≥0.

In this paper, we will consider only integer bounds and weights. The graph G is usually called
an event-activity network, where vertices are considered as events, and arcs as activities. Given
a PESP instance (G,T, `, u, w), a periodic timetable is an assignment of values in [0, T ) to the
events, i.e., a vector π ∈ [0, T )V . A periodic timetable defines a periodic slack y ∈ RA≥0 via

yij := [πj − πi − `ij ]T , ij ∈ A, (1)

where [·]T denotes the modulo T operator taking values in the interval [0, T ). Intuitively, a
periodic timetable π fixes the duration of an activity ij ∈ A modulo T to be [πj − πi]T , and
the actual duration of ij is computed as the smallest number `ij + yij ∈ [`ij , uij ] satisfying
[`ij + yij ]T = [πj − πi]T .

The PESP is now formulated as the following mixed integer program:

Minimize wty

subject to yij = πj − πi − `ij + pijT, ij ∈ A,
0 ≤ y ≤ u− `, (2)

0 ≤ π < T,

p ∈ ZA≥0.

The integer variables pij for each activity ij ∈ A are called periodic offsets. Their purpose is
to model the modulo T conditions (1). Using the incidence matrix A ∈ {−1, 0, 1}V×A of the
network G, these constraints may as well be written as

y = Atπ − `+ pT.

This is why we will call (2) the incidence matrix mixed integer programming formulation of
PESP in the sequel. Since the incidence matrix of a directed graph is totally unimodular,
so is At, which implies that there is always an optimal periodic timetable π taking values in
{0, 1, . . . , T − 1}. We may therefore interpret the constraint 0 ≤ π < T as 0 ≤ π ≤ T − 1. A
fortiori, there is always an integral optimal periodic slack y.

Another formulation can be obtained as follows: Suppose that the network G has m activities.
A cycle matrix of G is a full row rank matrix Γ ∈ {−1, 0, 1}µ×m whose rows form a maximal
linearly independent set of incidence vectors of oriented cycles in G, i.e., a cycle basis. If Γ
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represents an integral cycle basis, i.e., any maximal minor is either 0 or ±1, then the following
mixed integer program is equivalent to (2):

Minimize wty

subject to Γ(y + `) = zT (3)

0 ≤ y ≤ u− `,
z ∈ Zµ.

This is the cycle matrix mixed integer programming formulation. The number µ = m−n+ c of
equality constraints resp. integer variables is also called the cyclomatic number of G and serves
as one measure of difficulty for PESP instances.

Example 1. Consider the PESP instance I = (G,T, `, u, w) depicted in Figure 1. The timetable
π indicated by the vertex labels has weighted slack 1 · 5 + 5 · 10 + 3 · 25 = 130. We will see later
in Examples 2 and 3 that π is indeed optimal.

[10, 20], 8 [15, 15], 4

[30, 40], 4

[10, 20], 4

[1
0
,3

0
],1

[50, 75], 3

[10, 10], 4 [20, 30], 5

20 30 45 55

0 10 40

Figure 1: Example PESP instance with period time T = 60. The activities are labeled with
[l, u], w. An optimal periodic timetable is given by the event labels.

3 Solver Architecture

3.1 Overview

The main idea of our PESP solver is to execute several well-performing algorithms in parallel.
The solver operates in three phases, see also Fig. 2:

1. Preprocessing phase: Given a PESP instance, the network size is reduced by an exact
preprocessing step and a subsequent heuristic preprocessing step. The exact method
transforms the PESP instance into an equivalent instance – the final problem – with
the same objective value. On the other hand, the heuristic preprocessing is allowed to
slightly alter the instance and objective value, resulting in the master problem. The
details are described in §3.2. In addition to creating the final and master problems, both
preprocessing steps are also applied to a much smaller network, defining an ignore problem,
see §3.3.

2. Concurrent phase: This is the main phase of the solver. Both the master and ignore prob-
lem are tackled using a MIP solver (§3.4), a modulo network simplex algorithm (§3.5),
and a maximum cut heuristic (§3.6) each. These six threads run asynchronously in par-
allel. The incumbent solutions for each of the problems are shared among the threads
by means of a common solution pool. A seventh thread transforms periodic timetables
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Figure 2: Architecture of our concurrent PESP solver
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from the ignore problem’s solution pool to the master problem’s solution pool and vice
versa, and additionally applies further heuristics (see §3.7) on both pools. While the
master problem is kept for the whole concurrent phase, the ignore problem may change.
The concurrent phase ends after a time limit or if the MIP solver terminates, either by
detecting infeasibility or by proving optimality of the incumbent solution.

3. Final phase: The final problem is treated with a MIP solver, taking the best periodic
timetable for the master problem as initial solution. This phase usually is aborted after a
short time, as it typically does not make significant progress after the first few minutes.
However, the internal heuristics of the MIP solver often detect better incumbents invisible
to the master problem.

The solver is flexible in the sense that any subset of the methods in the concurrent phase can
be switched off. On the other hand, the MIP solver may use several internal threads.

One advantage of concurrency is that the branch-and-cut process of the MIP does not need
to wait for the other heuristics to finish and vice versa. Moreover, the communication of new
solutions across all threads helps to overcome local optima.

3.2 Network Preprocessing

Our exact and heuristic preprocessing methods are based on the network size reduction strategies
in [Liebchen (2006)] and [Goerigk and Liebchen (2017)]. Let (G,T, `, u, w) be a PESP instance.
The preprocessing comprises the following steps, see also Figure 3:

1. Remove all bridges, i.e., all arcs that are not part of any oriented cycle.

2. Delete all isolated vertices.

3. Contract fixed arcs: If for an activity a ∈ A holds `a = ua, then necessarily ya = 0. We
can hence delete a and its target j. All other arcs incident with j are replaced with arcs
with the same weight from or to the source of a, adding or subtracting the lower bound
`a, respectively.

4. Contract degree two vertices: If i is a vertex of degree two with an entering arc from j and
a leaving arc to k, then delete i and its incident arcs, and add a new arc between j and k,
adding up lower and upper bounds. The weight of the new arc becomes the minimum of
the weights of the two old arcs. In exact preprocessing, this is only done if the two arcs
incident to i share the same weight. However, in the case of heuristic preprocessing, also
incident arcs with different weights are considered.

5. Finally, we normalize the lower and upper bounds such that both ` ∈ [0, T ) and u − ` ∈
[0, T ) by subtracting a suitable multiple of T . As a consequence, the periodic offsets p are
then guaranteed to lie in {0, 1, 2} [Liebchen (2006), Lemma 9.2], reducing the size of the
branch-and-bound tree the MIP solver has to search.

Both exact and heuristic preprocessing carry out all five steps. The only difference is that
the heuristic preprocessing is allowed to contract more vertices of degree two. However, the
preprocessing may introduce multiple arcs between two vertices.

Lemma 1. Let I = (G,T, `, u, w) be a PESP instance, and denote by Iexact and Iheur the PESP
instances after exact and heuristic preprocessing, respectively. Then the optimal weighted slacks
OPT satisfy

OPT(I) = OPT(Iexact) ≥ OPT(Iheur).
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Proof. As can be seen from the cycle matrix MIP formulation, there is no constraint on the
periodic slack of a bridge. Hence in an optimal solution, any bridge a ∈ A has periodic slack
ya = 0. Clearly, isolated vertices can be omitted. Since fixed arcs cannot have slack, they do
not contribute to the objective value. Again by inspecting the cycle matrix MIP formulation,
one checks that the normalization in step 5 does not affect the minimization.

It remains to check step 4. The contraction of degree two vertices does not affect the cycles
of the graph, except that they contain less arcs. However, the weights may change: Let a1, a2
be arcs in I incident to a common degree two vertex with in-degree one and out-degree one. If
their optimal periodic slacks are ya1 , ya2 , then the contribution to the objective value OPT(I) is
given by wa1ya1 +wa2ya2 . The optimal solution to I can be transformed into a feasible solution
to Iheur with the slack ya1 + ya2 on the new arc a12 arising from contracting a1 and a2. Note
that by optimality, we have ya1 +ya2 < T . However, a12 contributes min(wa1 , wa2)(ya1 +ya2) to
OPT(Iheur). This shows OPT(I) ≥ OPT(Iheur). Observe that there is no change in objective
value if wa1 = wa2 , thus OPT(I) = OPT(Iexact).

Example 2. Figure 3 visualizes the preprocessing of the instance from Example 1.
In the result of the heuristic preprocessing, the bounds [55, 75] and [20, 55] immediately fix a

duration of 55 for both arcs, and thus a duration of 5 for the third arc in reverse direction. In
particular, there is only one feasible periodic slack, which is hence optimal with weighted slack
110.

Moving to the instance after exact preprocessing, there is still a single feasible periodic slack
for the same reason, but now with an optimal value of 130. Tracing back the previous prepro-
cessing steps, which only work on features not contributing to the objective value, we see that
an optimal timetable for the original instance has indeed weighted slack 130.

The contraction process in step 4 can in principle be extended to all vertices of degree two.
However, in this case, it is possible that OPT(I) 6= OPT(Iexact), see Figure 4.

As a final remark, note that the cyclomatic number of the network is preserved by all pre-
processing steps. In particular, the number of equality constraints in the cycle matrix MIP
formulation remains unchanged. Of course, the number of events and activities decreases and
thus does the number of variables in both MIP formulations.

3.3 Ignoring Free Arcs

Given a PESP instance I = (G,T, `, u, w) and a real number r ∈ [0, 1], we create the ignore-
r instance Ir as follows [Goerigk and Liebchen (2017), §3.1]: Let Afree be the set of all free
activities, i.e. the set of all arcs a with ua − `a ≥ T − 1. Consider now the PESP instance
arising from I by deleting the arcs from Afree in ascending order by weight w, until a total
weight of r ·

∑
a∈Afree

wa has been removed. Applying heuristic preprocessing to this instance
defines Ir. In particular, I0 = Iheur.

The networks Ir become smaller as r increases. Clearly, restricting a periodic timetable on I
yields feasible timetable on Ir.

Lemma 2. For any r ∈ [0, 1] holds OPT(Ir) ≤ OPT(I).

Proof. Any optimal solution to I is feasible for Ir, and removing arcs and heuristic preprocessing
cannot increase the objective value by Lemma 1.

Conversely, any timetable on Ir extends to a timetable on I, because the free activities are
precisely the ones without any condition on their periodic slack.
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OPT(I) = 1 · 5 + 5 · 10 + 3 · 25 = 130

OPT(Iexact) = 1 · 5 + 5 · 10 + 3 · 25 = 130 OPT(Iheur) = 1 · 5 + 3 · 35 = 110

Figure 3: Exact and heuristic preprocessing
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Figure 4: Contracting arbitrary degree two vertices can lead to jumps in the optimal weighted
slack.

Lemma 3. Fix r ∈ [0, 1] and let Afree,r denote the free arcs of A removed when constructing
Ir. Then

OPT(I) ≤ OPT(Ir) +
∑

a∈Afree,r

wa(T − 1) + E,

where E is an upper bound on the error in objective value that occurs during heuristic prepro-
cessing of Ir.

Proof. Any optimal solution to Ir can be extended to the non-preprocessed network, causing
an increase of at most E in objective value. Extending the timetable further to I adds at most
wa(T − 1) for every activity a removed for constructing Ir.

Since small terms
∑

Afree,r
wa(T −1) can only be achieved with small values of r, good bounds

are hard to obtain from the previous lemma. In practice, it often seems that OPT(I) ≈
OPT(Ir) +

∑
Afree,r

wa(T − 1)/2.
The ignore problems for our PESP solver stem from the ignore-r instances for different choices

of r ∈ [0, 1]. The solver usually starts with a high r and decreases it after a certain amount of
time. This way, the ignore problems become harder, but closer to the master problem.

3.4 Mixed Integer Programming Features

Let I = (G,T, `, u, w) be a PESP instance. Our solver builds a mixed integer program using
one of the following formulations:

• the incidence matrix formulation (§2 (2)),

• the cycle matrix formulation (§2 (3)) w.r.t. the cycle matrix of a strictly fundamental
cycle basis arising from a minimum-weight spanning tree w.r.t. w,

• the cycle matrix formulation w.r.t. the cycle matrix of a minimum-weight undirected cycle
basis w.r.t. u− `, if this basis is integral.

While computing a fundamental cycle basis is easily done using e.g. Kruskal’s algorithm, our
minimum-weight cycle basis algorithm currently relies on the rather time-consuming greedy
algorithm by [Horton (1987)].

The MIP formulation can further be enhanced by

• Cycle inequalities ([Odijk (1994)]): Let γ ∈ {−1, 0, 1}A be the incidence vector of an
oriented cycle. Then γ can be decomposed as γ = γ+ − γ− into its non-negative and
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non-positive parts, i.e., γ+, γ− ∈ {0, 1}A. The following inequality holds for any feasible
periodic offset p and any feasible periodic slack y:⌈

γt+`− γt−u
T

⌉
≤ γtp =

γt(y + `)

T
≤
⌊
γt+u− γt−`

T

⌋
If the cycle matrix formulation is used, and γ is a row of the cycle matrix Γ corresponding
to an integer variable zγ , then γt(y+ `)/T = zγ and the cycle inequality yields bounds on
the variable zγ .

• Change-cycle inequalities ([Nachtigall (1998)]): Let γ = γ+ − γ− be the incidence vector
of an oriented cycle as above. Then the inequality

(T − α) γt+y + αγt−y ≥ α (T − α), where α = [−γt`]T .

holds for any feasible periodic slack y. Since the LP relaxations of both MIP formulations
have 0 as their optimal values, the change-cycle inequalities are useful to provide a non-
trivial lower bound for the slack variables y in the LP relaxation.

[10, 20], 8 [15, 15], 4

[30, 40], 4

[10, 20], 4

[1
0
,3

0
],1

[50, 75], 3

[10, 10], 4 [20, 30], 5

A B C D

E F G

Figure 5: The PESP instance from Example 1 with named events, T = 60.

Example 3. We illustrate the helpfulness of the cycle inequalities on the instance of Example 1,
see also Figure 5. An integral cycle basis consists of the two oriented cycles BCDFEB and
DFGD, leading to the following cycle-based mixed integer program:

Minimize 8yAB + 4yBC + 4yCD + yDF + 4yEB + 4yEF + 5yFG + 3yGD

subject to yBC + yCD + yDF − yEF + yEB + 55 = 60z1,

yDF + yFG + yGD + 80 = 60z2,

yBC = yEF = 0,

yAB, yCD, yEB, yFG ∈ [0, 10], yDF ∈ [0, 20], yGD ∈ [0, 25],

z1, z2 ∈ Z.

The cycle inequalities for the two cycles read

1 =

⌈
15 + 10 + 10− 10 + 30

60

⌉
≤ z1 ≤

⌊
15 + 20 + 30− 10 + 40

60

⌋
= 1

2 =

⌈
10 + 20 + 50

60

⌉
≤ z2 ≤

⌊
30 + 30 + 75

60

⌋
= 2,
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so that the above MIP simplifies to

Minimize 8yAB + 4yCD + yDF + 4yEB + 5yFG + 3yGD

subject to yCD + yDF + yEB = 5,

yDF + yFG + yGD = 40,

yAB, yCD, yEB, yFG ∈ [0, 10], yDF ∈ [0, 20], yGD ∈ [0, 25].

The optimal solution is now to put as much slack as possible on the cheapest arc DF, i.e., to set
yDF = 5. Then yFG = 10 and yGD = 25, and the other slacks are 0. Consequently, the optimal
solution has weighted slack 5 + 5 · 10 + 3 · 25 = 130.

As a final ingredient to the MIP, we implemented a cutting plane separator. Since finding the
maximally violating (change-)cycle cut is NP-hard and the best known algorithms are pseudo-
polynomial dynamic programs ([Borndörfer et al. (2018)]), we instead use a heuristic separator.
Starting from a fractional solution to the LP relaxation, the separator adds violated (change-
)cycle inequalities by inspecting the fundamental cycles of a minimum-slack spanning tree.

Currently, we interface the MIP solvers CPLEX2 and SCIP ([Gleixner et al. (2018)]).

3.5 Modulo Network Simplex

The modulo network simplex method (MNS, [Nachtigall and Opitz (2008)]) is an improving
heuristic based on the idea that there is always an optimal PESP solution associated to a
spanning tree structure. Formally, let I = (G,T, `, u, w) be a PESP instance. Then there is an
optimal periodic slack y∗ and a spanning tree F of G such that for all arcs a in F holds either
y∗a = 0 or y∗a = ua − `a. More precisely, the spanning tree structures correspond one-to-one to
the vertices of the convex hull of

{(y, z) ∈ RA≥0 × Zµ | Γ(y + `) = Tz, 0 ≤ y ≤ u− `},

i.e., the polytope associated to the cycle matrix MIP formulation [Nachtigall and Opitz (2008),
Theorem 2.1]. Figure 6 illustrates an optimal spanning tree structure in our running example.
Given a spanning tree structure, one can look for a better spanning tree structure by adding a
co-tree arc a and deleting a tree arc along the fundamental cycle associated to a. This search
can be performed with a simplex-style tableau, however, the change in objective value needs to
be recomputed rather costly. After a few iterations, the MNS usually becomes stuck in a local
optimum.

Our MNS implementation features the following:

1. Initialization: Given a feasible PESP solution, we fix the corresponding cycle offset vari-
ables z and solve the cycle matrix MIP formulation for the remaining – continuous –
variables y. A strictly fundamental cycle basis computed from a minimum-weight span-
ning tree w.r.t. w produces the required cycle matrix. Since all integer variables are fixed,
this is now a linear program, and any optimal vertex of the corresponding polytope yields
a spanning tree structure.

2. Inner loop: Try to improve the current tree structure by exchanging tree arcs with co-
tree arcs. The usual strategy is to apply steepest descent. However, the running time
is drastically improved by a quality-first rule, i.e., the search for an improving move is
already stopped as soon as a sufficient improvement has been achieved.

2https://www.ibm.com/analytics/cplex-optimizer
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Figure 6: The PESP instance from Example 1 with an optimal spanning tree structure: Blue
arcs have slack 0, red arcs have slack u− `.

3. Single-node cuts ([Nachtigall and Opitz (2008)]): If the inner loop reaches a local opti-
mum, then try to adjust the current timetable by modifying a single vertex.

4. Multi-node cuts: If inner loop and single-node cuts do not improve the timetable, then try
to shift a bigger set of vertices in a random and greedy way ([Goerigk and Schöbel (2013)]).

5. Restart : If inner loop, single- and multi-node cuts, and rebuilding the spanning tree
structure as in the initialization process do not lead to a better timetable, then we restart
the MNS with a worse solution that was not computed by one of the MNS features. This
is carried out in a tabu-search style.

The algorithm is regularly updated with the current incumbent solution, which might have
been found by other algorithms, e.g., the MIP solver. The MNS turns out to be a powerful
improving heuristic in the beginning of a solving process. In the later phase, improvements by
the inner loop are rare, and mostly come from multi-node cuts and restarts.

3.6 Max-Cut Heuristic

Since the modulo network simplex method gets trapped in local optima too often, we developed
a deeper improving heuristic dominating the MNS inner loop, single-node and multi-node cuts.
Instead of searching for multi-node cuts in a heuristic way, we turn this into an optimization
problem:

Problem 1 (Maximally improving delay cut). Let I = (G,T, `, u, w) be a PESP instance. We
call any pair (S, d) with S ⊆ V and d ∈ {1, . . . , T − 1} a delay cut. Given a feasible periodic
timetable π for I, find a delay cut (S, d) such that the periodic timetable π(S, d) ∈ [0, T )V is
feasible and has minimum weighted slack, where

∀v ∈ V : π(S, d)v :=

{
πv + d if v ∈ S,
πv if v /∈ S.

Multi-node cuts are delay cuts, and clearly single-node cuts are delay cuts with a singleton
subset S. Moreover, any move in the MNS inner loop can be seen as a delay cut, as removing
a spanning tree arc induces a fundamental cut. In particular, if a periodic timetable cannot
be improved by a delay cut, then the timetable is locally optimal for the MNS inner loop and
single-/multi-node cuts.

Lemma 4. For fixed d, the problem of finding a maximally improving delay cut is a maximum
cut problem with possibly both positive and negative weights.
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Proof. We want to minimize the minimum weighted slack of π(S, d), i.e.,∑
ij∈A

wij [π(S, d)j − π(S, d)i − `ij ]T .

Of course, since a fixed feasible timetable π is given, we can instead minimize∑
ij∈A

wij ([π(S, d)j − π(S, d)i − `ij ]T − [πj − πi − `ij ]T ) .

The summand vanishes for arcs where the endpoints are both in S or both in V \S. Therefore,
we can minimize ∑

ij∈δ+(S)

wij ([πj − πi − d− `ij ]T − [πj − πi − `ij ]T )

+
∑

ij∈δ−(S)

wij ([πj + d− πi − `ij ]T − [πj − πi − `ij ]T )

Here, δ+(S) and δ−(S) denote the sets of all arcs leaving S and entering S, respectively. For
fixed d and π, we therefore have a minimization problem of the form∑

ij∈δ+(S)

c+ij +
∑

ij∈δ−(S)

c−ij ,

for fixed c+, c−, and we set c+ij (resp. c−ij) to ∞ if [πj − π − d− `ij ]T (resp. [πj + d− π − `ij ]T )

is not a feasible slack for the arc ij. Since in principle c+, c− can take any value in (−T, T ), we
arrive at a minimum cut problem with positive and negative costs, which is at the same time a
maximum cut problem by switching signs.

The maximum cut problem as constructed in the proof is in general not solvable in polynomial
time due to the presence of arcs with positive weight. To emphasize this difficulty, we prefer
the term “maximum cut” over “minimum cut”.

However, solving the maximally improving delay cut problem for a fixed d turns out to be well
doable by a MIP solver in practice. Our PESP solver invokes SCIP to compute a maximally
improving delay cut for d = 1, 2, . . . , d(T − 1)/2e. Note that by symmetry, a delay cut (S, d) is
as good as (V \ S, T − d), and hence there is no need to check for all values of d up to T − 1. If
this max-cut heuristic (or another concurrently running algorithm) finds a better solution, it is
restarted. Although this MIP-based approach is inferior to MNS in the early stage of solving,
it provides better quality solutions in later phases. Using a MIP solver under the hood also
enables to prove local optimality for the cut methods of MNS.

3.7 Further Ingredients

Furthermore, our solver is able to invoke the following strategies:

• Reflow heuristic: We apply the MNS initialization step to every new incumbent in a
solution pool, not only the ones found by the modulo network simplex algorithm. Since
this only involves solving a single linear program, dual to a minimum cost flow problem
[Nachtigall and Opitz (2008), §2], this is very fast. We currently use SCIP for this task.
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• SAT initial solution: The problem of finding a feasible periodic timetable for a given
PESP instance can be formulated as a boolean satisfiability (SAT) problem. This is done
using the order encoding and rectangle covering strategy from [Großmann et al. (2012)].
Although this produces a pseudo-polynomial number of variables and clauses, a specialized
SAT solver – we use Glucose3 – is able to provide a feasible truth assignment typically
within a second or less. The truth assignment is then transformed back to a feasible
periodic timetable. We call this procedure before starting the master and the ignore
problems to quickly obtain an initial solution. This is valuable since especially on larger
instances, the MIP solver has difficulties to find a feasible solution in the beginning, and
MNS and the max-cut heuristic require a feasible timetable as input.

• SAT propagator : If the MIP solver – like SCIP or CPLEX without dynamic search –
applies a classical branch-and-cut algorithm to the incidence matrix MIP formulation,
then the branching decisions are on the periodic offset variables p. We regularly query
the current local bounds for p at the nodes of the branch-and-bound tree, and transform
the PESP feasibility problem into a SAT problem as above. If the instance is infeasible
– this is usually detected after a few milliseconds by glucose – we can prune the node.
Otherwise we obtain another feasible solution. Unfortunately, this delays the branch-and-
cut process, and the pruning effects are rather small and do not compensate turning off
the dynamic search of CPLEX.

• MaxSAT heuristic: With a similar approach as in the feasibility case, finding an op-
timal periodic timetable can be translated into a weighted partial MaxSAT problem
[Großmann (2016)]. Since the number of clauses and variables is rather high, even a fast
MaxSAT solver, like e.g. Open-WBO ([Martins et al. (2014)]), cannot help finding good
quality solutions fast. However, selecting only a small portion of arcs for the optimization
is sometimes superior to a MIP approach ([Roth (2019)]).

4 PESPlib Instances

The library PESPlib serves as a benchmark set for our solver. It currently comprises 20 periodic
event scheduling instances, all of which have a period time of 60 minutes. The first 16 instances
arose from the German long-distance railway network. They typically decompose into disjoint
paths when removing all free arcs. The last four instances are bus timetabling instances and
have a different structure, e.g., there are multiple arcs between two vertices.

Figure 7 compares the PESPlib instances using various measures of difficulty: number of
events, number of activities, cyclomatic number and log width. Here, log width means the
decadic logarithm of the number of possible values for the periodic offset vector p in the inci-
dence matrix MIP formulation. The data refers to the networks after heuristic preprocessing.
Furthermore, we transformed the instances BL1-BL4 to simple graphs, i.e., without multiple
arcs. The smallest PESPlib instance R1L1 has a cyclomatic number of 2 722, and solving to
proven optimality is currently out of reach. For example, a PESP instance with the rather
tiny cyclomatic number 294 has found its way into the MIPLIB2003 collection under the name
timtab2 ([Liebchen and Möhring (2003)]), and was solved to optimality with a pure MIP strat-
egy within 6 432 seconds in 2016 – using the commercial MIP solver Xpress on 6 144 cores in
parallel. On a single standard computer, a solving time of 22 hours with the help of special cuts

3http://www.labri.fr/perso/lsimon/glucose
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Figure 7: Sizes of PESPlib instances after heuristic preprocessing

is reported4.

Figure 8: Size reduction by preprocessing

The effect of preprocessing is shown in Figure 8. For the first 16 instances, exact preprocessing
reduces the number of events to roughly two thirds, and heuristic preprocessing even to one
third. The BL instances show different behavior: After heuristic preprocessing, more than 75%
of all events remain.

Finally, Table 1 shows the currently best known incumbents, lower bounds, and optimality
gaps on the weighted slack of all PESPlib instances. The dual bounds have received special
attention only for the first instance so far.

4http://miplib2010.zib.de/miplib2003/miplib2003/timtab2.php
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Instance primal dual gap [%]

R1L1 30 780 097 16 897 987 45.10
R1L2 31 682 263 4 975 398 84.30
R1L3 30 307 719 6 498 424 78.56
R1L4 27 326 571 6 297 850 76.95

R2L1 42 502 069 9 507 113 77.63
R2L2 41 534 563 7 768 806 81.30
R2L3 39 942 656 8 224 882 79.41
R2L4 33 063 475 5 217 025 84.22

R3L1 44 396 635 7 906 870 82.19
R3L2 46 048 483 7 432 716 83.86
R3L3 42 833 223 6 628 317 84.53
R3L4 34 694 043 5 623 632 83.79

R4L1 51 650 471 10 089 083 80.47
R4L2 49 579 843 7 975 150 83.91
R4L3 45 881 499 7 477 035 83.70
R4L4 38 836 756 5 147 195 86.75

BL1 7 387 963 1 477 565 80.00
BL2 8 143 507 1 730 247 78.75
BL3 7 826 762 1 205 501 84.60
BL4 7 359 779 1 004 303 86.35

Table 1: PESPlib incumbents as of October 24, 2018. The average optimality gap is 80.32%.

5 Computational Results

In this section, we report on the progress that our concurrent PESP solver achieved on the
PESPlib instances. The computations were carried out on two machines: A 3.4 GHz Intel Xeon
E3-1245 CPU and a 3.7 GHz Intel Xeon E3-1290 V2, both equipped with 32 GB RAM and
allowing 8 threads running in parallel.

5.1 Primal Bound Experiments

We ran four consecutive experiments to improve the primal bounds of the PESPlib instances,
see Table 2. As initial solution, the first experiment uses the timetable returned by the SAT
solver (see §3.7). In particular, we construct an initial solution from scratch and do not use
any input timetable from PESPlib. The first experiment spends 20 minutes in the concurrent
phase and is repeated 10 times with different parameter settings for the ignore problems and
the modulo network simplex quality-first strategy. The best out of this 10 solutions is taken as
input for Experiment 2, which is also run with 10 different configurations. Again, the best of
these solutions is taken over to Experiment 3, which is executed only once and in turn delivers
its solution to Experiment 4. The experiments 3 and 4 do not enter the final phase, as the
heuristic preprocessing for the master problem is switched off. In all experiments, we also do
not make use of SAT methods beyond finding an initial solution.

As a MIP solver, we use CPLEX 12.8 with feasibility emphasis and dynamic search applied
to the incidence matrix formulation. We add cycle inequalities before starting, but no further
cuts. Experiments 1-3 use 7 threads as described in §3.1. In particular, CPLEX is run on one
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No. Concurrent phase Final phase Repetitions

1 20 min 2 min 10
2 60 min 5 min 10
3 4 h – 1
4 8 h – 1

Table 2: Primal bound experiments

thread for each master and ignore problem. In Experiment 4, the ignore problem is turned off,
and CPLEX uses 4 internal threads for the master problem.

Inst. SAT start* Exp. 1 Exp. 2 Exp. 3 Exp. 4 **

R1L1 74 234 870 30 861 021 30 501 068 30 493 800 30 463 638 1.03%
R1L2 72 731 210 30 891 284 30 516 991 30 516 991 30 507 180 3.71%
R1L3 71 682 438 30 348 596 29 335 021 29 319 593 29 319 593 3.26%
R1L4 67 395 169 27 635 070 26 738 840 26 690 573 26 516 727 2.96%

R2L1 97 230 766 42 863 646 42 598 548 42 463 738 42 422 038 0.19%
R2L2 95 898 935 42 024 414 41 149 768 40 876 575 40 642 186 2.15%
R2L3 93 800 082 39 054 513 38 924 083 38 881 659 38 558 371 3.47%
R2L4 84 605 216 33 256 602 32 707 981 32 548 415 32 483 894 1.75%

R3L1 92 939 173 44 216 552 43 521 250 43 460 397 43 271 824 2.53%
R3L2 91 336 260 45 829 180 45 442 171 45 401 718 45 220 083 1.80%
R3L3 89 741 119 42 112 858 41 103 062 41 005 379 40 849 585 4.63%
R3L4 74 142 083 34 589 170 34 018 560 33 454 773 33 335 852 3.91%

R4L1 98 276 297 50 638 727 49 970 330 49 582 677 49 426 919 4.30%
R4L2 101 135 698 50 514 805 49 379 256 49 018 380 48 764 793 1.64%
R4L3 96 629 751 46 406 365 45 656 395 45 530 113 45 493 081 0.85%
R4L4 80 446 905 40 706 349 38 884 544 38 695 188 38 381 922 1.17%

BL1 15 367 998 7 299 228 6 394 914 6 375 778 6 333 641 14.27%
BL2 16 046 736 7 378 468 6 837 447 6 819 856 6 799 331 16.51%
BL3 14 850 854 7 512 685 7 065 270 7 011 324 6 999 313 10.57%
BL4 15 618 608 7 997 783 7 330 393 6 738 582 6 562 147 10.84%

Table 3: Objective values after Experiments 1-4. Green objectives are better than in the PE-
SPlib. All solutions to Experiment 4 are locally optimal for max-cut. *The objective
value of the initial solution provided by SAT is to be interpreted on the heuristically
preprocessed instance. **This is the relative improvement compared to PESPlib.

The results of the experiments are summarized in Table 3. Already after Experiment 1 with
20 minutes in the concurrent phase, 10 out of 20 instances end up with a better objective value
than in the PESPlib. After Experiment 2, all but the two instances R2L1 and R4L4 have been
improved. In Experiments 3 and 4, the improvements become smaller, however we were able
to find better incumbents for the two remaining instances as well. As the BL instances seem
to have received less attention in the past, we can even improve their primal bounds by more
than 10%.

Figure 9 shows the relative improvement of the objective value of the master problem for
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Figure 9: Relative improvement by heuristic for Experiments 1-4 from top to bottom.

17



each of the heuristics ignore, MIP, MNS, max-cut, and reflow. 100% denote the total gain in
objective value during the best run of the experiment. While the ignore heuristic, i.e., expanding
timetables from the ignore problem, is the dominant source for new incumbents in the early
stage, it has almost no effect in later phases. On the other hand, the “global” strategies such
as MIP and max-cut become more important. This is why we decided to switch the ignore
problem off for Experiment 4, so that 3 threads become available, which are again invested in
CPLEX on the master problem.

5.2 Dual Bound Experiments

Our set-up for the primal bound experiments does not provide strong dual bounds, mostly
due to the feasibility emphasis parameter setting of CPLEX. Moreover, the incidence matrix
MIP formulation seems to be better for finding good primal solutions fast, but weaker con-
cerning lower bounds. When computing a minimum-weight cycle basis and plugging in the
corresponding cycle basis, we empirically observed stronger dual bounds.

Instance Dual bound PESPlib improvement Optimality gap

R1L1 19 878 200 17.64% 34.75%
R1L2 19 414 800 290.22% 36.36%
R1L3 18 786 300 189.09% 35.93%
R1L4 16 822 200 167.11% 36.56%

R2L1 25 082 000 163.82% 40.88%
R2L2 24 867 400 220.09% 38.81%
R2L3 23 152 300 181.49% 39.96%
R2L4 18 941 500 263.07% 41.69%

R3L1 25 077 800 217.16% 42.05%
R3L2 25 272 600 240.02% 44.11%
R3L3 21 642 500 226.52% 47.02%
R3L4 16 479 500 193.04% 50.57%

R4L1 27 243 900 170.03% 44.88%
R4L2 26 368 200 230.63% 45.93%
R4L3 22 701 400 203.62% 50.10%
R4L4 15 840 600 207.75% 58.73%

BL1 3 668 148 148.26% 42.08%
BL2 3 943 811 127.93% 42.00%
BL3 3 571 976 196.31% 48.97%
BL4 3 131 491 211.81% 52.28%

Table 4: Dual bound experiment: Best lower bound, applied (change-)cycle cuts, relative im-
provement compared to the PESPlib bound, optimality gap w.r.t. the primal solution
of Experiment 4. Average optimality gap over all instances: 48.36%.

For our dual bound experiment, we run CPLEX on 6 threads for 8 hours with best bound
emphasis. We also invoke our heuristic cutting plane separator for cycle and change-cycle
inequalities (§3.4). All other primal heuristics, e.g., MNS and max-cut, are not started. To
simplify the original PESP instance I even more, we switch the master problem off and perform
the computations only on the ignore problem given by the ignore-0.01 instance I0.01 (§3.3). Since
OPT(I0.01) ≤ OPT(I) by Lemma 2, lower bounds on OPT(I0.01) are also valid lower bounds on
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OPT(I). Shrinking the incumbent timetable from Experiment 4 to the ignore problem provides
a MIP start.

Table 4 contains the results of the dual bound experiment. We could improve all dual bounds
significantly, often by a factor of 2. As a consequence, we can reduce the average optimality
gap over all instances from 80.32% to 48.36%.

6 Summary

We described a powerful framework for solving periodic event scheduling problems, providing
better solutions faster, and on relatively large instances. Moreover, our approach combines
many of the currently best known strategies for periodic timetabling in a single program, and
it is able to compare the impact of the different methods.

Combining many state-of-the-art methods in a concurrent manner provides a significant
speedup: For example, we are able to compute a new best solution to 10 out of 20 PESPlib
instances in as little as 20 minutes, starting from scratch and not using any input timetable.
Given the fact that many previous incumbent solutions were computed with a sequential ap-
proach using MIP and MNS for 8 hours ([Goerigk and Liebchen (2017)]), we achieved a speedup
factor which is bigger than the number of parallel threads our solver uses.

Our cutting plane separation approach is tailor-made for improving the lower bounds on the
objective values. Given that not much progress is expected in the primal bound on the PESPlib
instances, we believe that the key to solve PESPlib to optimality lies in better strategies for the
dual side, where even our heuristic separator is able to reduce the optimality gap significantly.
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[Goerigk and Schöbel (2013)] Goerigk, M., Schöbel, A., 2013. “Improving the modulo simplex
algorithm for large-scale periodic timetabling”, Computers & Operations Research, vol. 40,
no. 5, pp. 1363-1370.

[Goerigk and Liebchen (2017)] Goerigk, M., Liebchen, C., 2017. “An improved algorithm for
the periodic timetabling problem”, In: 17th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2017), vol. 59, pp. 12:1-
12:14.

[Großmann et al. (2012)] Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J.,
Steinke, P., 2012. “Solving Periodic Event Scheduling Problems with SAT”, In: Advanced
Research in Applied Artificial Intelligence, Springer Berlin Heidelberg, pp. 166-175.

[Großmann (2016)] Großmann, P., 2016. “Satisfiability and Optimization inPeriodic Traffic
Flow Problems”, PhD thesis, TU Dresden.

19



[Horton (1987)] Horton, J., 1987. “A polynomial–time algorithm to find the shortest cycle basis
of a graph”, SIAM J. Comput., vol. 16, pp. 359-366.

[Kümmling et al. (2015)] Kümmling, M., Großmann, P., Nachtigall, K., Opitz, J., Weiß, R.,
2015. “A state-of-the-art realization of cyclic railway timetable computation”, Public Trans-
port, vol. 7, no. 3, pp. 281-293.
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