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List of Symbols and Abbreviations

We list the most important notation and abbreviations, the remaining notation will be intro-
duced as we go.

S State space of a stochastic process
T Index set (often time) of a stochastic process
(Ω,F ,P) Probability space
P(t) Unit-rate Poisson process
N0 Natural numbers including 0
E(X) Expectation of a random variable X
Var(X) Variance of a random variable X
U(a, b) Uniform distribution on [a, b]
B(t) Standard Brownian motion taking values in the real numbers
N(m,σ2

) Normal distribution with mean m and variance σ2

Exp(λ) Exponential distribution with parameter λ
Z(t) White noise process (either space-time or just in time)
V (x) (Suitability) landscape, also called potential
∇ Gradient operator
∆ Laplace operator
W (t) Q- or cylindrical Wiener process
Q Covariance operator of the Q-Wiener process

L2
(D) Set of all functions f ∶D → R such that (∫D ∣f(x)∣2dx)

1
2
< ∞

M Truncation for the expansion of the cylindrical Wiener process
dom(L) Domain of an operator L
P Orthogonal projection operator
N Total number of agents
D Domain of interest, subset of Rn
NT Number of different agent types (species)

X(t) = (Xi(t))
N
i=1 Vector of positions for N agents at time t

Y (t) = (Yi(t))
N
i=1 Vector of agent types (e.g. innovation state) at time t

NR Number of interaction rules for agents
{Rr} Set of interaction rules, r = 1, . . . ,NR

Ui(x) Attraction-repulsion potential felt by agent i
A(t) Adjacency matrix for the contact network at time t
dint Radius between agents at which they start to interact
Ts Agent type (e.g. ’infected agent’) for s ∈ {0, . . . , ,NT }

λri (t) Transition rate function for the ABM
γrmicro resp. γrmeso Constant influence rate for rule Rr on the micro-scale resp. meso-scale
vr Type change due to the interaction rule Rr (ABM)
ρs(x, t) or ρs(t) Number density or number concentration of agents of type Ts
Ns Number of agents of type Ts, such that ∑sNs = N
D (Stochastic) diffusion operator of the SPDE
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I (Stochastic) interaction operator of the SPDE
δij Kronecker delta defined such that δij = 1 if i = j and 0 else
δ(x − y) Dirac delta distribution (also sometimes function)
ar(ρ(t)) Transition rate function for the density-based model
νrs Discrete number change of Ts agents due to rule Rr (density-based model)
ρ(x, t) or ρ(t) Number density or number concentration of agents
C∞

0 (D) Space of infinitely differentiable functions with compact support on D

ABM Agent-based model
CLE Chemical Langevin equation
FE Finite element
SDE Stochastic (ordinary) differential equation
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1. Introduction

Modeling real-world dynamics is of great importance for the understanding, prediction and ma-
nipulation of the dynamical process of interest. Mathematically, one is therefore interested in
the model analysis and inference of its parameters, as well as the accurate simulation and control
of the model. With computers becoming more and more powerful, the simulation of detailed
and complex model descriptions becomes possible. The vast amounts of data that are available
in today’s times can in turn be used to feed, evaluate and verify these models.

The modeling of realistic processes is nowadays often based on agent-based models (ABMs).
These are model formulations in terms of discrete interacting entities, so-called agents (e.g. hu-
mans, companies, organizations). The paradigm shift to ABMs is primarily due to their flexible
descriptions and the resulting easy incorporation of data.
An ABM typically consists of two components, the interacting and interdependent agents, and
a surrounding environment that they can interact with [25, 35]. Agent-based models describe
the system on the micro-scale, that is on the smallest scale, by imposing rules for each individ-
ual agent. These models can include a large number of different types of agents with complex
behavioural traits. The hope is that the system shows emergent patterns, i.e. that the collective
actions of many individual agents on the micro-scale, produce patterns on a larger scale.

In this thesis we are concerned with models describing systems of spatially distributed agents
that move in space and interact whenever they are close-by. On the micro-scale, the mobility of
agents is modeled as a random movement, whereby agents move with preferred direction to more
suitable regions of their environment. Whenever agents are close to each other in space, they
communicate and change their type (e.g. information state, health state, etc.) at a certain rate.
Mathematically, the model description is formulated as a system of coupled diffusion processes
and Markov jump processes for each agent [7]. Agent-based models of this class can for instance
be found as models for infection spreading [5, 39], innovation spreading [7, 8], chemical reactions
[12] and pattern formation [42].

We cannot solve these ABMs analytically, instead we simulate realizations of the modeled dy-
namics. For large and real-world dynamics, simulations become costly since they scale badly
for increasing agent numbers. Further, the model formulation is stochastic, requiring many
Monte Carlo simulations to make adequate predictions for observables of the system. Model
reductions with a small approximation error are therefore necessary. Generally, agent systems
can be described on different scales, from the smallest scale (the micro-scale) to the largest and
coarsest scale (the macro-scale). When coarse-graining the model, that is aggregating model
components, its complexity is reduced.

Here we present one model reduction technique for spatial systems of many agents and thus
on the meso-scale [31, 10]. The idea is to replace agents of the same type by stochastic agent
densities. These densities are interacting and diffusing in space according to a system of coupled
stochastic PDEs (SPDEs). Classically, in the limit of infinitely many agents such dynamics are
described by reaction-diffusion PDEs [41, 18]. But due to the finite number of agents, our sys-
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tem is still inherently random. By adding fluctuations to the PDEs, the inherent stochasticity
is captured by the model.
Deriving the reduced model, we closely follow the approaches in [31, 10], but we have added
missing calculations and explanations and have extended the derivation to more complicated
agent dynamics. Other approximation techniques exist for well-mixed (non-spatial) systems
[19, 20] and for systems with discretized space [28, 48, 6]. For meso-scale systems of continuous
space, the presented approach is the only one so far.

For the agent-based model as well as for the reduced model, we need numerical schemes for
the efficient simulation of trajectories. For the time discretization of the ABM, we are proposing
and explaining a coupled method [7] of Euler-Maruyama schemes for the diffusion processes and
discretizations of the Markov jump processes (e.g. Temporal Gillespie algorithm [47] or discrete
time methods).
Sampling trajectories of stochastic PDEs on the other hand, can be achieved by first discretiz-
ing in space and then discretizing in time using the Euler-Maruyama method. Space can be
discretized on the basis of Finite Volume schemes [31, 13, 11] or by constructing a Finite Ele-
ment discretization, as we are presenting in this thesis. The computational complexity of these
methods is independent of the number of agents. The Finite Element approach is advantageous
in our setting, since the stochastic PDEs have to be treated in the weak formulation framework
due to a difficult noise term. Further many real-world systems contain complex boundaries that
can be treated using irregular triangulations of the Finite Element method.

Last, we will study the ABM and the reduced SPDE model numerically on a toy example
by comparing the computational effort and investigating the approximation quality of the re-
duced SPDE model to the ABM.

This thesis is structured as follows.

Theoretical Foundations
Chapter 2 

Stochastic processes
Chapter 2.1 

Stochastic PDEs
Chapter 2.2 

Agent­based model
Chapter 3 

Density­based model
Chapter 4 

Model reduction

Comparison
Chapter 5 
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2. Theoretical Foundations

This chapter forms the theoretical basis for our agent-based model (Section 3) and the reduced
model on the meso-scale (Section 4). The ABM is described by a system of coupled stochastic
processes, a stochastic process describing the position dynamics and a process for the type
changes of each agent. Therefore in the first half of this chapter we will introduce stochastic
processes (taking values in the integers or real numbers) and their discretizations.
For systems of many agents, the ABM can be reduced to a system of stochastic PDEs. Each
SPDE describes the evolution of the density for a certain agent type, i.e. the transport in space
and the interactions with densities of other agent types. Thus the SPDEs are coupled. The
solution of each SPDE can be considered as a stochastic process taking values in some infinite
dimensional space. In the second half of this chapter we will introduce SPDEs and show how
to numerically find solutions by first discretizing in space (Finite Element method) and then in
time (Euler-Maruyama scheme).

2.1. Stochastic Processes and their Discretization

Stochastic processes are versatile and powerful descriptions forming the basis for many models
of complex systems. The diffusion and reactions of molecular particles, the random fluctuations
of a membrane, the behavior of the financial market or weather predictions, these are just some
examples where modeling with stochastic processes is commonly used. A stochastic process can
be viewed as a description for the evolution of a probabilistic system. Many real-world systems
appear to be random due to inherent uncertainties.

In this section we will only introduce the definitions and facts about stochastic processes that
are needed for describing our stochastic model in Chapter 3. Further, we give details of how to
discretize and simulate trajectories of stochastic processes. For the basics of probability theory,
we refer the reader to the literature [36]. A deeper treatment of stochastic processes and their
discretizations can be found in [37, 40, 33].

Let us start by defining what a stochastic process is.

Definition 2.1.1. A stochastic process is a collection of random variables X = {X(t) ∶ Ω→ S}t∈T
defined on a probability space (Ω,F ,P)1.

The index set T is often called time and can be discrete, e.g T = N, Z, or continuous, e.g.
T = R+, [0,1]. The state space S can also be either discrete, e.g. S = N, or continuous such as
S = Rn.

Another perspective on stochastic processes is to view them as a function of two variables,
X ∶ T ×Ω → S. For a fixed sample ω ∈ Ω, we call X(⋅, ω) a sample path (realization, trajectory)
of the process. In a computer experiment, one can view a fixed sample ω ∈ Ω as the seed for

1The dependence of the stochastic process on ω, i.e. {X(t, ω) ∶ Ω → S}t∈T, is often not explicitly written but
should be clear from the context.
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the random number generator of a simulation. For fixed t ∈ T on the other hand, X(t, ⋅) is an
S-valued random variable.

In the following we will introduce two very important stochastic processes for modeling pur-
poses, the Poisson process and Brownian motion.

2.1.1. The Poisson Process

0 0.5 1

t

0

10

P
(t

)

 = 2

 = 10

 = 20

Figure 2.1.: Sample paths of the Poisson Process for different rates λ.

With the Poisson process we can model random and independent events in time, such as the
arrival of people in a queue or the arrival of phone calls, by counting the number of random
events that have happened up to some time point. As such the Poisson process is a continuous-
time counting process {P

λ
(t) ∶ Ω → N0}t≥0. Counting processes have a discrete, non-negative

state space S and are non-decreasing.

Definition 2.1.2. A (time-homogeneous) Poisson process with rate λ > 0 is a stochastic process
{P

λ
(t) ∶ Ω→ N0}t≥0 satisfying the following:

(i) Pλ(0) = 0 (a.s.).

(ii) For t > s ≥ 0, Pλ(t) − Pλ(s) is Poisson distributed with parameter λ(t − s), i.e.

P(Pλ(t) − Pλ(s) = n) =
(λ(t − s))n

n!
e−λ(t−s)

for n ∈ N.

(iii) The increments are independent.

See Figure 2.1 for some trajectories of the Poisson process with different rates (intensities) λ.
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From the properties of the Poisson distribution, it immediately follows that

E(P
λ
(t)) = Var(Pλ(t)) = λt.

Another property of the Poisson process is that the waiting times τ , i.e. the time differences
between events of the counting process, are exponentially distributed with mean 1

λ . This can be
deduced from the following.

The probability of having a waiting time τ until the next jump that is larger than s equals
the probability of having no jump in a time interval of size s, i.e.

P(τ > s∣Pλ(t) = n) = P(Pλ(t + s) − Pλ(t) = 0) = e−λs.

Hence the cumulative distribution function is P(τ ≤ s∣Pλ(t) = n) = 1 − e−λs. The probability
density of τ is the derivative (if it exists) of the cumulative distribution function, which in this
case is just the density of the exponential distribution.

Denoting the unit-rate Poisson process (i.e. λ = 1) by P(t), it follows from Definition 2.1.2
that Pλ(t) is equivalent to a unit-rate process with scaled time, P(λt).
So far we considered Poisson processes with constant rates λ > 0. By using the time-scaling
argument, one can also define the so-called inhomogeneous Poisson process P(∫

t
0 λ(s)ds) with

time-dependent rate function λ ∶ [0,∞) → [0,∞). For an inhomogeneous Poisson process the
probability of n ∈ N jumps during the time interval (t, t′] is Poisson distributed with parameter

∫

t′

t λ(s)ds. Further, ∫
t+τ
t λ(s)ds is exponentially distributed2 with rate 1 for two successive

jump times t and t+ τ . This follows from a similar observation as for the homogeneous Poisson
process.

Discrete-time Approximation

The goal is to find a time-discrete approximation {Y (t)}t to the homogeneous Poisson process
{P

λ
(t)}t∈[0,T ] forming the basis for the simulation of trajectories. First we discretize the time

interval [0, T ] into small intervals of length ∆t. Then instead of rates we consider probabilities
per time interval.
From before we know that the probability of having at least one jump in a time interval of size
∆t is just 1 − e−λ∆t independently of the current value of the process. Further, it follows from
Definition 2.1.2 (ii) that the probability of two or more jumps in a time interval ∆t is O(∆t),
using the little-o notation, which is thus negligible as ∆t becomes very small. We assume the
time interval ∆t to be small enough such that it is a good approximation to have at most one
jump per interval.
In pseudo-code the discrete time approximation reads as follows.

Initialize Y (0) = 0, t = 0. While t < T :

1. Draw θ ∼ U(0,1).

2The randomness enters ∫
t+τ

t λ(s)ds via the integral limit since τ is a random variable.
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2. If θ ≤ 1 − e−λ∆t, the process jumps up by 1. Set Y (t +∆t) = Y (t) + 1.
Else Y (t +∆t) = Y (t).

3. Advance in time, t = t +∆t.

One can also simulate trajectories of the homogeneous Poisson process continuously in time, as
we will explain next.

Continuous-time Scheme

We have seen before that the waiting times τ of {P
λ
(t)}t∈[0,T ] are exponentially distributed,

i.e. τ ∼ Exp(λ). This property can be exploited to construct a statistically exact continuous-
time simulation scheme. We can simulate continuous-time trajectories of the Poisson process by
drawing i.i.d. waiting times τi, i = 1,2, . . . , and by letting the process have jumps at times τ1,
τ1 + τ2, τ1 + τ2 + τ3 etc.

Drawing random variables from an exponential distribution can be done by drawing random
variables from a uniform distribution U(0,1) and making use of the following theorem to trans-
form them.

Theorem 2.1.3. (Inverse Transform Sampling [27]). Let the cumulative distribution
function FX(x) = P(X ≤ x) of a continuous random variable X be strictly increasing. Then for
θ ∼ U(0,1), F−1

X (θ) is a random variable with cumulative distribution function FX(x).

Proof. For a uniformly distributed random variable θ ∼ U(0,1), we have y = P(θ ≤ y). Thus

FX(x) = P(θ ≤ FX(x))

= P(F −1
X (θ) ≤ x),

where we used that FX is invertible. It follows that the random variable F −1
X (θ) has cumulative

distribution function FX(x).

In our case, we want to sample τi ∼ Exp(λ) with the cumulative distribution function Fτi(s) =
1 − e−λs being strictly increasing on the positive real axis. Let us calculate the inverse,

θi = Fτi(s) = 1 − e−λs

−λs = log(1 − θi)

s = −
1

λ
log(1 − θi) = F

−1
τi (θi).

Based on this we can simulate the waiting times τi between the (i − 1)th and ith jump. We
generate θi ∼ U(0,1) and set τi = −

1
λ log(1 − θi). By Theorem 2.1.3, τi ∼ Exp(λ) for all i.

Simulation of Inhomogeneous Poisson Processes

A Poisson process with a time-dependent rate function can be viewed as a unit-rate Poisson
process with a scaled time axis {P(∫

t
0 λ(s)ds)}t∈[0,T ]. To sample realizations of the process, we
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make use of the property ∫
t+τ
t λ(s)ds ∼ Exp(1) for the waiting times between two successive

jump times t and t + τ . By drawing samples from the exponential distribution with parameter
1, we can calculate the waiting times between jump events.
The pseudo-code for the continuous-time approximation {Y (t)}t∈[0,T ] to the inhomogeneous
Poisson process reads as follows.

Initialize t = 0, Y (0) = 0. While t < T :

1. Sample τ̃ ∼ Exp(1).

2. Numerically solve ∫
t+τ
t λ(s)ds = τ̃ for τ (the waiting time between successive jumps).

3. Replace Y (t + τ) = Y (t) + 1 and t = t + τ .

2.1.2. Brownian Motion

Brownian motion was originally proposed by Robert Brown as a model for the erratic motion of
a pollen grain immersed in water. Later the motion could be explained by the random collisions
of the pollen grain with water molecules. The idea of Brownian motion can be put into a
mathematical framework by using the concept of stochastic processes to describe the random
position of the grain at time t and to model the motion as a continuous time stochastic process3.

Definition 2.1.4. The one-dimensional standard Brownian motion {B(t) ∶ Ω → R}t≥0 is a
stochastic process with a.s. continuous paths such that

(i) B(0) = 0 (a.s.).

(ii) The increments are independent.

(iii) For every t > s ≥ 0, the increment B(t) −B(s) ∼ N(0, t − s).

In Figure 2.2 we show ten discretized trajectories of standard Brownian motion.

The standard n-dimensional Brownian motion {B(t) ∶ Ω → Rn}t≥0 is the vector of n inde-
pendent Brownian motions, i.e. B(t) = (Bi(t))i=1,...,n with Bi(t) denoting independent one-
dimensional Brownian motions. For the one-dimensional Brownian motion we have the expec-
tation E(B(t)) = 0 and variance Var(B(t) −B(s)) = t − s.
Further, a useful property of Brownian motion is the Markov property, that is the process is
memoryless. Given the present, the future of the process does not depend on the past.

2.1.3. Stochastic (Ordinary) Differential Equations

As a next step, we are introducing (ordinary) differential equations driven by a noisy term that
describe the evolution of a continuous-time stochastic process {X(t)}t∈[0,T ].

3Often Brownian motion is also referred to as the Wiener process, here we stick to the term Brownian motion
to avoid confusion with the Q-Wiener and cylindrical Wiener process that will be introduced later.
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Figure 2.2.: Discretized sample paths of Brownian motion with ∆t = 1
1000 .

For instance the stochastic differential equation (SDE)4,

dX(t) = µdt + dB(t), X(0) = 0

describes Brownian motion with drift µ, i.e. X(t) = µt +B(t).

Here we consider more general SDEs, so-called (time-homogeneous) Itô diffusion processes, of
the form

dX(t) = a(X(t))dt + b(X(t))dB(t)

X(0) =X0 (2.1.1)

with X(t) ∈ Rn, a ∶ Rn → Rn and b ∶ Rn → Rn×d. B(t) denotes the standard Brownian motion in
Rd. The first term is responsible for a deterministic drift, whereas the second term accounts for
a noisy drift involving Brownian motion.

Since Brownian motion is nowhere differentiable [37, 40], the equation (2.1.1) is only symbolic
and has to be interpreted as a stochastic integral equation

X(t) =X0 + ∫

t

0
a(X(s))ds + ∫

t

0
b(X(s))dB(s),

where the last integral is the Itô integral [37, 40].

In the Physics literature one often writes the derivative of Brownian motion as the white noise

process Z(t) =
dB(t)
dt . The white noise process is a generalized stochastic process and uncorre-

lated at different time instances, such that E(Zi(t)Zj(s)) = δijδ(t− s). Based on that, the SDE

4In this thesis when talking about SDEs we are only considering stochastic ordinary differential equation. Later
we will introduce stochastic partial differential equations, in short SPDEs.
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(2.1.1) can also be written as

dX

dt
(t) = a(X(t)) + b(X(t))Z(t)

X(0) =X0. (2.1.2)

Itô Formula

The chain rule for ordinary calculus becomes the Itô formula [37, 40] for Itô calculus by appending
an additional term accounting for the uncertainty. We can use the Itô formula to find the
differential of a function f(t,X(t)) depending on time t and the Itô process {X(t)}t.

Theorem 2.1.5. (Itô Formula). For an Itô diffusion process {X(t)}t in one dimension and
any f ∈ C2

([0, T ] ×R), one has that also {f(t,X(t))}t is an Itô diffusion process with5

df =
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX)

2.

In order to compute the last term, the following rules have to be used

(dB)
2
= dt, dBdt = (dt)2

= dtdB = 0.

For an n-dimensional Itô diffusion process {X(t)}t and any f ∈ C2
([0, T ] × Rn), the formula

reads

df =
∂f

∂t
dt +

n

∑

i=1

∂f

∂xi
dXi +

1

2

n

∑

i,j=1

∂2f

∂xi∂xj
dXidXj .

For a sketch of the proof we refer to [37].

Euler-Maruyama Discretization

We are seeking approximate numerical trajectories of SDEs of the form (2.1.1). The Euler-
Maruyama method is similar to the explicit Euler scheme for ODEs, but also deals with the
random term [32, 26].

Discretizing time [0, T ] uniformly by 0 < ∆t < 2∆t ⋅ ⋅ ⋅ < T with ∆t = T
K , we denote the Euler-

Maruyama approximation by {Y (t)}t∈{0,∆t,...,T}. With the notation Yk = Y (k∆t), the approxi-
mation is iteratively defined for k = 0, . . . ,K − 1 via

Yk+1 = Yk + a(Yk)∆t + b(Yk)(Bk+1 −Bk)

and with initial condition Y0 =X0.

The Brownian increments ∆Bk ∶= (Bk+1−Bk) are independent and distributed normally. There-
fore we can generate i.i.d. normal random variables ∆Bk ∼ N(0,∆t) for the Brownian incre-
ments.

5For ease of reading, we suppressed the dependency on (t,X(t)) and t sometimes.
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(a) One realization of the diffusive motion in a double well po-
tential starting at X0 = 0.5 is plotted. The discretization of
the SDE is based on the Euler-Maruyama method.
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(b) Equilibrium distribution in the double well potential V (x).

Figure 2.3.: The overdamped Langevin equation for a double well potential V (x). The particle
motion in the potential is metastable, the particle stays for a long time in the same
well and only rarely transitions across the potential barrier.

Example: Overdamped Langevin Equation

The overdamped Langevin equation is an SDE modeling the random positional changes of par-
ticles (e.g. molecules [44], agents [7]) in a smooth potential V (x), often called the energy
landscape. More precisely, the particles are following Brownian motion with an additional drift
given by a position-dependent force −∇V (x). The dynamics are still memoryless. The particle
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positions {X(t)}t∈[0,T ] in Rn are described by the SDE

dX(t) = −∇V (X(t))dt + σdB(t)

X(0) =X0

with B(t) denoting standard Brownian motion in Rn, ∇ denotes the gradient operator, V ∶ Rn →
R gives the potential (also called landscape) and σ ∈ R.

Let us have a closer look at an example system in one dimension. We are considering the
random motion of a particle in the double well potential

V (x) = 0.1((6x − 3)2
− 1)2.

The particle is randomly following the negative gradient of the potential. As such it is drawn
towards the two minima of the landscape V (x) at x =

1
3 and x =

2
3 . One discretized trajectory

of {X(t)}t∈[0,200] in the double well potential and with σ = 0.2 is plotted in Figure 2.3a. We can
observe that the particle motion stays for a long time in the same well, with rare transitions
between the two wells. The randomness in the motion enables these rare transitions.

The Fokker-Planck equation is a PDE describing the time evolution of the probability den-
sity function p(x, t) of X(t) [40]. For the overdamped Langevin equation, the Fokker-Planck
equation is also called Smoluchowski equation and reads

∂p

∂t
(x, t) = ∇ ⋅ (∇V (x)p(x, t)) +

σ2

2
∆p(x, t)

p(x,0) = p0(x). (2.1.3)

For smooth confining6 potentials, such as our double well potential, a unique equilibrium distri-
bution exists [40] and is of the form

pinvariant(x) =
1

Z
exp(−

2V (x)

σ2
) ,

where Z is the normalization constant. For our double well example, the equilibrium distribu-
tion is concentrated around the two wells as depicted in Figure 2.3b.

One can also give an alternative interpretation of the Fokker-Planck equation. We can think
of (2.1.3) as an equation describing the evolution of a density p(x, t) of infinitely many non-
interacting particles.

6A potential V (x) is called confining if it goes to infinity for ∣x∣ → ∞ and exp(−2V (x)/σ2) ∈ L1(Rn) [40].
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2.2. Discretizing Stochastic PDEs

We have seen what stochastic (ordinary) differential equations are. In this section we give an
introduction and the necessary theory needed for treating stochastic PDEs (SPDEs). Since ran-
dom fluctuations are inherent to natural phenomena and real-world processes, modeling with
SPDEs is much more realistic than modeling real-world dynamics with deterministic PDEs.
SPDEs can be used to describe e.g. the interface between different materials, the propagation
of a signal along neurons or the flow of a fluid.

One of the most studied SPDEs is the stochastic heat equation describing the variation in
temperature u(x, t) in space and time. The stochastic heat equation in one dimension with a
space-time white noise (STWN) forcing Z(x, t) reads

du

dt
(x, t) =

d2u

dx2
(x, t) +Z(x, t), x ∈D ⊆ R, t ≥ 0. (2.2.1)

The space-time white noise process is uncorrelated (i.e. white) in space and time, such that
E(Z(x, t)Z(y, t′)) = δ(x − y)δ(t − t′).

The stochastic heat equation can also be viewed as a stochastic ODE on some infinite di-
mensional function space. With {u(t)}t≥0 denoting a stochastic process taking values in some
function space on D, we can rewrite (2.2.1) as

du

dt
(t) =

d2u

dx2
(t) +Z(t). (2.2.2)

SPDEs modeling real-world dynamics are often driven by space-time white noise, i.e. by the
stochastic process {Z(t)}t≥0. For instance, the SPDE model approximating the agent-based
dynamics for large population sizes (Section 4) contains two noise terms involving space-time
white noise.

Similar as in the case of SDEs (Section 2.1.3), we want to study SPDEs as integral equations
in time. We are therefore interested in defining a process {W (t)}t≥0 that is Brownian in time
and whose time derivative is space-time white noise, i.e. Z(t) = dW

dt (t). With that we are able
to rewrite the stochastic heat equation (2.2.2) as an integral equation

du(t) =
d2u

dx2
(t) dt + dW (t). (2.2.3)

In Section 2.2.1 we will introduce the Q- and the cylindrical Wiener process taking values in a
Hilbert space U . The time derivative of the cylindrical Wiener process will be space-time white
noise. But the definition of the Q-Wiener process is needed to make sense of the cylindrical
Wiener process. In Section 2.2.2 we will study semilinear evolution SPDEs driven by space-time
white noise and explain how to discretize them.

15



2.2.1. The Q- and Cylindrical Wiener Process

For a separable Hilbert space U (i.e. U has a countable orthonormal basis), we define the U -
valued Q-Wiener process and the U -valued cylindrical Wiener process and show how they can be
expanded in some orthonormal basis [34]. They generalize the concept of real-valued Brownian
motion to a stochastic process taking values in some infinite dimensional function space, in this
case U .

The Q-Wiener process is correlated in space (i.e. coloured noise in space) with covariance op-
erator Q. The cylindrical Wiener process on the other hand is uncorrelated in space (i.e. white
in space). In time, both processes are Brownian with independent and normally distributed
increments.

Definition 2.2.1. [34] Let (Ω,F ,Ft,P) be a filtered probability space. Let the covariance
operator Q ∶ U → U be linear, bounded, non-negative definite and symmetric, such that Q has
an orthonormal basis {χm}m∈N of eigenfunctions with eigenvalues qm ≥ 0 and ∑m∈N qm < ∞.
Then the U -valued stochastic process {W (t)}t≥0 is a Q-Wiener process if

(i) W (0) = 0 (a.s.).

(ii) W ∶ R+
→ U is a continuous function for each ω ∈ Ω.

(iii) W (t) is Ft-adapted7, and for s < t the increment W (t) −W (s) is independent of Fs.

(iv) W (t) −W (s) ∼ N(0, (t − s)Q) for all 0 ≤ s ≤ t8.

The Q-Wiener process {W (t)}t≥0 can be expanded in the orthonormal basis {χm}m∈N of Q with
random coefficients. These expansions will be useful for simulating realizations of the stochastic
process, but are also handy for proving theorems.

Theorem 2.2.2. Let Q satisfy the assumptions from the Definition 2.2.1. Then {W (t)}t≥0 is
a Q-Wiener process if and only if

W (t) =
∞

∑

m=1

√
qmχmBm(t),a.s.

with Bm(t) i.i.d. Ft-Brownian motions and the series converges in L2
(Ω, U).

For a proof, we refer to [34].

Since we are ultimately interested in studying SPDEs driven by space-time white noise, we are
looking for a U -valued process {W (t)}t≥0 that is Brownian in time and whose time derivative
is formally space-time white noise, i.e. Z(t) = dW

dt (t). Space-time white noise is uncorrelated
in space, such that the covariance operator Q = I with eigenvalues qm = 1 for all m. Hence

7That is, W (t) is Ft measurable for each t.
8With a normal distribution N on a Hilbert space, i.e. E(W (t) −W (s)) = 0 and the covariance operator of
W (t) −W (s) is (t − s)Q [34].
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∑m qm = ∞ and {W (t)}t≥0 is not a Q-Wiener process. What is more, the series expansion does
not converge in L2

(Ω, U) anymore.
As a work-around, we will define the cylindrical Wiener process whose derivative in time is
space-time white noise.

Definition 2.2.3. [34] The cylindrical Wiener process is the U -valued stochastic process
{W (t)}t≥0 defined by

W (t) =
∞

∑

m=1

χmBm(t) (a.s.),

where {χm}m∈N is any orthonormal basis of U and Bm(t) are mutually independent Ft-adapted
Brownian motions.

If U ⊂ U1 for a larger Hilbert space U1, then the series converges in L2
(Ω, U1) as long as the

inclusion i ∶ U → U1 is a Hilbert-Schmidt operator [34]. When extending the process to the
larger Hilbert space U1, it can be shown to be a Q1-Wiener process, where Q1 is the covariance
operator extended to U1.

Making use of the cylindrical Wiener process expansion 2.2.3, we will in the following dis-
cretize sample paths of space-time white noise in one dimension and show that they are indeed
uncorrelated in space and time.

Discretization of Sample Paths of Space-time White Noise on [0, a]

Space-time white noise can be sampled by numerically differentiating the truncated expansion
of the cylindrical Wiener process in time [34]. As an orthonormal basis for the Hilbert space

L2
([0, a]), we can take χm(x) =

√
2
asin (

πmx
a

), m ∈ N. Then the truncated expansion to M

terms WM
(t) of the cylindrical Wiener process reads

WM
(t) =

M

∑

m=1

√

2

a
sin(

πmx

a
)Bm(t). (2.2.4)

Discretizing in time with steps ∆t, we get

WM
(t +∆t) −WM

(t) =
M

∑

m=1

√

2

a
sin(

πmx

a
) (Bm(t +∆t) −Bm(t))

with i.i.d. Brownian motions Bm(t). The Brownian increments are normally distributed, i.e.
ζm(t) ∶= 1√

∆t
(Bm(t +∆t) −Bm(t)) ∼ N(0,1), leading to

WM
(t +∆t) −WM

(t) =
√

∆t
M

∑

m=1

√

2

a
sin(

πmx

a
) ζm(t).

Space-time white noise Z(t) = dW
dt (t) is a mean zero process with covariance

E (Z(x, t)Z(x′, t′)) = δ(x − x′)δ(t − t′),
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where δ denotes the Dirac Delta distribution. We are interested in computing the mean and
covariance of the approximation

ZM(t) =
WM

(t +∆t) −WM
(t)

∆t
=

√

2

a∆t

M

∑

m=1

sin(
πmx

a
) ζm(t)

with the aim of checking whether the properties of {Z(t)} carry over to {ZM(t)}. To simplify
computations, we are assuming ∆xM = a. We denote spatial grid points by xi = i∆x and
temporal grid points by tk = k∆t. Following [34] we get for the covariance of ZM(t)

E(ZM(xi, tk)Z
M

(xj , tl)) =
2

a∆t
E(

M

∑

m=1

sin(
πmxi
a

) ζm,k
M

∑

m′=1

sin(

πm′xj

a
) ζm′,l)

=
2

a∆t
δkl

M

∑

m=1

sin(
πmxi
a

) sin(

πmxj

a
)

=
1

a∆t
δkl

M

∑

m=1

(cos(
πm(i − j)

M
) − cos(

πm(i + j)

M
))

=
M

a∆t
δklδij =

1

∆x∆t
δklδij , (2.2.5)

where δ denotes the Kronecker delta. In the first line we made use of

E(ζm,k ζm′,l) = δmm′δkl,

in the second line we used the trigonometric addition theorems, and the last line follows from a
property of the cosine function:

M

∑

m=1

cos(
πmq

M
) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

M q = 0

0 q even and q ≠ 0

−1 q odd.

The mean of the discretized STWN is zero, since the mean of ζm(t) is zero. From (2.2.5) we
deduce that the discretized process ZM(t) is uncorrelated at different time instances and points
in space. At the same point in space and time the process is correlated with an appropriate
scaling to account for the grid sizes. We can conclude that the mean and covariance are consistent
between the STWN process {Z(t)} and its approximation {ZM(t)}.

2.2.2. Semilinear Evolution SPDEs Driven by Space-time White Noise

In this section, we consider semilinear stochastic evolution PDEs that contain a random forcing
in terms of space-time white noise Z(t). Stochastic evolution PDEs describe the evolution of a
random system in time and can be considered as stochastic ODEs on some infinite dimensional
function space. We consider semilinear equations that are the sum of a linear and a nonlinear
term. A deeper introduction into SPDEs can be found in [24, 9].
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We are interested in computing path-wise realizations (i.e. for fixed samples ω ∈ Ω) of the
solution ρ to a stochastic evolution PDE. The idea is to understand ρ as a stochastic process
indexed by time and taking values in some infinite-dimensional function space. In our case this
is a Hilbert space H containing functions on the domain D and with inner product ⟨⋅, ⋅⟩. We
consider the following evolution SPDE written as a stochastic ODE acting on ρ(t)9

dρ

dt
(t) = −Aρ(t) + F (ρ(t)) +G(ρ(t))Z(t)

ρ(0) = ρ0 ∈H, (2.2.6)

with random forcing Z(t) = dW
dt (t) for a U -valued cylindrical Wiener process W (t). Thus Z(t)

is white (i.e. uncorrelated) in time and in space.

We suppose that the operator −A ∶ dom(A) ⊂H →H is linear and has a complete orthonormal
set of eigenfunctions and positive eigenvalues such that it generates a semigroup S(t) = e−At.
Then −A is called the infinitesimal generator. The boundary conditions (e.g. Dirichlet or
Neumann boundary conditions) are incorporated into −A. To give an example, the Laplacian
−A = ∆ ∶ dom(∆) = H2

(D) ∩H1
0(D) ⊂ L2

(D) → L2
(D) fulfills these conditions and is therefore

the generator of a semigroup [34].
The term F ∶ H → H is non-linear, further G ∶ H → HS(U,H)

10 can be non-linear. We assume
that both F and G fulfill global Lipschitz conditions (as given in [34], Theorem 3.29 and As-
sumption 10.23).

There are different solution concepts for SPDEs. In all cases, we interpret the SPDE (2.2.6) as
an integral equation in time (similar to SDEs). The necessary stochastic integral theory for Q-
and cylindrical Wiener processes can be found in [34, 9].

Definition 2.2.4. [34] A predictable H-valued process {ρ(t)}t∈[0,T ] is called a strong solution
of (2.2.6) if

ρ(t) = ρ0 + ∫

t

0
(−Aρ(t′) + F (ρ(t′)))dt′ + ∫

t

0
G(ρ(t′))dW (t′), ∀t ∈ [0, T ].

Since the function spaces for this formulation are very restrictive, i.e. ρ(t) ∈ dom(A) is needed,
we will consider the weak solution framework and use it as a basis for the discretization of the
SPDE.

Definition 2.2.5. [34] A predictable H-valued process {ρ(t)}t∈[0,T ] is a weak solution of the
SPDE (2.2.6) if for each t ∈ [0, T ]

⟨ρ(t),w⟩ =⟨ρ0,w⟩ + ∫

t

0
(−⟨ρ(t′),Aw⟩ + ⟨F (ρ(t′)),w⟩)dt′

+ ∫

t

0
⟨G(ρ(t′))dW (t′),w⟩, ∀w ∈ dom(A),

9The ω-dependence is not explicitly written here, but ρ(t) is a H-valued stochastic process, i.e. {ρ(t) ∶ Ω→H}t.
10HS(U,H) is the set of Hilbert-Schmidt operators mapping from U to H [34].

19



where we consider the following expansion (based on Definition 2.2.3)

∫

t

0
⟨G(ρ(t′))dW (t′),w⟩ =

∞

∑

m=1
∫

t

0
⟨G(ρ(t′))χm,w⟩dBm(t′).

The requirements on ρ(t) are now lifted to the test functions w, which needs much less regularity
for ρ(t) and is easier to work with. Strong solutions are usually also weak solutions, the reverse
only holds under certain regularity conditions.

2.2.3. Discretization

Since we cannot solve the given evolution SPDE (2.2.6) analytically, we instead want to discretize
the SPDE in order to sample trajectories of the discretized SPDE. We need to discretize in space
and in time as well as dealing with the random term. In this section we are following the approach
in [34].
Making use of the method of lines, we will first discretize in space and then in time. For the
space discretization, the Galerkin method can be employed. Building on the weak solution,
the SPDE is thereby approximated by a system of SDEs. The noise term can be expanded in
some orthonormal basis. By truncating the basis to M terms, the noise term is projected onto a
finite-dimensional subspace. We then discretize the system of SDEs in time using a semi-implicit
Euler-Maruyama method.

Galerkin Approximation

With the assumptions on F , G, −A of the SPDE (2.2.6), it can be shown [34] that a weak
formulation with solution and test function space dom(A

1/2
) exists. This is for example the

case for the stochastic heat equation (2.2.3) forced by space-time white noise. Based on the
weak formulation of the SPDE, the Galerkin approximation consists of finding an approximate
solution in some finite-dimensional subspace Ṽ ⊂ dom(A

1/2
). For both, the solution and test

functions, we use an n + 1-dimensional subspace Ṽ spanned by the basis {φj}
n
j=0.

The Finite element (FE) method constructs the basis of Ṽ by partitioning the domain into
non-overlapping elements and defining a set of polynomial functions piecewise on the elements
such that they are globally continuous. Further background theory on the Finite element method
can be found in [29].

Let us now write down the Galerkin approximation for (2.2.6). We are searching ρ̃(t) ∈ Ṽ
such that

⟨ρ̃(t), w̃⟩ =⟨ρ̃0, w̃⟩ + ∫

t

0
(−a(ρ̃(t′), w̃) + ⟨F (ρ̃(t′)), w̃⟩)dt′

+ ∫

t

0
⟨G(ρ̃(t′))dW (t′), w̃⟩, ∀w̃ ∈ Ṽ , ∀t ∈ [0, T ] (2.2.7)
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with11 inner product a(u, v) ∶= ⟨A
1/2u,A1/2v⟩ for u, v ∈ dom(A

1/2
). The initial condition is given

by ρ̃0 = P̃ρ0, where P̃ ∶ H → Ṽ denotes the orthogonal projection onto the finite-dimensional
space Ṽ .
Since Ṽ is spanned by {φi}

n
i=0 by definition, requiring (2.2.7) is equivalent to

⟨ρ̃(t), φi⟩ =⟨ρ̃0, φi⟩ + ∫
t

0
(−a(ρ̃(t′), φi) + ⟨F (ρ̃(t′)), φi⟩)dt

′

+ ∫

t

0
⟨G(ρ̃(t′))dW (t′), φi⟩, ∀i = 0, . . . , n, ∀t ∈ [0, T ]. (2.2.8)

Further with {ρ̃(t)}t∈[0,T ] being a Ṽ -valued stochastic process, we can expand a realization of
ρ̃(t) as a linear combination

ρ̃(t) =
n

∑

j=0

βj(t)φj

of the basis functions φj with time-dependent coefficients. Inserting into (2.2.8), we arrive at

n

∑

j=0

βj(t)⟨φj , φi⟩ =
n

∑

j=0

βj(0)⟨φj , φi⟩ + ∫
t

0

⎛

⎝

−

n

∑

j=0

βj(t
′
)a(φj , φi) + ⟨F (ρ̃(t′)) , φi⟩

⎞

⎠

dt′

+ ∫

t

0
⟨G (ρ̃(t′))dW (t′), φi⟩, ∀i = 0, . . . , n, ∀t ∈ [0, T ].

Defining matrices Cji = ⟨φj , φi⟩, Aji = a(φj , φi) for i, j = 0, . . . , n and coefficient vector β(t) =
(βj(t))

n
j=0, we can write

n

∑

j=0

dβj(t)Cji =
⎛

⎝

−

n

∑

j=0

βj(t)Aji + ⟨F (ρ̃(t)) , φi⟩
⎞

⎠

dt

+ ⟨G (ρ̃(t))dW (t), φi⟩, ∀i = 0, . . . , n, ∀t ∈ [0, T ]. (2.2.9)

This equation is still understood as an integral equation.

We will in the following project the cylindrical Wiener process onto a finite-dimensional space in
order to circumvent that G(

˜ρ(t)) is acting on a stochastic process taking values in some infinite-
dimensional space U , which is difficult to implement. By inserting an orthogonal projection
operator PM ∶ U → span{χm}

M
m=1 in front of the U -valued Wiener process expansion, we project

the process onto its first M basis functions and thus truncate the expansion to M terms:

P
MW (t) = PM

∞

∑

m=1

χmBm(t) =
M

∑

m′=1

∞

∑

m=1

⟨χm, χm′⟩Bm(t)χm′

=

M

∑

m′=1

∞

∑

m=1

δmm′Bm(t)χm′ =

M

∑

m=1

χmBm(t). (2.2.10)

11Compared to Definition 2.2.5, we now require −a(u, v) instead of ⟨u,Av⟩ in the weak formulation, and also
different solution and test function spaces.
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Including this noise approximation (2.2.10), we can express the last term of (2.2.9) as

⟨G (ρ̃(t))PMdW (t), φi⟩ =
M

∑

m=1

⟨G(ρ̃(t))χm, φi⟩dBm(t).

The choice of the cut-off M is not exactly clear. After applying G(
˜ρ(t)) to the truncated pro-

cess, it will be projected onto Ṽ again.

With
G(t)im = ⟨G(ρ̃(t))χm, φi⟩, i = 0, . . . , n, m = 1, . . . ,M,

dWM
(t) = (dBm(t))Mm=1,

and further denoting the vector of the non-linear term by

F (t) = ⟨F (ρ̃(t)), φi⟩
n
i=0,

we can finally write the space-discretization and noise-approximation as

Cdβ(t) = (−Aβ(t) + F (t))dt +G(t)dWM
(t). (2.2.11)

Discretizing in Time

For the time-discretization we divide the time interval [0, T ] = [t0, tK] into K intervals of fixed
size ∆t. The semi-implicit Euler-Maruyama method is implicit in the linear terms, but explicit in
the non-linear term and makes use of the Euler-Maruyama scheme for discretizing the Brownian
motion (see also Section 2.1.2). Denoting functions at time tk = k∆t by a subscript k, e.g.
ρ̃(tk) = ρ̃k, the time-discretization is the recursion for k = 0, . . . ,K − 1

C(βk+1 − βk) = −Aβk+1∆t + Fk∆t +Gk∆W
M
k

or after rearranging,

βk+1 = (C +A∆t)−1
(Cβk + Fk∆t +Gk∆W

M
k ) .

The random increments in time are given by

∆WM
k = (∫

tk+1

tk
dBm(t′))

M

m=1
= (Bm(tk+1) −Bm(tk))

M
m=1 = (

√

∆tζm,k)
M
m=1

with i.i.d. ζm,k ∼ N(0,1).
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3. Agent-based Model on the Micro-scale

Describing complex systems and phenomena is of interest in order to make predictions, test sce-
narios, prevent unwanted situations and get new insights into the system. Micro-scale models
are models that describe the system on the smallest scale and are thus often the most accurate
and detailed but also complicated models. Usually these models define the behavior of a large
number of discrete entities, called particles or agents.

Particle-based models have their background in the physics and chemistry literature, whereas
agent-based models (ABMs) have their origins and applications in the social sciences, economics,
humanities and are much more general. ABMs are computational models that describe the ac-
tions and interactions between autonomous entities (called agents) and their environment. The
hope is that global patterns emerge from the interplay of the local behaviour of agents [25, 35]. A
clear mathematical formulation and model reproducibility is often lacking though [22, 23]. Due
to the large body of mathematical theory for particle-based models originating from the Doi and
Smoluchowski model [12, 46] and the missing theory for ABMs, we use particle-based models
as the basis for our mathematical formulation of an agent-based model. Our ABM definition
has similarities to the SIR model for infection spreading [30, 39] and to Brownian agents [45].
In this chapter we closely follow previous work by the author and collaborators [7, 8] but have
included more general interaction rules for agents.

Our agent-based model consists of two ingredients: the position dynamics and the interaction
rules for agents [7, 8]. The position dynamics of agents are described by Brownian motion with
two drift factors. The agents are taking into account the suitability of their environment (drift
in the suitability landscape) and also the density of other near-by agents (attraction-repulsion
forces). Further agents can interact according to a set of predefined rules whenever they are
close in space. They can change their type (e.g. opinion, innovation, information) influenced
by the state of other near-by agents. Whilst the type could be a continuous state in general,
we consider discrete types only. To be more precise, we model interactions between close-by
pairs of agents such that whenever an agent of a certain type A is within a fixed radius of an
agent of type B, we have the type change A +B → C +B at a certain rate. Thus the agent of
type A changes its type to C triggered by an interaction with the type B agent who remains
unchanged.
This simple class of interaction rules could model for example infection spreading: an agent
is infected with a disease (type B) and comes into contact with a susceptible agent (type A)
and infects the susceptible agent with a certain rate [5, 39]. Another possible application are
opinion dynamics: an agent with a certain opinion B meets an agent with a different opinion A
and manages to convince the other agent to change his opinion. In general, we could consider
more complicated interaction rules, including the death and birth of agents or the spontaneous
type change of an agent. For a list of possibilities framed in terms of chemical reactions, see [14].

We will introduce our agent-based model in Section 3.2, and explain a method for its simu-
lation in Section 3.3. The model is formulated in terms of stochastic processes as introduced in
Section 2.1. Later it will turn out that the ABM is computationally very expensive to simulate
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and scales badly for an increasing number of agents (see Chapter 5). To make model simulations
feasible, model reductions and approximations are needed e.g. by spatial discretizations or by
going from individual agents to densities or concentrations of agents. Therefore in Chapter 4,
we consider systems of a large number of agents. By making approximations, we arrive at a
meso-scale stochastic description of our ABM in terms of a density of agents, which we will
therefore call density-based or meso-scale model.

3.1. Motivation: Modeling Innovation Spreading in Ancient Times

Before diving straight into the agent-based model description, we will first give a motivating
example of how ABMs can be used to study real-world processes.

Figure 3.1.: The area of interest for studying the spreading of the wooly sheep with an assumed
origin in Tell Sabi Abyad [43], Figure from [8]. The available archaeological bone
findings only give evidence and hints as to where ovicaprids (sheep and goats) were
farmed. The spindle whorl findings [21] are limited to a small part of the considered
area and give suggestions as to where wool or fiber was processed.

Many change processes from ancient times, i.e. the times before there were written records of
events, are still largely unclear and debated. Archaeological data is sparse and the datings are
uncertain. Thus a reconstruction of historical processes based just on data is often impossible.
To give an example, a lot of archaeological research concerns the spreading of farming. One
is for example interested in uncovering the possible spreading paths of the wooly sheep from
modern-day Syria into Europe between 6000 to 2000 BC [2]. Before the farming of the wool-
bearing sheep started around 6200 BC in Tell Sabi Abyad [43], the farming of hairy sheep was
common. But the available data about hairy and wooly sheep is not specific enough to deduce
possible spreading paths. It is not even possible to distinguish between goats and sheep on the
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basis of bone findings. Further, the data about wool-processing tools is limited to a small part
of the area of interest as shown in Figure 3.1.

The approach that was taken by the author and collaborators instead [7, 8, 38] is to build
an agent-based model on the basis of geographical and geological data in order to simulate and
reconstruct possible scenarios. The modeled dynamics can then be studied by performing a
sensitivity analysis of the parameters and the model outcome can be compared to the available
archaeological data and discussed by experts.

The wooly sheep can be considered as an innovation because its introduction, possibly due
to a mutation, replaced the wide-spread herding of hairy sheep. By viewing nomadic groups of
sheep herders as agents and modeling the spreading of the innovation amongst them, possible
spreading scenarios can be simulated and studied. The simulation of such real-world dynamics
is costly, making model reduction techniques a necessity, see Chapter 4. In Section 3.4, we will
come back to this setting of innovation spreading and study a simple toy example. This guiding
example of innovation spreading will also appear several times in this thesis to make different
modeling aspects more concrete.

3.2. Model Formulation

Let us in the following lay out a very general agent-based model that can be used to study many
historical and social processes as well as chemical reactions. This model description closely fol-
lows the approach in [8] but extended to cover more general interaction rules.

An agent represents a discrete entity such as a person, a group of people or an organization.
Each agent is characterized by its type (also called species) and its position. We are following
every agent i, i = 1, . . . ,N individually and track the evolution in time of its position state and
type. The agents’ positions are restricted to a given domain D ⊆ Rd. Usually in real-world
systems d = 2,3. The type of an agent is denoted by values in {1, . . . ,NT }, such that there are
NT types in total. In the case of innovation spreading, the type should indicate whether the
innovation has been adopted by the agent or not, thus NT = 2.

Then the state of the ith agent at time t is given by

(Xi(t), Yi(t)) ∈D × {1, . . . ,NT }.

Whereas the system state is

(X(t), Y (t)) = (Xi(t), Yi(t))i=1,...,N

with state space DN
× {1, . . . ,NT }

N .

Agents are able to move and change their position in the domain D ⊆ Rd by taking into account
their surroundings. Each agent has only local knowledge and can influence other agents only
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Figure 3.2.: Pair-wise attraction-repulsion potential u(r) depending on the distance r between a
pair of agents. If two agents are very close to each other in position space, they are
pushed apart. If they are very far from another, they are attracted towards each
other. The minimum of the potential stands for the most convenient positioning
between a pair of agents.

in his neighborhood. Agents are attracted to near-by regions that are suitable for them and
refrain from unsuitable parts of the domain, but they cannot leave the domain (no flux of agents
is crossing the boundary). Further, agents tend to group together in space and form clusters,
while also keeping some distance from each other in order to avoid spatial overlap. The position
dynamics are thus interdependent. We additionally include some randomness in the agents’
motion to account for other unknown incentives for positional changes and to allow agents to
be explorative or make mistakes in their evaluation of the environment.

Agents change their type according to a set of NR interaction rules. This happens at a cer-
tain rate and whenever they are in proximity of specific other agents. We consider a set of
different interaction rules {Rr}, r = 1, . . . ,NR that are coupled to the agent position dynamics.

3.2.1. Modeling the Agent Position Dynamics

The change for the position Xi(t) ∈ D ⊆ Rd of every agent i = 1, . . . ,N is governed by the Itô
diffusion process

dXi(t) = −(∇V (Xi(t)) + ∇Ui(X(t)))dt + σdBi(t), (3.2.1)

with X(t) ∈DN
⊆ Rd×N denoting the positions of the system of agents, V ∶D ⊆ Rd → R denotes

the suitability landscape, Ui ∶ D
N
⊆ Rd×N → R is the ith agents’ attraction-repulsion potential

with respect to all other agents, σ ∈ R is a diffusion constant (could in general be type or space-
dependent) and Bi(t) denote independent standard Brownian motions in Rd. Every agents’
movement is described by this diffusion equation. Thus we have N equations in total, coupled
via the attraction-repulsion potential. The diffusion process is independent of the agent types
Y (t) though.
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Figure 3.3.: Construction of the contact network based on the agent positions at time t.

The suitability landscape V indicates the attractivity of the environment and gives an incentive
to prefer or avoid certain near-by parts of the domain. Valleys of the suitability landscape V
correspond to attractive regions and peaks and divides correspond to unsuitable areas that are
moreover difficult to overcome.

The attraction-repulsion potential is inspired by interatomic potentials from Physics (e.g. Lennard-
Jones potential, Morse potential, Buckingham potential) and drives agents to change their po-
sition due to other near-by agents. Attraction between agents occurs whenever agents at long
distances are driven towards another, and repulsion appears when agents are forced apart at
short distances. Agents are thus searching for an optimal balance between forming clusters of
agents on the one hand and distributing in space on the other hand.
The attraction-repulsion felt by agent i due to all other agents j = 1, . . . ,N, j ≠ i is of the form

Ui(X(t)) =
N

∑

j=1,j≠i

u (∥Xi(t) −Xj(t)∥) ,

where ∥ ⋅ ∥ refers to the Euclidean distance. As such it is the sum of the pair-wise attraction-
repulsion potentials u(r) between agent i and agent j. There is some minimum of u(r), such that
the pair-wise distance r ∶= ∥Xi(t) −Xj(t)∥ is optimal, see also Figure 3.2. For a smaller respec-
tively larger r, the agents are drawn towards the optimal r and we have repulsion respectively
attraction. For r →∞, no force is felt anymore since u→ 0.

3.2.2. Modeling Interaction Rules for Agents

Given the positional movements of agents in the domain, we can construct a network between
agents that is changing in time. At time t the network is constructed in the following way: the set
of nodes represents the set of agents, and an edge exists between two nodes if the corresponding
agents are within a dint radius of each other, see Figure 3.3 for an illustration. The network is

27



j

i

Figure 3.4.: Toy example governed by the interaction rule R1 ∶ T1+T2 → 2 T2. We are considering
the interactions between agent i and his connections. Since the interaction rule
describes interactions of type T1 agents with type T2 agents, agent i can only interact
with his three type T2 contacts. The transition rate function for the ith agent is
then λi(t) = 3 γ1

micro.

fully determined by a time-evolving adjacency matrix A(t) = (Aji(t))i,j=1,...,N with entries

Aji(t) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if i ≠ j, ∥Xi(t) −Xj(t)∥ < dint

0 else.

Agents are only interacting with their network contacts. According to the set of NR interaction
rules {Rr}, r = 1, . . . ,NR, agents can change their type whenever they are close to each other.

Each rule Rr can be written as the type change

Rr ∶ Ts + Ts′′ → Ts′ + Ts′′ (3.2.2)

that happens at the fixed influence rate γrmicro and conditional on an agent of type Ts being in
contact with an agent of type Ts′′ , for s, s′, s′′ ∈ {1, . . . ,NT }.
For example when modeling the spreading of an innovation on a network, every agent can only
be in one of the two discrete innovation states: T1 for a non-adopter and T2 for an adopter of
the innovation. Then we are defining one interaction rule R1: T1+T2 → 2 T2, such that adopters
pass on the innovation to non-adopters, see additionally Figure 3.4.

We are now interested in describing the type changes for agent i = 1, . . . ,N . If agent i at time t
is of type Ts, s ∈ {1, . . . ,NT }, we denote this by Yi(t) = s. Changes for agent i are modeled as
Markov jump processes with time-dependent transition rates. The transition rates are changing
in time since they depend on the proximity of other agents and their types. The transition rate
function λri (t) gives the rate for agent i to change its type according to interaction rule Rr and
is proportional to the constant influence rate γrmicro and to the number of neighbors of agent i
that trigger interaction Rr (i.e. the number of agents of type Ts′′ in rule (3.2.2)).
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Thus we define the transition rate function for agent i due to interaction rule Rr as

λri (t) = λ
r
i (A(t), Y (t)) = γrmicro

N

∑

j=1

Aji(t) 1{s′′}(Yj(t)) 1{s}(Yi(t)), (3.2.3)

where 1B ∶X → {0,1} is the indicator function defined as

1B(x) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if x ∈ B

0 if x ∉ B.

Let {Yi(t)}t≥0 be the type change process of agent i, which can be expressed in terms of Poisson
processes as

Yi(t) = Yi(0) +
NR

∑

r=1

P
r
i (∫

t

0
λri (t

′
)dt′) vr. (3.2.4)

The initial type of agent i is Yi(0), P
r
i denote i.i.d. unit-rate Poisson processes and the type

change vector is denoted by v = (vr)r=1,...,NR (for Rr as given above vr = s
′
− s).

3.2.3. Formulation of the Agent System Dynamics

Putting together Equations (3.2.1) and (3.2.4), the coupled agent system equations read

Xi(t) =Xi(0) − ∫
t

0
(∇V (Xi(t

′
)) + ∇Ui(X(t′)))dt′ + σ∫

t

0
dBi(t

′
),

Yi(t) = Yi(0) +
NR

∑

r=1

P
r
i (∫

t

0
λri (t

′
)dt′) vr (3.2.5)

for i = 1, . . . ,N .

These agent system dynamics are coupled in several ways. The position dynamics of all agents
are coupled via the attraction-repulsion potentials. And the type change process for each agent
i depends on the positions of all agents and on the types of all agents via the time-dependent
transition rate functions λri (t) (3.2.3).

Further we want to remark that the modeled dynamics (3.2.5) are memoryless (Markovian)
since both the overdamped Langevin equation as well as the Poisson process are memoryless
processes.

Since we cannot solve (3.2.5) analytically, we will in the following explain how to discretize
and simulate trajectories of the dynamics.
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3.3. Simulation Aspects

The goal is to accurately but also efficiently discretize the agent system dynamics (3.2.5) such
that we can simulate trajectories of the discretized process. Often one is not just interested
in single realizations of the system, but in getting meaningful information about the average
dynamics and the deviations from the average. For computing model averages or higher or-
der moments, we need to sample a large enough ensemble of trajectories in order to compute
reasonable Monte Carlo estimates of the quantities of interest. Thus we want to keep the com-
putational cost of a single realization to be low.

Our ABM is a coupled system, the movements of agents are coupled via the attraction-repulsion
potential. One therefore needs to simulate the position dynamics of all agents simultaneously.
But also the type changes of agents are coupled to the position dynamics. The interactions
have to be simulated simultaneously for all agents and after the position dynamics. The most
straightforward approach is therefore to simulate both dynamics in parallel, to simulate the tra-
jectories of the position dynamics using an Euler-Maruyama discretization of the SDE (3.2.1)
and to make a time-discrete approximation for the type change processes (3.2.4).

We discretize time by tk = k∆t, for k = 0, . . . ,K − 1 and with a sufficiently small time step
∆t. After setting all parameters and the initial conditions (X(0), Y (0)) = (X0, Y0), the simula-
tion approach consists of the following steps.

For each k = 0, . . . ,K − 1:

(a) Position Dynamics.

For each agent i = 1, . . . ,N , we advance the agent positions by

Xi(tk+1) =Xi(tk) − (∇V (Xi(tk)) + ∇Ui(X(tk)))∆t + σ
√

∆tξ

with i.i.d. ξ ∼ N(0,1) in Rd.

We need to compute the distances between pairs of agents in each time step. On the one
hand this is needed for building the attraction-repulsion potential, which depends on the pair-
wise distance between agents. We can introduce a cut-off radius for the attraction repulsion
potential since u → 0 for far-away agents, and thereby neglect the attraction-repulsion between
far-away agents. On the other hand, we need to construct a neighbourhood graph with radius
dint in order to check whether two agents are interacting (for step (b) below). Simply checking
all pair-wise distances is a very expensive computation scaling like O(N2

) for N agents. But
there are some work-arounds. One can make the computations substantively less expensive by
using e.g. k-d trees [3].
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(b) Interaction Rules.

We simulate type changes of agents by a time-discretization of the Poisson processes with the
same ∆t time steps as for the discretization of the position dynamics. During each interval
[tk, tk+1), we check all possible type change events by iterating over all agents i = 1, . . . ,N and
rules Rr, r = 1, . . .NR. Assuming the transition rate functions are approximately constant over
the time interval, the probability for agent i to change its type due to interaction rule Rr is

1 − exp(−λri (tk)∆t).

This means that we check whether a type change event happens in a time interval by drawing
θ ∼ U(0,1). If θ ≤ 1 − exp(−λri (tk)∆t) the event is accepted, else no type change event takes
place and we draw another random number in order to consider the next event.

The choice of ∆t for step (b) is a compromise between accuracy and efficiency. On the one
hand, we want the step size ∆t to be not too small, such that the algorithm does not become
costly. For a too small ∆t, there are many time intervals during which no jump event takes
place. On the other hand, we want to keep ∆t small in order to approximate the type change
processes well. For a too large ∆t, we neglect the immediate effect of a type change on other
agents [17]. Besides, a continuous-time process is better approximated using a small ∆t.

Instead of a time-discrete approximation of the type change processes, another possibility is
to sample the type changes statistically exact and continuously in time. Since the transition
rate functions are changing in time and even in between events, we can make use of the Tem-
poral Gillespie algorithm [47, 7], which is similar to the algorithm introduced in Section 2.1.1
for inhomogeneous Poisson processes. The Temporal Gillespie algorithm predicts in this setting
the waiting time until the next type change and the specific type change that will happen. The
coupling of the Temporal Gillespie algorithm with an Euler-Maruyama discretization for the
position dynamics has been outlined in [7].

3.4. Numerical Example: Innovation Spreading in a Double Well
Landscape

We are in the following studying a toy example of N = 3000 agents diffusing in a double well
landscape

V (x) = (3.6 (x − 0.5)2
− 0.1)

2

on D = [0,1]. The double well landscape is characterized by two minima centered at x = 1
3 and

x = 2
3 , corresponding to the most suitable areas for agents, and a barrier between the two wells.

On top of that, we choose a few agents at time t = 0 to be adopters of an innovation that they
are passing on to other near-by agents. Agents can either be adopters of the innovation (type
T2) or non-adopters of the innovation (type T1). Whenever a type T1 agent is in contact with
a type T2 agent, he adopts the innovation at the fixed rate γ1

micro = 0.5 and for all times. Thus
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(a) Initial empirical density of non-adopters. (b) Initial empirical density of adopters.

(c) Evolving empirical density of non-adopters
plotted using a heat map.

(d) Evolution of the empirical density of adopters
plotted using a heat map.

(e) Final empirical density of non-adopters. (f) Final empirical density of adopters.

Figure 3.5.: Guiding example of agents diffusing in a double well and spreading of an innovation.
Initially, 200 agents are adopters of the innovation with their positions sampled from
N(0.7,0.01). At time t = 0 2800 agents have not yet adopted the innovation, their
positions are distributed according to N(0.5,0.04). Further model and numerical
parameters: σ = 0.25, dint = 0.001, ∆t = 0.005.
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Figure 3.6.: For an ensemble of 50 simulations we look at observables of the system such as the
number of adopters in time t.

the only interaction rule is
R1 ∶ T1 + T2 → 2 T2.

The attraction-repulsion potential Ui is disregarded in this example. The agent dynamics as
outlined above are described by a system of coupled stochastic processes (3.2.5) and can be
simulated on the basis of the approach explained in Section 3.3.

This very simple model already exhibits interesting patterns. One simulation (or realization) of
the process is shown in Figure 3.5. We are plotting the evolution of the empirical agent density
for t ∈ [0,2] for both agent types. The empirical agent density is constructed by placing a unit
mass at each agents’ position, i.e. we sum over all agents and at each agents’ position we place
a function centered at the position and that integrates to one (e.g. a hat function or a Gaussian
function).
We observe the following dynamics on the global scale. At time t = 0 the innovation starts
spreading in the well centered at x = 2

3 . The agent densities quickly distribute near the attrac-
tive centers of the two wells. It takes some time until the innovation reaches the other well
centered at x =

1
3 . But as soon as an adopter agent crosses the barrier for the first time, the

innovation quickly gets adopted by all agents in the other well. Innovation spreading inside the
wells is fast, since the agents are closely packed. But the spreading across the barrier takes
a long time due to the metastable agent movement (recall the Overdamped Langevin equa-
tion in Section 2.1.3). At the final time t = 2 all agents are of type T2. The empirical agent
densities are very noisy, since the diffusion and interactions of agents are described by stochas-
tic processes. Since there are only 3000 agents, the noisiness is still dominant on the global scale.

We are also interested in studying an ensemble of trajectories to get a full picture of the system
dynamics and its variations. As an observable of the system we study the evolution of the
amount of T2 agents in time. In Figure 3.6, we are plotting this observable for each realization
of the ensemble as well as in mean. We observe that as time advances, more and more agents are
adopting the innovation. Even though the behaviour of each individual agent is very random
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and differs completely between each realization, we can observe that the emergent dynamics are
only slightly random with small deviations from the mean.

Using more data and a two-dimensional domain covering Asia and Europe, we can extend this
guiding example to consider the motivating question from the beginning of this chapter: ”What
could have been possible spreading paths of the wooly sheep from modern-day Syria into Europe
between 6000 to 2000 BC?” This has been the topic of research in [7, 8, 38]. It was shown that
the modeled spreading paths are strongly influenced and dominated by the mobility dynamics.
Even more, one can conclude that metastability in the diffusion process induces metastability
in the innovation spreading. We have already observed this phenomenon in our toy example.
To understand the historical process, one should produce and study a large ensemble of trajec-
tories of the modeled dynamics. Only in that way, the role of the inherent model stochasticity
can be interpreted. One can speculate whether the true prehistorical spreading path correlates
with one of the trajectories of the modeled process. Instead one should rather view the mod-
eled spreading path as a hypothesis which has to be discussed and evaluated with the help of
additional expert knowledge.
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4. Towards a Density-based Description on the
Meso-scale

The agent-based model introduced in Chapter 3 describes the stochastic motion of different
types of discrete agents and their local interactions according to a set of predefined rules. It is
formulated in terms of each individual agent, which becomes computationally too expensive to
simulate for large populations. However we do not intend to study every single agent trajectory.
Instead we want to analyse the global, emergent dynamics of the whole population. To do this
more efficiently, the model complexity can be reduced.

One of our goals is therefore to find a valid and adequate approximation to the agent-based
description for large populations of agents on the meso-scale. In this chapter we will derive such
a meso-scale model formulated as a system of stochastic PDEs propagating number densities
of different types of agents (based on [31, 10]). When changing our view point from individual
agents in the ABM to agent densities as depicted in Figure 4.1, agents become indistinguishable
among their type and we lose the individual agent labels.
In general for N agents and a spatially inhomogeneous system, the agent-based formulation
can be considered as the most accurate model. But for a larger number of agents and many
interactions the SPDE formulation is a good approximation and much faster to simulate. In this
meso-scopic model, stochasticity still emerges from the systems’ inherent randomness. And for
the number of agents approaching infinity, stochastic effects can be neglected and thus a PDE
model is appropriate.

Figure 4.1.: Model reduction from the agent-based model formulated in terms of N discrete
agents to the density-based model. The density-based model describes the stochastic
evolution of agent number densities ρs(x, t) for each type s = 1, . . . ,NT .

In Section 4.1 we start by proposing the reduced model in the form of a system of SPDEs. In
Section 4.2 we show that it indeed is a consistent reduction of the ABM dynamics before tackling
its efficient simulation in Section 4.3. Thereby we will build on the theory introduced in Section
2.2.
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4.1. Formulation of the Density-based Model

Before deriving the density-based model as an approximation on the meso-scale in Section 4.2,
we will state and explain its features.

We are considering a model describing the stochastic evolution of stochastic agent number
densities (or number concentrations) for each agent type s = 1, . . . ,NT . The (stochastic) agent
number density

ρs(x, t) ∶D × [0, T ] ↦ R≥0,

is defined on the domain D ⊆ Rd, the time interval [0, T ] and with probability space (Ω,F ,P)1.
Integrating the number density over the domain yields the number of agents Ns of type Ts.

The densities (ρ1(x, t), . . . , ρNT (x, t)) evolve due to diffusion and drift in the suitability land-
scape (neglecting the attraction-repulsion potential for simplicity) and because of the set of
interaction rules. The temporal changes of ρs(x, t) for s = 1, . . . ,NT are given by the stochastic
partial differential equation,

∂ρs(x, t)

∂t
= Dρs(x, t) + Iρs(x, t) (4.1.1)

with stochastic diffusion operator D and stochastic interaction operator I. For a fixed sample
ω ∈ Ω, the agent density is a realization of a stochastic process solving the SPDE (4.1.1).

The diffusion operator of Equation (4.1.1) is given by [31, 10]

Dρs(x, t) =
σ2

2
∆ρs(x, t) + ∇ ⋅ (∇V (x)ρs(x, t)) + σ∇ ⋅ (

√

ρs(x, t)Z
D
s ) (4.1.2)

with σ ∈ R, suitability landscape V ∶ Rd ↦ R and with ZDs = (ZDs,1, . . . , Z
D
s,d) denoting a d-

dimensional vector of space-time white noise for the diffusion, i.e.

E (ZDs,j(x, t)Z
D
s′,j′(x

′, t′)) = δjj′δss′δ(x − x
′
)δ(t − t′).

The diffusive part of the SPDE evolves a number density of many agents and is responsible for
the diffusive transport in space with drift in the suitability landscape V (x). The number density
is something different than a probability density, still we can point out some similarities to the
Fokker-Planck equation (2.1.3). The Fokker-Planck equation can be interpreted as an equation
describing the evolution of a density of infinitely many non-interacting particles that are diffus-
ing with drift in a potential. Here we have a large, but finite number of diffusing particles and
an additional random forcing (the first two terms on the right-hand side of (4.1.2) are exactly
the Fokker-Planck equation). Since we have finitely many agents, our model description is still
inherently random.
The noise term is non-linear and multiplicative. Due to this term it is not clear yet whether a

1Actually the number density should be ρs(ω,x, t) but we never write the dependence on ω ∈ Ω. The agent
number density is random since it solves a stochastic PDE with STWN terms.
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solution exists and is unique. Some first research in this direction can be found in [16]. Apply-
ing a divergence operator onto space-time white noise formally does not make sense since we
cannot differentiate STWN in space. But when considering a weak formulation of the SPDE,
the divergence operator can be moved to the test functions.

Moving to the interaction part of the SPDE system (4.1.1), the agent densities are interact-
ing according to a set of NR rules [31]

Iρs(x, t) =
NR

∑

r=1

νrs (a
r
(ρ(x, t)) +

√

ar(ρ(x, t))ZIr ) . (4.1.3)

Space-time white noise for the rth interaction is denoted by ZIr with covariance

E (ZIr (x, t)Z
I
r′(x

′, t′)) = δrr′δ(x − x
′
)δ(t − t′).

The coefficient νrs describes the discrete number change of the type Ts agents involved in the rth

interaction rule2, ar(ρ(x, t)) is the transition rate function for densities due to the rth interaction
rule. The idea of the transition rate function for agent densities is similar to the transition rate
functions for the ABM (3.2.3). The rate function depends on the local amount of the two types
of agents taking part in the interaction. The more agents of each of the two types, the more
interactions are happening. Also for a larger rate constant influence rate γrmeso (units of γrmeso

are volume × inverse time), more interactions are happening per time.

To get a better understanding of these coefficients and functions, let us return to our in-
novation spreading example: agents of type T1 and T2 are interacting according to the rule
R1 ∶ T1 + T2 → 2 T2. Since for each interaction the number of species T1 decreases by one agent
and the number of species T2 increases by one agent, we have ν1

1 = −1, ν1
2 = 1. The transition

rate function for the interaction between two agent densities is proportional to the density of
each and the rate γ1

meso such that

a1
(ρ(x, t)) = γ1

mesoρ1(x, t)ρ2(x, t)

in this example.

In order to derive the interaction part of the SPDE (4.1.3), the Poisson random variable for
interactions in the agent-based description will be replaced by a Gaussian random variable with
the same mean and variance. Further the interaction parameters dint and γrmicro are aggregated
to the meso-scale influence rate γrmeso. This approximation is only valid for large3 a(ρ(x, t)), and
is closely related to the approximation that has been done for well-mixed systems of interacting
species leading to the chemical Langevin equation (CLE) [19]. Since Equation (4.1.3) includes
spatial information and does not describe a well-mixed system, it can be viewed as a spatial

2In the chemistry literature, νrs is called the stoichiometric coefficient of type Ts due to the rth reaction.
3To be more precise, we assume the transition rate function to be large in each grid cell after discretization of

the system equations.
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extension of the CLE.

As we have now described the system of SPDEs, there are some further points worth not-
ing. We can observe that the diffusive part (4.1.2) conserves the number of agents of each type
because of the divergence operator form and assuming no-flux boundary conditions. Hence it is
responsible for the transport of the density in space. The interaction part (4.1.3) of the SPDE
shifts the agent number density between the different agent types but conserves the overall num-
ber of agents of all types, i.e. ∑

NT
s=1Ns = N is conserved.

We can also have a closer look at how the noise terms scale for increasing agent numbers,
i.e. larger values of the density ρs(x, t). The noise terms are scaled by a square-root factor of
the agent density, whereas all the other (deterministic) terms are scaled by the density. Thus
for the number of agents approaching zero, the noise dominates the SPDE. For the number of
agents going to infinity, the noise terms become unimportant and could be neglected. Thus the
SPDE would turn into a PDE.

For the SPDE to be solvable, boundary conditions and initial conditions have to be speci-
fied. The domain boundary should not be crossed by agents, thus we require a no-flux boundary
condition (Neumann). Then the SPDE reads for agent types s = 1, . . . ,NT ,

∂ρs(x, t)

∂t
= Dρs(x, t) + Iρs(x, t) on D × [0, T ]

∇ρs(x, t) ⋅ û = 0 on δD × [0, T ]

ρs(x,0) = ρs,0(x) on D × {0} (4.1.4)

with the stochastic operators D and I as defined above and û denoting the unit outer normal
to δD. The system of SPDEs for the NT species is coupled via the interaction terms, more
specifically the transition rate functions. The initial data ρs,0(x) needs to be non-negative.

We further note that the analysis of the well-posedness and existence of solutions to this SPDE
system is not investigated enough [16]. In this thesis though, we are concerned with a discretiza-
tion of the SPDE system. In Section 4.3 we will explain how to numerically sample realizations
of the discretized system of SPDEs.

Remark. We can extend the system of SPDEs to include attraction forces between pairs of agents
at long ranges and repulsion forces at short ranges. Denoting the attraction-repulsion potential
between two agents at positions x and y by u(∥x − y∥), the SPDE is extended by one term [10]

∂ρs(x, t)

∂t
=
σ2

2
∆ρs(x, t) + ∇ ⋅ (∇V (x)ρs(x, t)) + ∇ ⋅ (ρs(x, t)∫

D
(∑

s′
ρs′(y, t))∇u(∥x − y∥)dy)

+ σ∇ ⋅ (

√

ρs(x, t)Z
D
s ) +

NR

∑

r=1

νrs (a
r
(ρ(x, t)) +

√

ar(ρ(x, t))ZIr ) .
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The additional term models the diffusion of the agent density ρs in the aggregated attraction-
repulsion potential of the density of all agents ∑s′ ρs′(y, t).
Including this term, the diffusing densities are all coupled to each other. For simplicity, we will
later numerically solve Equation (4.1.4) without attraction-repulsion effects.

4.2. Model Reduction on the Meso-scale: From Agent-based to
Density-based

We have seen the formulation of the reduced density-based model (the system of SPDEs). Let
us in the following show how to derive the system of SPDEs from the agent-based dynamics.
The agent-based model describes and tracks the dynamics of each individual agent. The position
dynamics of agents are described by Itô diffusion SDEs (3.2.1) that are coupled to Markov jump
processes (3.2.4) for the type changes of agents. However to derive a description in terms of an
agent density, we can first derive a stochastic PDE modeling the diffusion of the agent density
based on [10], where for the moment the agent types are not important. In addition to the
derivation in [10], we also include a suitability landscape V (x) in our model that exhibits a drift
onto the agents’ motion. Further, we are extending the derivation by some calculations and
explanations that were missing. As a next step, in Section 4.2.2 we will derive a model for the
interactions between agents [31, 4, 19].

4.2.1. Diffusion of an Agent Density

In the ABM, each agent i = 1, . . . ,N diffuses and changes its position in the suitability landscape
V (neglecting the attraction-repulsion potential) modeled by the Itô diffusion

dXi(t) = −∇V (Xi(t))dt + σdBi(t), (4.2.1)

with i.i.d. standard Brownian motion Bi(t) in Rd such that

E
⎛

⎝

dBm
i (t)

dt

dBl
j(t

′
)

dt′
⎞

⎠

= δmlδijδ(t − t
′
). (4.2.2)

A more detailed description of the dynamics can be found in Section 3.2.1.

For distinct agents, whose position dynamics are given by the SDE, we can write down an
empirical density at some time t by summing Dirac deltas placed at each agents’ position. The
Dirac deltas δ(x − z) can be intuitively thought of as functions that are zero apart from at z,
and that integrate to one. For discrete agents i = 1, . . . ,N at positions Xi(t) ∈ D ⊆ Rd, we sum
the single agent densities, 4 ρi(x, t) to get the agent number density at time t

ρ(x, t) =
N

∑

i=1

ρi(x, t) =
N

∑

i=1

δ(x −Xi(t)).

4The single agent density ρi(x, t) is the density of one agent, i.e. a Dirac delta distribution placed at the location
of agent i. This should not be confused with ρs(x, t), the number density of all agents of species s.
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ρ(x, t) has to be interpreted in the sense of distributions. The agent number density integrates
to the number of agents ∫D ρ(x, t)dx = N for all t, since by definition of the Dirac delta distri-
bution ∫D δ(x −Xi(t))dx = 1.

In this section, we are deriving an approximate model for the diffusion of many agents con-
sisting of the following steps: First, we will transform the SDE (4.2.1) for agent i into an SPDE
describing the temporal evolution of ρi(x, t), i.e. of a Dirac Delta function placed at the position
of agent i. Second, we will sum the resulting SPDEs for each agent i with the aim of arriving at
an SPDE in terms of the number density ρ(x, t) = ∑Ni=1 ρi(x, t). The noise forcing of the SPDE
cannot simply be rewritten in terms of ρ(x, t), therefore it will be approximated by a different
noise term with the same mean and covariance. Last, we assume N to be large, such that we
can replace ρ(x, t) by a number density.

First Step. For the first step in the derivation we need two ingredients: Using the defini-
tion of the Dirac delta distribution we have for any test function φ ∈ C∞

0 (D) that

∫
D
ρi(x, t)φ(x)dx = φ(Xi(t)).

Further we are using the Itô Formula (see Theorem 2.1.5) to find the differential of a function of
the stochastic process {Xi(t)}t. For our SDE (4.2.1) and any twice-differentiable function f(x),
the Itô Formula gives

df(Xi(t)) = (−∇V (Xi(t)) ⋅ ∇f(Xi(t)) +
σ2

2
∆f(Xi(t)))dt + σ∇f(Xi(t)) ⋅ dBi(t).

Combining the two ingredients we get

df(Xi(t))

dt
= ∫

D
ρi(x, t)( − ∇V (x) ⋅ ∇f(x) +

σ2

2
∆f(x) + σ∇f(x) ⋅

dBi(t)

dt
)dx.

Using integration by parts and that test functions have compact support,

df(Xi(t))

dt
= ∫

D
f(x)(∇ ⋅ (∇V (x)ρi(x, t)) +

σ2

2
∆ρi(x, t) − σ∇ ⋅ (ρi(x, t)

dBi(t)

dt
))dx. (4.2.3)

Then differentiating f(Xi(t)) = ∫D ρi(x, t)f(x)dx by t,

df(Xi(t))

dt
= ∫

D

∂ρi(x, t)

∂t
f(x)dx

and equating with equation (4.2.3), we get

∫
D

∂ρi(x, t)

∂t
f(x)dx = ∫

D
f(x)(∇ ⋅ (∇V (x)ρi(x, t)) +

σ2

2
∆ρi(x, t) − σ∇ ⋅ (ρi(x, t)

dBi(t)

dt
))dx.
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By the fundamental lemma of calculus of variations and since f is an arbitrary test function,
we arrive at the following SPDE for the single agent density ρi(x, t),

∂ρi(x, t)

∂t
= ∇ ⋅ (∇V (x)ρi(x, t)) +

σ2

2
∆ρi(x, t) − σ∇ ⋅ (ρi(x, t)

dBi(t)

dt
) . (4.2.4)

Second Step. The goal is to find a closed-form equation for the density of all agents

ρ(x, t) = ∑
i

ρi(x, t).

Therefore we sum (4.2.4) over i = 1, . . . ,N and by linearity of the differentiation we have

∂ρ(x, t)

∂t
= ∇ ⋅ (∇V (x)ρ(x, t)) +

σ2

2
∆ρ(x, t) − σ

N

∑

i=1

∇ ⋅ (ρi(x, t)
dBi(t)

dt
) . (4.2.5)

Since the noise term (the last term) cannot be turned into a term just depending on the agent
density, the idea is to approximate it by a different noise forcing that has the same covariance
and mean function but depends only on ρ(x, t) [10]. Investigating the original noise term of
(4.2.5)

ξ(x, t) ∶= −σ
N

∑

i=1

∇ ⋅ (ρi(x, t)
dBi(t)

dt
) ,

one can show that it has zero mean and covariance function

E (ξ(x, t)ξ(y, t′)) = σ2E
⎛

⎝

N

∑

i=1

∇x ⋅ (ρi(x, t)
dBi(t)

dt
)

N

∑

j=1

∇y ⋅ (ρj(y, t
′
)

dBj(t
′
)

dt′
)

⎞

⎠

= σ2
N

∑

i=1,j=1

E((∇xρi(x, t) ⋅
dBi(t)

dt
)(∇yρj(y, t

′
) ⋅

dBj(t
′
)

dt′
))

= σ2δ(t − t′)
N

∑

i=1

∇xρi(x, t) ⋅ ∇yρi(y, t)

= σ2δ(t − t′)
N

∑

i=1

∇x ⋅ ∇y(ρi(x, t)ρi(y, t))

= σ2δ(t − t′)∇x ⋅ ∇y(δ(x − y)ρ(x, t)). (4.2.6)

Here we used the covariance for Brownian motion (4.2.2) and in the last line we made use of
the identity

ρi(x, t)ρi(y, t) = δ(x − y)ρi(x, t).

We will now show that the noise term

ξ̃(x, t) ∶= σ∇ ⋅ (Z(x, t)
√

ρ(x, t))
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has the same covariance as ξ(x, t), where Z(x, t) denotes a d-dimensional vector of space-time
white noise with

E(Zj(x, t)Zj′(y, t
′
)) = δjj′δ(x − y)δ(t − t

′
).

For the new noise forcing we have the covariance function

E (ξ̃(x, t)ξ̃(y, t′)) =σ2E (∇x ⋅ (Z(x, t)
√

ρ(x, t))∇y ⋅ (Z(y, t′)
√

ρ(y, t′)))

=σ2E ((

√

ρ(x, t)∇x ⋅Z(x, t)) (

√

ρ(y, t′)∇y ⋅Z(y, t′)))

+ σ2E ((

√

ρ(x, t)∇x ⋅Z(x, t)) (Z(y, t′) ⋅ ∇y
√

ρ(y, t′)))

+ σ2E ((Z(x, t) ⋅ ∇x
√

ρ(x, t)) (

√

ρ(y, t′)∇y ⋅Z(y, t′)))

+ σ2E ((Z(x, t) ⋅ ∇x
√

ρ(x, t)) (Z(y, t′) ⋅ ∇y
√

ρ(y, t′))) .

To continue further, we need some properties of the Dirac delta distribution and the covariance
for derivatives of the space-time white noise [1]

E(
∂Z(x, t)

∂xk
Z(y, t′)) = δ(t − t′)

∂

∂xk
δ(x − y)

E(
∂Z(x, t)

∂xk

∂Z(y, t′)

∂yl
) = δ(t − t′)

∂2

∂xk∂yl
δ(x − y).

Equipped with this, we can finish the calculation

E (ξ̃(x, t)ξ̃(y, t′)) = σ2δ(t − t′)( −
√

ρ(x, t)ρ(y, t)∇x ⋅ ∇yδ(x − y)

+ ∇xδ(x − y) ⋅
√

ρ(x, t)∇y
√

ρ(y, t)

+ ∇yδ(x − y) ⋅
√

ρ(y, t)∇x
√

ρ(x, t)

+ δ(x − y)∇x
√

ρ(x, t) ⋅ ∇x
√

ρ(x, t)). (4.2.7)

Since we are dealing with generalized stochastic processes, one needs to multiply the covariance
by test functions f(x), g(y) ∈ C∞

0 (D) and integrate in order to show that the two covariances
for ξ and ξ̃ (equation (4.2.6) and (4.2.7) respectively) agree. It is then enough to show that
∀f, g ∈ C∞

0 (D),

∫
D
∫
D
∇x ⋅ ∇y(δ(x − y)ρ(x, t))f(x)g(y)dxdy

!
= ∫

D
∫
D

( −

√

ρ(x, t)ρ(y, t)∇x ⋅ ∇yδ(x − y)

+ ∇xδ(x − y) ⋅
√

ρ(x, t)∇y
√

ρ(y, t) + ∇yδ(x − y) ⋅
√

ρ(y, t)∇x
√

ρ(x, t)

+ δ(x − y)∇x
√

ρ(x, t) ⋅ ∇x
√

ρ(x, t))f(x)g(y)dxdy. (4.2.8)
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The calculations can be found in the Appendix A.

Finally, we can approximate the original noise forcing by the new noise, based on them sharing
the same mean and covariance functions.

Third Step. The SPDE now only depends on ρ(x, t) and not on ρi(x, t), and reads as fol-
lows

∂ρ(x, t)

∂t
= ∇ ⋅ (∇V (x)ρ(x, t)) +

σ2

2
∆ρ(x, t) + σ∇ ⋅ (Z(x, t)

√

ρ(x, t)) .

The derivation is only valid if the number density stays a sum of Dirac delta functions for all
time. Trajectories of {Xi(t)}t should approximately solve the SPDE when considered as em-
pirical densities ρ(x, t) = ∑i δ(x −Xi(t)). But in the following, we instead interpret the SPDE
as a justified model for the diffusion of any number densities ρ(x, t). Then also

√

ρ(x, t) is
well-defined. We presume that this interpretation is only appropriate if we have many agents,
i.e. when N is large. Therefore we are in the meso-scale modeling regime.

Remark. There are still some open questions regarding this derivation. We only know that the
noise terms ξ̃ and ξ agree in their mean function and covariance function. Further studies should
be concerned with the approximation quality of ξ̃ to ξ. Moreover, we would like to be able to
quantify when the replacement of the density of Dirac delta functions by a agent number density
becomes reasonable.

4.2.2. Including Interaction Rules for Agents

In the following we want to derive the interaction dynamics for agent densities. Recall that each
agent i in the agent-based description can change its type via the NR interaction rules. The
changes are modeled as Markov jump processes

Yi(t) = Yi(0) +
NR

∑

r=1

P
r
i (∫

t

0
λri (t

′
)dt′) vr, (4.2.9)

where Pri (t) denote i.i.d. unit-rate Poisson processes. The transition rate function for agent i
and interaction rule Rr: Ts + Ts′′ → Ts′ + Ts′′ is given by

λri (t) = λ
r
i (A(t), Y (t)) =

N

∑

j=1

Aji(t) γ
r
micro 1{s′′}(Yj(t)) 1{s}(Yi(t)).

In this ABM formulation, agents can only interact with agents that are in their neighborhood,
given by the time-evolving adjacency matrix A(t). A more detailed model formulation is out-
lined in Section 3.2.2.

In [31] an SPDE for the meso-scale description of interactions between agents is postulated,
in the following we outline the derivation and thereby motivate that this SPDE is a reasonable
choice.
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In order to derive a meso-scopic description of the agent-based interactions, we first derive the
Chemical Langevin equation (CLE) [19, 20]. The CLE serves as an SDE approximation to (4.2.9)
for many agents and many interactions in a well-mixed system, i.e. in a non-spatial system.
Secondly, we show that the postulated SPDE in [31] reduces to the Chemical Langevin equation
cell-wise when projecting the SPDE onto a fine partition of the domain D. Thus we can view
this SPDE as a spatially extended CLE that serves as an appropriate model for large interacting
agent densities.

First Step. We consider the well-mixed situation of agents distributed in the volume
∣D∣ = ∫D dx. Well-mixedness means that agents meet many times without interacting and thus
diffusion must be much faster than interactions. For well-mixed systems spatial information
does not play a role. We consider agent number densities ρ(t) = (ρs(t))s=1,...,NT

for the different
types s, the spatial argument is not needed in this scenario. The agent number density gives
the number of agents of a type s per unit volume. Then we can approximate (4.2.9) by

ρs(t) = ρs(0) +
NR

∑

r=1

νrs
∣D∣

P
r
(∫

t

0
∣D∣ar(ρ(t′))dt′) , (4.2.10)

with5 ar(ρ(t)) ∶= γrmesoρ1(t)ρ2(t) and Pr(t) are i.i.d. unit-rate Poisson processes. Since the
Poisson process gives discrete jumps in the number of agents, we have to divide by the volume
∣D∣ to get a density.

In the well-mixed scenario and assuming many agents and many interactions, we are now inter-
ested in deriving an approximation to the jump process (4.2.10). Assuming an infinitesimal time
interval [t, t + ∆t) such that ar(ρ(t)) is approximately constant on [t, t + ∆t), we can replace

P
r
(∫

t+∆t
t ∣D∣ar(ρ(t′))dt′) by Pr (∣D∣ar(ρ(t))∆t), such that we arrive at

ρs(t +∆t) − ρs(t)

∆t
=

NR

∑

r=1

νrs
∣D∣∆t

P
r
(∣D∣ar(ρ(t))∆t) . (4.2.11)

Further by requiring ∣D∣ar(ρ(t))∆t ≫ 1 and making use of the Central Limit Theorem, the
Poisson process with rate ∣D∣ar(ρ(t))∆t can be well approximated by

N(∣D∣ar(ρ(t))∆t, ∣D∣ar(ρ(t))∆t),

5Note that the rates γrmicro and γrmeso have different units: the micro-scale rates have units of inverse time,
whereas the meso-scale rates have units of volume × inverse time.
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where N(m,σ2
) is the normal distribution with mean m and variance σ2. Using N(m,σ2

) =

m + σ N(0,1), Equation (4.2.11) becomes

ρs(t +∆t) − ρs(t)

∆t
≈

NR

∑

r=1

νrs
∣D∣∆t

(∣D∣ar(ρ(t))∆t +
√

∣D∣ar(ρ(t))∆t ζr(t))

=

NR

∑

r=1

νrs

⎛

⎜

⎝

ar(ρ(t)) +

¿

Á
ÁÀ

ar(ρ(t))

∣D∣∆t
ζr(t)

⎞

⎟

⎠

with i.i.d. ζr(t) ∼ N(0,1).

The last step is to let ∆t → 0, then 1√
∆t
ζr(t) can be replaced by a white noise process

Zr(t) ∼ lim
∆t→0

N(0,1/∆t) with the property E (Zr(t)Zr′(t
′
)) = δrr′δ(t − t

′
). And with this we

can write the following SDE, also called the Chemical Langevin equation, as an approximation
to (4.2.10)

dρs(t)

dt
=

NR

∑

r=1

νrs

⎛

⎜

⎝

ar(ρ(t)) +

¿

Á
ÁÀ

ar(ρ(t))

∣D∣

Zr(t)
⎞

⎟

⎠

.

Second Step. In our agent-based model, we do not have a completely well-mixed system as
agents are only interacting with other near-by agents and diffusion is not necessarily that fast.
Therefore, we are going one step further and postulate that in continuous space interactions can
be modeled by the following stochastic PDE [31]

dρs
dt

(x, t) =
NR

∑

r=1

νrs (a
r
(ρ(x, t)) +

√

ar(ρ(x, t))Zr(x, t)) (4.2.12)

with space-time white noise Zr(x, t) and spatial agent densities ρ(x, t) = (ρs(x, t))s=1,...,NT
.

When projecting the solution of this equation onto the space spanned by piecewise constant
functions on a fine grid, the SPDE approximately reduces to the CLE in each grid cell. Espe-
cially for the grid size approaching zero, the error in the approximation becomes negligible. And
in that way the postulated SPDE model is consistent with the CLE and can be seen as a spatial
extension of the usual Chemical Langevin equation.

For simplicity we restrict ourselves to the 1D case. We will compute the orthogonal projec-
tion from the SPDE onto an equidistant grid in 1D with grid size h, i.e. grid cells [xj , xj+1) =

[xj , xj + h). Projecting ρs(x, t) onto the space spanned by orthonormalized indicator functions
on the grid, we arrive at the projected density

∑

j

ρs,j(t)1[xj ,xj+1)(x),

where 1[xj ,xj+1)(x) is the indicator function on the jth interval, i.e. mapping the x ∈ [xj , xj+1)

to 1 and else to 0. The coefficients ρs,j(t) are the average density in each of the cells [xj , xj+1)
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and are therefore independent of the position inside the cell, i.e.

ρs,j(t) =
1

h
∫

xj+1

xj
ρs(x, t)dx.

Next, projecting the interaction SPDE (4.2.12), more precisely the solution of the SPDE, onto
the grid, we get for each cell j

1

h
∫

xj+1

xj

dρs
dt

(x, t)dx =
1

h

NR

∑

r=1

(νrs ∫
xj+1

xj
ar(ρ(x, t))dx + νrs ∫

xj+1

xj

√

ar(ρ(x, t))Zr(x, t)dx) .

We assume that the grid cells are small or well-mixed enough, such that the density ρs(x, t) is
approximately constant on each cell, leading to

1

h
∫

xj+1

xj
ar(ρ(x, t))dx ≈ ar(ρj(t))

and
1

h
∫

xj+1

xj

√

ar(ρ(x, t))Zr(x, t)dx ≈
1

h

√

ar(ρj(t))∫
xj+1

xj
Zr(x, t)dx.

Since 1
h ∫

xj+1
xj

Zr(x, t)dx is just 1√
h
Zr,j(t), with Zr,j(t) denoting i.i.d. white noise in time, we

finally are back to the Chemical Langevin equation in a cell of size h,

dρs,j

dt
(t) =

NR

∑

r=1

⎛

⎝

νrsa
r
(ρj(t)) + ν

r
s

√

ar(ρj(t))

h
Zr,j(t)

⎞

⎠

.

This suggests that the SPDE (4.2.12), i.e. the spatial extension of the CLE, is consistent with
the usual non-spatial CLE. Projecting the SPDE onto the space spanned by indicator functions
on a fine grid (such that we can assume the agent density to be constant on each grid cell), the
SPDE reduces to a set of CLEs. The CLE in turn resembles the ABM when assuming many
agents and fast interactions.

4.3. Discretizing the system of SPDEs

In the previous sections we derived and considered a model for the evolution of stochastic agent
densities ρs(x, t) ∶ D × [0, T ] → R≥0. In the following we will switch to a different interpretation
and rewrite the system of SPDEs (4.1.4) as a system of stochastic ODEs describing the evolution
of stochastic processes {ρs(t)}t∈[0,T ], where each ρs(t) is a function on D.

By writing the system of SPDEs (4.1.4) as a system of SDEs on an infinite dimensional space,
we can introduce the cylindrical Wiener process expansion W (t) (Definition 2.2.3), whose time
derivative is space-time white noise. The system of equations describing the evolution of ρs(t)
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for agent types s = 1, . . . ,NT then reads

dρs(t) =
σ2

2
∆ρs(t)dt +∇ ⋅ (∇V ρs(t))dt + σ∇ ⋅ (

√

ρs(t)dW
D
s (t))

+

NR

∑

r=1

νrs (a
r
(ρ(t))dt +

√

ar(ρ(t))dW I
r (t))

ρs(0) =ρs,0, (4.3.1)

with WD
s (t) denoting a d-dimensional vector of cylindrical Wiener processes and W I

r (t) denoting
cylindrical Wiener processes for the interaction dynamics. We further denote the linear part of
this evolution SPDE by

−Aρs(t) ∶=
σ2

2
∆ρs(t) + ∇ ⋅ (∇V ρs(t)) .

The operator −A also entails the Neumann boundary conditions. Since we are modeling a
closed agent system, we require there to be no agent density flux across the boundary, i.e.
∇ρs(t) ⋅ û = 0 on δD with û denoting the unit normal vector to the boundary.

For each interaction rule Rr ∶ Ts + Ts′′ → Ts′ + Ts′′ with s, s′, s′′ ∈ {1, . . . ,NT }, the term

Fs(ρ(t)) ∶=
Nr

∑

r=1

νrsa
r
(ρ(t))

is non-linear due to the coupling of the two interacting densities in ar(ρ(t)) = γrmesoρs(t)ρs′′(t).

This new perspective (4.3.1) enables us to design a simulation approach for sampling trajec-
tories based on the Finite element method. The FE method has the advantage that one can
treat complicated boundaries and use complex triangulations. Besides, by considering the weak

form we can move the divergence operator from σ∇ ⋅ (

√

ρs(t)dW
D
s (t)) onto the test functions.

This suggests the use of the FE method over e.g. Finite Differences or the Finite Volume method.

Remark. In [31] a similar SPDE is solved using the Finite-Volume (FV) method. The FV method
has the nice property that it conserves the density. Further in [31], the Gaussian noise in the
interaction part is after the discretization replaced by Poisson noise for each grid cell. They
argue that this is a much more accurate modeling approximation.

4.3.1. Finite Element Formulation

For developing the discretization scheme, we follow the general idea of the approach introduced
in Section 2.2.3 due to the similarities of (4.3.1) to the semilinear evolution SPDE (2.2.6) intro-
duced therein. Since it is still an open question, whether solutions to (4.3.1) exist, we will in
the following assume that we can still discretize and find discretized solutions. For the evolution
SPDE (2.2.6) it can be proved that a weak form exists under certain requirements on A, the
non-linearity F and the noise terms. In the case of (4.3.1), these are probably not fulfilled due

47



to the irregular noise terms. Therefore the theoretical backbone of the following discretization
should be investigated further.

In order to formulate the Galerkin approximation, we first have to derive the weak form by
multiplying Equation (4.3.1), which is interpreted as an integral equation, by test functions w
and integrating over the domain D.

The weak formulation of (4.3.1) consists of finding ρs(t) for all agent types s = 1, . . . ,NT such
that6

⟨ρs(t),w⟩ =⟨ρs,0,w⟩ + ∫

t

0

⎛

⎝

−
σ2

2
⟨∇ρs(t

′
),∇w⟩ + ⟨∇ ⋅ (∇V ρs(t

′
)) ,w⟩ +

NR

∑

r=1

νrs ⟨a
r
(ρ(t′)),w⟩

⎞

⎠

dt′

− σ∫
t

0
⟨

√

ρs(t′)dW
D
s (t′),∇w⟩ + σ∫

t

0
(∫

δD
(

√

ρs(t′)dW
D
s (t′) ⋅ û)w dx)

+

NR

∑

r=1
∫

t

0
νrs ⟨

√

ar(ρ(t′))dW I
r (t′),w⟩ ∀w, ∀t ∈ [0, T ]. (4.3.2)

To get to Equation (4.3.2), we made use of partial integration to shift some regularity require-
ments from ρs(t) onto the test functions w. In particular,

⟨∆ρs(t),w⟩ = ∫
D

∆ρs(t)w dx = −∫
D
∇ρs(t) ⋅ ∇w dx + ∫

δD
(∇ρs(t) ⋅ û)w dx = −⟨∇ρs(t),∇w ⟩

making use of the no-flux boundary conditions ∇ρs(t) ⋅ û = 0 on δD. Further, we want to shift
the divergence operator from the space-time white noise onto the test functions. Using partial
integration again we have

⟨∇ ⋅ (

√

ρs(t)dW
D
s (t)),w⟩ = −⟨

√

ρs(t)dW
D
s (t),∇w⟩ + ∫

δD
(

√

ρs(t)dW
D
s (t) ⋅ û)w dx.

Letting Ṽ denote the finite dimensional solution space and test function space spanned by the
basis {φi}

n
i=0, the Galerkin approximation then consists of finding ρ̃s(t) ∈ Ṽ for each agent type

s = 1, . . . ,NT such that

⟨ρ̃s(t), φi⟩ =⟨ρs,0, φi⟩ + ∫
t

0

⎛

⎝

−
σ2

2
⟨∇ρ̃s(t

′
),∇φi⟩ + ⟨∇ ⋅ (∇V ρ̃s(t

′
)) , φi⟩ +

NR

∑

r=1

νrs ⟨a
r
(ρ̃(t′)), φi⟩

⎞

⎠

dt′

− σ∫
t

0
⟨

√

ρ̃s(t′)dW
D
s (t′),∇φi⟩ + σ∫

t

0
(∫

δD
(

√

ρ̃s(t′)dW
D
s (t′) ⋅ û)φi dx)

+

NR

∑

r=1
∫

t

0
νrs ⟨

√

ar(ρ̃(t′))dW I
r (t′), φi⟩ ∀i, ∀t ∈ [0, T ]. (4.3.3)

6The inner product is given by ⟨u, v⟩ = ∫D uv dx.
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We can expand the solution as a linear combination of the basis functions {φj}
n
j=0 with time-

dependent coefficients βs,j(t),

ρ̃s(t) =
n

∑

j=0

βs,j(t)φj .

Then following the same steps as for semilinear evolution SPDEs in Section 2.2.3 and by defining
matrices

Cji = ⟨φj , φi⟩

Aji =
σ2

2
⟨∇φj ,∇φi⟩ − ⟨∇ ⋅ (∇V φj) , φi⟩

for i, j = 0, . . . , n, and coefficient vector βs(t) = (βs,j(t))
n
j=0, we can write (4.3.3) as

n

∑

j=0

dβs,j(t)Cji = −
n

∑

j=0

βs,j(t)Aji dt + ⟨Fs (ρ̃(t
′
)) , φi⟩ dt − σ⟨

√

ρ̃s(t)dW
D
s (t),∇φi⟩

+ σ∫
δD

(

√

ρ̃s(t)dW
D
s (t) ⋅ û)φi dx +

NR

∑

r=1

νrs ⟨
√

ar(ρ̃(t))dW I
r (t), φi⟩, ∀i = 0, . . . , n.

We are also denoting the vector of the non-linear term by

Fs(t) = ⟨Fs(ρ̃(t)), φi⟩
n
i=0.

By truncating the noise to M dimensions (recall the Definition 2.2.3 and the noise truncation
in (2.2.10)) and by defining

dWM
(t) = (dBm(t))Mm=1 ,

GDs (t)im = −σ⟨
√

ρ̃s(t)χm,∇φi⟩ + σ∫
δD

(

√

ρ̃s(t)χm ⋅ û)φi dx,

and
GIs,r(t)im = νrs ⟨

√

ar(ρ̃(t))χm, φi⟩,

our Galerkin approximation finally reads

Cdβs(t) = (−Aβs(t) + Fs(t)) dt +G
D
s (t) dWD,M

s (t) +
NR

∑

r=1

GIs,r(t) dW
I,M
r (t). (4.3.4)

The last step is to discretize in time. Denoting functions at time tk = k∆t by a subscript
k, e.g. βs(tk) = βs,k, the Euler-Maruyama time-discretization of (4.3.4) is the recursion for
k = 0, . . . ,K − 1

βs,k+1 = (C +A∆t)−1 ⎛

⎝

Cβs,k + Fs,k∆t +G
D
s,k∆W

D,M
s,k +

NR

∑

r=1

GIs,r,k∆W
I,M
r,k

⎞

⎠

. (4.3.5)

The Brownian increments
∆WM

k = (

√

∆tζm,k)
M
m=1
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Figure 4.2.: Hat functions φi and their derivative φ′i in one dimension.

have to be sampled for each time step by drawing i.i.d. ζm,k ∼ N(0,1).

Remark. One numerical problem is that the agent density can become negative in the simula-
tions. This is only due to the discretization. When modeling the interactions between different
densities and for a not too small time step ∆t, it can happen that too much density is subtracted
from one type. One possibility for tackling this problem in the implementation is to work with
max(0, βs,j,k) instead of βs,j,k and thereby ensure its non-negativity [31].

4.3.2. Assembling Matrices in 1D

Sampling trajectories of the SPDE can be done by iteratively solving (4.3.5) in parallel for each
agent type. We will explain in the following how to assemble the necessary matrices for a one-
dimensional domain. The domain D is partitioned into an equidistant grid supporting the hat
functions that are spanning the finite-dimensional space Ṽ .

Construction of the Finite Element Space

For the finite-dimensional subspace Ṽ of dimension n+ 1 we will consider the space spanned by
hat functions {φi}

n
i=0 (i.e. piecewise linear functions) on an equidistant grid. This will simplify

matrix computations, since the resulting matrices will be sparse due to the hat functions being
mostly zero throughout D. For D = [0, a], we take an equidistant grid with step size h = a

n such
that we have x0 = 0 < x1 = h < x2 = 2h < ⋅ ⋅ ⋅ < xn = a as our triangulation.

The ith hat function is defined as

φi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

0 x < xi−1
x−xi−1
h xi−1 ≤ x < xi

1 − x−xi
h xi ≤ x < xi+1

0 x ≥ xi+1.

These have the nice properties φi(xj) = δij and φi(x)φj(x) = 0 for all ∣i − j∣ > 1.
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The derivative of the hat function is piecewise constant on the grid and given by

φ′i(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

0 x < xi−1

1
h xi−1 ≤ x < xi

−
1
h xi ≤ x < xi+1

0 x ≥ xi+1.

The hat functions and their derivatives are shown in Figure 4.2.

Some matrices of (4.3.5) can be computed analytically from the definition of the hat functions.
One finds that

⟨φj , φi⟩ =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

2h
3 j = i ≠ 0, n
h
6 j = i + 1 or j = i − 1
h
3 i = j = 0 or i = j = n

0 else

⟨φ′j , φ
′
i⟩ =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

2
h j = i ≠ 0, n

−
1
h j = i + 1 or j = i − 1

1
h i = j = 0 or i = j = n

0 else

for i, j = 0, . . . , n.

Numerical Assembly

To assemble Aji, we can use ⟨φ′j , φ
′
i⟩ and additionally integrate

⟨∇ ⋅ (∇V φj) , φi⟩ = ⟨∆V φj , φi⟩ + ⟨∇V ⋅ ∇φj , φi⟩ = ∫
D

(∆V φjφi +∇V ⋅ ∇φjφi) dx

numerically using the trapezoidal rule.

We can approximate the integral of a function u ∶ [a, b] → R over the interval [a, b] with the
trapezoidal rule by approximating the area under the graph by a trapezoid

∫

b

a
u(x)dx ≈

1

2(b − a)
(u(a) + u(b)) .

By additionally subdividing [a, b] into grid cells and applying the trapezoidal rule on every sub-
interval, we can improve the approximation.

We further assemble the non-linear and the noise matrices on the basis of the trapezoidal rule.

As a basis for the expansion of the cylindrical Wiener process we choose χm(x) =
√

2
asin (

πmx
a

),

m ∈ N, similar as in the space-time white noise expansion (2.2.4).
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Remark. For equidistant grids, we can assemble matrices as shown above. But the Finite Element
method can be used to treat much more complex domains and triangulations. This is where one
of its strengths lies. One can then assemble the matrix elements by defining a reference grid cell
and transforming from any grid cell to the reference grid cell in order to do the computations
on the reference cell before transforming back [29].

4.4. Numerical Example: Innovation Spreading in a Double Well
Landscape

We again consider the model example as introduced in Sections 3.1 and 3.4 of agents diffusing
in a double well landscape and the spreading of an innovation among agents. However this time
our model is formulated as a system of SPDEs. Since we assumed large agent populations for
the approximation of the ABM by the SPDE model, we will consider a system of N = 20000
agents on D = [0,1]. The simulation of trajectories of the density-based model is based on the
discretization as introduced in Section 4.3.

In Figure 4.3 we plot the results of one simulation showing the evolution of the number density
of non-adopters ρ1(x, t) and the density of adopters ρ2(x, t) for t ∈ [0,2]. The emergent dynam-
ics are very similar to the ABM dynamics in Section 3.4. Again the agent density is clustered
around the two wells. The spreading of the innovation inside the wells is fast, but there is a long
time gap for the innovation to spread from one well to another. However the global dynamics
agree only qualitatively not quantitatively between the ABM and the SPDE model because of
the differently chosen parameters.
We observe that the stochasticity inherent in the model is still visible on the global scale, the
agent densities are seemingly noisy. But compared to the ABM example (Section 3.4), the nois-
iness of the densities has reduced. The probable reason is that we consider a system with a
much larger agent population and that their behaviour averages out on a larger scale. However
another explanation could be that the approximation does not represent the randomness well.
In the next chapter we will study the approximation quality of the reduced model to the agent-
based dynamics in more detail.

Further, we are studying an ensemble of trajectories solving the SPDE by computing some
observable of the dynamics. We consider the evolution of the number of T2 agents in time for
an ensemble of 50 realizations, see Figure 4.4. Similar to the ABM example, there are some
trajectories deviating from the ensemble mean, but only slightly.

In the following chapter we will study and compare the ABM and its approximation from a
numerical perspective. The goal is to quantify, at least for our toy example, the approximation
quality of the density-based model to the ABM and the computational effort of both models.
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(a) Initial density of non-adopters at time t = 0. (b) Initial density of adopters at time t = 0.

(c) Evolution of the non-adopter density ρ1(x, t). (d) Evolution of the density of adopters ρ2(x, t).

(e) Final density of non-adopters at time t = 2. (f) Final density of adopters at time t = 2.

Figure 4.3.: Agents diffusing in a double well and innovation spreading, initially 2000 agents
have adopted the innovation, 18000 agents are non-adopters. The initial density
of non-adopters is a Gaussian function centered at x = 0.5 with standard deviation
0.1, whereas the density of adopters is initially a Gaussian placed at x = 0.7 with
standard deviation 0.1. Further parameters: σ = 0.25, γ1

meso = 0.0002, ∆t = 0.0001,
h = 0.004, M = 256.
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Figure 4.4.: For an ensemble of 50 simulations we study an observable of the system, namely
the evolution of the number of adopters in time. At time t the number of agents of
type T2 is given by ∫D ρ2(x, t) dx.
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5. Comparison of the Agent-based and
Density-based Model

Many models of real-world dynamics pose challenges regarding their simulation due to a com-
plex model formulation. We consider the agent-based model as introduced in Chapter 3 as the
ground-truth model for a system of diffusing and interacting agents. However due to its high
model complexity, simulations are often too expensive. Moreover, the stochasticity in the model
asks for repeated simulations. Reduced model descriptions are therefore needed, these reduced
models should have a small approximation error as well as a being computationally much more
efficient.

Depending on the spatial and the population scale of the underlying process of interest, dif-
ferent approximations to the agent-based model are possible and reasonable.

On the spatial scale we can distinguish between:

– models with fully continuous space, e.g. [31].

– models with a spatial partition into non-overlapping well-mixed cells, the partitioning can
be based on natural boundaries or just a regular grid, e.g. [28, 48, 6].

– well-mixed model descriptions, where spatial information is neglected, e.g. [19, 20].

For different population scales, i.e. different agent numbers, we categorize into models of:

– small populations that are described in terms of discrete agents evolving stochastically,
e.g. [20].

– large agent numbers described as densities and whose changes are modeled continuously
but still including randomness, e.g. [19, 20, 31].

– very large, nearly infinite populations, modeling density evolutions deterministically, e.g.
[20, 41].

However in this thesis we are only concerned with systems including full spatial resolution. The
agent-based model is valid on all population scales but we expect its computational feasibility
only on the smallest population scale. By replacing discrete agents by agent densities and by
assuming a large number of agents, we derived a reduced SPDE model in Chapter 4. The SPDE
description is supposedly a good approximation to the ABM for large agent numbers, whilst
still including stochasticity.

In this chapter we want to computationally confirm this perspective and make it more con-
crete by studying our guiding example for different populations scales using the ABM and the
reduced density-based model. We are setting up a computational experiment to study the nu-
merical effort per time step of both approaches and to investigate how well the density-based
model approximates the ABM for increasing agent populations.
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5.1. Experiments on Computational Effort and Approximation
Quality

In this section we are computationally studying how the agent-based and density-based model
compare in computation time and finding out at which agent numbers N the density-based
model starts to be a good approximation to the ABM. We will compare the two models using
our guiding example of innovation spreading as introduced in Sections 3.1 and 3.4.

Before setting up the experiments, we first we have to ensure the consistency between the
parameters for both models. The diffusion parameters are the same for the ABM and the SPDE
description, but the interaction parameters have to be converted. In the agent-based model,
pairs of agents are interacting at a fixed rate γrmicro (units of inverse time) for each interaction
rule Rr whenever they are within a radius dint of each other. In the SPDE formulation on the
other hand, agent densities are interacting point-wise with constant rate factor γrmeso (units of
volume × inverse time). The parameter conversion is still very much an open problem. We will
below explain two strategies [14, 15].

Strategy 1 (Data-driven). For many applications, we can carry out experiments and then
estimate the interaction rates γrmeso from the measured data. To convert γrmeso to the ABM
parameters, we set the radius dint to be the sum of the radii of the two interacting agents (e.g.
molecular radius, human radius of infection) and then determine γrmicro such that it fits best to
the outcome of the experiments.

Strategy 2. For systems where the diffusion of agents is fast enough such that agents are
locally uniformly mixed and there are no spatial correlations between different agent types, we
can simply convert parameters from the micro-scale to the meso-scale by γrmeso = γ

r
microVint [15].

In that way interactions take place within the interactive volume Vint, the volume of a ball of
radius dint.

Given these conversion strategies, we are ready to set up a numerical experiment to compare
the computational effort and the approximation quality of the density-based model to the ABM
for increasing agent numbers N .

Experimental Set-up. We consider again our guiding example of agents spreading an in-
novation according to the rule R1 ∶ T1 + T2 → 2 T2, but this time agents are diffusing in the
domain D = [0,1] with drift in a single well landscape V (x) = 5(x − 0.5)2 centered at x = 0.5.
As an initial configuration, 10% of agents are of type T2 and their positions are distributed
normally with mean 0.5 and standard deviation 0.02. The remaining agents are at time t = 0
of type T1 and placed according to a normal distribution with mean 0.5 and standard deviation
0.15. Further parameters are dint = 0.001, γ1

micro = 0.5, σ = 0.25, h = 0.004, M = 256.
Trajectories of the ABM and density-based model are then sampled following the simulation
approaches introduced in Sections 3.3 and 4.3, and using Strategy 2 to convert the interaction
parameters from the micro-scale to the meso-scale.
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For each population size N ∈ {50,110,150,220,330,440,550,1100,2200,3300}, we need to sim-
ulate repeatedly (sim = 100) in order to compute meaningful ensemble averages. We have im-
plemented the simulation schemes in Matlab and run our code on a computer with an Opteron
8384 CPU.

The Computational Effort. For both models and varying N , we fix the step size in time
∆t = 0.005 and measure the time it takes to simulate one time step. Since both simulation
approaches make use of an Euler-Maruyama time discretization, comparing the effort per time
step is sensible. But space is treated differently. In the ABM, we use an Euler-Maruyama dis-
cretization for the position dynamics of each agent. Whereas in the SPDE approach, we use the
scheme for each finite element. Moreover for the simulation of the ABM we have to compute
pair-wise distances between agents, which scales badly for increasing agent numbers N . Thus
we expect the computational effort for the ABM to depend on the number of agents, whereas
for the SPDE model it should be independent of N and thus constant for increasing N .

Approximation Quality. We compute observables of the simulated dynamics for both
models and increasing agent numbers. Based on these measured observables we can compare
how well they agree and deduce the approximation quality of the density-based model to the
ABM1. Possible observables are e.g. the time it takes until the agent system has reached a cer-
tain state for the first time or the state of the system at a fixed time point. Here, we study our
guiding example of innovation spreading in a single well landscape. The observables we consider
are (i) the time until 90% of agents are of type T2, and (ii) the spatial distribution of type T2

agents at a fixed model time point t = 0.2. We expect that with increasing N , the observables of
the density-based model agree better and better with the observables of the agent-based model.

5.2. Experimental Results

In the following we come to a discussion of the results. The results of our experiments on the
computational effort of both models and the approximation quality are shown in Figure 5.1.

The simulation results in Figure 5.1a show that the computational effort per time step in the
ABM scales exponentially, whereas the effort for the simulation of the density-based model is
independent of the number of agents and several magnitudes below.

Let us now discuss the approximation quality between the models. We compare the observ-
ables of the density-based model with the observables of the ABM for increasing N as depicted
in Figures 5.1b and 5.1c.
For systems of only very few agents, the observables agree only roughly in mean between the two
models, but the standard deviation is much larger for the density-based model. The most likely
reason is that we assumed many agents and many interactions for the derivation of the SPDE
model from the ABM. Considering the agent density at a fixed time point for N = 50 agents in

1Computing these observables we also make some numerical and statistical error.
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(a) Computational effort per time step.
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(b) Approximation quality for an observable.
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(c) Approximation quality for the space-dependent observable on D = [0,1]. We plot the agent density of
type T2 at time t = 0.2 and for both models. The curve in black gives the mean agent density for the
ABM whereas the graph in red indicates the mean agent density for the SPDE model, the standard
deviation is indicated by the shaded area.

Figure 5.1.: Study of the numerical effort and model approximation quality for systems of an
increasing number of agents N and 100 simulations. We are again considering our
guiding example of agents diffusing in a single-well and innovation spreading.
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Figure 5.1c, we note that the standard deviation for the observable of the density-based model is
much larger away from the center of the well, where the agent density is very low. The random
terms in the SPDE dominate in the low-agent number regime and thus away from the center of
the well. We can conclude that the approximation of the density-based model to the ABM for
systems of few agents, in this case N < 500, is not very good.
For systems with a large number of agents, the observables agree well in mean and standard
deviation, thus the approximation error is very low and the density-based model serves as a
good approximation to the ABM in this regime.
Already for systems of N > 3000, the observables get close to deterministic with a very small
standard deviation. Whilst the system is still slightly random on this population scale, a PDE
model could in some modeling cases be sufficient to describe the system, especially for even
larger numbers of agents.

Extrapolating from our experiments on a toy example, we can in conclusion say that for small
agent numbers the ABM is still the best description even though it is more expensive to simulate
than the SPDE model. For a larger number of agents, it is appropriate to model with SPDEs,
i.e. on the meso-scale. Observables are well approximated in mean and standard deviation and
the simulation approach enables many thousand simulations where before only a couple of sim-
ulations were computationally feasible. For an even larger number of agents, one can possibly
approximate the SPDE by a PDE and numerically compute solutions of the PDE. Numerically
solving the PDE does not required repeated simulations, since the solutions are deterministic.
In general, to draw conclusions on the minimum number of agents needed such that the re-
placement of the agent-based model by the reduced density-based model is adequate, one needs
to consider the agent density locally and justify that the assumptions for deriving the SPDE
system (Section 4.2) are fulfilled locally.
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6. Conclusion and Future Outlook

In this thesis we have introduced a general agent-based model that is formulated in terms of
coupled diffusion and Markov jump processes for each agent. Simulating agent-based models
for real-world dynamics quickly becomes costly due to an explosion in the computational com-
plexity for increasing agent numbers and the need for repeated simulations due to its stochastic
description. For instance, when modeling the spreading of innovations in ancient times such as
in [7, 8], many Monte Carlo simulation are required to capture the full spectrum of the diverse
dynamics. But this becomes computationally very expensive. A thorough sensitivity analysis
of the parameters demands many simulations for each parameter set and is as such not tractable.

We therefore derived, based on [31, 10], an approximation to the ABM for systems of many
agents. The reduced model is given by a system of coupled stochastic PDEs propagating agent
densities for the different agent types. For both models, the ABM and the reduced density-based
model, we constructed and explained simulation schemes. In the last chapter, we compared the
simulation effort and studied the approximation quality of the reduced density-based model to
the ABM computationally on a toy example. From these computational experiments we can
conclude the following. For systems of few agents, the ABM is not too costly. We consider
the ABM as the ground-truth model and thus as the most accurate description of the agent
system. The dynamics have to be described in terms of individual agents, since there are only
very few. But for systems of many agents, we can instead use the approximation by the SPDE
to study the agent system dynamics much more efficiently. In the case of our toy example this
approximation is accurate in mean and standard deviation already for systems of a thousand
agents. Thus this reduced model is a very promising tool for modeling and especially simulating
real-world systems of large populations.

The goal of this thesis was to take a first step into the direction of modeling agent systems
on the meso-scale by means of stochastic PDEs. There are however several questions that still
remain unanswered and should be investigated in the future. First, model descriptions for more
complicated dynamics such as including more complex interaction rules, including space or type
dependent parameters or containing feedback loops, have to be derived both on the micro-scale
as well as for the reduced SPDE model. Adding a feedback loop to our ABM would mean
that the position dynamics affect the interaction rules and vice versa. This strong coupling
will probably pose new challenges. Second, we need to better understand the approximation
error of the density-based model to the agent-based model, quantitative statements about the
approximation quality are still missing. Third, the existence, uniqueness and regularity of solu-
tions to the SPDE still need to be discussed [16]. Fourth, it would be interesting to analyze the
properties of the SPDE and the discretized SPDE, such as conservation properties as well as
properties of the operators of the continuous SPDE system and matrices in the discretized case.
Fifth, a thorough numerical analysis and comparison of different discretization strategies (e.g.
Finite Element, Finite Volume method as well as temporal integrators) is still missing. Sixth,
more studies on the applicability of the SPDE model to real-world dynamics are needed, such
as applying the model to the spreading of the wooly sheep [7, 8].
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A. Appendix

Equivalence of Covariances for the Noise Terms ξ and ξ̃

The covariances for ξ and ξ̃ (equation (4.2.6) and (4.2.7) respectively) are the same when inter-
preted as distributions, i.e. for all test functions f, g ∈ C∞

0 (D)

∫
D
∫
D
∇x ⋅ ∇y(δ(x − y)ρ(x, t))f(x)g(y) dxdy = ∫

D
∫
D

( −

√

ρ(x, t)ρ(y, t)∇x ⋅ ∇yδ(x − y)

+ ∇xδ(x − y) ⋅
√

ρ(x, t)∇y
√

ρ(y, t) + ∇yδ(x − y) ⋅
√

ρ(y, t)∇x
√

ρ(x, t)

+ δ(x − y) (∇x
√

ρ(x, t))
2
)f(x)g(y) dxdy.

Proof. We can reformulate the left hand side (LHS) as

LHS = ∫
D
∫
D
∇x ⋅ ∇y(δ(x − y)ρ(x, t))f(x)g(y)dxdy

= −∫
D
∫
D
∇y(δ(x − y)ρ(x, t)) ⋅ ∇x(f(x))g(y)dxdy

= ∫
D
∫
D
δ(x − y)ρ(x, t)∇x(f(x)) ⋅ ∇y(g(y))dxdy

= ∫
D
ρ(y, t)∇y(f(y)) ⋅ ∇y(g(y))dy,

using integration by parts twice and properties of the test functions and Dirac delta distributions.
The right hand side (RHS) can be treated similarly, we can do the following reformulations

RHS =∫
D
∫
D

( −

√

ρ(x, t)ρ(y, t)∇x ⋅ ∇yδ(x − y) + ∇xδ(x − y) ⋅
√

ρ(x, t)∇y
√

ρ(y, t)

+ ∇yδ(x − y) ⋅
√

ρ(y, t)∇x
√

ρ(x, t) + δ(x − y) (∇x
√

ρ(x, t))
2
)f(x)g(y)dxdy

=∫
D
∫
D

(∇x(

√

ρ(x, t)f(x)) ⋅ ∇y(
√

ρ(y, t)g(y)) − ∇x(
√

ρ(x, t)f(x))g(y) ⋅ ∇y
√

ρ(y, t)

− ∇y(

√

ρ(y, t)g(y))f(x) ⋅ ∇x
√

ρ(x, t) + (∇x

√

ρ(x, t))
2
f(x)g(y))δ(x − y)dxdy

=∫
D

(∇y(

√

ρ(y, t)f(y)) ⋅ ∇y(
√

ρ(y, t)g(y)) − ∇y(
√

ρ(y, t)f(y))g(y) ⋅ ∇y
√

ρ(y, t)

− ∇y(

√

ρ(y, t)g(y))f(y) ⋅ ∇y
√

ρ(y, t) + (∇y

√

ρ(y, t))
2
f(y)g(y))dy

=∫ ρ(y, t)∇y(f(y)) ⋅ ∇y(g(y))dy.

Thus the LHS and RHS agree and the covariances are the same.
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Schütt. Modeling the spread of the wool-bearing sheep from south-west asia into europe –
an agent-based approach. Submitted.

[39] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespig-
nani. Epidemic processes in complex networks. Reviews of modern physics, 87(3):925, 2015.

[40] Grigorios A Pavliotis. Stochastic processes and applications. Springer, 2016.

[41] John E Pearson. Complex patterns in a simple system. Science, 261(5118):189–192, 1993.

[42] Tobias Reichenbach, Mauro Mobilia, and Erwin Frey. Mobility promotes and jeopardizes
biodiversity in rock–paper–scissors games. Nature, 448(7157):1046, 2007.

[43] C Tineke Rooijakkers. Spinning animal fibres at Late Neolithic Tell Sabi Abyad, Syria?
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