
Technische Universität Berlin

Master’s Thesis

The Computation of the Volume of the
Union of Polytopes via a Sweep-Plane

Algorithm

Author:
Lovis Anderson

Supervisor:
Prof. Dr. Thorsten Koch

Assistant Supervisor:
Dr. Benjamin Hiller

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

at the

Technische Universität Berlin
Institut für Mathematik

15. Januar 2018

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Berlin, den

...

Lovis Anderson

iii

Zusammenfassung

Das Thema dieser Arbeit ist ein Volumen-Algorithmus für die Vereinigung von
Polytopen. Der Algorithmus basiert auf der Arbeit von Bieri und Nef [BN83]. Er
berechnet das Volumen der Vereinigung von Polytopen mit einem Sweep-Verfahren.
Dabei wird eine Hyperebene im Raum verschoben und das Volumen auf der einen Seite
der Hyperebene berechnet. Umso weiter die Hyperebene verschobe wird, desto größer
ist auch der Halbraum. Unser Algorithmus berechnet das Volumen einer Vereinigung
von Polytopen geschnitten mit dem Halbraum der Sweep-Ebene als eine Funktion
abhängig von der Veschiebung. Ab einem gewissen Punkt liegt der Körper dabei
komplett im Halbraum der Sweep-Ebene und das Volumen bleibt konstant.
Unser Algorithmus unterscheidet sich in zwei Punkten von dem Algorithmus von
Bieri und Nef. Erstens funktioniert er nur auf der Vereinigung von Polytopen,
wohingegen der Algorithmus von Bieri und Nef für Nef-Polyeder funktioniert. Diese
sind eine Verallgemeinerung von Polyedern, die auch die Klasse der Vereinigung von
Polytopen umfasst. Für uns ist das allerdings kein Nachteil, da unsere Datensätze zu
Vereinigungen von Polytopen führen. Zweitens ist unser Algorithmus in zwei Teile
aufgeteilt. Im ersten Teil wird eine Datenstruktur entwickelt, aus der im zweiten Teil
zusammen mit einer Richtung die Sweep-Ebenen-Volumenfunktion berechnet wird.
Der Großteil der Komplexität liegt im ersten Teil des Algorithmus. Das hat den
Vorteil, dass wir die Volumenfunktionen für viele verschiedene Richtungen berechnen
können. So können Einblicke in die Struktur des Körpers gewonnen werden.
Der Algorithmus beruht auf zwei verschiedenen Zerlegungsansätzen. Zuerst können
wir mit Hilfe von Anordnungen von Hyperebenen eine Vereinigung von Polytopen P
in ihre Zellen zerlegen. Dabei berufen wir uns auf die Arbeit[GH17] von Gerstner
und Holtz, in der das Konzept der Positionsvektoren eingeführt wird. Diese nutzen
wir um die Ecken und ihre benachbarten Zellen zu bestimmen. So erhalten wir eine
Zerlegung unserer Vereinigung in Zellen, deren paarweise Schnitte kein Volumen
haben. Das zweite Zerlegungskonzept ist die konische Zerlegung, wie sie von Lawrence
in [Law] eingeführt wurde. Mit Hilfe dieser können wir die Indikatorfunktion eines
Polytops als die Summe der Indikatorfunktionen seiner Vorwärtskegel schreiben. Die
Sweep-Ebenen Volumenfunktionen können dann leicht mit Hilfe einer altbekannten
Formel [Ste66] für das Volumen von Simplices berechnet werden.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Literature . 2
1.3 The Algorithm . 4

1.3.1 Data Structure Algorithm . 4
1.3.2 Sweep-Plane Volume Algorithm 5

2 Polyhedra 9
2.1 Preliminaries . 9
2.2 Conic Decomposition . 13
2.3 Regularization of Degenerate Vertices 19

2.3.1 The Algorithm . 22

3 The Data Structure 25
3.1 Hyperplane Arrangements . 25
3.2 The Algorithm . 30

3.2.1 Computational Complexity . 31

4 Sweep-Plane Volume 33
4.1 A Formula for the Volume . 33
4.2 The Algorithm . 38

5 Implementation and Computational Results 41
5.1 Implementation . 41

5.1.1 Hyperplane Comparison . 41
5.1.2 Neutralizing Vertex Cones . 41

5.2 Computational Results . 43
5.2.1 Unit Cube Runtime . 43
5.2.2 Overlapping Simplices . 44
5.2.3 Overlapping Polytopes Cut Analysis 45

6 Conclusion 49

Bibliography 51

1

1 Introduction

In this thesis we discuss an algorithm for the computation of the volume of the union
of polytopes. The algorithm is based on the work of Bieri and Nef [BN83], who in
1983 published an algorithm for the computation of the volume of Nef polyhedra
which are a generalization of polyhedra.
While there are many algorithms for the volume of polytopes and also for the volume
of the union of polytopes our approach has a big upside. It calculates the volume up
to a sweep-plane in a beneath and beyond approach. The sweep-plane is a hyperplane
H(a, λ) given by a direction a and a time λ. While the parameter λ is increasing, the
part beneath the sweep-plane, namely H−(a, λ), is growing. For polytopes Pi, i ∈ [k]
and their union P := ⋃

i∈[k]
Pi the volume Vol(P ∩H−(a, λ)) beneath the sweep-plane

is calculated as a function of λ. This function allows us to see interesting changes in
the volume.
The main advantage of our algorithm over the algorithm of Bieri and Nef is that we
separated the algorithm into two parts. In the first part a data structure is developed.
Most of the computations are done while building the data structure. Together with
the direction of a sweep the data structure corresponds to a decomposition of the
union of polytopes, which is named the conic decomposition. This decomposition is
used in the second part, where the sweep-plane volume function is calculated for a
specific direction. Since the complexity of the calculation of the sweep-plane volume
function is low, we are able to compute it for many different directions. The algorithm
of Bieri and Nef does not have this separation and therefore it would be computational
expensive to calculate the sweep-plane volume function for different sweep directions.

1.1 Motivation

This thesis evolved from the project "Combinatorial switching for routing gas flows"
at Konrad-Zuse-Zentrum Berlin. The project is a subproject of the DFG-funded
Collaborative Research Center TRR154 "Mathematical Modelling, Simulation and
Optimization using the Example of Gas Networks". The subproject is about modelling
and analysing configurations for compressor stations in a gas network. To control
the gas flow in a gas network one needs to select operation modes for the compressor
stations. For different configurations we get different bounds on physical variables as
the pressure, the mass flow and the adiabatic head. Including different configurations
is leading to non-convex MINLPs. For approximations of those models, a decompo-
sition into disjoint polytopes is desirable. The idea was to develop methods for the
approximative convex decomposition (ACD) in arbitrary dimension.

1

1 Introduction

Figure 1.1: A union of polytopes and a cut.

Through the algorithm of Bieri and Nef [BN83] the idea came up to find an ACD
in a branch-and-bound manner. The goal is to recursively decompose the body as
long as the convexification error is too high. With the algorithm we are able to scan
the volume through the body similar to a tomography. By scanning the volume from
different directions we hope to find hyperplanes which separate the union of polytopes
into two bodies which are closer to their respective convex hull. Since we could not
find an implementation of the algorithm in [BN83] we decided to implement it on our
own.
In order to find these cutting hyperplanes we looked at the difference of the sweep-
plane volumes of the convex hull and the non-convex body. The difference is a
continuously differentiable function of the sweep time λ. We looked at the maximum
of its derivative. The idea behind this heuristic is that at these times the convex body
diverges the most from its non-convex counterpart. If that heuristic is useful, which it
seems like, it finds a good cut for a single direction. What we are doing is to compare
the best cuts for many directions and choosing the one with the highest value in the
derivative. The analysis is not concluded but the heuristic looks promising. Figure 1.1
shows a cut generated by this heuristic.

1.2 Literature

The central source for our work is the algorithm developed by Bieri and Nef[BN83]. In
their paper a sweep-plane volume algorithm for Nef polyhedra in arbitrary dimension
is presented. Nef polyhedra are a generalization of polyhedra. They are generalized
in the sense that you are not only allowed to take intersections of halfspaces but also

2

1.2 Literature

their union and their complements. We are only interested in the class of unions of
polytopes which contains the class of polytopes but is contained in the class of Nef
polyhedra. Bieri and Nef’s algorithm implicitly uses a decomposition concept. They
give an example but a proof is missing.
However, we found the theoretical background in the paper [Law] by Lawrence. There
the conic decomposition, which is the decomposition of a simple polytope into forward
cones, is presented. This decomposition is based on the Brianchon-Gram formula,
which has been proven independently by Brianchon and Gram for dimension 3. The
conic decomposition is also described in [Haa05] and [AG16], where the decomposition
is generalized to the non-simple case. Since we deal with the union of polytopes,
we needed to extend the conic decomposition. This could not be done by simply
summing up the decompositions of the polytopes as we would count the intersecting
parts multiple times.
Bieri and Nef used a cell decomposition algorithm described in [BN82] to extend the
conic decomposition to the union of polytopes. This algorithm computes all adjacent
faces of a vertex recursively by the dimension. Since we are only interested in the
d− 1 dimensional faces this seemed inefficient and we decided for a different approach.
We decompose the union of polytopes into non-intersecting parts and then use the
conic decomposition on these parts. We are using the fact that a union of polytopes
can be written as a union of cells of the underlying hyperplane arrangement. This
is achieved by using the theory of hyperplane arrangements and position vectors as
described by Gerstner and Holtz [GH17]. The concept of matching position vectors is
used to enumerate over adjacent cells of a vertex. We extended this concept to be
able to test if those cells are part of the union of polytopes.
Interestingly there is a decomposition described in [GH17], the so called orthant
decomposition, which is a decomposition of the space into cones and is very similar to
the conic decomposition. But for us the part about the enumeration of the cells and
the theory of position vectors in [GH17] is more important.
To calculate the volume of the cones we used the determinant as it is described in
[Ste66].
A good overview of the exact computation of the volume of polyhedra is given in
[BEF00]. There the conic decomposition is discussed along several triangulation
methods.
For the efficient but not exact computation of the volume of polytopes Cousins and
Vempala recently published an algorithm [CV16] with a target accuracy parameter
that perfoms impressively. They calculated the volume of 100 dimensional objects
such as the isotropic simplex and the unit cube in minutes.
Bringmann and Friedrich developed a fully polynomial-time randomized approximation
scheme [BF10] that is working in arbitrary dimension on the union and intersection
of different classes of bodies, including polytopes.

3

1 Introduction

1.3 The Algorithm
In this section we are presenting a sketch of our algorithm. The algorithm is split
into two parts. In the first part, the data structure is developed that will later be
used to calculate the sweep-plane volume function for a specific direction.

1.3.1 Data Structure Algorithm

The data structure consists of events. An event is a tuple of a vertex and the set
of the corresponding vertex cones in regularized form. Algorithm 1 gets a union of
polytopes P as input and returns a set of events. It first computes all vertices of
the underlying hyperplane arrangement. Afterwards it finds adjacent cells for each
vertex and tests whether these cells belong to P and if so computes the respective
vertex cones. A vertex cone is the intersection of halfspaces belonging to the active
hyperplanes at a vertex. For a graphical example of a union of polytopes, active cells
at a vertex and the respective vertex cones see Figure 1.2.
The calculation of the volume of a vertex cone is easy if the cone is simplicial.

Simplicial vertex cones are the intersection of exactly dimension many halfspaces. At
the vertex of a non-simplicial vertex cone more than dimensional many hyperplanes
meet. Such a vertex is called degenerate. For a degenerate vertex we will introduce
the regularization method, which is the topic of Section 2.3. Most of the total
computational complexity lies in the data structure algorithm, Algorithm 1.

P

(a) The hyperplane arrange-
ment and active cells.

v•

(b) The active cells adjacent
to v.

v•

(c) The vertex cones at v for
the active cells.

Figure 1.2: The union of a triangle and a cube.

4

1.3 The Algorithm

Algorithm 1 Data Structure
Input A union of polytopes P.
Output A set of events E, whereby each event is a vertex together with its cones.

1: HP ← hyperplane arrangement belonging to P
2: E ← ∅, the events
3: for v vertex of H do
4: K(v)← ∅, the vertex cones belonging to P of v
5: for C adjacent cell of v do
6: if C belongs to P then
7: K ← the vertex cone at v that belongs to C
8: if v is degenerate then
9: K ← Regularization(K)

10: end if
11: K(v)← K(v) ∪K
12: end if
13: end for
14: E ∪ (v,K(v))
15: end for
16: return E

1.3.2 Sweep-Plane Volume Algorithm

With the data structure as input we are able to calculate the sweep-plane volume
function for a specific direction in Algorithm 2 by using the conic decomposition. This
is a weighted decomposition of a polyhedron into its forward cones, which are created
by orientating the vertex cones in the direction of the sweep. The conic decomposition
will be the topic of Section 2.2. The geometry behind the conic decomposition is
visualized for a simple example in Figure 1.3. Algorithm 2 first sorts the events by
occurrence in the sweep and iteratively calculates the sweep-plane volume of the
corresponding cones. The time λv at which an event with vertex v occurs on the
sweep given by the direction a, is given by the scalar product 〈a,v〉.
The sweep-plane volume functions for cones are polynomials and therefore their sum
is also polynomial. The sweep-plane volume function is consequently a piecewise
polynomial function. It is piecewise polynomial since events contribute to the volume
only if the sweep-plane has already met them. In particular the volume can be
expressed as

Vol(P ∩H−(a, λ)) =
∑
i∈[n]
λi≤λ

(λ− λi)dγi. (1.1)

Here λi is the time the sweep meets event ei and γi ∈ R is the (possibly negative)
growth factor of volumes of the forward cones at ei. In Chapter 4 we will learn how
to determine γ. We will also find out that we do not need to calculate the forward
cones explicitly.

5

1 Introduction

Algorithm 2 Sweep-Plane Volume
Input Set of events E as returned by Algorithm 1 and a vector a.
Output The sweep-plane volume as a piecewise polynomial function p.
sort E by λv = 〈a,v〉, the time at which the sweep-plane meets the vertex
p← []
for e = (v,K) event in E do

γ = 0, the growth factor of the volume of the forward cones of e
for cone K ∈ K do

calculate forward cone F of K with respect to a
calculate γF , the growth factor of F
γ = γ + γF

end for
p.append([λv, γ])

end for
return p

1P

P

=

Pa

+1F (Kv1 ,a)

P

−1F (Kv2 ,a)

a

P

+1F (Kv3 ,a)

a

Figure 1.3: The indicator function of a polytope as weighted sum of the indicator
functions of the forward cones.

6

1.3 The Algorithm

Figure 1.4: A union of polytopes and the sweep-plane with direction (1
1) at λ = 1.

and the corresponding volume graph.

7

2 Polyhedra

Our algorithm computes the volume of a union of polytopes. To understand how
it works we will learn in Section 2.1 what polytopes, polyhedra and cones are and
how we can describe them. We will then introduce the conic decomposition for
simple polytopes in Section 2.2. In Section 2.3 we will then learn how we handle the
non-simple case.

2.1 Preliminaries
We describe a hyperplane by its normal vector a and its offset λ.

Definition 2.1 For a ∈ Rd\{0} and λ ∈ R the set H(a, λ) := {x ∈ Rd : 〈x,a〉 = λ}
is called a hyperplane. We use H−(a, λ) := {x ∈ Rd : 〈x,a〉 ≤ λ} as the notation for
the closed negative halfspace and H+(a, λ) := {x ∈ Rd : 〈x,a〉 ≥ λ} for the closed
positive halfspace defined by H(a, λ).
For the hyperplane itself we will later also use the notation H0(a, λ) := H(a, λ). If a
point x lays on the hyperplane H(a, λ), that means if x ∈ H(a, λ), we call H(a, λ)
active at x.

A hyperplane has different representations.

Corollary 2.2 The positive halfspace H+(a, λ) is equal to the negative halfspace
H−(−a,−λ).

The notion of the positive (negative) halfspace is only useful in combination with
the parameters of the hyperplane.

Definition 2.3 The finite intersection of closed halfspaces P = ⋂
i∈[m]

H+/−(ai, λi) is

called a polyhedron. If P is bounded, we call it a polytope. The 0-dimensional faces of
a polytope are called vertices.

We can write any polyhedra as the intersection of only negative (or only positive)
halfspaces. It is just a matter of the orientation of the normal vector a as we have
seen in Corollary 2.2. For the sake of simplicity we will restrict ourself to the case
P = ⋂

i∈[m]
H−(a, λ) if convenient.

Remark We can also describe a polytope P as the solutions of the corresponding
linear inequality system Ax ≤ λ.

Our object of interest is more general than polytopes, as it is the finite union of
polytopes.

9

2 Polyhedra

Definition 2.4 Let Pi be polytopes for i ∈ [m]. We denote P := ⋃
i∈[m]

Pi for the

union of polytopes.

We want to describe the union of polytopes by using local properties. Later we will
decompose the union of polytopes into cells which we then decompose into forward
cones. To be able to do so we need the concept of a vertex cone. A vertex cone is the
cone given by the halfspaces active at the vertex as in Example 2.6 and Figure 2.1.

Definition 2.5 Let P = ⋂
i∈[m]

H−(ai, λi) be a polyhedron and v be a vertex of P .

Let Iv ⊂ [m] be the indices of the halfspaces active at v. Then

Kv :=
⋂
j∈Iv

H−(aj , λj)

is called the vertex cone of v at P .

Example 2.6 We define the hyperplanes

H1 :=H(
(
−1
0

)
, 0), H2 :=H(

(
0
−1

)
, 0), H3 :=H(

(
1
0

)
, 1),

H4 :=H(
(

0
1

)
, 1), H5 :=H(

(
0
−1

)
,−0.5), H6 :=H(

(
−1
1

)
, 0.5).

Let P1 := H−1 ∩H
−
2 ∩H

−
3 ∩H

−
4 and P2 := H−3 ∩H

−
5 ∩H

−
6 . Then P = P1 ∪ P2 is a

union of polytopes. Furthermore v :=
(

1
1
2

)
is a vertex of P2. Its vertex cone is given

by H−3 ∩H−5 . See Figure 2.1.

It should be noted that in a union of polytopes a vertex can have multiple vertex
cones that correspond to different polytopes. We will first decompose the union into
cells, which are polyhedra and then decompose those cells into cones. We will find out
that we can easily calculate the volume of a vertex cone intersected with a halfspace
if this intersection is a simplex.

Definition 2.7 A vertex cone Kv ⊂ Rd that can be written as ⋂
i∈[d]

H−(ai, λi) with

a1, . . . ,ad linear independent is called a simplicial cone at v.
A polyhedron P is simple if at every vertex exactly d of the defining hyperplanes
are active. We call such a vertex non-degenerate and a vertex at which more than d
hyperplanes are active degenerate.

A vertex can be degenerate even if its vertex cone at a polytope is simplicial if
there is a redundant halfspace or if it lies in multiple polytopes. To describe simplicial
vertex cones by means of its vertex and rays the following two definitions are needed.

Definition 2.8 For two sets A,B ⊆ Rd the Minkowski sum A + B is defined as
A+B := {x+ y|x ∈ A,y ∈ B}.

10

2.1 Preliminaries

v

Kv

P1

(
0
−1

)
(
−1
0

)
(

1
0

)

(
0
1

)

P2

(
−1
1

)

(
0
−1

)

Figure 2.1: A union of the square P1 and the triangle P2 from Example 2.6.

Definition 2.9 Let r1, . . . , rm ∈ Rd be vectors. The positive hull of those vectors is
defined by pos(r1, . . . , rm) := { ∑

i∈[m]
µiri|µi ∈ R≥0}.

The following proposition is crucial for computing the volume of the building blocks
of our decomposition, the vertex cones.

Proposition 2.10 Let K ⊂ Rd be a simplicial cone with one vertex v. Let H−(ai, λi),
i ∈ [d] be the halfspaces that generate K.

Let A :=

a
T
1
...
aTd

 and λ :=

λ1
...
λd

. Let
(
r1 . . . rd

)
= R := −A−1. Then

K = {v}+ pos(r1, . . . , rd). (2.1)

Proof: Clearly K = {x ∈ Rn|Ax ≤ λ}. We will prove eq. (2.1) by set inclusion.

”{v}+ pos(−r1, . . . ,−rd) ⊆ {x ∈ Rn|Ax ≤ λ}”:
Let x = v + ∑

i∈[d]
µiri. We have to show that x ∈ H−(aj , λj) for j ∈ [d]. Because of

11

2 Polyhedra

AR = −Id we know 〈aj , ri〉 =
{

0 if i 6= j

−1 if i = j
. We have

〈aj ,x〉 = 〈v +
∑
i∈[d]

µiri,aj〉

= 〈v,aj〉+
∑
i∈[d]
〈µiri,aj〉

= λj − µj .

With µ ≥ 0 it follows x ∈ H−(aj , λj) for all j ∈ [d] and therefore x ∈ K.

”{v}+ pos(r1, . . . , rd) ⊇ {x ∈ Rn|Ax ≤ λ}”:
Let x ∈ K. Since R has full rank its columns form a basis of Rd. Thus we can write
x = v + ∑

i∈[d]
〈µiri〉 for some µi ∈ R, for i ∈ [d]. It suffices to show that µi ≥ 0 for

i ∈ [i]. Then:

〈x,ak〉 = 〈v +
∑
i∈[d]

µiri,ak〉

= 〈v,ak〉+
∑
i∈[d]

µi〈ri,ak〉

= λk − µk.

Assuming µk < 0 would therefore imply x /∈ H−(ak, λk), in contradiction to x ∈
K.

If we have a cone given by K = {v} + pos(r1, . . . , rs) we call ri a ray of K for
i ∈ [s]. We now have two ways to write a simplicial cone with one vertex. This also
holds true for general polyhedra and both descriptions together are known as the
double description. This term was introduced by Motzkin et al. in [MRTT53]. For
our purpose the proposition above is sufficient, since we only need both descriptions
for simplicial cones with a single vertex.
We define the volume as the Lebesgue measure of a set, where we denote the Lebesgue
measure with µ instead of the more common λ, since we use λ as parameter for the
offset of a hyperplane.

Definition 2.11 The volume of a measurable set M ⊂ Rd is defined as the Lebesgue
measure µ of M , that means

Vol(M) := µ(M) (2.2)

Later it will be helpful to describe sets by their indicator function.

Definition 2.12 Let M ⊂ Rd be a measurable set. Then the indicator function

12

2.2 Conic Decomposition

1M : Rd → {0, 1} is defined via

1M (x) =
{

0 if x /∈M
1 if x ∈M

. (2.3)

The indicator function and the volume are directly connected by the Lebesgue
integral.

Corollary 2.13 Let M ⊂ Rd be a measurable set. Then the following holds true for
the volume:

Vol(M) =
∫
Rd

1Mdµ (2.4)

2.2 Conic Decomposition

In this section we are introducing a decomposition concept for polytopes. The
characteristic of this decomposition is that the polytope can be written as a weighted
sum of cones. That means that we can write the indicator function of a simple
polytope P as

1P =
∑

v is vertex
(−1)σ(Kv ,a)1F (Kv ,a). (2.5)

Here F (Kv,a) are cones characterized by the rays at v and the sweep-plane direction
a. Geometrically speaking, the rays of the vertex cones are flipped such that they
are oriented along the sweep direction. The resulting cone is called the forward cone
F (Kv,a). Its indicator function is part of the sum, whereby its sign depends on the
number of rays that have to be flipped to convert the vertex cone into the forward
cone. In this section we will proof eq. (2.5) for simple polytopes only and follow the
proof that is given in [Law]. In Section 2.3 we will give a variation for the non-simple
case which was proven by Haase [Haa05].
We want to define the forward cone. To be able to do so we first need to describe
forward in relation to the sweep direction. The decomposition only works with sweep
directions for which no ray lies in the sweep-plane.

Definition 2.14 A direction a ∈ Rd is a valid sweep direction if no vertex cone
defining ray r is found on the sweep-plane at the time λ = 0, which is equivalent to
〈r,a〉 6= 0 for all rays r.

If we choose our sweep direction randomly it should always be valid.

Remark The probability that a sweep direction is not valid is 0 if it is chosen
uniformly at random from Qd.

Definition 2.15 Let r be a ray at the vertex v and a be a valid sweep direction.
Then r is directed beyond (beneath) with respect to a if 〈a, r〉 > 0 (〈a, r〉 < 0).
For α ∈ R\{0} the ray αr is called a forward ray to r iff it is directed beyond.

13

2 Polyhedra

r1

r1

r2

r2

F (Kv,a)

Kv

v•

F1 F2
a =

(
0
1

)

Figure 2.2: The local structure of the vertex v as in Example 2.17 and Example 2.25.

For a ray r and a sweep direction a with 〈r,a〉 6= 0 we can find a forward ray
through r

〈a,r〉 . Every vertex cone corresponds with a valid sweep direction to a forward
cone. This cone is build from the vertex and the forward rays.
Definition 2.16 Let Kv := {v}+ pos(r1, . . . , rd) be a simplicial vertex cone. Let a
be a sweep direction with 〈a, ri〉 6= 0 for all i ∈ [d]. Let ri := ri

〈a,ri〉 for i ∈ [d]. Then
F (Kv,a) := {v}+ pos(r1, . . . , rd) is called the forward cone of Kv with respect to a.

It does not matter which forward ray is used since through taking the positive hull
the scaling is irrelevant. The following example illustrates Definition 2.16.

Example 2.17 We define the vertex v :=
(

0
0

)
and the rays r1 :=

(
−1
−1

)
, r2 :=

(
0
−1

)

as well as the vertex cone Kv := {v}+ pos(r1, r2). For the sweep direction a :=
(

0
1

)
we have

r1 := r1
〈a, r1〉

=
(

1
1

)

r2 := r2
〈a, r2〉

=
(

0
1

)
.

The forward cone is given by F (Kv) = {v}+ pos(r1, r2).
As we have learned in Proposition 2.10, we can compute the rays r1, . . . , rd that

span the local cone of v by taking the inverse of the matrix containing the active
hyperplanes as rows. For a directions ri, i ∈ [d] we can check whether it is a forward
ray by evaluating the scalar product 〈ri,a〉.
The sign of a forward cone in eq. (2.5) is defined by the number of flips that have

to be performed to transfer the vertex cone into the forward cone.

14

2.2 Conic Decomposition

Definition 2.18 Let Kv := {v}+ pos(r1, . . . , rd) be a simplicial vertex cone. Let a
be a valid sweep. We define the number of rays of the cone that are directed beneath
as

σ(Kv,a) := |{ri|〈ri,a〉 < 0, i ∈ [d]}|. (2.6)
We are now able to state the theorem which lets us write the indicator function

of our polytope as the signed sum of its forward cones as we did in eq. (2.5). This
theorem and its proof are borrowed from [Law].
Theorem 2.19 Let a be a valid sweep direction. Then for a simple polytope P ⊂ Rd
with vertices v1, . . . ,vn and vertex cones K1, . . . ,Kd it holds true that

1P =
∑
i∈[n]

(−1)σ(Ki,a)1F (Ki,a)

To be able to prove Theorem 2.19 we need some tools. First, we define the cone
generated by a polytope P at one of its faces. This is a polyhedron generated by the
face and all rays that are directed into the polytope. It is a generalization of the
vertex cone.
Definition 2.20 Let P be polytope and F be a non-empty face of P . Then the
polyhedron generated by P at F is given by

γ(F, P) := {z + α(y − x)|x, z ∈ F,y ∈ P, α ≥ 0}.

We also need the following theorem which is, according to [Law], a strengthened
version of the Brianchon-Gram Theorem which is also known as Gram’s relation. The
proof is similar to the proof of Gram’s relation given in [She67].
Theorem 2.21 Let P be a polytope. Then

1P =
∑

∅6=G face of P
(−1)dim(G)1γ(G,P). (2.7)

The following lemma is a combinatorial fact that is needed for the proof of the
subsequent Proposition 2.24.
Lemma 2.22 For a set T with |T | = n > 0, a set W ⊆ T and a natural number
d > 0 it holds true that

∑
W⊆S⊆T

(−1)d−|S| =
{

0 if W 6= T

(−1)d−|W | if W = T
. (2.8)

Proof: Clearly eq. (2.8) holds true for W = T . For W 6= T the statement is equivalent
to the statement that the number of uneven sets between W and T is equal to the
number of even sets between W and T . We fix an element a ∈ T and look at the
function f : {S ⊆ T |W ⊆ S, |S| is even } → {S ⊆ T |W ⊆ S, |S| is odd } defined by
f(S) = (S\{a})∪ ({a}\S). Clearly f is a bijection and therefore the numbers of even
and uneven sets are equal.

15

2 Polyhedra

In the subsequent Proposition 2.24 we prove another identity which is then used
to proof Theorem 2.19. This identity allows us to write the indicator function on
the forward cone at a vertex as the weighted sum of indicator functions. This sum
contains the indicator functions of polyhedra generated by P at faces containing v,
for which the sweep meets v as the last point. These faces are characterized in the
following definition.
Definition 2.23 Let a be a sweep direction, P be a polytope and v be a vertex of P .
Then we define the set Gv := {G|G is a face of P and arg max

x∈G
{〈x,a〉} = v} of faces

for which 〈·,a〉 attains its maximum at v.
Proposition 2.24 Let P be a full-dimensional simple polytope, v be a vertex of P
with local vertex cone Kv and let a be a valid sweep direction. Then it holds true that

(−1)σ(Kv ,a)1F (Kv ,a) =
∑
G∈Gv

(−1)dim(G)1γ(G,P). (2.9)

Proof: Let Kv = ⋂
i∈[d]

H−(ai, λi). The 2d subsets of [d] and the set of faces containing

v are in bijective correspondence via

f(S) := {x ∈ Rd|〈ai,x〉 = λi, i ∈ S} ∩ P. (2.10)

This bijection is order-reversing, that means that from S ⊆ T it follows f(T) ⊆ f(S).
Also dim(f(S)) = d− |S|. It is also true that γ(f(S), P) = {x|x ∈ H−(ai, λi), i ∈ S}.
It follows that x ∈ f(S) if and only if S ⊆ Tx with

Tx := {i ∈ [d]|x ∈ H−(ai, λi)}. (2.11)

Since P is simple and full-dimensional we can write

a =
∑
i∈[d]

γiavi . (2.12)

Let W ⊆ [d] be the set of indices of the hyperplanes active at v for which γi < 0 for
i ∈W . With eq. (2.12) W is the unique smallest set for which the sweep attains its
maximum in v at the corresponding face f(W). So arg max

x∈f(W)
{〈a,x〉} = v. For every

face G ∈ Gv the hyperplanes H(ai, λi) must be active for i ∈ W . That means that
for any S with f(S) ∈ Gv it holds true that W ⊆ S. With eq. (2.11) it follows that
for any x ∈ Rd the value of the right hand side of eq. (2.9) is∑

G∈Gv

(−1)dim(G)1γ(G,P)(x) =
∑

W⊆S⊆Tx

(−1)dim(G)1γ(f(S),P)(x). (2.13)

With x ∈ γ(f(S), P) if and only if S ⊆ Tx it follows:∑
W⊆S⊆Tx

(−1)dim(G)1γ(f(S),P)(x) =
∑

W⊆S⊆Tx

(−1)d−|S|. (2.14)

16

2.2 Conic Decomposition

With Lemma 2.22 it follows

∑
W⊆S⊆Tx

(−1)d−|S| =
{

0 if W 6= Tx

(−1)d−|W | if W = Tx
. (2.15)

The forward cone at F can be written as the interesection

F (Kv,a) =
⋂

i∈[d]\W
H+(ai, λi) ∩

⋂
j∈W

H−(ai, λi). (2.16)

Therefore ∑
G∈Gv

(−1)dim(G)1γ(G,P) =
∑

W⊆S⊆Tx

(−1)d−|S|

= (−1)σ(Kv ,a)σ(F (Kv,a))(x).

The following example helps to comprehend the geometry that is inherent to the
identity from eq. (2.9).

Example 2.25 Let P be a polytope with vertices

v1 :=
(

0
0

)
, v2 :=

(
1

0.5

)
, v3 :=

(
1
1

)
.

We look at v3 and its vertex cone Kv3 := {v}+ pos(r1, r2), whereby r1 :=
(
−1
−1

)
and

r2 :=
(

0
−1

)
. Let a :=

(
0
1

)
be the sweep direction. Then the forward cone F (Kv3 ,a)

is given by

F (Kv3 ,a) = {v3}+ pos(
(

1
1

)
,

(
0
1

)
).

The local structure of P at the vertex v3 is visualized in Figure 2.2. Let F1 (F2) be
the face at the edge corresponding to r1 (r2). The polyhedron γ(F1, P) (γ(F2, P)) is
given by the halfspace right (left) from the respective edge. Then, by Equation (2.9),
it holds true that

1F (Kv ,a) = 1γ(v,P) −1γ(F1,P) − 1γ(F2,P) +1γ(P,P)

= 1Kv −1γ(F1,P) − 1γ(F2,P) +1R2 .

For the conic decomposition of P look at Figure 2.3.

We are now able to prove Theorem 2.19.

17

2 Polyhedra

1P

P

=

Pa

+1F (Kv1 ,a)

P

−1F (Kv2 ,a)

a

P

+1F (Kv3 ,a)

a

Figure 2.3: The conic decomposition of a polytope. See example 2.25.

Proof: With eq. (2.9) we have∑
v

vertex of P

(−1)σ(Kv ,a)1F (Kv ,a) =
∑
v

vertex of P

∑
G∈Gv

(−1)σ(Kv ,a)1F (Kv ,a). (2.17)

Since every bounded face is contained in exactly one Gv it holds true that∑
v

vertex of P

∑
G∈Gv

(−1)σ(Kv ,a)1F (Kv ,a) =
∑

G bounded
face of P

(−1)dim(G)1P . (2.18)

With Theorem 2.21 it then follows∑
G bounded
face of P

(−1)dim(G)1γ(G,P) = 1γ(G,P). (2.19)

Since the volume of a measurable set can be described as the integral over the
indicator function as in Corollary 2.13, the following corollary is a direct consequence
of Theorem 2.19.

Corollary 2.26 Let P be a simple polytope with vertices v1, . . . ,vn and a be a valid
sweep direction. Then

Vol(P ∩H−(a, λ)) =
n∑
i=1

(−1)σ(Kvi ,a) Vol(F (Kvi ,a) ∩H−(a, λ)).

18

2.3 Regularization of Degenerate Vertices

2.3 Regularization of Degenerate Vertices

In this section we will develop a method which reduces a degenerate vertex v to the
non-degenerate case. We will find simple polyhedra P (ε) which converge to the vertex
cone Kv as ε → 0 with respect to the Hausdorff metric. That means that we can
handle the non-simple case locally and do the regularization for each vertex cone
independently.
The idea and technique of the regularization process is borrowed from [BN83], where
it is described, but not formalized. In this chapter we will develop a formalization of
the regularization. We will build a new polyhedron by starting with a cone defined
by d of the active hyperplanes at v. We will then consecutively shift the other
hyperplanes, such that the previous polyhedron is completely contained in the shifted
open halfspace.
There are other ways to handle the degenerate case, such as decomposing a non-
simplicial cone into multiple simplicial cones. Our approach is similar, as we have
only simplicial cones in our generated polyhedron.

Example 2.27 Let H1 := H(
(

0
−1

)
, 0), H2 := H(

(
−1
−1

)
, 0), H3 := H(

(
1
−1

)
, 0)

and K :=
3⋂
i=1

H−i . Let H3(ε) := H(
(

1
−1

)
, ε) with ε > 0. We look at K(ε) :=

H−1 ∩ H
−
2 ∩ H

−
3 (ε) and observe that it is the result of shifting the hyperplane in

direction of its normal vector by ε. It is easy to see that lim
ε→0

K(ε) = K holds true. In
Figure 2.4 the shift for ε = 1 is depicted.

(
1
−1

)

(
−1
−1

)

(
0
−1

)

(a) The polyhedron K defined by
H−

1 , H
−
2 , H

−
3 .

(
1
−1

)

(
−1
−1

)

(
0
−1

)

(b) The polyhedron K(1) defined by
H−

1 , H
−
2 , H

−
3 (1).

Figure 2.4: A polytope and the polytope that results from shifting a hyperplane
outwards. See Example 2.27.

19

2 Polyhedra

Definition 2.28 Let v be a vertex with the vertex coneKv generated by the halfspaces
H−(a1, λ1), . . . ,H−(am, λm). Let Ω := {ω1, . . . , ωm} ⊂ R≥0 be a set of positive real
numbers. Let ε > 0. Then Hi(ωi, ε) := H(ai, λi+εωi) is the by ωiε shifted hyperplane.
For better readibility we will omit ωi and write Hi(ε) if the set Ω is already defined.
P (Ω, ε) := ⋂

i∈[m]
H−i (ωi, ε) defines a polyhedron for each ε > 0.

All hyperplanes are shifted by the same factor ε, which serves as a scaling parameter
for the shift. Later we see that the structure of the polyhedron is independent of the
scaling.

Corollary 2.29 Let v be a vertex with vertex cone Kv := ⋂
i∈[m]

H−(ai, λi). Let

Ω := {ω1, . . . , ωm} ⊂ R≥0. It holds true that lim
ε→0
ε>0

P (Ω, ε) = Kv.

Furthermore let H−(a, λ) be a sweep-plane with v ∈ H−(a, λ). Then

Vol(Kv ∩H−(a, λ)) = lim
ε→0
ε>0

Vol(P (Ω, ε) ∩H−(a, λ)).

Proof: The shifted polyhedrons clearly converge to the original cone for ε→ 0 with
respect to the Haussdorf metric. With P (Ω, ε1) ⊂ P (Ω, ε2) for ε1 ≤ ε2 and the
Lebesgue measure being continuous from above the volume converges as well.

For all ε > 0 the incidence structure of the polyhedron P (Ω, ε) generated by a shift
Ω is the same. For our purpose the slightly weaker following proposition is sufficient.

Proposition 2.30 Let v be a vertex with vertex cone Kv := ⋂
i∈[m]

H−(ai, λi). Let

Ω := {ω1, . . . , ωm} ⊂ R≥0 be a set of positive shifting parameters. Let v1, . . . ,vl be
the vertices of P (Ω, 1). Then the vertices of P (Ω, ε) are given by vi(ε) := v+ ε(vi−v)
for i ∈ [l] and ε > 0.
Let Hvi1 (1), . . . ,Hvim (1) be the hyperplanes active at vi. Then precisely the hyperplanes
Hvi1 (ε), . . . ,Hvim (ε) are active at vi(ε). The cone Kvi(ε) := ⋂

j∈[m]
Hij (ε) can be

described as the Minkowski sum vi(ε) +Kvi
0 for i ∈ [l] whereby Kvi

0 is a cone with 0
as its only vertex which is independent of ε.

Proof: Let vj be a vertex of P (Ω, 1) and Ivj ⊂ [m] be the indices of the active
hyperplanes at vj . That means vj ∈ Hi(1) if and only if i ∈ Ivj .
We want to show that vj(ε) = v + ε(vj − v) is a vertex of P (Ω, ε). First we show
vj(ε) ∈ Hi(ε) for i ∈ Ivj . This follows from 〈ai,vj〉 = λi + ωi and 〈ai,v〉 = λi:

〈ai, (v + ε(vj − v))〉 = λi + ε(λi + ωi − λi). (2.20)

The same argument works if we have a strict inequality in eq. (2.20). That means for
i /∈ Ivj it holds

〈ai, (v + ε(vj − v))〉 < λi + ε(λi + ωi − λi). (2.21)

20

2.3 Regularization of Degenerate Vertices

Therefore vj(ε) is a vertex of P (Ω, ε) and the same hyperplanes are active at vj(ε)
as at vj .
We need to prove that v1(ε), · · · ,vl(ε) are all vertices of P (Ω, ε). Let w be a vertex
of P (Ω, ε). We define w := w−v

ε + v and with the same argument as in 2.20 we see
that w is a vertex of P (Ω, 1). Since w(ε) = w, all vertices of P (Ω, ε) correspond to
vertices in P (Ω, 1) and vice versa.
Let Kvi(ε) := ⋂

j∈[m]
Hij (ε) be the cone at the vertex vi(ε). We look at the linear

inequality system Ax ≤ b which is defined by the hyperplanes active at vi(ε). Then
for x ∈ Kvi(ε) it holds true that

Ax ≤ b
Ax ≤ Avi(ε)

A(x− vi(ε)) ≤ 0.

Let Kvi
0 := {x|Ax ≤ 0} which is clearly a cone with 0 as its only vertex. We can

then write Kvi(ε) = vi(ε) +Kvi
0 .

We found out that our local vertex cones are, up to translation, independent of
the factor ε by which the shifting is scaled. We will now find an Ω for which the
corresponding shifted polytope P (Ω, 1) is simple. With Proposition 2.30 it follows that
P (Ω, ε) is simple for ε > 0. We start our construction by choosing d many hyperplanes
active at v with linear independent normal vectors. From there we iteratively shift
the hyperplanes in such a way that all old vertices are in the open shifted halfspace
and therefore are left untouched. Furthermore we will show that new vertices that
occur by shifting a hyperplane are non-degenerate.

Proposition 2.31 Let v be a vertex with vertex cone Kv := ⋂
i∈[m]

H−(ai, λi). Without

loss of generality let a1, . . . ,ad be linear independent and let Pd := ⋂
i∈[d]

H−(a1, λ1).

Then Pd is a simplicial cone.
For j ∈ {d,m− 1} let Pj+1 := ⋂

i∈[j]
H−(a1, λ1) ∩H−j+1 with

Hj+1 := H(aj+1, λj+1 + ωj+1)

and ωj+1 chosen in such a way that all vertices of Pj are contained in the open
halfspace H̊−j+1. Then all vertices of Pm are non-degenerate.

Proof: Since Pd is the intersection of exactly d many hyperplanes, v is the only
degenerate vertex of Pd.
We will show by induction that all vertices of Pm are non-degenerate. Pd only has one
vertex which is non-degenerate. We assume that Pj has only non-degenerate vertices
and look at Pj+1.
For any vertex v of Pj it holds true that it is a vertex of Pj+1 since the halfspace H−j+1
is constructed in such a way that v is in its interior. For any new vertex ṽ of Pj+1 it

21

2 Polyhedra

holds true that at maximum d− 1 hyperplanes of Pj can be active at ṽ. Otherwise ṽ
would already be a vertex of Pj or Pj would be not simple. Only one new hyperplane
is added and at least d hyperplanes have to be active at ṽ for it to be a vertex. That
means exactly d hyperplanes are active at ṽ and therefore ṽ is non-degenerate.

We are now able to construct a simple polytope that converges to our vertex cone
iteratively.

Definition 2.32 Let Kv = ⋂
i∈[m]

H−(ai, λi) be a vertex cone. Let Ω = {ω1, . . . , ωm}

be a set of shifting parameters according to Proposition 2.31. Then we call P (Ω, 1)
a regularization of Kv. Let K1(1), . . . ,Kl(1) be the vertex cones of P ((Ω, 1) with
Ki(1) = {vi}+ pos(ri1 , . . . , rid). The regularized vertex cones for the vertex are then
given by Ki := {v}+ pos(ri1 , . . . , rid).

The following theorem generalizes the conic decomposition from Theorem 2.19 to
non-simple polytopes. The generalization is described in [Haa05] and [AG16]. The
theorem states that we can regularize a polytope by regularizing degenerate vertices
locally.

Theorem 2.33 Let P ⊂ Rd be a polytope with vertices v1, . . . ,vn. Let Pvi(Ω, 1) be a
regularization of the vertex cone Kvi for i ∈ [n]. Let K(1)

vi , . . . ,K
(mi)
vi be the regularized

vertex cones at vi. Then

1P =
∑
i∈[n]

∑
j∈[mi]

(−1)σ(K(j)
vi
,a)1

F (K(j)
vi
,a). (2.22)

2.3.1 The Algorithm

Algorithm 3 first calculates a simple polyhedron P (Ω, 1) as in Proposition 2.31. Let
v1, . . . ,vl be the vertices of P (Ω, 1) and Kvi(ε) = {vi(ε)}+ pos(ri1 , . . . , rid) be the
vertex cone at vi for i ∈ [l]. With Proposition 2.30 it holds that

lim
ε→0

Kvi(ε) = {v}+ pos(ri1 , . . . , rid). (2.23)

So we can calculate the vertex cones for P (Ω, 1) and then replace their vertices by v.

Remark The vertices of P can be calculated by using the double description method
as first introduced in [MRTT53]. A fast implementation is described by Fukuda and
Prodon in [FP96]. We used the corresponding python package pycddlib 2.0.0.

In Example 2.27 we have looked at a degenerate vertex in dimension 2. Even
though the vertex is degenerate the vertex cone can be described as the intersection
of 2 halfspaces and is therefore simplicial. This is always the case in dimension 2. In
Example 2.34 we look at the non-simplicial case, where the degeneracy is not given
by a redundant halfspace.

22

2.3 Regularization of Degenerate Vertices

Algorithm 3 Regularization
Input A cone K = ⋂

i∈[m]
H−(ai, λi) with vertex v.

Output A set K of vertex cones in regularized form.
1: H ← {H−(ai, λi)|i ∈ [n]}
2: sort {H−(ai, λi), i| ∈ [s]} such that a1, . . . ,ad are linear independent
3: P ←

⋂
j∈[d+1]

Hj

4: i← d+ 1
5: while i ≤ m do
6: V ← vertices of P
7: ωi = max{〈ai,v〉|v ∈ V}+ 1
8: replace H−(ai, λi) with H−(ai, λi + ωi) in H
9: P ←

⋂
j∈[i]

Hj

10: i = i+ 1
11: end while
12: K ← ∅
13: for Ki = {vi(1)}+ pos(ri1 , . . . , rid) vertex cone of P do
14: K.add((v, (ri1 , . . . , rid)))
15: end for
16: return K

Example 2.34 Let

H1 :=H(

−1
0
−1

 , 0), H2 :=H(

 0
−1
−1

 , 0),

H3 :=H(

 0
1
−1

 , 0), H4 :=H(

 1
0
−1

 , 0).

We look at K = ⋂
i∈[4]

H−i . v =

0
0
0

 is the only (degenerate) vertex of K. The

normal vectors of H1, H2 and H3 are linear independent. Therefore we start with
P3 = H−1 ∩H

−
2 ∩H

−
3 . P3 is a simplicial cone with v as vertex. We set

ωi := 0, i ∈ [3] and ω4 := 〈

 1
0
−1

 ,
0

0
0

〉+ 1 = 1.

Let Ω := {ω1, ω2, ω3, ω4}. We look at P (Ω, ε) = ⋂
i∈[4]

H−i (ωi, ε), for which the vertices

23

2 Polyhedra

are given by v(ε) = H1 ∩H2 ∩H3 = v and w(ε) = H2 ∩H3 ∩H4(ω4, ε) =

ε0
0

 . By
Proposition 2.10 the vertex cones of P (Ω, ε) are given by

Kv(ε) = v + pos(

1
0
0

 ,
−0.5

0.5
0.5

 ,
−0.5
−0.5
0.5

)

Kw(ε) = w(ε) + pos(

−1
0
0

 ,
 0.5
−0.5
0.5

 ,
0.5

0.5
0.5

).

Algorithm 3 returns

K1 := (v, (

1
0
0

 ,
−0.5

0.5
0.5

 ,
−0.5
−0.5
0.5

)) and K2 := (v, (

−1
0
0

 ,
 0.5
−0.5
0.5

 ,
0.5

0.5
0.5

)).

K and P (Ω, 1) are depicted in Figure 2.5.

v
•

(a) The "top view" of cone K at the vertex
v.

v
•

w
•

(b) The "top view" of the polyhedron
P (Ω, 1).

Figure 2.5: A non-simplicial vertex cone and the regularized polytope P (Ω, 1) that is
the result of shifting the red hyperplane by 1. See Example 2.34.

24

3 The Data Structure

In this chapter we will develop methods to calculate the relevant vertices of a union
of polytopes and their vertex cones. If we have Polytopes P1, . . . , Pk and their union
P := ⋃

i∈[k]
Pi. The hyperplanes that define those polytopes separate the space into

different cells. P is a subset of those cells. The indicator function of a cell can
be written as the weighted sum of the indicator functions of its forward cones by
Theorem 2.19. We can extend this to the sum of the indicator functions of the cells.
First we determine all vertices of the hyperplane arrangement, then we test which
cells are part of P and compute the corresponding vertex cones.

3.1 Hyperplane Arrangements
Definition 3.1 [S+04] A finite set of hyperplanes H := {H(a1, λ1), . . . ,H(am, λm)}
is called a hyperplane arrangement. We call H non-degenerate if every vertex of H is
non-degenerate.

The defining hyperplanes of a union of polytopes are a hyperplane arrangement.

Definition 3.2 Let Pi = ⋂
j∈Ii

H+/−(aj , λj) be polytopes with Ii ⊂ N and |Ii| < ∞,

for i ∈ [r]. For their union P := ⋃
i∈[r]

Pi we define

HP := {H(aj , λj)|j ∈
⋃
i∈[r]

Ii}

as the P underlying hyperplane arrangement.

For the union of polytopes P and the corresponding hyperplane arrangement HP
it holds true that P is a subset of the cells of H. Also every vertex of P has to be
a vertex of H. A special role is taken by the full dimensional faces of a hyperplane
arrangement.

Definition 3.3 For a hyperplane arrangement H the closures of the connected com-
ponents of the set R = Rd\

⋃
H∈H

H0 are called cells.

A hyperplane arrangement splits the space into different cells. We want to find
characteristics that are decisive when a cell of HP is part of P. The following
combinatorial description lets us write any polyhedron that can be found in the
hyperplane arrangement as a vector.

25

3 The Data Structure

Definition 3.4 Let H ::= {H(a1, λ1), . . . ,H(am, λm)} be a hyperplane arrangement.

We call a vector

p1
...
pm

 =: p ∈ {+,−, 0, •}m which corresponds to the set H(p) :=

{x|x ∈ Hpi
i for i ∈ [m] and pi 6= •} a position vector.

Remark Definition 3.4 is a slight modification of the common definition of a position
vector, e.g. given in [FP08]. There the position vectors are from a smaller set, namely
p ∈ {+,−, 0}k, which corresponds to the set H(p) := {x|x ∈ Hpi

i for i ∈ [k]}. With
our definition, we can describe any polyhedron that can be described with a subset of
the given hyperplanes. That allows us to describe vertex cones and polytopes that
span multiple cells of the hyperplane arrangement.
By allowing a set given by a position vector to be independent from a hyperplane,
the position vector is not necessarily unique for a set.

Definition 3.5 Let H := {H(a1, λ1), . . . ,H(am, λm)} be a hyperplane arrangement
and p be a position vector.
If for every i ∈ [m] with pi = • it holds true that H(p) * H+(ai, λi) and H(p) *
H−(ai, λi), we call p the exact position vector of the set H(p).

Clearly for every set that corresponds to a position vector there is an exact position
vector. Cells are the intersection of halfspaces and vertices are the intersection of at
least d many hyperplanes. As a consequence their exact position vectors have certain
characteristics.

Corollary 3.6 Let H = {H(a1, λ1), . . . ,H(am, λm)} be a hyperplane arrangement.
Let C be a cell of H. Then the exact position vector p(C) has only + and − entries,
i.e. p(C) ∈ {+,−}m.
The exact position vector p(v) of a vertex v of H has at least d many 0 entries.
Furthermore p(v) ∈ {+, 0,−}m.

Since we want to find a decomposition of a union of polytopes into cells of the
corresponding hyperplane arrangement, we are looking for characteristics of cells that
are part of that union. Position vectors help us to analyze the incidence structure of
vertices, vertex cones, cells and polytopes.

Definition 3.7 We say that two position vectors p1,p2 ∈ {+,−, 0, •}m match, if for
all i ∈ [m] one of the following holds true:

(i) p1
i = p2

i

(ii) p1
i ∈ {•, 0}

(iii) p2
i ∈ {•, 0}

We need to differ between the cells that are part of the union of polytopes and
those which are not.

26

3.1 Hyperplane Arrangements

H2

H5

H4H1
H3

H6

P

C

(+ + − − ++)

(+ + − − +−) (− + − − +−)

(− + + − +−)

(+ − − − ++)

(+ − − − +−)

(− − − − +−) (− − + − +−)

(+ − − − −+)

(+ − − − −−)

(− − − − −−) (− − + − −−)

(+ − − + −+)
(+ − − + −−)

(− − − + −−)

(− − + + −−)

(− − + + −+)

v
•

w•

Figure 3.1: The hyperplane arrangement of the union of a square and a triangle with
the cell describing position vectors. See Example 3.9 and Example 3.15.

Definition 3.8 For the union of polytopes P and the corresponding hyperplane
arrangement HP = {H(a1, λ1), . . . ,H(am, λm)} and a position vector p with H(p) 6=
∅ we call p active at P or short active if H(p) ⊆ P.

Example 3.9 We return to Example 2.6. The P underlying hyperplane arrangement
HP and the position vectors of the cells are shown in Figure 3.1.

We look at the vertex v2 :=
(

0
0

)
. The exact position vector of v is given by

p(v) = (00−−+−). The (exact) position vectors of P1 and P2 are given by

p(P1) = (−−−− • •) , p(P2) = (• • − • −−) .

The position vectors of the four adjacent cells of v are given by

p1 := (+ +−−+−) , p2 := (−+−−+−) ,
p3 := (+−−−+−) , p4 := (−−−−+−) .

p(P2) and pi do not match for i ∈ [4]. p(P1) matches p4 but not p1,p2,p3.
Therefore C := H(p4) is the only active cell adjacent to v. The corresponding vertex
cone of v at the cell H(p4) is given by the position vector p(Kv(C)) = (−− • • • •).

We can decompose a union of polytopes P into the active cells of the corresponding

27

3 The Data Structure

hyperplane arrangement HP .

Proposition 3.10 Let P := ⋃
i∈[k]

Pi with Pi ⊂ Rd being full-dimensional polytopes.

Then there exist cells C1, . . . , Cl of HP such that we can write P = ⋃
j∈[l]

Cj.

Proof: The union of all cells of HP is the entire space Rd. Therefore there are cells
Ci, i ∈ [r] of H that cover P, that means P ⊂ ⋃

i∈[r]
Ci. W.l.o.g. let C := {C1, . . . , Cl}

be the smallest cover.
We assume that there is a point v ∈ ⋃

i∈[l]
Ci with v /∈ P. Let C be a cell of the cover

with v ∈ C. We know that there is a point v ∈ C ∩ P since otherwise C /∈ C because
C is a minimal cover. We assume that v is in the interior of the cell C, denoted by C̊.
If there is is no point v ∈ C̊ ∩ P then we do not need C for the cover since P is the
union of full dimensional polytopes.
We can conclude that there has to be a hyperplane in HP that separates v and v.
But that stands in contradiction to C being a cell of HP .

We have learned that P is the union of a subset of cells of the hyperplane arrangement
HP .

Corollary 3.11 Let P be a union of polytopes which can be described as P = ⋃
i∈[l]

Ci

for some cells C1, . . . , Cl of the hyperplane arrangement HP . Then

Vol(P) =
∑
i∈[l]

Vol(Ci).

Proof: The boundary of all cells has Lebesgue measure 0. Therefore it holds true that
Vol(Ci) = Vol(C̊i) for i ∈ [l]. Therefore

Vol(P) = Vol(
⋃
i∈[l]

Ci) = Vol(
⋃
i∈[l]

C̊i). (3.1)

Since the sets C̊i, C̊j are disjoined for i 6= j ∈ [l] it holds

Vol(
⋃
i∈[l]

C̊i) =
∑
i∈[l]

Vol(C̊i) =
∑
i∈[l]

Vol(Ci).

As we have learned in Section 2.2 we can describe a polytope as the weighted sum
of its forward cones. For a vertex v and a polytope P the forward cone depends on
the vertex cone at v and the sweep-plane. Since we want to be able to compute the
volume for multiple sweep-planes efficiently, it makes sense to save the vertex cones of
the cells in the data structure. That means we need a way to find the vertex cones at
a vertex. To determine those cones we first look for the adjacent cells of a vertex.

28

3.1 Hyperplane Arrangements

Proposition 3.12 Let v be a vertex of a hyperplane arrangement H = {H1, . . . ,Hm}
with exact position vector p(v). Let C be a cell of H with exact position vector p(C).
Then the following are equivalent

(i) v ∈ C

(ii) p(v) matches p(C).

Proof: Let v ∈ C. Then pi(v) = pi(C) if Hi is not active at v since v ∈ C. If Hi is
active at v, then pi(v) = 0. Therefore the position vectors match.
The other direction directly follows from the definition of matching position vectors.

This way we can find the adjacent cells to a vertex by iterating over all possible
matching position vectors. In a non-degenerate hyperplane arrangement all matching
position vectors correspond to cells. In a degenerate hyperplane arrangement some of
the position vectors correspond to cells which are not full-dimensional.

Proposition 3.13 Let H be the hyperplane arrangement corresponding to the union
of polytopes P = ⋃

i∈[k]
Pi. Let p(Pi) be the position vector of Pi for i ∈ [k]. Let C be a

cell of H with position vector p(C).
Then C is active if and only if there is a j ∈ [l] such that p(C) and p(Pj) match.

Proof: Let C be active. We want to show that there is an Pi with matching position
vector. First we observe that every active cell is contained in at least one polytope Pi.
From C ⊆ Pi then follows pj(C) = pj(Pi) if pj(Pi) ∈ {+,−}. Therefore the position
vectors match.
Let C be a cell and Pi a polytope such that p(C) and p(Pi) match. Let x ∈ C. Since
the position vectors match, x is in all Pi describing halfspaces. That means x ∈ Pi
and therefore C is active.

This allows us to test whether a cell is active by comparing the position vector to
the position vectors of the polytopes. Combined with Proposition 3.12 we are able to
determine the active cells of a hyperplane arrangement that are adjacent to a given
vertex. For the conic decomposition we need the forward cones. A forward cone only
depends on the vertex cone and the sweep direction. The vertex cone Kv(C) of v at
C is defined as in Definition 2.5 by the halfspaces of C that correspond to the active
hyperplanes at v.

Corollary 3.14 Let H = {H1, . . . ,Hm} be a hyperplane arrangement. Let C be a cell
of H and v ∈ C be a vertex. Then the vertex cone of v at C is given by the position
vector

pi(Kv(C)) :=
{
pi(C) if pi(v) = 0
• else

. (3.2)

29

3 The Data Structure

3.2 The Algorithm
We now are able to give a more detailed version of Algorithm 1. In Section 3.2.1 we
will discuss the computational complexity of Algorithm 4 for the non-degenerate case.
The algorithm and the runtime estimation are based on [GH17] where all vertices and
cells of a hyperplane arrangement are calculated. We are not explicitly stating how
to compute the vertices of the hyperplane arrangement. The key there is to iterate
over all subsets of d hyperplanes. For the non-degenerate case their intersections are
the vertices of the hyperplane arrangement. For degenerate hyperplane arrangements
some of those intersections might be empty. Also it can happen that more than d
many hyperplanes intersect in a vertex. All vertices and incidences can be found by
iterating over the subsets of the hyperplane arrangement that have d elements. For
clever ways to iterate over those subsets the interested reader is referred to [Knu05].
We also need to iterate over the adjacent cells of a vertex, which can be done by using
Proposition 3.12.

Remark The decomposition of P into cells as described in Proposition 3.10 only
works for the union of full-dimensional polytopes. Anyhow, with our procedure
we find all cells C1, . . . , Cl that are active at P. The remaining part of P, namely
P\

⋃
i∈[l]

Ci, has volume 0. Therefore our algorithm works even if some polytopes are

not full-dimensional.

Example 3.15 We return to Example 3.9, for which the hyperplane arrangement is

displayed in Figure 3.1. We now look at the degenerate vertex w =
(

0
0
5

)
for which

the exact position vector is p(w) = (0−−− 00). The 8 position vectors that match
p(w) and result from replacing the 0’s with +/− are

p1 = (+−−−++) , p2 = (+−−−+−) , p3 = (+−−−−−) ,
p4 = (+−−−−+) , p5 = (−−−−++) , p6 = (−−−−+−) ,
p7 = (−−−−−−) , p8 = (−−−−−+) .

The sets H(p3) and H(p5) are not full-dimensional but equal {w}. The remaining
position vectors describe the 6 adjacent cells of v4. Furthermore p6, p7 and p8 match
p(P1) and are therefore active. Since v is degenerate the vertex cones have to get
regularized by Algorithm 3. The vertex and its regularized cones are then added to
the datastructure.

30

3.2 The Algorithm

Algorithm 4 Data Structure Algorithm
Input A hyperplane arrangement H and polytopes p(P1), . . . ,p(Pk)
as position vectors of H.
Output A list of events E = [(v1,Kv1), . . . , (vn,Kvn)].

1: E ← []
2: compute vertices V of H
3: for v ∈ V do
4: Kv ← [], a list of vertex cones at v
5: compute exact position vector p(v)
6: for position vector p(C) ∈ {+,−}|H| that matches p(v) do
7: if p(C) matches p(Pi) for any i ∈ [k] then
8: if v is non-degenerate then
9: Kv.add(Kv(C))

10: else if Kv is full-dimensional then
11: K ← Regularization(Kv)
12: Kv.union(K)
13: end if
14: end if
15: end for
16: if Kv is not empty then
17: E.append(v,Kv)
18: end if
19: end for
20: return E

3.2.1 Computational Complexity

Let Pi be full-dimensional polytopes for i ∈ [k] and P := ⋃
i∈[k]

Pi. We assume that we

have a non-degenerate underlying hyperplane arrangement HP with |HP | = m. HP
has exactly

(m
d

)
many vertices. To calculate the coordinates of v, we have to solve

the corresponding linear equation system which costs O(d3) operations. The position
vector of a vertex is non-zero at m− d many hyperplanes. There the position code
can be calculated by calculating the scalar product which can be done in O(d).
A vertex has exactly 2d many adjacent cells. To test whether a cell is active it is
needed to test whether its position vector matches the position of any polytope. This
can be done in O(mk).
That means the computational complexity of the algorithm is given by

O(
(
m

d

)
(d3 + 2dmk + (m− d)d)). (3.3)

31

4 Sweep-Plane Volume

In this chapter we will learn how to calculate the sweep-plane volume. We will first
introduce a volume formula for the simplex, which we then use to calculate the volume
of simplicial cones. We will give an explicit sweep-plane volume formula for the
general, potentially degenerate case. In the second section we are giving a more
detailed version of Algorithm 2.

4.1 A Formula for the Volume

First we develop a formula for the volume of a simplex. We follow the proof given in
[Ste66].

Theorem 4.1 The volume of a simplex S ⊂ Rd with vertices s1, . . . , sd+1 is given by
the equation:

Vol(S) = 1
d! |det(

(
s1 s2 . . . sd+1
1 1 . . . 1

)
)| (4.1)

Proof: It is easy to see that there is an affine transformation f(x) = Ax+ b that maps
the vertices s1, . . . , sn+1 onto vertices x1, . . . ,xn+1 with

xT1 =
(
x0 0 . . . 0

)
, xTi =

(
0 xi2 . . . xid

)
i ∈ {2, . . . , d+ 1}.

We can choose an affine transformation that fulfills the above properties with orthog-
onal A, i.e. |det(A)| = 1. This transformation maps S onto X = conv(x1, . . . ,xd+1),
the convex hull of x1, . . . ,xd+1. With the multiplicativity of the determinant it follows
that

|det(
(
s1 s2 . . . sd+1
1 1 . . . 1

)
)| = |det(A) det(

(
x1 . . . xd+1
1 . . . 1

)
)|

= |det(
(
x1 . . . xd+1
1 . . . 1

)
)|.

Every point y ∈ X can be written as a convex combination y = ∑
i∈[d+1]

αixi with

d+1∑
i=2

αi = 1− α1.
The idea now is to find a parametrization of X into the first coordinate and the
corresponding n − 1 dimensional simplex. Let x̂i be the point that results from

33

4 Sweep-Plane Volume

deleting the first row of xi for i ∈ {2, . . . , d+ 1}. Furthermore let

Sα1 := conv((1− α1)x̂2, . . . , (1− α1)x̂d+1).

We can then write every point y = ∑
i∈[d+1]

αixi ∈ X as y = α1x0 × y′ with y′ =

d+1∑
i=2

αix̂i ∈ Sα1 . It follows Vol(X) =
∫
X

1dµ =
∫

[0,1]
x0[

∫
Sα1

1dµ]dα1. See Figure 4.1.

We will prove the assumption by induction. Equation (4.1) holds for the two dimen-
sional case. We assume that eq. (4.1) is also true for the n− 1 dimensional case. With
the above observations we have

Vol(S) =
∫

[0,1]

x0[
∫
Sα1

1dµ]dα1

=
∫

[0,1]

x0[1
(d− 1)! |det(

(
(1− α1)x̂2 . . . (1− α1)x̂d+1

1 . . . 1

)
)|]dα1

=
∫

[0,1]

x0[(1− α1)d−1

(d− 1)! |det(
(
x̂2 . . . x̂d+1
1 . . . 1

)
)|]dα1

= 1
(d− 1)! det(

(
x̂2 . . . x̂d+1
1 . . . 1

)
)
∫

[0,1]

(1− α1)(d−1)x0dα1.

For the integral it holds true that
∫

[0,1]
(1−α1)(d−1)x0dα1 = x0

d . With Laplace’s formula

it is easy to see that

Vol(S) = 1
(d− 1)! det(

(
x̂2 . . . x̂d+1
1 . . . 1

)
))xo
d

= x0
(d)! det(


x22 . . . xd+12
...
x2d . . . xd+1d
1 . . . 1



= 1
(d)! |det(


x0 0 . . . 0
0 x22 . . . xd+12
...

...
0 x2d . . . xd+1d
1 1 . . . 1

)|.

At the point at which we have to calculate the sweep-plane volume, we will have a
cone represented as the Minkowki sum of its vertex and its rays. The following corollary

34

4.1 A Formula for the Volume

x0

x1

x2

x3

α1
Sα1

Figure 4.1: The parametrization of the simplex.

makes it easier to calculate the volume of a cone intersected with a sweep-plane.

Corollary 4.2 The volume of a simplex S ⊂ Rd with vertices s1, . . . , sd+1 is given
by the equation:

Vol(S) = 1
d! |det(

(
s2 − s1 . . . sd+1 − s1

)
)| (4.2)

Proof: We know that eq. (4.1) holds true. If we subtract the first column from the
other columns we get:

Vol(S) = 1
d! |det(

(
s1 s2 − s1 . . . sd+1 − s1
1 0 . . . 0

)
)|

Laplace’s formula along the last row then gives eq. (4.2)

This formula can be used to calculate the sweep-plane volume of forward cones.

Proposition 4.3 Let Kv = {v} + pos(r1, . . . , rd) be a simplicial cone. Let a be a
sweep direction with 〈a, ri〉 > 0 for i ∈ [d]. With λv := 〈a,v〉 it holds true that

Vol(Kv ∩H−(a, λ)) = 1[λv ,∞)(λ)(λ− λv)d |det(r1, . . . , rd)|
d! ∏
i∈[d]
〈a, ri〉

. (4.3)

Furthermore we denote Vol(Kv ∩H−(a, λ)) = 1[λv ,∞)(λ)(λ− λv)dγ with

γ := |det(r1, . . . , rd)|
d! ∏
i∈[d]
〈a, ri〉

.

Proof: Let λ < λv. Then the set Kv ∩ H−(a, λ) is empty and therefore Vol(Kv ∩
H−(a, λ)) = 0. With 1[λv ,∞)(λ) = 0 the right hand side of eq. (4.3) is equal 0. For

35

4 Sweep-Plane Volume

λ = λv we have Kv ∩H−(a, λ) = {v} and therefore both sides of eq. (4.3) are equal 0.
Let λ > λv. Since v is a non-degenerate vertex, Kv ∩H−(a, λ) is a simplex.
We show that the vertices of Kv∩H−(a, λ) are given by v and (λ−λv)

〈a,rj〉 rj +v for j ∈ [d].
That is the case if and only if (λ−λv)

〈a,rj〉 rj + v ∈ H(a, λ). Therefore it remains to show
〈 (λ−λv)
〈a,rj〉 rj + v,a〉 = λ:

〈(λ− λv)
〈a, rj〉

rj + v,a〉 = 〈(λ− λv)
〈a, rj〉

rj ,a〉+ 〈v,a〉

= (λ− λv)
〈a, rj〉

〈rj ,a〉+ λv

= (λ− λv) + λv

= λ

With eq. (4.2) it follows that

Vol(Kv ∩H−(a, λ)) = 1
d! |det((λ− λv)

〈a, r1〉
r1, . . . ,

(λ− λv)
〈a, rd〉

rd)|. (4.4)

From the multilinearity of the determinant it follows that

Vol(Kv ∩H−(a, λ)) = (λ− λv)d |det(r1, . . . , rd)|
d! ∏
i∈[d]
〈a, ri〉

. (4.5)

We are now able to calculate the volume for forward cones. In the decomposition
of our union of polytopes the sign of a forward cone is determined by the number of
rays that have to be flipped to construct the forward cone from the vertex cone. See
Definition 2.18.

Proposition 4.4 Let Kv = {v}+pos(r1, . . . , rd) be a simplical cone. Let a be a valid
sweep direction for Kv and F (Kv,a) = {v} + pos(r1, . . . , rd) be the corresponding
forward cone. Let λv := 〈a,v〉. Then

Vol(F (Kv,a) ∩H−(a, λ)) = 1[λv ,∞)(λ)(−1)σ(Kv ,a)(λ− λv)d |det(r1, . . . , rd)|
d! ∏
i∈[d]
〈a, ri〉

. (4.6)

Proof: With Proposition 4.3 we have

Vol(F (Kv,a) ∩H−(a, λ)) = 1[λv ,∞)(λ)(λ− λv)d |det(r1, . . . , rd)|
d! ∏
i∈[d]
〈a, ri〉

.

36

4.1 A Formula for the Volume

We know r = µiri for some µi ∈ R\{0} and i ∈ [d]. We can then write eq. (4.6) as

Vol(F (Kv,a) ∩H−(a, λ)) = 1[λv ,∞)(λ)(λ− λv)d|det(µ1r1, . . . , µdrd)|
d!

∏
i∈[d]

1
〈a, µiri〉

= 1[λv ,∞)(λ)(λ− λv)d
∏
i∈[d]

|µi|
µi

|det(r1, . . . , rd)|
d! ∏
i∈[d]
〈a, ri〉

.

With (−1)σ(F (Kv ,a)) = ∏
i∈[d]

|µi|
µi

the proof is complete.

This allows us to write the volume by only using the rays of the vertex cones.
Combining the results of this chapter, we have this rather long but complete formula
for the sweep-plane volume.

Corollary 4.5 Let P be a union of polytopes, H(P) the underlying hyperplane ar-
rangement, C1, . . . , Cl the active cells of H(P) and V := {v1, . . . ,vn} the vertices that
are incident to an active cell. Let K1

vi , . . . ,K
mi
vi be the regularized vertex cones that

correspond to active cells at vi for i ∈ [n]. Let Kj
vi = {vi} + pos(rij1 , . . . , r

ij
d) for

i ∈ [n] and j ∈ [mi]. We write λv := 〈a,v〉 for any v ∈ Rd. Then

Vol(P ∩H−(a, λ)) =
∑
i∈[n]

1[λv ,∞)(λ)(λ− λvi)d
∑
j∈[mi]

γij (4.7)

with γij := |det(r
ij
1 ,...,r

ij
d

))|
d!

∏
l∈[d]

1
〈a,r

ij
l
〉
for i ∈ [n] and j ∈ [mi].

Proof: We know Vol(P ∩H−(a, λ)) = ∑
i∈[l]

Vol(Ci∩H−(a, λ)) by Corollary 3.11. With

Theorem 2.33 we can write every cell Ci as the weighted sum of its regularized forward
cones. We change the order by, instead of summing over the cells and their forward
cones, summing over the vertices and their forward cones. We get

Vol(P ∩H−(a, λ)) =
∑
i∈[n]

∑
j∈[mi]

(−1)σ(Kj
vi
,a) Vol(F (Kj

vi ,a) ∩H−(a, λ)). (4.8)

By combining Proposition 4.3 and Equation (4.6) we get

Vol(P ∩H−(a, λ)) =
∑
i∈[n]

1[λv ,∞)(λ)(λ− λvi)d
∑
j∈[mi]

(−1)2σ(Kj
vi
,a)γij

=
∑
i∈[n]

1[λv ,∞)(λ)(λ− λvi)d
∑
j∈[mi]

γij .

37

4 Sweep-Plane Volume

4.2 The Algorithm

We are now able to give a more detailed version of Algorithm 2. The computa-
tional complexity of Algorithm 5 depends on the number of forward cones in the
decomposition. If the underlying hyperplane arrangement is non-degenerate, the
number of forward cones is bounded from above by 2d

(n
d

)
, whereby n is the number of

hyperplanes. That is due to the fact that every vertex is incident to exactly 2d cells
in a non-degenerate hyperplane arrangement. In reality the number of forward cones
for a union of polytopes is much lower. We refer to Section 5.2 for a better runtime
estimation.

Algorithm 5 Sweep-Plane Volume
Input A set of events E as returned by Algorithm 1 and a vector a.
Output The sweep-plane volume as a piecewise polynomial function p.

1: sort E by λv = 〈a,v〉
2: p← []
3: for e = (v,Kv) event in E do
4: γ = 0
5: for cone Kv = {v}+ pos(r1, . . . , rd) ∈ Kv do
6: γF = |det(r1,...,rd)|

d!
∏
l∈[d]

1
〈a,rl〉

7: γ = γ + γF
8: end for
9: p.append([λv, γ])

10: end for
11: return p

Example 4.6 We return to Example 2.25. The polytope and the graph of the sweep-
plane volume function are shown in Figure 4.2.
The vertex cones are given by

Kv1 = {v1}+ pos(
(

1
1
2

)
,

(
1
1

)
), Kv2 = {v2}+ pos(

(
−1
−1

2

)
,

(
0
1

)
),

Kv2 = {v3}+ pos(
(

0
−1

2

)
,

(
−1
−1

)
).

The vertices are already sorted with respect to the sweep direction a :=
(

0
1

)
. We

38

4.2 The Algorithm

have the events ei = (vi, (Kvi)) for i ∈ [3]. We have

γ1 =
|det

(
1, 1
1
2 , 1

)
|

2! · 1

〈
(

0
1

)
,

(
1
1
2

)
〉
· 1

〈
(

0
1

)
,

(
1
1

)
〉

= 1
2

γ2 =
|det

(
−1, 0
−1

2 , 1

)
|

2! · 1

〈
(

0
1

)
,

(
−1
−1

2

)
〉
· 1

〈
(

0
1

)
,

(
0
1

)
〉

= −1

γ3 =
|det

(
0,−1
−1

2 ,−1

)
|

2! · 1

〈
(

0
1

)
,

(
0
−1

2

)
〉
· 1

〈
(

0
1

)
,

(
−1
−1

)
〉

= 1
2 .

Furthermore 〈a,v1〉 = 0, 〈a,v2〉 = 1 and 〈a,v3〉 = 1
2 . Algorithm 5 returns p =

[[0, 1
2], [1

2 ,−1], [1, 1
2]] which corresponds to the piecewise polynomial function

p(λ) := + 1[0,∞)(λ)λ2 1
2

− 1[1
2 ,∞)(λ)(λ− 1

2)2

+ 1[1,∞)(λ)(λ− 1)2 1
2 .

(
0
0

)•

(1
1
2

)
•
(

1
1

)
•

a

(a) The polytope and the sweep-
plane at the time λ = 1

2 . (b) The graph of the sweep-plane volume function.

Figure 4.2: A triangle and the corresponding volume graph. See Example 4.6.

39

5 Implementation and Computational Results

In this chapter we will first discuss details regarding the implementation. Afterwards
we will look at runtimes on different data sets and compare the algorithm with an
algorithm based on the inclusion-exclusion principle. After that we take a look at our
work in progress, which is finding ACD cuts with the help of our volume algorithm.

5.1 Implementation
We tested the algorithm in different dimensions against a monte-carlo implentation
and in dimension two and three against an algorithm based on the inclusion-exclusion
principle. We implemented the algorithm in python, since it allows fast and easy
prototyping.

5.1.1 Hyperplane Comparison

Preferably every hyperplane is contained only once in a hyperplane arrangement. For
that reason we need a way to compare hyperplanes. Different vectors a1,a2 ∈ Rd
and numbers λ1, λ2 ∈ R can lead to the same set H(a1, λ1) = H(a2, λ2). Therefore it
makes sense to find an unique representation for a hyperplane.

Definition 5.1 We call a hyperplane H(a, λ) normed if and only if the first non-zero
entry of a is equal to 1.

Corollary 5.2 Every hyperplane H(a, λ) has a normed representation. That means
there is a γ ∈ R such that H(a, λ) = H(aγ ,

λ
γ) and H(aγ ,

λ
γ) is normed.

Proof: Clearly we can set γ equal to the first non-zero entry of a and obtain the
desired result.

5.1.2 Neutralizing Vertex Cones

Often the same forward cone is included twice, but with different sign, in the conic
decomposition of the union of polytopes. If this is the case, those volumes neutralize
themselves in the conic decomposition.

Proposition 5.3 Let K1,K2 ⊂ Rd be two vertex cones at the non-degenerate vertex
v and a be a valid sweep direction. Further let p(K1), p(K2) be the position vectors
of the cones with respect to H := {H|H is active hyperplane at v}. Since v is non-
degenerate there are exactly d many hyperplanes in H.
If there is a j ∈ [d] with pi(K1) = pi(K2) for i 6= j and one of the following:

41

5 Implementation and Computational Results

(i) pj(K1) = + and pj(K2) = −

(ii) pj(K1) = − and pj(K2) = +

Then it holds true that

(i) F (K1,a) = F (K2,a)

(ii) σ(K1,a) = −σ(K2,a)

Proof: We look at the to the position vectors corresponding d× d linear inequality
systems. We can write AK1x ≤ λ1 and AK2x ≤ λ2 by multiplying the inequalities

ai ≥ λi with −1 if pi(Kj) = + for j ∈ [2]. For AK1 =



a1
...
aj
...
ad


it then holds

true that AK2 =



a1
...
−aj
...
ad


. With Proposition 2.10 the cones are then given by

K1 = {v}+ pos(r1, . . . , rj , . . . , rd) and K2 = {v}+ pos(r1, . . . ,−rj , . . . , rd). Then it
holds by definition that F (K1,a) = F (K2,a) and σ(K1,a) = −σ(K2,a).

This means that if two vertex cones are only mirrored on one hyperplane, their
forward cones are the same and the sum of their growth factors equals 0. This allows
us to remove neutralizing vertex cones in the data structure algorithm. We can do
this by testing the position vectors in pairs.

Example 5.4 Let P be the union of a triangle and a cube as depicted in Figure 5.1.

Then the vertex cones at v :=
(

1
1
2

)
are given by K1 = {v} + pos(r1, r3) and

K2 = {v}+ pos(r2, r3), whereby

r1 :=
(

0
1

)
, r2 :=

(
0
−1

)
, r3 =

(
−1
0

)
.

We look at the sweep direction a :=
(

1
1

)
. Then

〈a, r1〉 = 1, 〈a, r2〉 = −1, 〈a, r3〉 = −1

and therefore σ(K1) = −1 and σ(K2) = 1. Furthermore F (K1,a) = F (K2,a) =
{v}+ pos(r1,−r3). We have γK1 = −1

2 = −γK2 and therefore γv = γK1 + γK2 = 0.

42

5.2 Computational Results

P v•

(a) The hyperplane arrangement.

K1

K2

F (K1,a)
=

F (K2,a)

v•

r1

r2

r3
−r3

a

(b) The vertex cones at v.

Figure 5.1: The union of a triangle and a cube as an example for neutralizing forward
cones.

5.2 Computational Results
In this section we will present the runtimes and the of tests over the unit cube in
different dimensions and non-convex bodies in lower dimensions.
We did the calculations on a 64-bit elementary OS machine with a i5-2410M (2 threads,
2.30GHz) processor and 8 GB RAM. The implementation is written in python 2.7
and is using the libraries numpy 1.13.1 and pycddlib 2.0.0.

5.2.1 Unit Cube Runtime

We calculated the volume of the unit cube Cd := [0, 1]d for dimension d from five to 13.
Table 5.1 shows the runtimes of both the data structure algorithm and the sweep-plane
volume algorithm. To determine the vertices,

(2d
d

)
linear equation systems of size d×d

have to be solved if possible. We have
(2d
d

)
many linear equation systems, since the

number of facets of the unit cube and therefore also the number of hyperplanes is
2d. The number of vertices in the hyperplane arrangement approximately quadruples
with each dimension step, whereas the number of vertices of the cube only doubles.
The runtime for the sweep-plane volume algorithm seems to be doubling with the
dimension, along with the number of vertices of the cube.
Since the unit cube is simple we have as many vertex cones as we have vertices. There
are no degenerate vertices and so we do not have to regularize. Table 5.1 shows
that most of the complexity lies in the data structure algorithm and the sweep-plane
volume functions can be computed efficiently, at least for the unit cube.

43

5 Implementation and Computational Results

Dimension
(|hyperplanes|

d

)
Cube Vertices Runtime (s)

Cell Decomposition Volume

5 252 32 0.031 0.00019
6 924 64 0.079 0.00016
7 3432 128 0.25 0.00036
8 12870 256 0.93 0.0007
9 48620 512 3.81 0.0015

10 184756 1024 23.42 0.0052
11 705432 2048 82.10 0.0099
12 2704156 4096 372.33 0.0215
13 10400600 8192 1788.34 0.087
14 40116600 16384 39014.7 0.051

Table 5.1: Runtime for the volume computation of the unit cube.

5.2.2 Overlapping Simplices

We have also tested our algorithm on unions of random overlapping simplices in
3 dimensions. This case is interesting since for a small number of polytopes the
inclusion-exclusion algorithm is faster than our algorithm, see Figure 5.2. For the
inclusion-exclusion based algorithm the leading factor in the computational complexity
is 2P , whereby P denotes the number of polytopes. 2P is the cardinality of the power
set of polytopes. For every possible combination of polytopes the volume of their
intersection has to be calculated. For few polytopes the inclusion-exclusion algorithm
is faster than a single run of our algorithm. Especially in dimension two and three
there are efficient algorithms to calculate the volume of a single polytope.
The runtimes for the sweep-plane volume computation of four overlapping simplices in
different dimensions are displayed in Table 5.2. The simplices are randomly generated
by taking the convex hull of d + 1 uniformly at random sampled points. One can
see that the number of relevant vertices explodes with the dimension. The runtimes
are way worse than the runtimes for the unit cube with comparable many vertices
in higher dimensions. The reason for this is, that to calculate the vertices we solve
linear equation systems. For the unit cube these matrices are sparse and therefore
the equation systems are solved way faster.

44

5.2 Computational Results

Figure 5.2: The runtime of the sweep-plane algorithm vs. the runtime of the inclusion-
exclusion based algorithm on the union of randomly generated tetrahedron.

Dimension
(|hyperplanes|

d

)
Vertices Runtime (s)

Cell Decomposition Volume

2 66 10 0.0097 0.003
3 560 101 0.1004 0.0088
4 4845 1297 2.915 0.14
5 42504 18093 114.8 3.682

Table 5.2: Runtime for the volume computation of 4 overlapping simplices in different
dimensions.

5.2.3 Overlapping Polytopes Cut Analysis

As mentioned before, the motivation for the sweep-plane volume algorithm was in
its use for finding approximative convex decomposition (ACD) cuts. The non-convex
bodies in Figure 5.3 and Figure 5.4 originate from data corresponding to configurations
in a compressor station. We have sampled 500 directions uniformly at random. For
every direction we calculated the sweep-plane volume function, as well as the difference
of the sweep-plane volumes of the convex hull and the non-convex body, and the
derivative of the difference.
For the non-convex P, its convex hull conv(P) and a sampled sweep direction a we

45

5 Implementation and Computational Results

have looked at the difference of the sweep-plane volume functions

φ(λ,a) := Vol(conv(P) ∩H−(a, λ))−Vol(P ∩H−(a, λ))

and its derivative φ′.
For the set T of sampled sweep-directions we have chosen the sweep-plane H(a, λ)
at which the maximum max

a∈T
max
λ∈R

φ′(λ,a) is attained. For this sweep-plane the local
change in the convexification error is maximal. This means that the convexification
and the non-convex body are diverging the most at this sweep-plane. The maximum
is attained at a turning point of φ. The graphs for the sweep-plane volumes of
non-convex bodies and their convexication, the difference of them and the derivative
of the difference are depicted on the left at Figure 5.3 and Figure 5.4.
This heuristic often lead to cuts that cut off very small pieces of the body. If the
direction gives a supporting hyperplane at the entry vertex of the sweep, it often
happens that the maximum max

λ∈R
φ′(λ,a) is attained at that vertex. We developed

the heuristic further by only allowing λ that are sufficiently bigger (smaller) than the
λv (λw) at which the sweep first (last) meets the bodies. Thereby we demand that
both sides of the cut are sufficiently large.

46

5.2 Computational Results

Figure 5.3: Finding an ACD cut for 5 overlapping polytopes obtained from gas net
data.

Figure 5.4: Finding an ACD cut for 9 overlapping polytopes obtained from gas net
data.

47

6 Conclusion

We have developed an algorithm that computes the sweep-plane volume function for
a union of polytopes in arbitrary dimension. Our algorithm is clearly based on the
work of Bieri and Nef [BN83], but for the theoretical background we combined it with
more recent theories from [Law] and [GH17].
In Section 2.2 we have learned that we can write the indicator function of a polytope
as the (weighted) sum of the indicator functions of its forward cones. In Section 3.1
we have learned that we can write a union of polytopes as the union of cells of the
underlying hyperplane arrangement. This way we could sum up the volumes of the
active cells by using the conic decomposition. To determine the active cells we used
position vectors, which are a powerful tool to put faces of a hyperplane arrangement
into relation.
For the computation of the sweep-plane volume of the forward cones we used a well
known volume formula for the simplex. In Section 4.1 we have proven that formula
and adapted it to our case. This formula can only be used if the cone is simplicial.
For the non-simplicial case we developed the regularization method in Section 2.3.
We took the algorithm from Bieri and Nef [BN83] and adapted it to our needs. For
us it was especially important that we are able to compute the sweep-plane volume
functions for many sweep directions. By separating the algorithm into two parts, we
reduced the cost of calculating the volume functions for multiple directions drastically.
This way we enabled it to calculate the sweep-plane volume functions for many
different directions. We now hope to be able to put the algorithm to good use by
finding decent ACD cuts through the heuristics we have developed.

49

Bibliography

[AG16] José Agapito and Leonor Godinho, Cone decompositions of non-simple
polytopes, J. Symplectic Geom 14 (2016), no. 3, 737–766.

[BEF00] Benno Büeler, Andreas Enge, and Komei Fukuda, Exact volume com-
putation for polytopes: a practical study, Polytopes—combinatorics and
computation, Springer, 2000, pp. 131–154.

[BF10] Karl Bringmann and Tobias Friedrich, Approximating the volume of unions
and intersections of high-dimensional geometric objects, Computational
Geometry 43 (2010), no. 6-7, 601–610.

[BN82] Hanspeter Bieri and Walter Nef, A recursive sweep-plane algorithm, de-
termining all cells of a finite division of r d, Computing 28 (1982), no. 3,
189–198.

[BN83] , A sweep-plane algorithm for computing the volume of polyhedra
represented in boolean form, Linear Algebra and its Applications 52 (1983),
69–97.

[CV16] Ben Cousins and Santosh Vempala, A practical volume algorithm, Mathe-
matical Programming Computation 8 (2016), no. 2, 133–160.

[FP96] Komei Fukuda and Alain Prodon, Double description method revisited,
pp. 91–111, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[FP08] Christodoulos A Floudas and Panos M Pardalos, Encyclopedia of opti-
mization, Springer Science & Business Media, 2008.

[GH17] Thomas Gerstner and Markus Holtz, Algorithms for the cell enumeration
and orthant decomposition of hyperplane arrangements.

[Haa05] Christian Haase, Polar decomposition and brion’s theorem, Contemporary
Mathematics 374 (2005), 91–100.

[Knu05] Donald E. Knuth, The art of computer programming, volume 4, fascicle 3:
Generating all combinations and partitions, Addison-Wesley Professional,
2005.

[Law] Jim Lawrence, Polytope volume computation, Mathematics of Computa-
tion.

51

Bibliography

[MRTT53] Theodore S Motzkin, Howard Raiffa, Gerald L Thompson, and Robert M
Thrall, The double description method.

[S+04] Richard P Stanley et al., An introduction to hyperplane arrangements,
Geometric combinatorics 13 (2004), 389–496.

[She67] Geoffrey C Shephard, An elementary proof of gram’s theorem for convex
polytopes, Canad. J. Math 19 (1967), 1214–1217.

[Ste66] P Stein, A note on the volume of a simplex, The American Mathematical
Monthly 73 (1966), no. 3, 299–301.

52

	Introduction
	Motivation
	Literature
	The Algorithm

	Polyhedra
	Preliminaries
	Conic Decomposition
	Regularization of Degenerate Vertices

	The Data Structure
	Hyperplane Arrangements
	The Algorithm

	Sweep-Plane Volume
	A Formula for the Volume
	The Algorithm

	Implementation and Computational Results
	Implementation
	Computational Results

	Conclusion
	Bibliography

