Adaptive Large Neighborhood Search for Mixed Integer Programming

Zuse Institute Berlin

Takustr. 7
14195 Berlin
Germany
Telephone: +49 30-84185-0
Telefax: +49 30-84185-125
E-mail: bibliothek@zib.de
URL: http://www.zib.de
ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Adaptive Large Neighborhood Search for Mixed Integer Programming

Gregor Hendel*

December 18, 2018

Abstract

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget.

To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search domains, which we call neighborhoods. The decision which neighborhood should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available neighborhoods based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing priorization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some neighborhoods which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP.

1 Introduction

Mixed integer programming (MIP) is a powerful modeling paradigm with numerous relevant industrial applications in scheduling, production planning, traffic optimization [8] and countless more. For solving their models, many practitioners rely on state-of-the-art commercial or noncommercial general purpose MIP solvers such as CPLEX [12], XPress [35], SCIP [1, 22], or CBC [10], all of which employ a variant of the branch-and-bound algorithm [13, 29]. As the branch-and-bound algorithm by itself may be quite slow to provide good solutions, a rich set of primal heuristic algorithms has been proposed to improve the primal convergence [5] of the solvers. Primal heuristics can be further classified [2] into rounding algorithms, diving and objective

[^0]diving heuristics and feasibility-pump [2, 18] procedures, and finally Large Neighborhood Search (LNS) heuristics such as Relaxation Induced Neighborhood Search (RINS) [14]. LNS heuristics typically restrict the search space of an input MIP instance to a particular neighborhood of interest. The resulting auxiliary problem (cf. Definition 1) is again a MIP, which is then partially solved by a branch-and-bound algorithm under reasonable working limits, and eventual solutions are kept for the main search process. Many different LNS techniques have been proposed in recent years [15, 14, 33, 21, 6, 17]. Their computational effort makes it impractical to apply all of them frequently within the solver. Since a priori, it is unclear which approach might work best for a concrete problem instance, the solver ideally learns during the solving process which LNS heuristics should be applied, and more importantly, which ones can be deactivated.

Following this line of thought, we propose Adaptive Large Neighborhood Search (ALNS) for MIP. We address in particular the question how to select from the set of available neighborhoods, which are introduced in Section 2 In Section 3, we propose a suitable reward function for LNS heuristics to learn to discriminate between the neighborhoods during the search. We also propose a generic variable fixing scheme that can be used to extend the set of fixed variables within a selected neighborhood to reach a target fixing rate. This has a particular impact on LNS heuristics that do not fix variables by themselves and may hence be too expensive on larger problems, such as, e.g. Local Branching [15] (cf. Section 2.2).

The framework is obliged to trade off between exploration and exploitation, because only one neighborhood is selected and evaluated at a specific call. Such a selection scenario is also referred to as multi armed bandit problem, in which a player tries to maximize their reward by playing one available action at a time and observing the particular reward of this action only. We review three selection algorithms for the multi-armed bandit problem in Section 4 Two numerical experiments are presented in Section5, a first one to tune the selection process of the ALNS heuristic, and a second experiment to show that ALNS improves the MIP performance of SCIP on a large set of publicly available benchmark instances from the collections of MIPLIB [7, 3, 27] and Cor@1 [11].

1.1 Related Work

The notion of an Adaptive Large Neighborhood Search has already been coined in the literature, particularly in the context of Constraint Programming, where ALNS is usually tailored to a particular application. The authors [28] were the first to describe an adaptive LNS technique for single-mode scheduling problems, which selects from a finite set of so-called search operators, which are a CP analogue to the neighborhoods for general MIP (see Section 2). Building upon their method, ALNS has also been applied for different types of Vehicle Routing Problems, see [32] for an overview. Throughout the remainder of this article, we will shortly write "ALNS" to denote our proposed "ALNS for MIP".

A different, MIP specific approach to learn how to run heuristics has been recently proposed in [26]. Their work uses logistic regression to predict the probability of success for different diving heuristics. The prediction is based on state information about the current node and the overall search. Their approach is fundamentally different from our proposed method in that it learns one regression for each individual diving heuristic, but does not attempt to prioritize between them.

The first use of bandit related ideas inside MIP solvers [34] concerns the integration of a node selection rule into CPLEX. This node selection approach balances exploration and exploitation of the solution process inspired by a successful method for game search trees, which is related to the Upper Confidence Bounds selection algorithm [9], which is explained in Section 4.1.

2 Large Neighborhood Search Heuristics for MIP

We propose Adaptive Large Neighborhood Search in the context of mixed-integer programs (MIPs). A MIP P is an optimization problem of the form

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \\
& \geq b \\
& l \leq x
\end{aligned}
$$

(MIP)
in n variables and m linear constraints, which are defined by a matrix $A \in \mathbb{Q}^{m, n}$ and a right hand side $b \in \mathbb{Q}^{m}$. Every variable $x_{j}, j \in\{1, \ldots, n\}$ has an objective coefficient $c_{j} \in \mathbb{Q}$ and a lower and upper bound denoted by $l_{j} \in \mathbb{Q} \cup\{-\infty\}$ and $u_{j} \in \mathbb{Q} \cup\{+\infty\}$, respectively. Finally, without loss of generality, the first n_{i} variables are further constrained that they must take integer solution values. These are called the integer variables of P. An important subset of the integer variables are the $n_{b} \leq n_{i}$ binary variables with a $\{0,1\}$-domain. The shorthand notations for binary variables and nonbinary integer variables, which are called general integer variables, are $N_{b}=\left\{1, \ldots, n_{b}\right\}$ and $N_{i}=\left\{n_{b}+1, \ldots, n_{i}\right\}$, respectively. Binary variables are often used to model highly relevant yes/no-decisions in an optimization scenario such as, e.g., if a facility should be built at a certain location. Therefore, binary variables often receive a prioritized treatment by the neighborhoods in Sections 2.1 and 2.2. Every point of \mathbb{Q}^{n} satisfying all of the above constraints is called a solution of P, and the set of all solutions of P is denoted by \mathscr{S}_{P}.

Dropping all integrality restrictions yields the $L P$ relaxation of P. It is well known that $(\overline{\mathrm{MIP}}$) in the presented general form is $\mathscr{N} \mathscr{P}$-hard to solve, which is why all modern MIP solvers employ some form of branch-and-bound algorithm [29, 13]. In essence a clever enumeration, the branch-and-bound algorithm repeatedly partitions the search space of an input MIP P, mainly guided by integer variables with noninteger (fractional) values in the solution $x^{\text {lp }}$ to its LP relaxation. Since the LP relaxation has fewer constraints than P and hence a broader feasible region, its optimal objective value $c^{T} x^{\mathrm{lp}}$ is a lower bound to the optimal value c^{*} of P. If, in addition, the LP solution satisfies the integrality requirements $x_{j}^{\mathrm{lp}} \in \mathbb{Z} \forall j \in\left\{1, \ldots, n_{i}\right\}$, then $c^{T} x^{\mathrm{lp}}=c^{*}$ and x^{lp} is an optimal solution for P. The minimum lower bound of all unprocessed subproblems is called the dual bound and denoted by $c^{\text {dual }}$.

In practice, however, the LP relaxation mostly provides feasible solutions only at deeper levels, ie. later stages of the search tree. Many different primal heuristic algorithms have been proposed to overcome this weakness, which are highly diverse in the computational effort they require. Starting from simple and fast heuristics [24] that attempt to construct feasible solutions by rounding the LP solution, a higher computational effort is usually required by diving or feasibility-pump [18] like procedures, which solve modified LP relaxations. At the most expensive end of the scale lies the
class of Large Neighborhood Search (LNS) heuristics that solve an auxiliary problem with branch-and-bound techniques.

Definition 1 (Auxiliary problem) Let P be a MIP with n variables. For a polyhedron $\mathscr{N} \subseteq \mathbb{Q}^{n}$ and objective coefficients $c_{a u x} \in \mathbb{Q}^{n}$, a MIP P ${ }^{\text {aux }}$ defined as

$$
\begin{equation*}
\min \left\{c_{a u x}^{T} x \mid x \in \mathscr{S}_{P} \cap \mathscr{N}\right\} \tag{1}
\end{equation*}
$$

is called an auxiliary problem of P. The polyhedron \mathscr{N} is called neighborhood.
In other words, $P^{\text {aux }}$ has the same number of variables (columns) as the original MIP P. Its solution set is a subset of \mathscr{S}_{P}. Hence, every solution to $P^{\text {aux }}$ is a solution for P. Definition 1 requires \mathscr{N} to be a polyhedron, ie., it should be expressed by a finite set of inequalities. The definition includes $\mathscr{N}=\mathbb{Q}^{n}$. Each neighborhood has its associated auxiliary objective function, which can be different from the main objective function of P.

There are only a few different types of neighborhoods typically used. All LNS heuristics have in common that they solve auxiliary problems around a set of reference points to either provide a first solution or, as in most cases, an improvement to the current incumbent solution. One of the most common classes of neighborhoods is derived by considering a set of reference points and fixing integer variables whose values are integer and agree on all those points.

Definition 2 (Fixing neighborhood) Let P be a MIP with n variables and $n_{i} \leq n$ integer variables. Let $\mathscr{M} \subseteq\left\{1, \ldots, n_{i}\right\}$ and $x^{*} \in \mathbb{Q}^{n}$. A fixing neighborhood

$$
\mathscr{N}^{f i x}\left(\mathscr{M}, x^{*}\right):=\left\{x \in \mathbb{Q}^{n} \mid x_{j}=x_{j}^{*} \forall j \in \mathscr{M}\right\}
$$

fixes the subset \mathscr{M} to their values in x^{*}.
Definition 3 (Matching set) For $k \geq 1$, let $X=\left\{x^{1}, \ldots, x^{k}\right\} \subset \mathbb{Q}^{n}$ with $x^{i} \neq x^{i^{\prime}} \forall i \neq$ $i^{\prime} \in\{1, \ldots, k\}$. The matching set

$$
\mathscr{M}^{=}(X):=\left\{j \in\left\{1, \ldots, n_{i}\right\} \mid x_{j}^{i}=x_{j}^{1} \forall i \in\{1, \ldots, k\}\right\}
$$

describes all integer variable indices whose values agree on X. We call X the set of reference points.

Combining Definitions 2 and 3 is very popular for constructing auxiliary problems. Starting from a set of reference points $X=\left\{x^{1}, \ldots, x^{k}\right\}$, a fixing neighborhood is obtained with the help of the matching set of X. Since all points in X agree on their matching set $\mathscr{M}^{=}(X)$, the same fixing neighborhood is obtained regardless of the anchor point

$$
\mathscr{N}^{\mathrm{fix}}\left(\mathscr{M}^{=}(X), x^{1}\right)=\mathscr{N}^{\mathrm{fix}}\left(\mathscr{M}^{=}(X), x^{i}\right) \quad \forall i \in\{1, \ldots, k\} .
$$

It should be noted that whenever a set of reference points X contains at least one solution $x \in \mathscr{S}_{P}$, the auxiliary MIP defined by the fixing neighborhood of the matching set is feasible because $x \in \mathscr{S}_{P} \cap \mathscr{N}^{\text {fix }}\left(\mathscr{M}^{=}(X), x\right)$.

The task of finding an improving solution can be easily incorporated into Definition 1 Assume that an incumbent solution $x^{\text {inc }} \in \mathscr{S}_{P}$ and a dual bound $c^{\text {dual }}$ are
already available, and let a given neighborhood $\mathscr{N} \subseteq \mathbb{Q}^{n}$ contain some nonimproving solutions. For $\delta \in(0,1)$, every solution $x \in \mathscr{S}_{P}$ that satisfies

$$
c^{T} x \leq(1-\delta) \cdot c^{T} x^{\text {inc }}+\delta \cdot \underbrace{c^{\text {dual }}}_{<c^{T} x^{\text {inc }}}<c^{T} x^{\text {inc }}
$$

is clearly an improving solution. The set of solutions that are better than x^{inc} by at least δ is contained in the improvement neighborhood

$$
\mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right):=\left\{x \in \mathbb{Q}^{n} \mid c^{T} x \leq(1-\delta) \cdot c^{T} x^{\mathrm{inc}}+\delta \cdot c^{\mathrm{dual}}\right\} .
$$

Therefore, refining the original neighborhood as

$$
\mathscr{N}^{\prime}=\mathscr{N} \cap \mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right)
$$

filters out all nonimproving solutions, regardless of the choice of $c_{\text {aux }}$. The choice of δ is an important control parameter to weigh between the difficulty (and feasibility) of the sub-MIP and the desired amount of improvement. The above neighborhood notions suffice to describe several popular LNS heuristics.

2.1 Fixing Neighborhood LNS Heuristics

RINS [14] Relaxation Induced Neighborhood Search (RINS) is one of the first LNS approaches. The idea of RINS is to fix integer variables whose solution values agree in the solution x^{p} of the LP relaxation at the current, local node, and the current incumbent solution $x^{\text {inc }}$. After the choice of a suitable improvement δ, the neighborhood of the auxiliary MIP of RINS is

$$
\mathscr{N}_{\text {RINS }}:=\mathscr{N}^{\mathrm{fix}}\left(\mathscr{M}^{=}\left(\left\{x^{\mathrm{lp}}, x^{\mathrm{inc}}\right\}\right), x^{\mathrm{inc}}\right) \cap \mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right) .
$$

Crossover [33] Another improvement heuristic is the Crossover heuristic, which is inspired by the recombination of solutions within genetic algorithms. Crossover selects $k \geq 2$ already known, feasible solutions $X=\left\{x^{1}, \ldots, x^{k}\right\} \subseteq \mathscr{S}_{P}$ as reference points. X does not necessarily contain $x^{\text {inc }}$. The crossover neighborhood fixes

$$
\mathscr{N}_{\text {Cross }}:=\mathscr{N}^{\mathrm{fix}}\left(\mathscr{M}^{=}(X), x^{1}\right) \cap \mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right)
$$

The authors suggest to use $k=2$ solutions that are randomly selected from all available solutions, using a bias towards solutions with better objective.

Mutation [33] Furthermore, the authors suggest a second LNS heuristic called Mutation that fixes a random subset of integer variables of the incumbent solution. For a randomly chosen subset $\mathscr{M}^{\text {rand }} \subseteq N_{b} \cup N_{i}$, the mutation neighborhood is defined as

$$
\mathscr{N}_{\text {Muta }}:=\mathscr{N}^{\mathrm{fix}}\left(\mathscr{M}^{\mathrm{rand}}, x^{\mathrm{inc}}\right) \cap \mathscr{N}^{\text {obj }}\left(\delta, x^{\mathrm{inc}}\right)
$$

In order to control the difficulty of the sub-MIP, the obvious input to the mutation neighborhood is a number or percentage of integer variables that should be fixed. Mutation is the only neighborhood for which this number can be controlled directly: all previous neighborhoods depend on the cardinality of their matching set.

RENS [6] Starting from an LP relaxation solution $x^{\text {lp }}$, the Relaxation Enforced Neighborhood Search (RENS) neighborhood focusses on the feasible roundings of $x^{1 p}$ and can be written as

$$
\mathscr{N}_{\text {RENS }}:=\left\{x \in \mathbb{Q}^{n} \mid\left\lfloor x_{j}^{\mathrm{lp}}\right\rfloor \leq x_{j} \leq\left\lceil x_{j}^{\mathrm{lp}}\right\rceil, j \in\left\{1, \ldots, n_{i}\right\}\right\} .
$$

Similarly to the RINS heuristic, the aim of RENS is to construct feasible solutions that are close to the LP relaxation solution and therefore have a near-optimal solution value.

2.2 LNS Heuristics Using Constraints and Auxiliary Objective Functions

All approaches presented so far fix a set of integer variables using one or several reference points. Local Branching [15] is the first LNS heuristic that uses a different neighborhood.

Local Branching [15] Instead of fixing a set of variables and solving for improving solution values on the remaining variables, the neighborhood of Local Branching is restricted to a ball around the current incumbent solution. More formally, Let P be a MIP with $n_{b} \geq 1$ binary variables. Based on the L_{1}-norm or Manhattan metric for $x \in \mathbb{Q}^{n}$, the binary norm ${ }^{1}$ of x is defined as

$$
\|x\|_{b}:=\sum_{j=1}^{n_{b}}\left|x_{j}\right|
$$

Let $x^{\text {inc }} \in \mathscr{S}_{P}$ be an incumbent solution for P, and let $d_{\text {max }}>0$ denote a distance cutoff parameter. The local branching neighborhood is the restriction

$$
\mathscr{N}_{\text {LBranch }}:=\left\{x \in \mathbb{Q}^{n} \mid\left\|x-x^{\mathrm{inc}}\right\|_{b} \leq d_{\max }\right\} \cap \mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right)
$$

The reason for preferring the binary norm over the regular norm or the norm taking all integer variables is practicality. The binary norm can be expressed as a linear constraint without introducing auxiliary variables.

Proximity Search [17] A dual version of Local Branching has been introduced as Proximity Search. Using the binary norm, Proximity seeks to minimize the binary norm $\left\|x-x^{\text {inc }}\right\|_{b}$ through an auxiliary objective coefficient vector $c_{\text {Proxi }}=c_{\text {Proxi }}\left(x^{\text {inc }}\right)$ defined as

$$
\left(c_{\text {Proxi }}\right)_{j}:= \begin{cases}0 & \text { if } j>n_{b} \\ 1 & \text { if } x_{j}^{\text {inc }}=0 \\ -1 & \text { if } x_{j}^{\text {inc }}=1\end{cases}
$$

over the entire set of improving solutions:

$$
\mathscr{N}_{\text {Proxi }}:=\mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right)
$$

[^1]Zero Objective The second LNS heuristic that uses an auxiliary objective function different from the original objective function is Zero Objective. If an incumbent solution $x^{\text {inc }}$ is available, Zero Objective searches the entire set of improving solutions $\mathscr{N}_{\text {Zeroobj }}:=\mathscr{N}^{\text {obj }}\left(\boldsymbol{\delta}, x^{\text {inc }}\right)$ but uses $c_{\text {Zeroobj }}:=0$ as auxiliary objective function. If no incumbent is available, $\mathscr{N}_{\text {Zeroobj }}=\mathbb{Q}^{n}$. Zero Objective thereby reduces the search for an (improving) solution to a feasibility problem.

DINS [21] Distance Induced Neighborhood Search (DINS) combines elements of the Crossover, Local Branching, and RINS heuristics. Similarly to RINS, the intuition is that improving solutions are located between the current incumbent solution x^{inc} and the solution to the node LP relaxation $x^{\text {lp }}$. With the intention of reducing the integer distance

$$
\left\|x^{\mathrm{inc}}-x^{\mathrm{lp}}\right\|_{i}:=\sum_{j=1}^{n_{i}}\left|x_{j}^{\mathrm{inc}}-x_{j}^{\mathrm{lp}}\right|,
$$

let $J:=\left\{j| | x_{j}^{\mathrm{inc}}-x_{j}^{\mathrm{lp}} \mid \geq 0.5\right\} \subseteq N_{i}$ denote the index set of general integer variables with a difference of at least 0.5 between the two reference points. The J-neighborhood of DINS is

$$
\mathscr{N}_{J}:=\left\{x \in \mathbb{Q}^{n}| | x_{j}-x_{j}^{\mathrm{lp}}\left|\leq\left|x_{j}^{\mathrm{inc}}-x_{j}^{\mathrm{lp}}\right|, j \in J\right\} .\right.
$$

This neighborhood restricts lower and upper bounds of the general integer variables. Let $\mathscr{T} \subseteq \mathscr{S}_{P}$ denote a subset of currently available solutions, containing $x^{\text {inc }}$, to the MIP at hand. The DINS neighborhood can be written as a combination of a total of five neighborhoods

$$
\begin{aligned}
\mathscr{N}_{\text {DINS }}: & =\mathscr{N}_{J} \\
& \cap \mathscr{N}^{\text {fix }}\left(N_{i} \backslash J, x^{\mathrm{inc}}\right) \\
& \cap \mathscr{N}^{\text {fix }}\left(N_{b} \cap \mathscr{M}^{=}\left(\left\{x^{\mathrm{lp}}, x^{\mathrm{root}}\right\} \cup \mathscr{T}\right), x^{\mathrm{inc}}\right) \\
& \cap \mathscr{N}_{\text {LBranch }} \\
& \cap \mathscr{N}^{\mathrm{obj}}\left(\delta, x^{\mathrm{inc}}\right) .
\end{aligned}
$$

The set of general integer variables outside of J is fixed to the values in the incumbent solution. Binary variables that have not changed between the root LP relaxation solution $x^{\text {root }}$ and $x^{\text {lp }}$ are fixed if they have taken the same value in all solutions in \mathscr{T}. Finally, the search is further restricted to a certain binary distance around the current incumbent solution through an additional local branching neighborhood. Among the possible choices for \mathscr{T}, the implementation of DINS for this work uses a set of up to five available solutions with best objective.

There is further work on LNS approaches that are not covered here. Note that the only heuristics that do not use an incumbent solution are RENS and Zero Objective. In [16], an extension of Local Branching has been proposed that starts from an infeasible reference point. Such points are quickly produced by rounding or with a few iterations of the Feasibility Pump [18]. In addition to the local branching constraint, the auxiliary problem of [16] is extended by additional variables to model and penalize the violation of constraints, inspired by the phase 1 of the Simplex algorithm. A recent approach called Alternating Criteria Search [31] also starts from infeasible reference points, and alternates between auxiliary problems with artificial feasibility objective and the original objective function of the input MIP in a parallel setting. The necessary
diversification is obtained by fixing subsets of integer variables indexed by a random consecutive index set. Such a fixing scheme is a variant of Mutation [33] discussed in Section 2.1. The heuristics presented in [19] formulate and solve auxiliary problems only for the set N_{i} of general integer variables as a final post processing step after fixing all binary variables based on available, global problem structures such as cliques and implications between binary and integer variables.

3 Adaptive Large Neighborhood Search for MIP

The proposed Adaptive Large Neighborhood Search heuristic has as input the set of 8 available neighborhoods from Section 2 denoted by \mathscr{H} (the set of actions). Table 1 gives a quick overview of the neighborhoods used, as well as their individual preconditions. In each call to the heuristic, ALNS basically performs the following steps.

1. Select a promising neighborhood $h_{t} \in \mathscr{H}$ and its associated auxiliary objective function $c_{\mathrm{aux}, t}$ via a bandit selection strategy.
2. Setup and solve the auxiliary problem given by $\left(h_{t}, c_{\mathrm{aux}, t}\right)$.
3. Reward the neighborhood and update the bandit selection strategy for the next selection.

Different bandit selection strategies and their individual update procedures are subject of Section 4 The solution process of the auxiliary problem uses a strict limit on the number of branch-and-bound nodes to terminate the subproblem quickly and keep the overall computational effort small. It may still be very expensive to solve auxiliary problems if the neighborhood is large, especially since some neighborhoods do not fix integer variables directly. In Section 3.1, a generic approach is explained for fixing additional variables to reach any desired target fixing rate and hence reduce the subproblem complexity. Details on the dynamic adjustment of the target fixing rate and node limit are given in Section 3.2. Finally, Section 3.3 introduces the scoring mechanism to reward the selected neighborhood. Note that this work refers to the proposed scoring mechanism as "reward", but does not mention "penalties". Penalties are readily obtained by assigning small rewards.

3.1 Fixing and Unfixing Variables

Every neighborhood in Section 2 fixes a subset of integer variables to the values of a solution $x^{\text {sol }} \in \mathscr{S}_{P}$. The fixed set of a neighborhood \mathscr{N} is defined as

$$
\mathscr{M}^{\mathrm{fix}}:=\left\{j \in\left\{1, \ldots, n_{i}\right\} \mid \mathscr{N} \subseteq\left\{x \in \mathbb{Q}^{n} \mid x_{j}=x_{j}^{\mathrm{sol}}\right\}\right\} .
$$

The size of the fixed set is denoted by $n^{\mathrm{fix}}=\left|\mathscr{M}^{\mathrm{fix}}\right|$. Every neighborhood (action) $h \in \mathscr{H}$ operated by ALNS has a target fixing rate $\phi_{h, t} \in[0,1)$ that changes over time as will be explained in Section 3.2. It may happen that a selected neighborhood h_{t} does not reach its specified target fixing rate, ie.

$$
n^{\mathrm{fix}}<\phi_{h_{t}, t} \cdot n_{i}
$$

or that it fixes much more integer variables and hence restricts the search space more than necessary. ALNS treats both cases very similarly by using a generic variable fixing priorization to sort the set of possible (un)fixings.

Table 1: Overview of the neighborhoods that are used in ALNS. See Section 2 for information and references.

Neighborhood	Description	Preconditions		
RINS	Fixes matching values in incum- bent and LP relaxation solution	Feasible LP relaxation at current node, incumbent solution		
Crossover	Fixes matching values in 2 or more randomly chosen, available solutions	Sufficiently many solutions		
Mutation	Fixes random subset of variables to values in incumbent solution	Incumbent solution		
RENS	Restricts the auxiliary problem to the feasible roundings around the	Feasible LP relaxation at current node		
Local Branching	Limits the maximal binary dis- tance from the incumbent solu- tion	Incumbent solution, MIP with bi- Proximity Search variables		
Finds an improving solution that				
minimizes the binary distance				
from the incumbent			\quad	Incumbent solution, MIP with bi-
:---				
Zero Objective		Reduces search for an (improv-		
:---				
ing) solution to a feasibility prob-	\quad	MIP with nonzero objective func-		
:---				
lion				

In the first case, $\phi_{h_{t}, t} \cdot n_{i}-n^{\text {fix }}$ additional integer variables from $\overline{\mathscr{M}^{\text {fix }}}=\left\{1, \ldots, n_{i}\right\} \backslash$ $\mathscr{M}^{\mathrm{fix}}$ have to be selected. For two variables $x_{j}, x_{j^{\prime}} \in \overline{\mathscr{M}}^{\mathrm{fix}}$ with reference solution values $x_{j}^{\text {sol }}, x_{j^{\prime}}^{\text {sol }}$, the fixing $x_{j}=x_{j}^{\text {sol }}$ is preferred over $x_{j^{\prime}}=x_{j^{\prime}}^{\text {sol }}$, if, in decreasing order of priority,

1. x_{j} has a smaller distance than $x_{j^{\prime}}$ from $\mathscr{M}^{\text {fix }}$ in the variable constraint graph (see below).
2. The reduced costs for fixing $x_{j}=x_{j}^{\text {sol }}$,

$$
c_{j}^{\mathrm{red}} \cdot\left(x_{j}^{\mathrm{sol}}-x_{j}^{\mathrm{root}_{j}}\right)<c_{j^{\prime}}^{\mathrm{red}} \cdot\left(x_{j^{\prime}}^{\left.\left.\mathrm{sol}^{\text {sol }}-x_{j^{\prime}}^{\mathrm{root}_{j^{\prime}}}\right), ~\right)}\right.
$$

are smaller than those for fixing $x_{j^{\prime}}=x_{j^{\prime}}^{\text {sol }}$.
3. The pseudo costs (see below) for fixing $x_{j}=x^{\text {sol }}$ are smaller than for $x_{j^{\prime}}=x_{j^{\prime}}^{\text {sol }}$,

$$
\Psi_{j}\left(x_{j}^{\text {sol }}-x_{j}^{\mathrm{root}}\right)<\Psi_{j^{\prime}}\left(x_{j^{\prime}}^{\text {sol }}-x_{j^{\prime}}^{\mathrm{root}}\right) .
$$

4. Randomly.

The rationale behind this variable priorization is to first keep the auxiliary problem connected by considering the variable constraint graph. For a given MIP P, the variable constraint graph G_{P} has the variables and constraints $\left\{v_{j} \mid j \in\{1, \ldots, n\}\right\} \cup$ $\left\{w_{j} \mid j \in\{1, \ldots, m\}\right\}$ as nodes. The edges $E\left(G_{P}\right)$ correspond to the nonzero entries of the matrix A :

$$
E\left(G_{P}\right)=\left\{\left(v_{j}, w_{i}\right) \mid a_{i j} \neq 0\right\} .
$$

Distances in G_{P} are breadth first distances. If the original problem has a block structure, the variable priorization concentrates additional fixings on those blocks with a nonempty intersection in $\mathscr{M}^{\text {fix }}$. Related ideas are used, e.g., in presolving for detecting independent subproblems [20], or within the Graph-Induced Neighborhood Search (GINS) released with SCIP 4.0 [30].

The cost based scores in steps 2 and 3 both penalize a deviation of the potential fixing from an LP solution at the root node of the branch-and-bound search. The first associated penalty uses reduced costs. Reduced costs are recorded after every solved LP at the root node of the solving process. If they are higher than any previously recorded reduced costs for x_{j}, they are stored together with the corresponding LP solution value $x_{j}^{\text {root }_{j}}$. Therefore, the LP solution values used to compare the potential fixings of x_{j} and $x_{j^{\prime}}$ may come from different LP solutions.

The pseudo-cost score treats the fixing as a branching and estimates the potential gain in the dual bound. Both variables are compared on the same, namely the final root LP solution on which the solution process started branching. Pseudo costs [4] are a common aggregate of branching information on the variables. Given the average increase $\Psi_{j}^{+}\left(\Psi_{j}^{-}\right)$per unit fractionality of the dual bound after branching upwards (downwards) on a variable x_{j} for $j \in\left\{1, \ldots, n_{i}\right\}$, the pseudo costs of j are a function

$$
\begin{align*}
\Psi_{j}: \mathbb{Q} & \rightarrow \mathbb{Q}_{\geq 0} \tag{2}\\
z & \mapsto \begin{cases}\Psi_{j}^{+} \cdot z, & \text { if } z \geq 0 \\
-\Psi_{j}^{-} \cdot z, & \text { if } z<0\end{cases}
\end{align*}
$$

As an example, assume that a binary variable x_{j} has an LP solution value $x_{j}^{\mathrm{lp}}=0.4$ and an incumbent solution value of 1 . Assume that the average dual bound increase has been $\Psi_{j}^{-}=10$ for branching down on x_{j} and $\Psi_{j}^{+}=5$ for branching up. The pseudo costs for the fixing $x_{j}=x_{j}^{\text {sol }}$ can be calculated as $\Psi_{j}\left(x_{j}^{\text {sol }}-x_{j}^{\mathrm{lp}}\right)=\Psi_{j}^{+} \cdot 0.6=3$. If the solution value had been 0 instead of one, the corresponding pseudo cost score is $\Psi_{j}\left(0-x_{j}^{\mathrm{lp}}\right)=-\Psi^{-} \cdot(-0.4)=4$ for branching down on x_{j}.

Only slight details are changed if the neighborhood was too restrictive, such that $n^{\mathrm{fix}}-\phi_{h_{t}, t} \cdot n_{i}$ variables from $\mathscr{M}^{\text {fix }}$ should be selected and unfixed (relaxed). Distances are now computed in the variable constraint graph starting from $\overline{\mathscr{M}^{\text {fix }}}$, and variables with a small distance are preferably relaxed to keep the auxiliary problem connected. Similarly to before, variables are relaxed preferably if they have a large reduced cost score or, in case a tie occurs, a large pseudo cost score. Finally, if none of the scores discriminate between two variables, the preference is given by a random score assigned to each variable. Generic (un-)fixing within ALNS is only applied if the target fixing rate $\phi_{h_{t}, t}$ is missed by a tolerance of 10%, i.e. only if $n^{\mathrm{fix}} \notin\left[\left(\phi_{h_{t}, t}-0.1\right) \cdot n_{i},\left(\phi_{h_{t}, t}+\right.\right.$ $0.1) \cdot n_{i}$].

3.2 Dynamic Limits

Good limits on the computational budget of an LNS heuristic are essential to make it useful inside a MIP solver. To this end, a tradeoff must be made between the intensity of the search inside the auxiliary problem and the runtime. For this work, the complexity of the subproblem and the budget are adapted dynamically between the individual calls to ALNS.

All of the following dynamic decisions consider the auxiliary problem $P^{\text {aux }}(t)$ at the t-th round of ALNS $(t=0,1, \ldots)$ and its solution status $s\left(P^{\text {aux }}(t)\right)$ which can be one of

- inf, if $P^{\text {aux }}(t)$ was infeasible,
- opt, if $P^{\text {aux }}(t)$ was solved to optimality
- sol, if $P^{\text {aux }}(t)$ provided an improving solution for P
- nosol, if no improving solution was found searching $P^{\text {aux }}(t)$.

Target fixing rate $\phi_{h, t}$ The first dynamic adjustment of the auxiliary problem complexity over time is described in [33], together with the introduction of the Crossover and Mutation LNS heuristics (cf. Section 2), which have been implemented as neighborhoods available to ALNS. The authors of [33] control the complexity of an auxiliary problem $P^{\text {aux }}(t)$ by specifying the amount of integer variables that should be fixed by a neighborhood. The intuition is that the complexity of $P^{\text {aux }}(t)$ decreases with increasing fixing rate. In the notation of the present work, the amount of fixed integer variables is specified by means of the target fixing rate $\phi_{h, t} \in[0,1)$ of a neighborhood $h \in \mathscr{H}$ during round t of ALNS.

For $h \in \mathscr{H}$, let $T_{h}(t)$ denote the number of times that h has been selected, including round t. The fixing rate is modified according to the status in round t as

$$
\phi_{h, t+1}= \begin{cases}\phi_{h, t}, & \text { if } h \neq h_{t} \text { or } s\left(P^{\text {aux }}(t)\right)=\text { sol } \\ \max \left\{0.1, \phi_{h, t}-0.75^{T_{h}(t)} \cdot 0.2\right\}, & \text { if } s\left(P^{\text {aux }}(t)\right) \in\{\text { inf }, \text { opt }\} \\ \min \left\{0.9, \phi_{h, t}+0.75^{T_{h}(t)} \cdot 0.2\right\} & \text { if } s\left(P^{\text {aux }}(t)\right)=\text { nosol }\end{cases}
$$

If $P^{\text {aux }}(t)$ was too easy for the solver, ie. it could be solved to optimality or infeasibility within a given node budget, the fixing rate for the next iteration is decreased. If no new solution was found, the target fixing rate is increased. If a solution was found within the node limit, but the search could not be completed, the fixing rate is kept. The additive change of the fixing rate is 0.2 initially, which is multiplied with 0.75 after every update step, exactly as in [33]. The use of max and min ensures that the target fixing rate stays within 10% and 90%. In our implementation, those two values are parametrized and can be individually set for every neighborhood. Every neighborhood h is initialized with a conservative target fixing rate of $\phi_{h, 1}=0.9$ (respectively the user-defined maximum value), see Section 5 for details.

Node limit $v_{t}^{\text {lim }}$ The main budget limitation of ALNS is a limit on the number of branch-and-bound nodes. The node limit $v_{t+1}^{\lim }$ for the next round of ALNS is adjusted based on the results of the auxiliary problem of round t as follows.

$$
v_{t+1}^{\lim }= \begin{cases}v_{t}^{\lim }, & \text { if } s\left(P^{\text {aux }}(t)\right) \in\{o p t, \text { inf }, \text { sol }\} \\ \min \left\{\left\lfloor v_{t}^{\lim } \cdot 1.05\right\rfloor+1,5000\right\}, & \text { if } s\left(P^{\text {aux }}(t)\right)=\text { nosol }\end{cases}
$$

Similarly to other LNS heuristics in SCIP, ALNS uses an affine linear function of the branch-and-bound nodes v^{bb} in the main search to limit the search effort inside auxiliary problems. Concretely, the next round t of ALNS is called as soon as the main search has made sufficient search progress such that

$$
\begin{equation*}
\kappa_{0}+\frac{u(t-1)+1}{(t-1)+1} \cdot \kappa_{1} \cdot v^{\mathrm{bb}}-\sum_{i=1}^{t-1}\left(100+v_{i}\right) \geq v_{t}^{\mathrm{lim}} \tag{3}
\end{equation*}
$$

Here, κ_{0} and κ_{1} are positive coefficients, and $u(t-1)$ denotes the total number of improving solutions found by the end of round $t-1$. In 3, the linear growth of the budget is increased or decreased based on the total number of improving solutions that ALNS provided. With this strategy, ALNS slowly fades out if it does not find improving solutions. The last term expresses the total node budget used so far with an additional 100 nodes to account for the setup costs of $P^{\text {aux }}(i)$.

3.3 A Reward Function for Neighborhoods

All of the bandit selection strategies presented in Section 4 require the definition of a suitable reward function. Intuitively, the reward should always be higher for neighborhoods that improve over the current incumbent solution, but also depend on the achieved objective quality. Furthermore, a neighborhood that failed fast should be rewarded higher than an unsuccessful neighborhood whose execution required more of the budget. In order for some of the selection strategies from Section 4 to work correctly, we require that a reward should be in the interval $[0,1]$. A reward of 0 is the worst possible score, i.e., the maximum penalty.

Let $h_{t} \in \mathscr{H}$ denote the selected neighborhood in round $t>0$, and let $c^{\text {old }}:=c^{T} x^{\text {inc }}$ denote the objective before the execution of h_{t}, if an incumbent solution $x^{\text {inc }} \in \mathscr{S}_{P}$ is available, or $c^{\text {old }}:=\infty$, otherwise. Similarly, $c^{\text {new }}$ is the objective of the best known solution after running h_{t}. Further, let $v_{t}^{\lim }$ and v_{t} denote the node limit and amount of nodes used by h_{t}, respectively, and let $n^{\text {fix }}(t)$ denote the number of integer variables fixed by h_{t}.

Two reward functions are combined to reward both the presence of a new incumbent solution and the objective improvement. The former is expressed by the solution reward

$$
r^{\text {sol }}\left(h_{t}, t\right):= \begin{cases}1, & \text { if } s\left(P^{\mathrm{aux}}(t)\right) \in\{o p t, \text { sol }\} \\ 0, & \text { else }\end{cases}
$$

The improvement in solution quality is measured by the closed gap reward

$$
r^{\text {gap }}\left(h_{t}, t\right):=\frac{c^{\text {old }}-c^{\text {new }}}{c^{\text {old }}-c^{\text {dual }}}
$$

which evaluates to 0 if no improving solution could be found, and is 1 if the new solution has an objective that is equal to the dual bound, i.e. that is optimal for P. As a convention, the closed gap reward is 1 if the neighborhood could contribute the first solution to the problem. Since most neighborhoods require a known solution as input (cf. 11), this is only possible with RENS and Zero Objective.

Since the time measurement in SCIP is not deterministic, we approximate the effort $\xi(t)$ spent on the search of the auxiliary problem by using the number of nodes as

$$
\xi(t)=\left(1-\frac{n^{\mathrm{fix}}(t)}{n_{i}}\right) \frac{v_{t}}{v_{t}^{\lim }}
$$

In order to compensate for different target fixing rates between different heuristics, $\xi_{(}()$ uses a scaling by the remaining number of free integer variables. The effort lies in the interval $[0,1]$. It is $\xi(t)=1$ if and only if the node limit was exhausted ($v_{t}=v_{t}^{\text {lim }}$) and no integer variables were fixed by the neighborhood. We propose to use the effort in two ways. If a neighborhood fails to produce a better solution, the last of the three individual reward functions is the failure reward

$$
r^{\text {fail }}\left(h_{t}, t\right):= \begin{cases}1, & \text { if } s\left(P^{\text {aux }}(t)\right) \in\{\text { opt }, \text { sol }\} \\ 1-\xi(t), & \text { else }\end{cases}
$$

which uses the effort directly and becomes smaller depending on the effort spent in an auxiliary problem, if no improving solution was found. With two additional convex combination parameters $\eta_{1}, \eta_{2} \in[0,1]$, the reward function of ALNS combines all three rewards as

$$
\begin{equation*}
r^{\mathrm{alns}}\left(h_{t}, t\right):=\eta_{1} r^{\mathrm{fail}}\left(h_{t}, t\right)+\left(1-\eta_{1}\right) \cdot \frac{\eta_{2} r^{\mathrm{sol}}\left(h_{t}, t\right)+\left(1-\eta_{2}\right) r^{\mathrm{gap}}\left(h_{t}, t\right)}{1+\xi(t)} \tag{4}
\end{equation*}
$$

The first control parameter η_{1} separates the reward between runs that were successful and runs that failed to improve the incumbent solution. The second parameter η_{2} adjusts between the solution and the closed gap rewards. The result, which is again a reward in the interval $[0,1]$, is scaled by the effort involved to reward fast neighborhoods higher. Figure 1 depicts the individual elements of the ALNS reward function visually. For the computational experiments, $\eta_{1}=0.5$ and $\eta_{2}=0.8$ were used.

4 Selection Strategies for Multi Armed Bandit Problems

The goal of the present work is a framework that selects among the LNS heuristics presented in Section 2 and that tries to maximize their utility under a shared computing

Figure 1: Diagram of the proposed reward function.
budget. Such a sequential decision process from a finite set of actions (heuristics) with unknown outcome appears in the literature as Multi Armed Bandit Problem [9].

The basic multi armed bandit problem can be described as a game, which is played over multiple rounds. In every round $t=1,2, \ldots$, the player chooses one action $h_{t} \in \mathscr{H}$ from a finite set of available actions. In return for playing h_{t}, the player observes a reward $r\left(h_{t}, t\right) \in[0,1]$ for the selected action. The aim for the player is to maximize their total revenue $\sum_{t} r\left(h_{t}, t\right)$. Since only the reward of the selected action can be observed at a time, every suitable algorithmic strategy must find a good balance between exploration across all actions and exploitation of the best action seen so far.

Depending on the nature of the reward distribution, we distinguish between two main scenarios of multi armed bandit problems. In the stochastic scenario, the observable rewards $r(h, t)$ for every action $h \in \mathscr{H}$ are independent, identically distributed (i.i.d.) random draws over time from a probability distribution with unknown expected reward $\mu_{h} \in[0,1]$. In the stochastic scenario, a good strategy should play an action h^{*} with maximum expected reward $\mu_{h^{*}} \geq \mu_{h^{\prime}} \forall h^{\prime} \in \mathscr{H}$ as often as possible.

In the adversarial scenario, the player faces an opponent that chooses the rewards with the goal to maximize the player's regret-the discrepancy between the player's revenue and the best possible revenue. The opponent may take into account all choices previously made by the player, but does not know the selected action at time t. After the player and the opponent have each made their decisions, the player receives the reward $r\left(h_{t}, t\right)$ for the selected action only, while the opponent is informed about the player's choice h_{t}. It is noteworthy that in the adversarial scenario, the opponent has an incentive to play rewards different from 0 in every round of the game because the player's regret is minimal in every round t where all actions have a reward of 0 . In the adversarial scenario, a good strategy must be necessarily randomized in some way because every deterministic algorithm is easily fooled by the opponent, who can minimize the player's total revenue by assigning a reward of 0 to the player's deterministic next action, and 1 to all other actions.

Intuitively, the adversarial scenario seems much harder to approach than the stochastic scenario because the latter is indifferent to choices made by the player, and estimates of the expected rewards can be built over time. It turns out that it is possible, even for the adversarial scenario, to create strategies that yield an asymptotically optimal revenue in their respective scenario. The reader is referred to the survey [9] for more information about and variants of the following algorithms.

4.1 Strategies for the Stochastic Scenario

The assumption of the stochastic scenario is that the observable reward of each action $h \in \mathscr{H}$ is the realization of a random variable R_{h} around its expected value
$\mu_{h}=\mathbb{E}\left(R_{h}\right)$. Let $T_{h}(t):=\sum_{i=1}^{t} \mathbb{1}_{h_{i}=h}$ denote the number of times that action h has been selected until round t. The sample average

$$
\bar{r}_{h}(t):=\frac{1}{T_{h}(t)} \sum_{i=1}^{t} \mathbb{1}_{h_{i}=h} r(h, i)
$$

is an unbiased estimator of the unknown quantity μ_{h}.

```
Algorithm 1: \(\varepsilon\)-greedy
    Input: Set of actions \(\mathscr{H}\), parameter \(\varepsilon \geq 0\)
    \(t \leftarrow 0\)
    while not stopped do
        \(t \leftarrow t+1\)
        \(\varepsilon_{t} \leftarrow \varepsilon \cdot \sqrt{\frac{|\mathscr{H}|}{t}}\)
        Draw \(v_{t} \sim \mathbb{U}([0,1])\)
        if \(v_{t} \leq \varepsilon_{t} / *\) Selection of next action */
        then
            Draw \(h_{t} \sim \mathbb{U}(\mathscr{H})\)
        else
            \(h_{t} \leftarrow \underset{h \in \mathscr{H}}{\operatorname{argmax}} \bar{r}_{h}(t)\)
        Update \(\bar{r}_{h_{t}}(t+1)\) by the observed reward \(r\left(h_{t}, t\right)\)
```

Algorithm 1 is a very simple, randomized selection strategy for the multi armed bandit problem. It uses the short notation $\mathbb{U}(X)$ to denote the uniform distribution over a set X. The initial lack of reward information is compensated by a randomized selection of the first few actions. The amount of random selections decreases at the speed of $\frac{1}{\sqrt{t}}$ and can be controled by the input parameter ε. With increasing t, it therefore becomes less and less likely to choose an action at random, whereas the probability of greedily exploiting the best action increases.

A different, deterministic approach to the stochastic scenario is based on the principle of optimism at the face of uncertainty. The approach is called Upper Confidence Bound $(U C B)$ algorithm. Under the assumption that all rewards are in the interval $[0,1]$, it holds with a probability of at least $1-\delta$ that

$$
\begin{equation*}
\bar{r}_{h}(t)+\sqrt{\frac{2}{T_{h}(t)} \ln \frac{1}{\delta}}>\mu_{h} \tag{5}
\end{equation*}
$$

The quantity on the left side of Equation 5 is an upper confidence bound for μ_{h} at confidence level δ. With the goal to ultimately find the action h^{*} with maximum expected reward $\mu_{h^{*}}$, the UCB algorithm selects the action that maximizes the upper confidence bound instead, while increasing the confidence level as a function of time, e.g., $1 / \delta=1+t$. The rationale behind this is that also inferior actions become more attractive to the algorithm after they have not been selected for a while. The width of the confidence interval is further controlled by a parameter $\alpha \geq 0$. Let H be an ordered tuple of the elements in \mathscr{H}. The selection strategy α-UCB selects

$$
h_{t} \in \begin{cases}\underset{h \in \mathscr{H}}{\operatorname{argmax}}\left\{\bar{r}_{h}(t-1)+\sqrt{\frac{\alpha \ln (1+t)}{T_{h}(t-1)}}\right\} & \text { if } t>|\mathscr{H}|, \tag{6}\\ \left\{H_{t}\right\} & \text { if } t \leq|\mathscr{H}|\end{cases}
$$

The case distinction in Equation 6 is necessary to obtain a meaningful initialization of all sample means and because $T_{h}(|\mathscr{H}|+1) \geq 1$ for all $h \in \mathscr{H}$ is required for Equations 5 and 6 to be well defined. In the first case of Equation 6 , eventual occuring ties are broken uniformly at random. The special case of $\alpha=0$ yields a completely greedy exploration strategy that does not take into account the upper confidence bound.

4.2 A Strategy for the Adversarial Scenario

Algorithm 2 is the standard algorithmic strategy for adversarial multi armed bandit scenarios. It is briefly called Exp.3, which is an abbreviation of "Exponential Weight Algorithm for Exploration and Exploitation". In each round t, the next action is selected randomly from a probability distribution defined by marginal probabilities $p_{h, t}$ for each $h \in \mathscr{H}$. After receiving the reward $r\left(h_{t}, t\right)$, the weight update is performed in two steps. First, the cumulative reward of the selected action h_{t} is updated in line 7. The cumulative reward weighs the observed reward with the probability to select h_{t}, thereby emphasizing actions with a high reward compared to their current selection probability. Second, the probabilities for the next iteration $t+1$ are computed as a convex combination of two probability distributions based on the choice of γ. In the two extreme cases $\gamma \in\{0,1\}$, the algorithm either draws from a uniform distribution $(\gamma=1)$ in the next iteration, or from a distribution defined by the normalized exponential function of the cumulative rewards $(\gamma=0)$.

```
Algorithm 2: Exp. 3
    Input: Set of actions \(\mathscr{H}\), convex combination parameter \(\gamma \in[0,1]\)
    \(p_{h, 1} \leftarrow \frac{1}{|\mathscr{H}|}, Q_{h} \leftarrow 0 \forall h \in \mathscr{H}\)
    \(t \leftarrow 0\)
    while not stopped do
        \(t \leftarrow t+1\)
        Draw \(h_{t}\) from probability distribution \(p_{h, t}\)
        Observe reward \(r\left(h_{t}, t\right)\)
        \(Q_{h_{t}} \leftarrow Q_{h_{t}}+\frac{r\left(h_{t}, t\right)}{p_{h, t}}\)
        foreach \(h \in \mathscr{H}\) do
            \(p_{h, t+1} \leftarrow(1-\gamma) \frac{\exp \left(Q_{h}\right)}{\sum_{h^{\prime}} \exp \left(Q_{h^{\prime}}\right)}+\frac{\gamma}{|\mathscr{H}|}\)
```

Table 2: Overview of involved parameters and values for the simulation and the MIP experiments. All SCIP parameters are preceded by heuristics/alns/. The placeholder * must be substituted by the name of a neighborhood, e.g., rens.

Symbol	SCIP parameter(s)	Section Ref.	Simulation	MIP
δ	minimprov\{low, high	2	0.01	0.01
k	crossover/nsols	2.1	2	2
$d_{\text {max }}$	not parameterized	2.2	$0.2 \cdot n_{b}$	$0.2 n_{b}$
$\|\mathscr{T}\|$	dins/npoolsols	2.2	5	5
$v_{1}^{\text {lim }}$	alns/minnodes	3.2	50	50
κ_{0}	alns/nodesofs	3.2	500	500
κ_{1}	alns/nodesquot	3.2	0.1	0.1
η_{1}	rewardbaseline	3.3	0.5	0.5
η_{2}	rewardcontrol	3.3	0.8	0.8
$\phi_{h_{t}, t}$	*/\{min, max ${ }^{\text {fixingrate }}$	3.1	$\{0.1,0.3, \ldots, 0.9\}$	dynamic in [0.3, 0.9]
ε	epsilon	4.1	-	0.4685844
α	alpha	4.1	-	0.0016
γ	gamma	4.2	-	0.07041455
-	banditalgo	4	-	\{Exp.3,UCB, ε-greedy $\}$

5 Computational Results

The proposed ALNS framework has been implemented and tested as an additional plugin on top of SCIP 5.0, using CPLEX 12.7.1 as the underlying LP solver. All 8 neighborhoods listed in Table 1 have been incorporated into ALNS. As instance set, we use the union of three MIPLIB collections 3.0, 2003, and 2010,[7, 3, 27] and the Coral [11] instance set, totaling to 666 instances. The computational experiments for the present work are split into two parts. The first part is an offline simulation that uses reward information about all neighborhoods in each call to ALNS. This information is used to compare neighborhoods directly, and to calibrate the parameters of the bandit selection strategies from Section 4 . Section 5.3 describes the results that we obtained with the ALNS framework inside of SCIP using the readily calibrated selection strategies. Since a lot of parameters have been introduced in the previous sections, Table 2 summarizes the parameter settings used for the simulation and the performance experiments in this section.

5.1 Neighborhood Comparison

The first part aims at providing a fair comparison between the neighborhoods that have been implemented in the ALNS framework. Instead of choosing a single neighborhood at each call, all neighborhoods are executed one after another, and their individual rewards are recorded. In order to ensure fairness, every found improving solution is only recorded for the reward function. SCIP does not receive a solution as this would impact consecutive neighborhoods. All dynamic decisions are deactivated for this experiment. The target fixing rate is kept fixed at $0.1-0.9$ in steps of 0.2 , with a tolerance of ± 0.1. Recall that the additional generic fixings/unfixings are only applied if the obtained fixing rate lies outside of the tolerance interval. The experiments have been conducted on a Linux cluster using Ubuntu 16.04, with a time limit of 5 h for each instance.

Not all neighborhoods can be used for all problems. Local Branching and Proximity can only be executed for instances involving binary variables. Zero Objective requires a nonzero objective function. Furthermore, DINS requires a solution pool

Figure 2: Histogram of call frequencies.

Table 3: Number of successful calls of ALNS

Fixing rate	Calls	Success	Succ. Rate
0.1	9037	841	0.093
0.3	9233	975	0.106
0.5	9789	1005	0.103
0.7	9925	1196	0.121
0.9	10085	1337	0.133

with at least 5 solutions, while RENS and RINS require a feasible LP relaxation at the local node. For this experiment, the ALNS framework is only executed if all those conditions are met.

Among the total set of instances, 494 instances allowed to execute all 8 neighborhoods at least once. A histogram of the number of calls is shown in Figure 2 with a bin width of 4 calls. One observes that for more than half of the instances, the heuristic is called at most eight times. This means that a UCT selection algorithm would have tried every neighborhood at most once in the real setup. On the other hand, the initialization phase has been finished on more than 200 instances. On average, ALNS was executed between 18.3 and 20.4 times per instance, depending on the fixing rate.

As one expects, the running time spent in a sub-MIP decreases with the fixing rate. Therefore, the number of times that ALNS could be executed is different for every fixing rate. Table 3 shows the number of finished calls to the framework for every tested fixing rate. It ranges from 9037 at a fixing rate of 0.1 to 10085 at 0.9 . Particularly interesting are the calls where at least one of the tested neigborhoods finds a solution. The number of successful calls of an oracle neighborhood is shown in total in column "Success" and as a rate in column "Succ. Rate". The success rate of

Figure 3: Solution rate by neighborhood and fixing rate.
the oracle neighborhood ranges from 9.3% to 13.3% and increases with an increasing fixing rate.

In all other calls, the selection process is only required to select a neighborhood that fails fast, but cannot contribute to the overall search process with an incumbent solution. Therefore, all results reported in the remainder of this section are reported for the subset of calls where at least one neighborhood finds a solution.

For this set of calls, Figure 3 shows the average number of solutions for every heuristic at every fixing rate. It can be observed that RINS, DINS, and Local Branching are almost consistently the top three neighborhoods across all tested fixing rates. While the solution frequency for those neighborhoods does not show monotonous trends, the solution rates for Crossover, RENS, and Mutation are decreasing with an increasing fixing rate.

The ranking between the neighborhoods is similar for the obtained rewards illustrated in Figure 4. Here, the average reward increases with the fixing rate. This is partly because the reward definition penalizes neighborhoods with a high fixing rate less strictly. A higher average reward results from an increased solution frequency, a better solution quality, and/or less effort to solve the subproblem. The neighborhood rewards at a particular fixing rate can be compared well.

As expected from the previous analysis, RINS, Local Branching, and DINS reach high average rewards. The highest increase in average reward can be observed for the Proximity and Zero Objective neighborhoods. At a high fixing rate of 0.9, RENS achieves the smallest average reward. The reward for Mutation only increases up to a fixing rate of 50%. Its reward is almost constant for all fixing rates $\geq 50 \%$. RENS lacks a reference solution for additional, generic fixings, which is why it can run less frequently than others. A possible explanation for the decreasing scores of Crossover is the random selection of reference solutions. Searching a narrow neighborhood of a reference solution far away from the incumbent may lower its chances to find a better solution. The lower scores of Mutation are remarkable because RINS and Mutation

Figure 4: Avg. reward by neighborhood and fixing rate.

Figure 5: Reward comparison of RINS and Mutation.
use the same reference solution, namely the incumbent. RINS may even need additional generic fixings to reach higher target fixing rates, whereas the Mutation scheme always fixes the targeted percentage of integer variables. The large discrepancy in their solution rates indicates that more informed approaches such as the LP driven neighborhoods RINS or DINS are the most important fixing schemes.

One may ask the question whether a well-performing neighborhood such as RINS entirely dominates the less well-performing neighborhoods such as Mutation. Figure 5 illustrates the measured rewards for RINS and Mutation, respectively. RINS has a clear tendency to score higher, especially at larger fixing rates. However, also the execution of Mutation can be beneficial, as it reaches a higher reward in about 30% of the cases. Analogous comparisons for other pairs of neighborhoods yield similar results. Based on these observations, it is reasonable to enable all 8 neighborhoods by default, and to rely on the selection mechanism.

5.2 Simulation of the Selection Process

The rich data set from the previous section is now used for an offline calibration of the three bandit selection strategies. Each of the three bandit selection methods presented in Section 4 has a single parameter that can be calibrated for the use inside the ALNS selection process. Therefore, all three UCB, Exp.3, and ε-greedy are run on the entire collected data (all calls with and without at least one solution) with the aim to maximize the average reward obtained. Average rewards are computed over 100 repetitions of each algorithm. The simulation of the selection routines has been implemented in the programming language R.

Ideally, the selection performs better than a pure random selection for instances that allow for a certain number of calls to initialize the selection process. Note that certain parameter choices of the Exp. $3(\gamma=1)$ and ε-greedy bandits are equivalent to a uniform random selection.

Figure 6 shows the selection quality for the three selection methods in terms of the average reward and solution rate. As in the previous section, the figures in this section refer to the subset of calls with at least one successful neighborhood. This means that the solution rate of an optimal selection algorithm would be a horizontal line with value 1.0 across all fixing rates. The first row depicts the selection quality of Exp. 3 at different values of the γ parameter. Some hand-picked values $\{0.05,0.5,0.95\}$ are compared to $\gamma=0.07041455$, the optimal value for γ computed by the R function optimize, and a pure random selection named "avg". At all tested values of the γ parameter, the selection quality of Exp. 3 is better than purely random. Furthermore, the experiment reveals that higher values of γ decrease the selection quality across all tested fixing rates. The choice of $\gamma=0.95$ shows, as expected, almost the same selection quality as a pure random selection.

The best choice for ε computed by R is 0.4685844 . The results for $\varepsilon=4$ are indistinguishable from random sampling. The reason is the limited number of calls to ALNS, for which $\varepsilon_{t} \geq 1$ for all $t \leq 71$, such that only random sampling is applied by the ε-greedy algorithm.

Finally, the average reward of the UCB selection algorithm has been maximized for the parameter choice of $\alpha=0.0016$. Its selection quality is depicted in the last row of Figure 6. It can be noted that the average selection quality is higher for UCB and ε greedy than for Exp.3. Especially the solution rate is maximized by the UCB algorithm. The optimal values for the different parameters can be interpreted as follows. The optimal value for the γ-parameter is very close to a purely weight based Exp. 3 selection strategy. The optimal value of the α-parameter shows a higher selection quality than the nearby value of $\alpha=0$, a purely greedy selection. This is seconded by the optimal value of the ε-parameter. This shows that learning from past observations clearly helps the selection process at later stages.

Another observation is that the plots of Figure 6 seldomly cross, i.e. the ranking between different parameter choices is the same for different fixing rates. This indicates that the selection algorithm can be safely combined with an adaptive fixing rate.

The learning success of the bandit selection methods is depicted in Figure 7 It shows the average solution rate of Exp. 3 as a function of the number of calls to the ALNS framework for all four different choices of the parameter γ. As a comparison serves the average solution rate per call. The picture illustrates that the solution rate for the choice of $\gamma=0.07041455$ is better than random after a small number of calls. Furthermore, while the average solution rate stays relatively constant around 0.3 , the solution rate of Exp. 3 has a clear tendency to increase with the number of calls. It

Figure 6: Comparison of selection performance for different parameter choices.
reaches a solution rate of 0.6 after 63 calls.
The two other bandit algorithms achieve this mark much earlier. The second diagram shows the solution rate by call for the ε-greedy algorithm for two choices of ε. Compared to Exp.3, the selection achieves an even better solution rate. Its margin from the average solution rate is higher. As an example, the (arbitrary) mark of a solution rate of 0.6 is first reached after 24 calls, and reliably surpassed after 40 calls to the selection routine.

The final plot shows that UCB outperforms the two other bandit selection routines. The mark of 0.6 is reached after 17 calls for the first time, and almost consistently surpassed after 30 calls. The price for this selection performance is that the first 8 observations must be spread over the 8 neighborhoods to select from, which is why UCB achieves exactly average performance at this early stage. At a later stage, UCB reaches a solution rate of 1.0 for the four rightmost observations, i.e., UCB can safely identify and select a well performing neighborhood at this stage. Recall that these plots represent average solution rates over 100 repetitions of the experiment.

As a conclusion, all three bandit selection algorithms achieve an above average selection performance, as desired. With an increasing initialization time, the learning effect becomes more pronounced. UCB achieves the best solution rate, followed by ε-greedy and Exp.3. Arguably, the good solution rate is an indication that the designed reward function, which the bandits actually receive, captures the ranking between the neighborhoods sufficiently well within the ALNS framework.

5.3 MIP Performance

This section presents the computational benefit of ALNS inside SCIP in a real setting where only one neighborhood can be called at a time. All 3 bandit selection methods have been tested and compared to SCIP with deactivated ALNS. The individual selection parameters are set to their individual optimal value as described in the previous section. The individual, existing Large Neighborhood Search heuristics RENS, RINS, and Crossover are active independently from ALNS in all four settings, as this represents the default settings of SCIP 5.0 with CPLEX 12.7.1 as LP solver. This experiment has been conducted on a Linux cluster of 32 computing nodes equipped with Intel Xeon CPU E5-2670 v2 at 2.50 GHz . The time limit was 2 h for every instance. In order to measure time as accurately as possible, every job has been scheduled exclusively.

Table 4 shows aggregated results for two performance measures, the solving time to optimality and the primal integral. It has been prepared using the Interactive Performance Evaluation Tools [23]. Individual outcomes for every instance and setting are found in Table5 in the appendix. The measures are presented as shifted geometric mean time (using a shift of 1 sec .) and average primal integral. For a better quantitative assessment, relative percentage deviations from the fastest setting are shown. Table 4 summarizes the performance for the entire test bed as well as three interesting subgroups. The first subgroup "Diff" contains all instances on which activating ALNS has an effect on the solving process of SCIP for at least one selection strategy. On the complementary group "Equal", ALNS does not alter the solving process. A change in the path is detected by a change in the number of LP iterations of the main solution process. Both groups drop all instances that could be solved by none of the four settings. The last subgroup is the subset of MIPLIB 2010 [27] benchmark instances.

The overall fastest setting in this experiment is ALNS equipped with an Exp. 3 selection algorithm. On the entire test bed, an approximate 2% time improvement can be observed. Also with a UCB or ε-greedy selection, a time improvement can be

Figure 7: Average solution rate as a function of the individual call.

Table 4: Performance results of ALNS with different selection algorithms

Group	Setting	Inst.	Tlim	Time	Rel. Time $\%$	Integral	Rel. Int. \%
All	Exp.3	665	263	358.61	-1.89	77204.62	-2.11
All	Eps-greedy	665	266	360.90	-1.26	78001.49	-1.10
All	UCB	665	264	360.17	-1.46	76516.88	-2.98
All	ALNS off	665	265	365.52	0.00	78868.44	0.00
Diff	Exp.3	110	2	136.40	-11.39	10281.80	-34.92
Diff	Eps-greedy	110	5	137.21	-10.87	12278.62	-22.27
Diff	UCB	110	3	137.55	-10.65	10046.82	-36.40
Diff	ALNS off	110	4	153.94	0.00	15797.51	0.00
Equal	Exp.3	293	0	35.05	0.19	12888.25	0.23
Equal	Eps-greedy	293	0	35.49	1.46	12876.27	0.14
Equal	UCB	293	0	35.29	0.88	12870.50	0.10
Equal	ALNS off	293	0	34.98	0.00	12858.12	0.00
MIPLIB2010	Exp.3	87	6	314.01	-4.59	21610.16	-23.68
MIPLIB2010	Eps-greedy	87	7	321.02	-2.46	23195.39	-18.08
MIPLIB2010	UCB	87	6	323.58	-1.69	21097.42	-25.49
MIPLIB2010	ALNS off	87	7	329.12	0.00	28315.92	0.00

observed, albeit smaller. The time improvement is more pronounced for MIPLIB 2010, where ALNS with Exp. 3 is more than 2% faster than its bandit competitors and 4.6 \% faster than SCIP without ALNS. Finally, for the set of affected instances, the ALNS time improvement (using Exp.3) is more than 11%. A very similar time result has been obtained for the other two selection algorithms.

The primal integral is minimized by ALNS with the UCB selection strategy, closely followed by Exp.3. Overall, UCB achieves an improvement of 3%, but the improvement is substantial for the subgroups MIPLIB2010 and Diff, where improvements of more than 25% and 36% are obtained, respectively. The ε-greedy selection also yields improved primal integrals for all sets of instances, especially on the set of affected instances. However, the improvements are less pronounced than for the other bandit algorithms. The subgroup "Equal" shows that the primal integral is almost not affected by ALNS if it does not affect the solution process. This indicates that the overhead caused by ALNS is negligible in case its solutions do not contribute to the overall search progress. Note that it is possible that the search is not affected even though ALNS finds a solution.

Overall, ALNS improves SCIP with all tested selection strategies with respect to both time and primal integral. The positive outcome for Exp. 3 is unexpected because Exp. 3 scored worse than UCB and ε-greedy in the simulation experiment. A possible explanation is the different scenario assumption of Exp.3. The important difference between the simulation and the MIP performance results is that solutions found by ALNS during the simulation experiment have been discarded and only reward information was kept. It is not unlikely that during the simulation, repeated calls to the same neighborhood resulted in the same solution. Designed for the stochastic scenario, UCB and ε-greedy aim at identifying a single, best performing neighborhood, which may give them an advantage over Exp. 3 only in the simulation. The weighted random-
ized selection of Exp. 3 may reduce the initial set of neighborhoods over time to two or three equally strong neighborhoods for an instance, or even continue using all available neighborhoods if they achieve similar rewards.

6 Conclusion

This article introduces Adaptive Large Neighborhood Search for MIP, a framework around eight well-known LNS neighborhoods from the literature. It has been implemented as a primal heuristic in SCIP and is publicly available since SCIP 5.0. The framework combines a selection procedure, which is governed by algorithms for the multi armed bandit problem, and the idea of generic additional variable fixings to adjust the complexity of the subproblems, as needed. We propose a reward function that combines the important aspects of solution quality and subproblem effort into a single number. We have used a simulation experiment to calibrate each bandit algorithm individually. Training the bandit algorithms with this reward function shows a clear trend to improve the solution rate with an increasing number of calls. As a byproduct of the simulation, we could see clear differences between the neighborhoods regarding the number of solutions they produce. Two of the neighborhoods that are most successful in our experiments, DINS and Local Branching, have been previously inactive in SCIP.

We currently see two future perspectives for this work. Adaptive algorithm selection may also be beneficial in other parts of the solver where the choice between similar methods largely affects the overall performance of the solver. In a recent article [25], promising results are presented for diving heuristics, and for dynamic switching between different pricing strategies of the Dual Simplex procedure to maximize the node throughput during the search. On the other hand, further algorithmic improvements regarding the use of auxiliary problems in general can be more easily incorporated into a single framework, such as the transfer of variable histories or conflict clauses, which may be very useful for the remaining search process.

Acknowledgements

The work for this article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF grant number 05M14ZAM). The author would like to thank his colleagues Timo Berthold and Thomas Schlechte for their reviews and comments on earlier versions of this manuscript.

References

[1] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1):1-41, 2009.
[2] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics for mixed integer programming. In D. Klatte, H.-J. Lüthi, and K. Schmedders, editors, Operations Research Proceedings 2011, pages 71-76. Springer Berlin Heidelberg, 2012.
[3] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters, 34(4):1-12, 2006.
[4] M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent. Experiments in mixed-integer programming. Mathematical Programming, 1:7694, 1971.
[5] T. Berthold. Measuring the impact of primal heuristics. Operations Research Letters, 41(6):611-614, 2013.
[6] T. Berthold. RENS-the optimal rounding. Mathematical Programming Computation, 6(1):33-54, 2014.
[7] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, 58:12-15, 1998.
[8] R. Borndörfer, H. Hoppmann, and M. Karbstein. A configuration model for the line planning problem. In D. Frigioni and S. Stiller, editors, ATMOS 2013-13th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, volume 33, pages $68-79,2013$.
[9] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. CoRR, abs/1204.5721, 2012.
[10] COIN-OR branch-and-cut MIP solver, 2016. https://projects.coin-or. org/Cbc
[11] Coral mip benchmark library, 2016. http://coral.ise.lehigh.edu/data-sets/mixed-integer-instances.
[12] IBM ILOG CPLEX Optimizer, 2016. http://www-01.ibm.com/software/ integration/optimization/cplex-optimizer/.
[13] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The Computer Journal, 8(3):250-255, 1965.
[14] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, 102(1):71-90, 2005.
[15] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1-3):23-47, 2003.
[16] M. Fischetti and A. Lodi. Repairing milp infeasibility through local branching. 35:1436-1445, 052008.
[17] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex programming. Journal of Heuristics, 20(6):709-731, Dec 2014.
[18] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical Programming Computation, 1(2):201-222, Oct 2009.
[19] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-based primal heuristics for mixed integer programming. In Optimization in the Real World, volume 13, pages $37-53.2015$.
[20] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger. Progress in presolving for mixed integer programming. Mathematical Programming Computation, 7(4):367-398, 2015.
[21] S. Ghosh. DINS, a MIP Improvement Heuristic. In M. Fischetti and D. P. Williamson, editors, Integer Programming and Combinatorial Optimization: 12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007. Proceedings, pages 310-323, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
[22] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The scip optimization suite 6.0. Technical Report 18-26, ZIB, Takustr. 7, 14195 Berlin, 2018.
[23] G. Hendel. IPET interactive performance evaluation tools. https://github. com/GregorCH/ipet
[24] G. Hendel. New rounding and propagation heuristics for mixed integer programming. Bachelor thesis, 2011.
[25] G. Hendel, M. Miltenberger, and J. Witzig. Adaptive algorithmic behavior for solving mixed integer programs using bandit algorithms. Technical Report 1836, ZIB, Takustr. 7, 14195 Berlin, 2018.
[26] E. B. Khalil, B. Dilkina, G. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics in tree search. In 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.
[27] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103-163, 2011.
[28] P. Laborie and D. Godard. Self-adapting large neighborhood search: Application to single-mode scheduling problems. In P. Baptiste, G. Kendall, A. Munier, and F. Sourd, editors, MISTA-07, 082007.
[29] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems. Econometrica, 28(3):497-520, 1960.
[30] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald, G. Hendel, T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E. Pfetsch,
C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, D. Weninger, J. T. Witt, and J. Witzig. The scip optimization suite 4.0. Technical Report 17-12, ZIB, Takustr. 7, 14195 Berlin, 2017.
[31] L.-M. Munguía, S. Ahmed, D. A. Bader, G. L. Nemhauser, and Y. Shao. Alternating criteria search: a parallel large neighborhood search algorithm for mixed integer programs. Computational Optimization and Applications, 69(1):1-24, Jan 2018.
[32] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers \& Operations Research, 34(8):2403-2435, 2007.
[33] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions. INFORMS Journal on Computing, 19(4):534-541, 2007.
[34] A. Sabharwal, H. Samulowitz, and C. Reddy. Guiding combinatorial optimization with UCT. In N. Beldiceanu, N. Jussien, and E. Pinson, editors, CPAIOR, volume 7298 of Lecture Notes in Computer Science, pages 356-361. Springer, 2012.
[35] Xpress. FICO Xpress-Optimizer, 2016. http://www.fico.com/en/ Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx

Appendix

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
10teams			\checkmark	13	13	13	12	558	588	599	606
22433			\checkmark	3	3	3	3	290	270	270	270
23588			\checkmark	6	6	6	6	212	202	222	202
30n20b8	\checkmark		\checkmark	256	254	255	254	15902	15736	15769	15814
$50 \mathrm{v}-10$				7200	7200	7200	7200	2921	2916	2912	2970
Test3			\checkmark	5	5	5	5	195	195	195	195
alcis1				7200	7200	7200	7200	3913	2832	3189	2830
acc-tight4			\checkmark	170	170	170	171	17000	17000	17000	17100
acc-tight5	\checkmark		\checkmark	118	116	117	116	11800	11600	11700	11600
acc-tight6			\checkmark	71	71	71	70	7060	7070	7100	7040
aflow30a			\checkmark	27	27	27	27	718	736	753	718
aflow40b	\checkmark		\checkmark	900	900	898	894	3868	3879	3861	3725
air03			\checkmark	2	3	3	3	63	96	83	94
air04	\checkmark		\checkmark	27	26	27	27	262	222	252	252
air05			\checkmark	18	18	19	17	172	206	193	166
aligninq			\checkmark	16	16	16	16	380	370	380	370
appl-2	\checkmark	\checkmark		5326	4415	7200	7200	177568	135961	309051	720001
arki001		\checkmark		7200	6777	7200	7200	392	416	434	431
ash608gpia-3col	\checkmark		\checkmark	61	61	61	61	6086	6074	6064	6097
atlanta-ip				7200	7200	7200	7200	46308	51595	42982	65872
atm20-100				7200	7200	7200	7200	720000	720000	720000	720000
b2c1s1				7200	7200	7200	7200	17792	9487	10847	24912
babl				7200	7200	7200	7200	1650	1590	4326	3238
bab3				7200	7200	7200	7200	720271	720122	720545	720325
bab5	\checkmark	\checkmark		677	871	1116	2819	2746	2707	2737	2896
bc			\checkmark	1146	1151	1145	1143	15356	15685	15301	15302
bc1			\checkmark	254	254	251	247	6265	6306	6195	6165
beasleyC3	\checkmark	\checkmark		99	76	108	72	532	504	515	556
bell3a			\checkmark	8	8	8	8	0	0	0	0
bell5			\checkmark	1	1	1	1	10	10	10	0
berlin_5_8_0				7200	7200	7200	7200	1223	1232	1408	1232
bg512142				7200	7200	7200	7200	36444	38919	33846	37986
biellal	\checkmark	\checkmark		722	722	234	709	2495	2521	1995	2418
bienst1			\checkmark	35	36	36	35	151	170	179	149
bienst2	\checkmark		\checkmark	342	342	343	343	471	467	500	474
binkar10_1	\checkmark	\checkmark		6	48	50	49	49	33	52	37
blend2		\checkmark		2	2	2	5	19	30	29	217
bley_xl1	\checkmark		\checkmark	177	176	178	177	16733	16728	16833	16795
blp-ar98				7200	7200	7200	7200	720000	720000	720002	720001
blp-ic97				7200	7200	7200	7200	3661	4616	4613	4602
bnatt350	\checkmark		\checkmark	1093	1094	1095	1106	109300	109400	109500	110600
bnatt400			\checkmark	1302	1296	1300	1307	101100	100700	101000	101400
buildingenergy				7200	7200	7200	7200	17865	17868	17894	17887
cap6000		\checkmark		5	5	5	5	29	66	59	29
circ 10-3				7200	7200	7200	7200	720002	720001	720001	720001
co-100				7200	7200	7200	7200	55008	54391	54275	54226
core2536-691	\checkmark	\checkmark		59	49	58	108	273	249	273	357
core $4872-1529$				7200	7200	7200	7200	18330	19309	18893	19981
cov1075	\checkmark		\checkmark	135	135	135	135	166	166	167	166
csched007			\checkmark	2802	2748	2749	2740	5341	5243	5239	5204
csched008			\checkmark	446	446	446	446	1454	1455	1464	1424
csched010	\checkmark		\checkmark	2567	2569	2569	2567	4819	4829	4832	4817
d10200				7200	7200	7200	7200	750	751	751	751
d20200				7200	7200	7200	7200	1127	1124	1121	1121
dano3-3		\checkmark		69	54	69	68	535	577	535	535
dano3-4			\checkmark	82	62	82	37	457	437	477	477
dano3.5		\checkmark		158	166	183	159	376	399	376	396
dano3mip				7200	7200	7200	7200	27771	27675	27772	27754
danoint	\checkmark	\checkmark		5846	5841	5847	5957	584	585	759	598
datt256				7200	7200	7200	7200	719973	719952	719990	720043
dclc				7200	7200	7200	7200	11541	10906	27174	11459
dc11				7200	7200	7200	7200	43512	43428	45520	43059
dcmulti		\checkmark		3	2	3	2	15	14	15	14
dfn-gwin-UUM	\checkmark	\checkmark		76	68	68	88	156	166	166	169
dg012142				7200	7200	7200	7200	175566	111040	161012	187792
disctom			\checkmark	2	2	2	2	200	160	200	160
dolom1				7200	7200	7200	7200	549206	571878	549027	548652
				7200	7200	7200	7200	541837	542147	541870	541299
ds-big				7200	7200	7200	7200	510983	503225	454460	498603
dsbmip			\checkmark	1	1	1	1	43	43	43	83
										continued on next page ...	

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
egout			\checkmark	1	1	1	1	0	0	0	0
eil33-2	\checkmark		\checkmark	113	113	116	113	634	649	665	611
eilA 101-2				7200	7200	7200	7200	89667	90110	89880	90164
eilB101	\checkmark	\checkmark		286	364	288	286	703	1090	730	700
enigma			\checkmark	1	1	1	1	30	70	60	30
enlight13	\checkmark		\checkmark	1	1	1	1	0	0	0	0
enlight14	\checkmark		\checkmark	1	1	1	1	1	3	2	3
enlight15			\checkmark	1	1	1	1	0	10	10	10
enlight16			\checkmark	1	1	1	1	3	7	4	2
enlight9			\checkmark	1	1	1	1	1	0	1	0
ex10			\checkmark	506	515	504	515	50600	51500	50400	51500
ex 1010-pi				7200	7200	7200	7200	20758	20757	20755	20755
ex9	\checkmark		\checkmark	39	41	39	39	3910	4130	3930	3920
f2000				7200	7200	7200	7200	720001	720001	720001	720001
fast0507			\checkmark	57	55	57	54	245	234	237	244
fiball				7200	7200	7200	7200	15841	15826	15984	15813
fiber			\checkmark	3	3	3	3	26	24	24	42
fixnet6			\checkmark	8	8	8	8	93	94	98	95
flugpl			\checkmark	1	1	1	1	1	1	1	1
g200x740i				7200	7200	7200	7200	43809	29034	20994	29123
gen			\checkmark	1	1	1	1	10	0	10	0
germanrr				7200	7200	7200	7200	58915	51678	59013	59020
germany50-DBM				7200	7200	7200	7200	6482	4321	6599	5701
gesa2			\checkmark	1	1	1	1	88	44	79	44
gesa2-o			\checkmark	1	1	1	1	22	52	44	22
gesa3			\checkmark	5	5	5	5	12	10	20	30
gesa3_o			\checkmark	3	3	3	3	60	90	90	90
glass 4	\checkmark	\checkmark		1526	1264	1710	3358	36139	28260	42952	80752
gmu-35-40	\checkmark			7200	7200	7200	7200	165	83	110	82
gmu-35-50				7200	7200	7200	7200	720036	720004	720005	720008
gmut-75-50				7200	7200	7200	7200	3821	4225	4706	3587
gmut-77-40				7200	7200	7200	7200	1355	2392	1600	2929
go19				7200	7200	7200	7200	293	296	293	293
gt2			\checkmark	1	1	1	1	9	9	9	9
hanoi5				7200	7200	7200	7200	720000	720000	720000	720000
haprp			\checkmark	1	1	1	1	20	20	22	20
ic97-potential				7200	7200	7200	7200	784	384	1108	1234
iis-100-0-cov	\checkmark		\checkmark	1404	1404	1394	1406	257	258	256	257
iis-bupa-cov	\checkmark		\checkmark	6020	6024	6002	6019	1004	1001	1006	1002
iis-pima-cov	\checkmark		\checkmark	810	805	806	806	1111	1107	1089	1088
in				7189	7188	7189	7188	470211	470156	470244	470192
ivu06-big				7200	7200	7200	7200	26051	26051	26051	26151
ivu52				7200	7200	7200	7200	107599	114156	118778	108599
janos-us-DDM				7200	7200	7200	7200	280	282	288	280
k16x240		\checkmark		2347	2962	2340	2977	62	129	63	128
khb05250			\checkmark	1	1	1	1	2	4	4	3
1152lav		\checkmark		2	2	2	2	23	43	44	22
lectsched-1			\checkmark	109	109	108	109	10900	10900	10800	10900
lectsched-1-obj				7200	7200	7200	7200	295659	294531	295109	293653
lectsched-2			\checkmark	28	28	28	28	2830	2780	2770	2760
lectsched-3			\checkmark	80	80	80	79	8010	7970	8010	7920
lectsched-4-obj	\checkmark		\checkmark	96	97	96	96	6573	6618	6536	6552
leol		\checkmark		4498	4500	3445	4485	4319	4318	3575	4303
leo2				7200	7200	7200	7200	15384	15996	21447	16901
liu				7200	7200	7200	7200	88823	117481	119240	154173
lotsize				7200	7200	7200	7200	14444	14447	14347	14443
1 m		\checkmark		898	960	1019	807	4526	4551	4557	4538
Irsal20				7200	7200	7200	7200	720001	720001	720001	720000
Iseu			\checkmark	1	1	1	1	8	16	15	8
m100n500k4r1	\checkmark			7200	7200	7200	7200	29184	29184	29190	29183
macrophage	\checkmark		\checkmark	183	183	183	184	431	425	424	431
manna81			\checkmark	1	1	1	1	13	12	13	25
map06		\checkmark		726	778	822	1094	7632	7315	9890	19657
map10		\checkmark		994	982	958	922	12046	11764	11677	11623
map14			\checkmark	807	808	825	806	3350	3350	3354	3350
map18	\checkmark		\checkmark	346	337	351	337	1681	1671	1676	1686
map20	\checkmark		\checkmark	235	237	247	234	1411	1409	1410	1406
marksharel				7200	7200	7200	7200	492445	605874	605909	605706
markshare2				7200	7200	7200	7200	685128	685178	686991	685154
markshare_5_0				7200	7200	7200	7200	397313	397155	397343	397371
mas74			\checkmark	1878	1891	1895	1883	315	317	315	315
mas76			\checkmark	165	163	164	164	14	7	7	14
maxgasflow				7200	7200	7200	7200	12821	12754	12769	12757
mc11		\checkmark		407	408	408	442	690	696	685	695
mcsched	\checkmark		\checkmark	281	279	281	282	158	155	158	172
methanosarcina				7200	7200	7200	7200	15003	15013	14974	15046
mik-250-1-100-1	\checkmark		\checkmark	95	95	95	96	42	48	50	26
mine-166-5	\checkmark		\checkmark	84	84	85	83	4150	4142	4192	4093
mine-90-10	\checkmark	\checkmark		434	503	465	510	2855	2856	2779	2846
mining				7200	7200	7200	7200	774420	771961	770608	772441
misc03			\checkmark	1	1	1	1	25	10	25	10
misc06			\checkmark	1	1	1	1	0	0	10	10
misc07			\checkmark	8	8	8	8	91	71	111	111
mitre			\checkmark	15	16	16	16	1490	1580	1560	1570
mkc				7200	7200	7200	7200	1058	1059	1464	1062
mkc1		\checkmark		56	33	47	35	51	87	48	90
mod008			\checkmark	1	1	1	,	0	0	0	0
mod010		\checkmark		1	1	1	1	53	21	53	21
mod011		\checkmark		202	190	196	190	2017	1994	1988	2028
modglob			\checkmark	1	1	1	1	0	0	0	0
momentum1				7200	7200	7200	7200	104675	121615	290800	489700
momentum 3				7200	7200	7200	7200	441021	337153	441953	443549
msc98-ip	\checkmark	\checkmark		787	2873	901	726	7720	21397	8033	10394
										continued on	ext page ...

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
mspp16	\checkmark		\checkmark	711	711	712	701	28600	28800	28500	28400
mzzv11	\checkmark		\checkmark	191	183	186	180	7483	7349	7434	7216
mzzv42z		\checkmark		98	104	147	97	7325	7613	7467	7275
n15-3				7200	7200	7200	7200	148036	157588	160244	187870
n3-3				7200	7200	7200	7200	17848	18766	18114	21282
n3700				7200	7200	7200	7200	35056	35047	33779	47682
n3705				7200	7200	7200	7200	48923	48919	40248	48984
n370a				7200	7200	7200	7200	39635	39760	39649	39629
n3div36	\checkmark		\checkmark	7153	7064	7140	7158	5566	5569	5568	5573
$n 3$ seq24	\checkmark			7200	7200	7200	7200	42413	41152	41927	41988
n4-3	\checkmark	\checkmark		116	129	135	135	591	671	635	658
n9-3				7200	7200	7200	7200	9717	8942	2574	6976
nag				7200	7200	7200	7200	163774	163830	163781	163040
neos-1053234			\checkmark	128	127	129	127	30	10	20	10
neos-1053591		\checkmark		4	5	5	5	21	11	22	11
neos-1056905				7200	7200	7200	7200	52523	65360	88185	69906
neos-1058477			\checkmark	3	3	3	3	10	10	10	20
neos-1061020		\checkmark		3777	3621	3779	3775	8252	8171	8240	8251
neos-1062641			\checkmark	1	1	1	1	10	30	30	30
neos-1067731				7200	7200	7200	7200	1002	1001	1002	1001
neos-1096528		\checkmark		4563	4343	4542	4537	57648	56763	57428	57611
neos-1109824	\checkmark		\checkmark	17	17	17	17	625	635	605	606
neos-1120495			\checkmark	6	6	6	6	542	553	562	523
neos-1121679				7200	7200	7200	7200	203015	263262	263381	264242
neos-1122047			\checkmark	7	7	7	7	690	690	680	700
neos-1126860		\checkmark		1803	1781	1833	1792	1977	1959	1974	4494
neos-1151496			\checkmark	4	4	4	4	370	420	400	410
neos-1171448		\checkmark		52	51	6	51	320	311	282	319
neos-1171692		\checkmark		28	57	24	21	157	142	137	151
neos-1171737		\checkmark		1879	6810	7200	3075	2390	10238	10038	6054
neos-1173026			\checkmark	1	1	1	1	19	19	15	15
neos-1200887			\checkmark	18	18	18	19	30	28	35	46
neos-1208069			\checkmark	39	39	39	39	3900	3880	3920	3855
neos-1208135			\checkmark	37	36	37	36	3550	3470	3570	3460
neos-1211578			\checkmark	2	2	2	2	8	25	25	25
neos-1215259		\checkmark		46	43	38	37	1408	1365	1343	1339
neos-1215891			\checkmark	74	74	75	75	741	771	761	741
neos-1223462			\checkmark	259	259	259	257	25900	25900	25900	25600
neos-1224597			\checkmark	2	2	2	2	160	190	200	160
neos-1228986			\checkmark	12	12	12	12	17	9	17	5
neos-1281048			\checkmark	9	9	9	10	312	312	312	352
neos-1311124				7200	7200	7200	7200	17	16	16	14
neos-1324574			\checkmark	2748	2715	2717	2755	20	20	20	20
neos-1330346				7200	7200	7200	7200	10	10	10	10
neos-1330635			\checkmark	1	1	1	1	28	51	48	51
neos-1337307	\checkmark			7200	7200	7200	7200	7977	7987	7957	7967
neos-1346382				7200	7200	7200	7200	29	19	19	31
neos-1354092				7200	7200	7200	7200	720000	720000	720000	720000
neos-1367061			\checkmark	18	18	18	17	986	986	986	986
neos-1396125	\checkmark		\checkmark	78	78	78	78	1605	1577	1582	1570
neos-1407044				7200	7200	7200	7200	720001	720000	720000	720001
neos-1413153			\checkmark	5	5	5	4	203	229	237	197
neos-1415183			\checkmark	8	8	8	8	521	489	523	489
neos-1417043			\checkmark	10	10	10	10	990	980	990	980
neos-1420205			\checkmark	3	3	3	3	5	5	5	19
neos-1420546				7200	7200	7200	7200	2835	2848	2829	2829
neos-1420790				7200	7200	7200	7200	4985	4952	4948	4950
neos-1423785				7200	7200	7200	7200	138760	152139	153211	196728
neos-1425699			\checkmark	1	1	1	1	0	0	0	0
neos-1426662				7200	7200	7200	7200	70	82	64	101
neos-1427181				7200	7200	7200	7200	20	25	20	20
neos-1427261				7200	7200	7200	7200	422	298	284	424
neos-1429185				7200	7200	7200	7200	48	29	29	46
neos-1429212				7200	7200	7200	7200	720003	720001	720001	720002
neos-1429461				7200	7200	7200	7200	25	25	25	24
neos-1430701			\checkmark	13	12	13	13	13	13	28	31
neos-1430811				7200	7200	7200	7200	366219	356555	376302	476356
neos-1436709				7200	7200	7200	7200	22	22	22	23
neos-1436713				7200	7200	7200	7200	266	256	260	259
neos-1437164			\checkmark	1	1	1	1	62	91	102	61
neos-1439395			\checkmark	1900	1903	1905	1898	31	17	20	17
neos-1440225			\checkmark	77	77	78	77	7740	7730	7760	7740
neos-1440447			\checkmark	5	6	6	5	15	23	22	23
neos-1440457				7200	7200	7200	7200	19	18	23	18
neos-1440460				7200	7200	7200	7200	23	19	21	22
neos-1441553		\checkmark		2	2	2	2	196	156	204	174
neos-1442119				7200	7200	7200	7200	18	21	21	20
neos-1442657				7200	7200	7200	7200	16	16	15	16
neos-1445532				7200	7200	7200	7200	9821	9845	9884	9841
neos-1445738				7200	7200	7200	7200	62078	69034	69069	69707
neos-1445743		\checkmark		41	55	56	55	2478	2463	2497	2456
neos-1445755		\checkmark		45	62	60	62	2629	2540	2511	2535
neos-1445765		\checkmark		35	35	36	36	2520	2555	2498	2502
neos-1451294			\checkmark	1424	1427	1441	1424	48283	48511	48943	48284
neos-1456979			\checkmark	2839	2845	2870	2836	7720	7705	7876	7658
neos-1460246				7200	7200	7200	7200	23	23	23	23
neos-1460265			\checkmark	1	1	1	1	91	82	51	51
neos-1460543				7200	7200	7200	7200	9423	9422	9425	9425
neos-1460641				7200	7200	7200	7200	101	142	127	142
neos-1461051			\checkmark	22	22	22	22	2247	2233	2238	2245
neos-1464762				7200	7200	7200	7200	150	150	150	150
neos-1467067				7200	7200	7200	7200	18	15	23	18
neos-1467371				7200	7200	7200	7200	1528	2242	1530	1527
										continued on	ext page ...

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
neos-775946			\checkmark	11	11	11	11	538	557	567	540
neos-777800			\checkmark	25	23	22	18	2510	2260	2200	1810
neos-780889			\checkmark	48	47	48	48	4800	4740	4830	4770
neos-785899			\checkmark	3	3	3	3	243	263	253	273
neos-785912			\checkmark	10	10	10	10	1012	976	972	1012
neos-785914			\checkmark	1	1	1	1	60	90	100	60
neos-787933			\checkmark	2	2	2	2	188	188	188	188
neos-791021			\checkmark	46	46	46	46	3571	3581	3582	3521
neos-796608			\checkmark	1	1	1	1	0	0	0	0
neos-799838		\checkmark		18	21	18	24	663	684	673	720
neos-801834			\checkmark	23	23	22	22	77	78	74	76
neos-803219		\checkmark		71	72	73	71	63	117	105	103
neos-803220		\checkmark		134	131	132	145	133	131	122	126
neos-806323			\checkmark	38	37	38	37	677	638	639	632
neos-807454			\checkmark	2	2	2	2	164	164	166	196
neos-807456				7200	7200	7200	7200	720000	720000	720000	720000
neos-807639			\checkmark	29	29	29	29	61	29	39	38
neos-807705			\checkmark	42	43	42	42	355	385	394	364
neos-808072			\checkmark	19	19	19	19	1408	1408	1407	1407
neos-808214			\checkmark	10	10	8	8	990	980	830	830
neos-810286			\checkmark	20	20	20	20	2020	2010	2010	2010
neos-810326			\checkmark	37	38	37	37	1242	1248	1257	1236
neos-820146				7200	7200	7200	7200	720000	720000	720000	720000
neos-820157				7200	7200	7200	7200	720000	720000	720000	720000
neos-820879			\checkmark	54	54	51	53	1209	1189	1151	1176
neos-824661			\checkmark	22	22	22	22	1078	1068	1080	1084
neos-824695			\checkmark	7	7	7	7	332	341	334	334
neos-825075			\checkmark	1	2	2	2	127	160	147	150
neos-826224			\checkmark	7	7	8	7	382	362	392	375
neos-826250			\checkmark	2	3	3	3	138	142	168	187
neos-826650			\checkmark	1742	1738	1738	1739	19725	19615	19615	19525
neos-826694			\checkmark	5	5	5	5	247	248	248	248
neos-826812			\checkmark	2	2	2	3	143	117	113	156
neos-826841				7200	7200	7200	7200	50	50	50	50
neos-827015		\checkmark		457	480	482	470	13786	12739	12738	12641
neos-827175			\checkmark	3	3	3	3	216	236	236	207
neos-829552		\checkmark		111	111	162	111	6921	6936	7681	6918
neos-830439			\checkmark	1	1	1	1	20	30	30	10
neos-831188			\checkmark	176	175	174	174	2710	2740	2690	2690
neos-839838			\checkmark	1601	1594	1598	1601	620	621	624	628
neos-839859		\checkmark		47	46	47	50	219	219	170	222
neos-839894				7200	7200	7200	7200	72120	45063	72203	72120
neos-841664				7200	7200	7200	7200	1178	1208	948	1248
neos-847051				7200	7200	7200	7200	50	52	52	44
neos-847302				7200	7200	7200	7200	1681	1648	1646	1660
neos-848150			\checkmark	1	1	1	1	60	60	60	60
neos-848198				7200	7200	7200	7200	17584	17969	17833	21044
neos-848589				7200	7200	7200	7200	85111	74440	74276	84883
neos-848845			\checkmark	367	364	367	363	36700	36400	36700	36300
neos-849702	\checkmark		\checkmark	90	90	90	89	9010	8980	8950	8940
neos-850681		\checkmark		5	3	7	5	139	114	167	143
neos-856059			\checkmark	4377	4398	4408	4394	1907	1917	1920	1913
neos-859770			\checkmark	158	158	157	158	15758	15835	15706	15820
neos-860244			\checkmark	6	6	6	6	220	210	220	210
neos-860300			\checkmark	20	20	20	20	887	890	892	885
neos-862348		\checkmark		9	5	7	7	243	195	223	204
neos-863472			\checkmark	58	56	56	57	51	51	51	51
neos-872648				7200	7200	7200	7200	3932	4461	15298	15134
neos-873061				7200	7200	7200	7200	12466	5199	8936	12106
neos-876808				7200	7200	7200	7200	322179	281595	356148	359589
neos-880324			\checkmark	1	1	1	1	60	60	60	100
neos-881765			\checkmark	1	1	1	1	10	20	20	20
neos-885086			\checkmark	604	616	606	603	837	852	837	836
neos-885524		\checkmark		3758	7200	2326	7200	34332	46770	34624	46169
neos-886822			\checkmark	1883	1885	1884	1875	2329	2326	2292	2287
neos-892255			\checkmark	22	22	22	22	30	30	30	10
neos-905856			\checkmark	508	511	511	508	30367	30450	30367	30267
neos-906865			\checkmark	234	235	234	232	77	74	67	50
neos-911880			\checkmark	2625	2621	2627	2614	154	152	157	147
neos-911970			\checkmark	7	7	${ }^{7}$	7	112	112	113	112
neos-912015			\checkmark	10	10	10	10	648	603	642	602
neos-912023			\checkmark	4	4	4	4	420	390	400	420
neos-913984			\checkmark	12	11	12	11	1190	1130	1170	1130
neos-914441			\checkmark	63	62	62	63	986	970	968	987
neos-916173			\checkmark	138	139	138	139	2289	2292	2328	2340
neos-916792	\checkmark	\checkmark		1260	1229	1241	1253	4912	4992	5032	5137
neos-930752				7200	7200	7200	7200	7584	5332	7665	7560
neos-931517				7200	7200	7200	7200	50251	57152	57410	63640
neos-931538			\checkmark	9	9	9	9	500	480	480	503
neos-932721		\checkmark		8	2	8	8	86	105	85	95
neos-932816		\checkmark		5194	4977	5166	4252	27700	27721	27626	21493
neos-933364			\checkmark	326	327	326	325	49	51	55	49
neos-933550			\checkmark	4	3	4	3	390	350	390	350
neos-933562				7200	7200	7200	7200	999	986	1008	999
neos-933638		\checkmark		104	97	105	104	3001	2950	3031	3001
neos-933815				7200	7200	7200	7200	65	74	65	74
neos-933966		\checkmark		141	43	141	141	4123	4052	4122	4131
neos-934278	\checkmark		\checkmark	140	139	140	139	4669	4667	4678	4667
neos-934441				7200	7200	7200	7200	4744	4890	4876	4876
neos-934531			\checkmark	265	267	264	266	26500	26700	26400	26600
neos-935234				7200	7200	7200	7200	5284	6070	6189	6248
neos-935348				7200	7200	7200	7200	6551	8185	8007	8185
neos-935496				7200	7200	7200	7200	3030	2913	3005	4746
										continued on	ext page ...

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
neos-935627			\checkmark	343	343	344	344	1995	1989	2004	2000
neos-935674				7200	7200	7200	7200	3307	3707	3415	3283
neos-935769			\checkmark	51	51	51	51	1716	1716	1723	1718
neos-936660			\checkmark	201	202	202	200	2825	2736	2850	2746
neos-937446		\checkmark		142	141	181	142	3675	3666	3491	3663
neos-937511			\checkmark	50	50	50	50	2478	2478	2480	2478
neos-937815				7200	7200	7200	7200	9310	11023	9240	9278
neos-941262				7200	7200	7200	7200	36301	36150	36578	36338
neos-941313		\checkmark		297	372	379	371	8089	8537	8577	8525
neos-941698			\checkmark	6	6	6	6	610	610	580	620
neos-941717				7200	7200	7200	7200	2005	1906	1990	1926
neos-941782				7200	7200	7200	7200	2095	2098	2107	2094
neos-942323			\checkmark	3	3	3	3	150	151	151	190
neos-942830		\checkmark		1563	1560	730	1559	1633	2057	1575	2039
neos-942886			\checkmark	1	1	1	1	17	48	45	46
neos-948126				7200	7200	7200	7200	62399	62449	62396	62354
neos-948268			\checkmark	5	5	5	5	470	490	470	450
neos-948346				7200	7200	7200	7200	27597	34850	35311	33226
neos-950242			\checkmark	494	492	493	492	33080	32960	32980	32880
neos-952987				7200	7200	7200	7200	720003	720121	720001	720000
neos-953928		\checkmark		48	54	180	54	1301	1291	1324	1301
neos-954925		\checkmark		431	633	325	588	6602	6409	6455	6458
neos-955215			\checkmark	3452	3416	3409	3402	35	35	56	35
neos-955800		\checkmark		71	72	72	71	3933	4425	4454	4405
neos-956971		\checkmark		251	228	424	476	3455	3463	3470	3455
neos-957143		\checkmark		174	59	170	174	3296	3299	3299	3316
neos-957270			\checkmark	3	3	3	3	280	280	290	280
neos-957323		\checkmark		56	40	39	37	851	842	851	849
neos-957389			\checkmark	18	18	17	17	1740	1740	1710	1710
neos-960392		\checkmark		132	119	130	129	3780	3616	3786	3774
neos-983171				7200	7200	7200	7200	33111	32832	35171	34935
neos-984165				7200	7200	7200	7200	74073	85280	104587	81329
neos 13	\checkmark		\checkmark	390	388	391	384	5682	5730	5733	5593
neos15		\checkmark		4334	7200	4425	6181	454	759	461	614
neos16				7200	7200	7200	7200	2174	2184	2154	2153
neos 18	\checkmark		\checkmark	56	56	56	56	383	372	380	359
neos6		\checkmark		62	110	74	73	2052	3055	4306	4244
neos788725			\checkmark	253	251	254	253	25308	25079	25369	25272
neos808444			\checkmark	3100	3107	3086	3119	310000	310700	308600	311900
neos858960			\checkmark	2377	2371	2381	2381	237667	237079	238050	238099
net12	\checkmark		\checkmark	991	984	989	987	7754	7754	7754	7745
netdiversion	\checkmark	\checkmark		698	467	693	465	45150	41898	44710	41798
newdano	\checkmark			7200	7200	7200	7200	2696	2633	2652	2655
nobel-eu-DBE				7200	7200	7200	7200	720000	720000	720000	720000
noswot	\checkmark	\checkmark		125	129	125	129	9	10	34	21
ns1111636				7200	7200	7200	7200	74578	74570	74555	74580
ns1116954				7200	7200	7200	7200	720002	720003	720003	720002
ns1158817			\checkmark	247	247	246	246	24672	24657	24594	24641
ns 1208400	\checkmark		\checkmark	364	364	366	361	36100	36100	36300	35700
ns 1456591				7200	7200	7200	7200	244990	245058	246515	245984
ns1606230			\checkmark	6328	6325	6333	6323	506541	506275	507128	506152
ns1631475				7200	7200	7200	7200	267598	267815	266851	267707
ns1644855			\checkmark	986	986	980	985	98555	98643	98042	98500
ns1663818				7194	7194	7195	7195	719436	719421	719467	719459
ns1685374				7200	7200	7200	7200	720001	720001	720000	720001
ns1686196			\checkmark	13	13	13	13	1278	1329	1294	1314
ns1688347	\checkmark		\checkmark	150	152	152	148	3636	3655	3646	3590
ns1696083				7200	7200	7200	7200	701703	705076	702220	703518
ns 1702808			\checkmark	39	38	38	38	3860	3801	3826	3810
ns1745726			\checkmark	14	15	15	15	1427	1463	1498	1521
ns1758913	\checkmark		\checkmark	3267	3266	3266	3251	235016	234846	234946	233825
ns1766074	\checkmark		\checkmark	589	585	587	586	58928	58456	58695	58591
ns 1769397			\checkmark	23	23	22	23	2289	2281	2246	2349
ns 1778858				7200	7200	7200	7200	720000	720000	720000	720000
ns 1830653	\checkmark		\checkmark	218	219	219	219	4536	4568	4545	4546
ns 1853823				7200	7200	7200	7200	699473	699473	699472	699474
ns1854840				7200	7200	7200	7200	683005	683005	683005	683005
ns 1856153				7200	7200	7200	7200	250968	250899	250897	250905
ns 1904248				7200	7200	7200	7200	109303	109302	109304	109295
ns 1905797				7200	7200	7200	7200	720000	720000	720000	720000
ns 1905800				7200	7200	7200	7200	720001	720001	720000	720000
ns 1952667			\checkmark	1317	1286	1288	1272	131700	128600	128800	127200
ns2081729				7200	7200	7200	7200	720001	720003	720007	720003
ns2118727			\checkmark	831	833	835	834	83061	83270	83480	83429
ns2124243				7200	7200	7200	7200	50743	50744	50872	50642
ns2137859				7200	7200	7200	7200	131841	118770	132197	131600
ns4-pr3				7200	7200	7200	7200	124	102	65	103
ns4-pr9				7200	7200	7200	7200	28	18	35	44
ns894236				7200	7200	7200	7200	173111	173011	175517	172711
ns894244			\checkmark	1435	1441	1438	1438	143500	144100	143800	143800
ns894786				7200	7200	7200	7200	181800	182000	181500	180400
ns894788				7200	7200	7200	7200	720001	720000	720000	720000
ns903616				7200	7200	7200	7200	720001	720001	720000	720000
ns930473				7200	7200	7200	7200	89399	89457	89559	89425
nsa			\checkmark	3	3	3	3	292	243	282	242
nsr8k				7200	7200	7200	7200	522791	404722	523587	511789
nsrand-ipx			\checkmark	390	390	400	389	1546	1544	1567	1545
nu120-pr3				7200	7200	7200	7200	36343	36190	36351	36229
nu60-pr9				7200	7200	7200	7200	2970	2978	1428	2994
nug08			\checkmark	124	123	130	129	2699	2693	2834	2768
nw04		\checkmark		33	48	36	34	1403	1611	1415	1395
opm2-z10-s2				7200	7200	7200	7200	127518	98336	98440	127029
opm2-z11-s8				7200	7200	7200	7200	91206	91405	90793	91295
										continued on	ext page ...

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
opm2-z12-s14				7200	7200	7200	7200	180837	181287	181324	181653
opm2--z12-s7				7200	7200	7200	7200	281122	280743	281300	281374
opm2-87-s2	\checkmark	\checkmark		430	727	489	487	7305	4967	7470	8181
opt1217			\checkmark	1	1	1	1	0	0	0	10
p0033			\checkmark	1	,	1	1	,	1	1	10
p0201			\checkmark	1	,	1	1	12	31	30	14
p0282			\checkmark	1	1	1	1	7	3	5	1
p0548			\checkmark	1	1	1	1	8	10	10	15
p100x588b				7200	7200	7200	7200	6993	13682	12270	12265
p2756		\checkmark		4	4	4	4	63	83	92	59
p2m2p1m1p0n100				7200	7200	7200	7200	720000	720000	720000	720000
p6b				7200	7200	7200	7200	1687	1687	1691	1694
p80x400b				7200	7200	7200	7200	720000	720001	720027	720001
pb-simp-nonunif				7200	7200	7200	7200	346806	346826	346973	346753
pg		\checkmark		69	67	57	67	383	358	358	375
pg5.34	\checkmark	\checkmark		1217	1834	951	1026	129	182	105	118
pigeon-10	\checkmark		\checkmark	594	588	589	586	110	110	110	110
pigeon-11			\checkmark	3752	3760	3741	3751	100	100	140	90
pigeon-12				7200	7200	7200	7200	264	296	271	270
pigeon-13				7200	7200	7200	7200	210	210	210	210
pigeon-19				7200	7200	7200	7200	847	914	836	940
pk1			\checkmark	174	174	174	174	1146	1147	1166	1181
pp08a		\checkmark		2	2	2	2	51	31	50	34
pp08aCUTS		\checkmark		2	2	2	2	37	38	37	52
probportfolio				7200	7200	7200	7200	65405	59265	60348	60345
prod			\checkmark	24	24	24	25	20	17	20	23
prod2			\checkmark	196	196	195	196	929	920	918	931
protfold				7200	7200	7200	7200	144898	129453	111179	129346
pw-myciel4	\checkmark		\checkmark	3756	3746	3744	3741	2419	2324	2316	2324
qap 10			\checkmark	67	66	68	67	1561	1534	1609	1571
qiu	\checkmark	\checkmark		33	34	33	34	1275	1399	1255	1429
qnet1			\checkmark	3		3	3	56	88	80	88
qnetl_o		\checkmark		1	2	1	2	23	54	40	38
queens-30				7200	7200	7200	7200	23032	23114	22985	23002
r80x800				7200	7200	7200	7200	227	428	323	442
rail01			\checkmark	7032	7035	7032	7033	703243	703478	703182	703295
rail02				7200	7200	7200	7200	254304	256166	254889	253207
rail03				7200	7199	7200	7200	719960	719918	719950	719966
rail507	\checkmark		\checkmark	71	62	63	60	378	372	374	371
ramos3				7200	7200	7200	7200	116041	116043	116042	116041
ran14x 18		\checkmark		2384	1694	2139	2318	756	613	674	726
ran 14×18-disj-8			\checkmark	2086	2066	2070	2070	592	581	585	586
ran 14×18 - 1			\checkmark	3501	3473	3467	3473	731	725	724	723
ran16x16	\checkmark	\checkmark		62	76	62	61	53	81	51	68
rd-rplusc-21				7200	7200	7200	7200	14235	14234	14239	14238
reblock166		\checkmark		7200	7200	4715	7200	20103	20111	21157	19943
reblock354				7200	7200	7200	7200	5344	5108	4888	5595
reblock420				7200	7200	7200	7200	59084	59281	59189	58775
reblock67	\checkmark		\checkmark	235	235	235	234	1592	1583	1570	1560
rentacar		\checkmark		2	1	,	2	154	76	158	127
rgn			\checkmark	1	1	1	1	23	23	23	46
rlp1				7200	7200	7200	7200	4	4	4	3
rmatr 100-p10	\checkmark		\checkmark	89	89	89	89	343	351	332	332
rmatr 100-p5	\checkmark		\checkmark	94	85	86	85	367	376	387	385
rmatr200-p10				7200	7200	7200	7200	24021	26472	32304	21643
rmatr200-p20				7200	7200	7200	7200	15005	19571	12388	15010
rmatr200-p5				7200	7200	7200	7200	15222	19624	7108	16546
rmine 10				7200	7200	7200	7200	21535	21537	21455	21534
rmine14				7200	7200	7200	7200	605761	605764	605743	605728
rmine21				7199	7198	7198	7198	368578	368459	368619	368352
rmine25				7196	7197	7197	7197	673407	673451	673477	673407
rmine6	\checkmark		\checkmark	1129	1122	1120	1118	1130	1121	1124	1120
rocil-4-11	\checkmark		\checkmark	207	208	217	211	5269	5292	5467	5342
rocII-7-11				7200	7200	7200	7200	259280	259139	259269	259070
rocII-9-11				7200	7200	7200	7200	328847	331902	328876	327922
rococoB 10-011000				7200	7200	7200	7200	5171	5246	5157	5165
rococoC10-001000	\checkmark	\checkmark		443	411	397	442	1439	1630	1179	1432
rococoC11-011100				7200	7200	7200	7200	21247	21536	21147	21251
rococoC12-111000				7200	7200	7200	7200	49407	47670	55330	55328
roll3000	\checkmark		\checkmark	46	46	46	46	393	393	393	393
rout		\checkmark		121	137	135	135	101	94	81	82
roy			\checkmark	1	1	1	1	7	7	7	10
rvb-sub				7200	7200	7200	7200	151881	151891	398547	151580
satellites 1-25	\checkmark		\checkmark	620	604	615	609	58700	57200	58200	57700
satellites2-60-fs				7200	7200	7200	7200	720000	720001	720001	720000
sct1				7200	7200	7200	7200	69014	80533	54244	53583
sct32				7200	7200	7200	7200	272300	272110	271956	270994
sct5				7200	7200	7200	7200	21924	53153	19131	18951
setlch			\checkmark	1	1	1	1	13	28	27	28
set3-10				7200	7200	7200	7200	147327	120736	69623	69541
set3-15				7200	7200	7200	7200	109638	68669	73577	101371
set3-20				7200	7200	7200	7200	64192	97008	66692	86169
seymour				7200	7200	7200	7200	1588	1742	1438	1264
seymour-disj-10				7200	7200	7200	7200	1906	2449	2339	1908
shipsched				7200	7200	7200	7200	294258	294107	294053	294241
shs 1023				7200	7200	7200	7200	533971	534558	532187	530793
sienal				7200	7200	7200	7200	501518	180502	300985	176029
sing161				7200	7200	7200	7200	119015	118531	118168	117614
sing2				7200	7200	7200	7200	34156	37086	40746	40694
sing245				7200	7200	7200	7200	93315	93181	90179	92871
sing359				7200	7200	7200	7200	199281	198945	199536	199313
sp97ar		\checkmark		4965	5119	5508	6092	3585	4022	4330	3962
sp97ic				7200	7200	7200	7200	1953	1600	1291	946
										continued or	xt page ...

ProblemName	2010	Diff	Equal	Time (sec.)				Prim. Int.			
				Exp. 3	UCB	ε-greedy	ALNS off	Exp. 3	UCB	ε-greedy	ALNS off
sp98ar				7200	7200	7200	7200	6469	4884	5810	4753
sp98ic	\checkmark		\checkmark	1434	1440	1441	1431	3189	3186	3188	3176
sp98ir	\checkmark	\checkmark		61	51	82	66	227	241	299	291
stein27			\checkmark	1	2	1	1	0	0	0	0
stein45			\checkmark	28	28	28	28	9	11	12	11
stockholm				7200	7200	7200	7200	73504	73507	73495	73496
stp3d				7200	7200	7200	7200	720003	720004	720002	720003
sts405				7200	7200	7200	7200	13499	13491	13487	13484
sts729				7200	7200	7200	7200	6714	6706	6727	6712
swath				7200	7200	7200	7200	4485	4502	4527	4457
$t 1717$				7200	7200	7200	7200	182238	182192	182164	182199
t1722				7200	7200	7200	7200	97985	96676	91628	97322
tanglegram1	\checkmark		\checkmark	385	390	388	386	895	900	905	894
tanglegram 2	\checkmark		\checkmark	9	9	9	9	177	169	169	195
timtab1	\checkmark	\checkmark		89	100	95	101	578	859	609	860
timtab2				7200	7200	7200	7200	14860	14888	14883	14852
toll-like				7200	7200	7200	7200	1835	1844	1839	1841
tr12-30			\checkmark	1442	1444	1440	1442	61	60	61	59
triptim1	\checkmark	\checkmark		447	268	447	450	22037	21026	22043	22053
triptim2				7200	7200	7200	7200	173782	174882	177781	174282
triptim3				7200	7200	7200	7200	81753	81753	81753	81853
tw-myciel4				7200	7200	7200	7200	1468	1507	1460	1457
uc-case11				7200	7200	7200	7200	8966	8957	8946	8939
uc-case3				7200	7200	7200	7200	8397	8038	8018	7946
uct-subprob			\checkmark	1065	1064	1066	1062	1479	1494	1481	1478
umts		\checkmark		3966	2698	6103	3945	406	402	619	389
unitcal_7	\checkmark		\checkmark	275	274	274	274	4840	4820	4830	4850
usAbbrv-8-25-70				7200	7200	7200	7200	10781	10676	10683	10608
van				7200	7200	7200	7200	89471	93927	78965	70697
vpm1			\checkmark	1	,	,	1	0	0	0	0
vpm2			\checkmark	2	2	2	2	43	53	66	43
vpphard	\checkmark			7200	7200	7200	7200	689845	690004	690144	689640
vpphard2				7200	7200	7200	7200	634470	634712	642961	634393
wachplan			\checkmark	933	936	938	937	1680	1760	1830	1640
wnq-n 100-mw99-14				7200	7200	7200	7200	531843	531683	531586	531843
zib01				30	31	30	30	3020	3097	3028	3025
zib02				7200	7200	7200	7200	0	0	0	0
zib54-UUE	\checkmark	\checkmark		2853	2291	2644	2310	1495	1545	1460	1502

[^0]: *Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, hendel@zib.de

[^1]: ${ }^{1}$ Strictly speaking, $\|\cdot\|_{b}$ is a seminorm because nonzero vectors can have binary norm of 0 .

