
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

GREGOR HENDEL1

Adaptive Large Neighborhood Search
for Mixed Integer Programming

1 0000-0001-7132-5142

ZIB Report 18-60 (December 2018)

https://orcid.org/0000-0001-7132-5142

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Adaptive Large Neighborhood Search for Mixed
Integer Programming

Gregor Hendel∗

December 18, 2018

Abstract

Large Neighborhood Search (LNS) heuristics are among the most powerful but
also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver
learns adaptively which LNS heuristics work best for the MIP problem at hand in
order to concentrate its limited computational budget.

To this end, this work introduces Adaptive Large Neighborhood Search (ALNS)
for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics
such as Local Branching and Relaxation Induced Neighborhood Search (RINS).
We distinguish the available LNS heuristics by their individual search domains,
which we call neighborhoods. The decision which neighborhood should be exe-
cuted is guided by selection strategies for the multi armed bandit problem, a related
optimization problem during which suitable actions have to be chosen to maximize
a reward function. In this paper, we propose an LNS-specific reward function to
learn to distinguish between the available neighborhoods based on successful calls
and failures. A second, algorithmic enhancement is a generic variable fixing pri-
orization, which ALNS employs to adjust the subproblem complexity as needed.
This is particularly useful for some neighborhoods which do not fix variables by
themselves. The proposed primal heuristic has been implemented within the MIP
solver SCIP. An extensive computational study is conducted to compare different
LNS strategies within our ALNS framework on a large set of publicly available
MIP instances from the MIPLIB and Coral benchmark sets. The results of this
simulation are used to calibrate the parameters of the bandit selection strategies.
A second computational experiment shows the computational benefits of the pro-
posed ALNS framework within the MIP solver SCIP.

1 Introduction
Mixed integer programming (MIP) is a powerful modeling paradigm with numerous
relevant industrial applications in scheduling, production planning, traffic optimiza-
tion [8] and countless more. For solving their models, many practitioners rely on
state-of-the-art commercial or noncommercial general purpose MIP solvers such as
CPLEX [12], XPress [35], SCIP [1, 22], or CBC [10], all of which employ a variant
of the branch-and-bound algorithm [13, 29]. As the branch-and-bound algorithm by
itself may be quite slow to provide good solutions, a rich set of primal heuristic algo-
rithms has been proposed to improve the primal convergence [5] of the solvers. Primal
heuristics can be further classified [2] into rounding algorithms, diving and objective

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, hendel@zib.de

1

diving heuristics and feasibility-pump [2, 18] procedures, and finally Large Neigh-
borhood Search (LNS) heuristics such as Relaxation Induced Neighborhood Search
(RINS) [14]. LNS heuristics typically restrict the search space of an input MIP in-
stance to a particular neighborhood of interest. The resulting auxiliary problem (cf.
Definition 1) is again a MIP, which is then partially solved by a branch-and-bound
algorithm under reasonable working limits, and eventual solutions are kept for the
main search process. Many different LNS techniques have been proposed in recent
years [15, 14, 33, 21, 6, 17]. Their computational effort makes it impractical to apply
all of them frequently within the solver. Since a priori, it is unclear which approach
might work best for a concrete problem instance, the solver ideally learns during the
solving process which LNS heuristics should be applied, and more importantly, which
ones can be deactivated.

Following this line of thought, we propose Adaptive Large Neighborhood Search
(ALNS) for MIP. We address in particular the question how to select from the set of
available neighborhoods, which are introduced in Section 2. In Section 3, we propose a
suitable reward function for LNS heuristics to learn to discriminate between the neigh-
borhoods during the search. We also propose a generic variable fixing scheme that can
be used to extend the set of fixed variables within a selected neighborhood to reach a
target fixing rate. This has a particular impact on LNS heuristics that do not fix vari-
ables by themselves and may hence be too expensive on larger problems, such as, e.g.,
Local Branching [15] (cf. Section 2.2).

The framework is obliged to trade off between exploration and exploitation, be-
cause only one neighborhood is selected and evaluated at a specific call. Such a se-
lection scenario is also referred to as multi armed bandit problem, in which a player
tries to maximize their reward by playing one available action at a time and observing
the particular reward of this action only. We review three selection algorithms for the
multi-armed bandit problem in Section 4. Two numerical experiments are presented in
Section 5, a first one to tune the selection process of the ALNS heuristic, and a second
experiment to show that ALNS improves the MIP performance of SCIP on a large set
of publicly available benchmark instances from the collections of MIPLIB [7, 3, 27]
and Cor@l [11].

1.1 Related Work
The notion of an Adaptive Large Neighborhood Search has already been coined in the
literature, particularly in the context of Constraint Programming, where ALNS is usu-
ally tailored to a particular application. The authors [28] were the first to describe an
adaptive LNS technique for single-mode scheduling problems, which selects from a fi-
nite set of so-called search operators, which are a CP analogue to the neighborhoods for
general MIP (see Section 2). Building upon their method, ALNS has also been applied
for different types of Vehicle Routing Problems, see [32] for an overview. Throughout
the remainder of this article, we will shortly write ”ALNS” to denote our proposed
”ALNS for MIP”.

A different, MIP specific approach to learn how to run heuristics has been recently
proposed in [26]. Their work uses logistic regression to predict the probability of suc-
cess for different diving heuristics. The prediction is based on state information about
the current node and the overall search. Their approach is fundamentally different
from our proposed method in that it learns one regression for each individual diving
heuristic, but does not attempt to prioritize between them.

2

The first use of bandit related ideas inside MIP solvers [34] concerns the integra-
tion of a node selection rule into CPLEX. This node selection approach balances explo-
ration and exploitation of the solution process inspired by a successful method for game
search trees, which is related to the Upper Confidence Bounds selection algorithm [9],
which is explained in Section 4.1.

2 Large Neighborhood Search Heuristics for MIP
We propose Adaptive Large Neighborhood Search in the context of mixed-integer pro-
grams (MIPs). A MIP P is an optimization problem of the form

min cT x

s.t. Ax≥ b

l ≤ x≤ u

x ∈ {0,1}nb ×Zni−nb ×Qn−ni

(MIP)

in n variables and m linear constraints, which are defined by a matrix A ∈ Qm,n and a
right hand side b ∈ Qm. Every variable x j, j ∈ {1, . . . ,n} has an objective coefficient
c j ∈ Q and a lower and upper bound denoted by l j ∈ Q∪{−∞} and u j ∈ Q∪{+∞},
respectively. Finally, without loss of generality, the first ni variables are further con-
strained that they must take integer solution values. These are called the integer vari-
ables of P. An important subset of the integer variables are the nb ≤ ni binary variables
with a {0,1}-domain. The shorthand notations for binary variables and nonbinary in-
teger variables, which are called general integer variables, are Nb = {1, . . . ,nb} and
Ni = {nb + 1, . . . ,ni}, respectively. Binary variables are often used to model highly
relevant yes/no-decisions in an optimization scenario such as, e.g., if a facility should
be built at a certain location. Therefore, binary variables often receive a prioritized
treatment by the neighborhoods in Sections 2.1 and 2.2. Every point of Qn satisfying
all of the above constraints is called a solution of P, and the set of all solutions of P is
denoted by SP.

Dropping all integrality restrictions yields the LP relaxation of P. It is well known
that (MIP) in the presented general form is N P-hard to solve, which is why all
modern MIP solvers employ some form of branch-and-bound algorithm [29, 13]. In
essence a clever enumeration, the branch-and-bound algorithm repeatedly partitions
the search space of an input MIP P, mainly guided by integer variables with noninte-
ger (fractional) values in the solution xlp to its LP relaxation. Since the LP relaxation
has fewer constraints than P and hence a broader feasible region, its optimal objective
value cT xlp is a lower bound to the optimal value c∗ of P. If, in addition, the LP solution
satisfies the integrality requirements xlp

j ∈ Z ∀ j ∈ {1, . . . ,ni}, then cT xlp = c∗ and xlp is
an optimal solution for P. The minimum lower bound of all unprocessed subproblems
is called the dual bound and denoted by cdual.

In practice, however, the LP relaxation mostly provides feasible solutions only at
deeper levels, ie. later stages of the search tree. Many different primal heuristic algo-
rithms have been proposed to overcome this weakness, which are highly diverse in the
computational effort they require. Starting from simple and fast heuristics [24] that
attempt to construct feasible solutions by rounding the LP solution, a higher compu-
tational effort is usually required by diving or feasibility-pump [18] like procedures,
which solve modified LP relaxations. At the most expensive end of the scale lies the

3

class of Large Neighborhood Search (LNS) heuristics that solve an auxiliary problem
with branch-and-bound techniques.

Definition 1 (Auxiliary problem) Let P be a MIP with n variables. For a polyhedron
N ⊆Qn and objective coefficients caux ∈Qn, a MIP Paux defined as

min
{

cT
auxx |x ∈SP∩N

}
(1)

is called an auxiliary problem of P. The polyhedron N is called neighborhood.

In other words, Paux has the same number of variables (columns) as the original MIP
P. Its solution set is a subset of SP. Hence, every solution to Paux is a solution for P.
Definition 1 requires N to be a polyhedron, ie., it should be expressed by a finite set of
inequalities. The definition includes N = Qn. Each neighborhood has its associated
auxiliary objective function, which can be different from the main objective function
of P.

There are only a few different types of neighborhoods typically used. All LNS
heuristics have in common that they solve auxiliary problems around a set of reference
points to either provide a first solution or, as in most cases, an improvement to the
current incumbent solution. One of the most common classes of neighborhoods is
derived by considering a set of reference points and fixing integer variables whose
values are integer and agree on all those points.

Definition 2 (Fixing neighborhood) Let P be a MIP with n variables and ni ≤ n inte-
ger variables. Let M ⊆ {1, . . . ,ni} and x∗ ∈Qn. A fixing neighborhood

N fix(M ,x∗) :=
{

x ∈Qn |x j = x∗j ∀ j ∈M
}

fixes the subset M to their values in x∗.

Definition 3 (Matching set) For k ≥ 1, let X = {x1, . . . ,xk} ⊂ Qn with xi 6= xi′ ∀i 6=
i′ ∈ {1, . . . ,k}. The matching set

M= (X) :=
{

j ∈ {1, . . . ,ni}|xi
j = x1

j ∀i ∈ {1, . . . ,k}
}

describes all integer variable indices whose values agree on X. We call X the set of
reference points.

Combining Definitions 2 and 3 is very popular for constructing auxiliary problems.
Starting from a set of reference points X = {x1, . . . ,xk}, a fixing neighborhood is ob-
tained with the help of the matching set of X . Since all points in X agree on their
matching set M=(X), the same fixing neighborhood is obtained regardless of the an-
chor point

N fix (M=(X),x1)= N fix (M=(X),xi) ∀i ∈ {1, . . . ,k}.

It should be noted that whenever a set of reference points X contains at least one solu-
tion x ∈SP, the auxiliary MIP defined by the fixing neighborhood of the matching set
is feasible because x ∈SP∩N fix(M=(X),x).

The task of finding an improving solution can be easily incorporated into Defi-
nition 1. Assume that an incumbent solution xinc ∈ SP and a dual bound cdual are

4

already available, and let a given neighborhood N ⊆Qn contain some nonimproving
solutions. For δ ∈ (0,1), every solution x ∈SP that satisfies

cT x≤ (1−δ) · cT xinc +δ · cdual︸︷︷︸
< cT xinc

< cT xinc

is clearly an improving solution. The set of solutions that are better than xinc by at least
δ is contained in the improvement neighborhood

N obj(δ ,xinc) :=
{

x ∈Qn |cT x≤ (1−δ) · cT xinc +δ · cdual
}
.

Therefore, refining the original neighborhood as

N ′ = N ∩N obj
(

δ ,xinc
)

filters out all nonimproving solutions, regardless of the choice of caux. The choice of
δ is an important control parameter to weigh between the difficulty (and feasibility) of
the sub-MIP and the desired amount of improvement. The above neighborhood notions
suffice to describe several popular LNS heuristics.

2.1 Fixing Neighborhood LNS Heuristics
RINS [14] Relaxation Induced Neighborhood Search (RINS) is one of the first LNS
approaches. The idea of RINS is to fix integer variables whose solution values agree in
the solution xlp of the LP relaxation at the current, local node, and the current incumbent
solution xinc. After the choice of a suitable improvement δ , the neighborhood of the
auxiliary MIP of RINS is

NRINS := N fix
(
M=

({
xlp,xinc

})
,xinc

)
∩N obj

(
δ ,xinc

)
.

Crossover [33] Another improvement heuristic is the Crossover heuristic, which is
inspired by the recombination of solutions within genetic algorithms. Crossover selects
k ≥ 2 already known, feasible solutions X = {x1, . . . ,xk} ⊆SP as reference points. X
does not necessarily contain xinc. The crossover neighborhood fixes

NCross := N fix (M= (X) ,x1)∩N obj(δ ,xinc).

The authors suggest to use k = 2 solutions that are randomly selected from all available
solutions, using a bias towards solutions with better objective.

Mutation [33] Furthermore, the authors suggest a second LNS heuristic called Mu-
tation that fixes a random subset of integer variables of the incumbent solution. For a
randomly chosen subset M rand ⊆ Nb∪Ni, the mutation neighborhood is defined as

NMuta := N fix
(
M rand,xinc

)
∩N obj

(
δ ,xinc

)
.

In order to control the difficulty of the sub-MIP, the obvious input to the mutation
neighborhood is a number or percentage of integer variables that should be fixed. Mu-
tation is the only neighborhood for which this number can be controlled directly: all
previous neighborhoods depend on the cardinality of their matching set.

5

RENS [6] Starting from an LP relaxation solution xlp, the Relaxation Enforced Neigh-
borhood Search (RENS) neighborhood focusses on the feasible roundings of xlp and
can be written as

NRENS :=
{

x ∈Qn |
⌊

xlp
j

⌋
≤ x j ≤

⌈
xlp

j

⌉
, j ∈ {1, . . . ,ni}

}
.

Similarly to the RINS heuristic, the aim of RENS is to construct feasible solutions that
are close to the LP relaxation solution and therefore have a near-optimal solution value.

2.2 LNS Heuristics Using Constraints and Auxiliary Objective Func-
tions

All approaches presented so far fix a set of integer variables using one or several ref-
erence points. Local Branching [15] is the first LNS heuristic that uses a different
neighborhood.

Local Branching [15] Instead of fixing a set of variables and solving for improving
solution values on the remaining variables, the neighborhood of Local Branching is
restricted to a ball around the current incumbent solution. More formally, Let P be
a MIP with nb ≥ 1 binary variables. Based on the L1-norm or Manhattan metric for
x ∈Qn, the binary norm1 of x is defined as

‖x‖b :=
nb

∑
j=1
|x j|.

Let xinc ∈SP be an incumbent solution for P, and let dmax > 0 denote a distance cutoff
parameter. The local branching neighborhood is the restriction

NLBranch :=
{

x ∈Qn |
∥∥∥x− xinc

∥∥∥
b
≤ dmax

}
∩N obj(δ ,xinc)

The reason for preferring the binary norm over the regular norm or the norm taking all
integer variables is practicality. The binary norm can be expressed as a linear constraint
without introducing auxiliary variables.

Proximity Search [17] A dual version of Local Branching has been introduced as
Proximity Search. Using the binary norm, Proximity seeks to minimize the binary
norm

∥∥x− xinc
∥∥

b through an auxiliary objective coefficient vector cProxi = cProxi(xinc)
defined as

(cProxi) j :=

0 if j > nb

1 if xinc
j = 0

−1 if xinc
j = 1

over the entire set of improving solutions:

NProxi := N obj(δ ,xinc).

1Strictly speaking, ‖·‖b is a seminorm because nonzero vectors can have binary norm of 0.

6

Zero Objective The second LNS heuristic that uses an auxiliary objective function
different from the original objective function is Zero Objective. If an incumbent so-
lution xinc is available, Zero Objective searches the entire set of improving solutions
NZeroobj := N obj(δ ,xinc) but uses cZeroobj := 0 as auxiliary objective function. If no
incumbent is available, NZeroobj = Qn. Zero Objective thereby reduces the search for
an (improving) solution to a feasibility problem.

DINS [21] Distance Induced Neighborhood Search (DINS) combines elements of
the Crossover, Local Branching, and RINS heuristics. Similarly to RINS, the intuition
is that improving solutions are located between the current incumbent solution xinc and
the solution to the node LP relaxation xlp. With the intention of reducing the integer
distance ∥∥∥xinc− xlp

∥∥∥
i
:=

ni

∑
j=1
|xinc

j − xlp
j |,

let J := { j | |xinc
j − xlp

j | ≥ 0.5} ⊆ Ni denote the index set of general integer variables
with a difference of at least 0.5 between the two reference points. The J-neighborhood
of DINS is

NJ := {x ∈Qn | |x j− xlp
j | ≤ |x

inc
j − xlp

j |, j ∈ J}.

This neighborhood restricts lower and upper bounds of the general integer variables.
Let T ⊆ SP denote a subset of currently available solutions, containing xinc, to the
MIP at hand. The DINS neighborhood can be written as a combination of a total of
five neighborhoods

NDINS :=NJ

∩N fix
(

Ni \ J,xinc
)

∩N fix
(

Nb∩M=({xlp,xroot}∪T),xinc
)

∩NLBranch

∩N obj(δ ,xinc).

The set of general integer variables outside of J is fixed to the values in the incum-
bent solution. Binary variables that have not changed between the root LP relaxation
solution xroot and xlp are fixed if they have taken the same value in all solutions in T .
Finally, the search is further restricted to a certain binary distance around the current
incumbent solution through an additional local branching neighborhood. Among the
possible choices for T , the implementation of DINS for this work uses a set of up to
five available solutions with best objective.

There is further work on LNS approaches that are not covered here. Note that the
only heuristics that do not use an incumbent solution are RENS and Zero Objective.
In [16], an extension of Local Branching has been proposed that starts from an infea-
sible reference point. Such points are quickly produced by rounding or with a few
iterations of the Feasibility Pump [18]. In addition to the local branching constraint,
the auxiliary problem of [16] is extended by additional variables to model and penalize
the violation of constraints, inspired by the phase 1 of the Simplex algorithm. A recent
approach called Alternating Criteria Search [31] also starts from infeasible reference
points, and alternates between auxiliary problems with artificial feasibility objective
and the original objective function of the input MIP in a parallel setting. The necessary

7

diversification is obtained by fixing subsets of integer variables indexed by a random
consecutive index set. Such a fixing scheme is a variant of Mutation [33] discussed in
Section 2.1. The heuristics presented in [19] formulate and solve auxiliary problems
only for the set Ni of general integer variables as a final post processing step after fixing
all binary variables based on available, global problem structures such as cliques and
implications between binary and integer variables.

3 Adaptive Large Neighborhood Search for MIP
The proposed Adaptive Large Neighborhood Search heuristic has as input the set of 8
available neighborhoods from Section 2 denoted by H (the set of actions). Table 1
gives a quick overview of the neighborhoods used, as well as their individual precon-
ditions. In each call to the heuristic, ALNS basically performs the following steps.

1. Select a promising neighborhood ht ∈H and its associated auxiliary objective
function caux,t via a bandit selection strategy.

2. Setup and solve the auxiliary problem given by (ht ,caux,t).

3. Reward the neighborhood and update the bandit selection strategy for the next
selection.

Different bandit selection strategies and their individual update procedures are sub-
ject of Section 4. The solution process of the auxiliary problem uses a strict limit on
the number of branch-and-bound nodes to terminate the subproblem quickly and keep
the overall computational effort small. It may still be very expensive to solve auxiliary
problems if the neighborhood is large, especially since some neighborhoods do not fix
integer variables directly. In Section 3.1, a generic approach is explained for fixing
additional variables to reach any desired target fixing rate and hence reduce the sub-
problem complexity. Details on the dynamic adjustment of the target fixing rate and
node limit are given in Section 3.2. Finally, Section 3.3 introduces the scoring mecha-
nism to reward the selected neighborhood. Note that this work refers to the proposed
scoring mechanism as ”reward”, but does not mention ”penalties”. Penalties are readily
obtained by assigning small rewards.

3.1 Fixing and Unfixing Variables
Every neighborhood in Section 2 fixes a subset of integer variables to the values of a
solution xsol ∈SP. The fixed set of a neighborhood N is defined as

M fix :=
{

j ∈ {1, . . . ,ni}|N ⊆
{

x ∈Qn |x j = xsol
j

}}
.

The size of the fixed set is denoted by nfix = |M fix|. Every neighborhood (action)
h ∈H operated by ALNS has a target fixing rate φh,t ∈ [0,1) that changes over time
as will be explained in Section 3.2. It may happen that a selected neighborhood ht does
not reach its specified target fixing rate, ie.

nfix < φht ,t ·ni,

or that it fixes much more integer variables and hence restricts the search space more
than necessary. ALNS treats both cases very similarly by using a generic variable fixing
priorization to sort the set of possible (un)fixings.

8

Table 1: Overview of the neighborhoods that are used in ALNS. See Section 2 for
information and references.

Neighborhood Description Preconditions

RINS Fixes matching values in incum-
bent and LP relaxation solution

Feasible LP relaxation at current
node, incumbent solution

Crossover Fixes matching values in 2 or
more randomly chosen, available
solutions

Sufficiently many solutions

Mutation Fixes random subset of variables
to values in incumbent solution

Incumbent solution

RENS Restricts the auxiliary problem to
the feasible roundings around the
current LP relaxation solution

Feasible LP relaxation at current
node

Local Branching Limits the maximal binary dis-
tance from the incumbent solu-
tion

Incumbent solution, MIP with bi-
nary variables

Proximity Search Finds an improving solution that
minimizes the binary distance
from the incumbent

Incumbent solution, MIP with bi-
nary variables

Zero Objective Reduces search for an (improv-
ing) solution to a feasibility prob-
lem

MIP with nonzero objective func-
tion

DINS Sophisticated combination of
RINS, Crossover, and Local
Branching

Incumbent solution

9

In the first case, φht ,t ·ni−nfix additional integer variables from M fix = {1, . . . ,ni}\
M fix have to be selected. For two variables x j,x j′ ∈M fix with reference solution
values xsol

j ,xsol
j′ , the fixing x j = xsol

j is preferred over x j′ = xsol
j′ , if, in decreasing order

of priority,

1. x j has a smaller distance than x j′ from M fix in the variable constraint graph (see
below).

2. The reduced costs for fixing x j = xsol
j ,

cred
j ·
(

xsol
j − x

root j
j

)
< cred

j′ ·
(

xsol
j′ − x

root j′
j′

)
are smaller than those for fixing x j′ = xsol

j′ .

3. The pseudo costs (see below) for fixing x j = xsol are smaller than for x j′ = xsol
j′ ,

Ψ j

(
xsol

j − xroot
j

)
< Ψ j′

(
xsol

j′ − xroot
j′

)
.

4. Randomly.

The rationale behind this variable priorization is to first keep the auxiliary prob-
lem connected by considering the variable constraint graph. For a given MIP P, the
variable constraint graph GP has the variables and constraints {v j | j ∈ {1, . . . ,n}} ∪
{w j | j ∈ {1, . . . ,m}} as nodes. The edges E(GP) correspond to the nonzero entries of
the matrix A:

E(GP) = {(v j,wi) |ai j 6= 0}.

Distances in GP are breadth first distances. If the original problem has a block struc-
ture, the variable priorization concentrates additional fixings on those blocks with a
nonempty intersection in M fix. Related ideas are used, e.g., in presolving for detect-
ing independent subproblems [20], or within the Graph-Induced Neighborhood Search
(GINS) released with SCIP 4.0 [30].

The cost based scores in steps 2 and 3 both penalize a deviation of the potential
fixing from an LP solution at the root node of the branch-and-bound search. The first
associated penalty uses reduced costs. Reduced costs are recorded after every solved
LP at the root node of the solving process. If they are higher than any previously
recorded reduced costs for x j, they are stored together with the corresponding LP so-
lution value x

root j
j . Therefore, the LP solution values used to compare the potential

fixings of x j and x j′ may come from different LP solutions.
The pseudo-cost score treats the fixing as a branching and estimates the potential

gain in the dual bound. Both variables are compared on the same, namely the final
root LP solution on which the solution process started branching. Pseudo costs [4]
are a common aggregate of branching information on the variables. Given the average
increase Ψ

+
j (Ψ−j) per unit fractionality of the dual bound after branching upwards

(downwards) on a variable x j for j ∈ {1, . . . ,ni}, the pseudo costs of j are a function

Ψ j : Q →Q≥0

z 7→

{
Ψ

+
j · z, if z≥ 0
−Ψ

−
j · z, if z < 0.

(2)

10

As an example, assume that a binary variable x j has an LP solution value xlp
j = 0.4 and

an incumbent solution value of 1. Assume that the average dual bound increase has
been Ψ

−
j = 10 for branching down on x j and Ψ

+
j = 5 for branching up. The pseudo

costs for the fixing x j = xsol
j can be calculated as Ψ j(xsol

j − xlp
j) = Ψ

+
j · 0.6 = 3. If

the solution value had been 0 instead of one, the corresponding pseudo cost score is
Ψ j(0− xlp

j) =−Ψ− · (−0.4) = 4 for branching down on x j.
Only slight details are changed if the neighborhood was too restrictive, such that

nfix−φht ,t ·ni variables from M fix should be selected and unfixed (relaxed). Distances
are now computed in the variable constraint graph starting from M fix, and variables
with a small distance are preferably relaxed to keep the auxiliary problem connected.
Similarly to before, variables are relaxed preferably if they have a large reduced cost
score or, in case a tie occurs, a large pseudo cost score. Finally, if none of the scores
discriminate between two variables, the preference is given by a random score assigned
to each variable. Generic (un-)fixing within ALNS is only applied if the target fixing
rate φht ,t is missed by a tolerance of 10 %, i.e. only if nfix /∈ [(φht ,t − 0.1) · ni,(φht ,t +
0.1) ·ni].

3.2 Dynamic Limits
Good limits on the computational budget of an LNS heuristic are essential to make it
useful inside a MIP solver. To this end, a tradeoff must be made between the intensity of
the search inside the auxiliary problem and the runtime. For this work, the complexity
of the subproblem and the budget are adapted dynamically between the individual calls
to ALNS.

All of the following dynamic decisions consider the auxiliary problem Paux(t) at
the t-th round of ALNS (t = 0,1, . . .) and its solution status s(Paux(t)) which can be
one of

• inf , if Paux(t) was infeasible,

• opt, if Paux(t) was solved to optimality

• sol, if Paux(t) provided an improving solution for P

• nosol, if no improving solution was found searching Paux(t).

Target fixing rate φh,t The first dynamic adjustment of the auxiliary problem com-
plexity over time is described in [33], together with the introduction of the Crossover
and Mutation LNS heuristics (cf. Section 2), which have been implemented as neigh-
borhoods available to ALNS. The authors of [33] control the complexity of an auxiliary
problem Paux(t) by specifying the amount of integer variables that should be fixed by a
neighborhood. The intuition is that the complexity of Paux(t) decreases with increasing
fixing rate. In the notation of the present work, the amount of fixed integer variables
is specified by means of the target fixing rate φh,t ∈ [0,1) of a neighborhood h ∈H
during round t of ALNS.

For h∈H , let Th(t) denote the number of times that h has been selected, including
round t. The fixing rate is modified according to the status in round t as

φh,t+1 =

φh,t , if h 6= ht or s(Paux(t)) = sol ,
max{0.1,φh,t −0.75Th(t) ·0.2}, if s(Paux(t)) ∈ {inf ,opt}
min{0.9,φh,t +0.75Th(t) ·0.2} if s(Paux(t)) = nosol

11

If Paux(t) was too easy for the solver, ie. it could be solved to optimality or infeasi-
bility within a given node budget, the fixing rate for the next iteration is decreased. If
no new solution was found, the target fixing rate is increased. If a solution was found
within the node limit, but the search could not be completed, the fixing rate is kept.
The additive change of the fixing rate is 0.2 initially, which is multiplied with 0.75
after every update step, exactly as in [33]. The use of max and min ensures that the
target fixing rate stays within 10 % and 90 %. In our implementation, those two values
are parametrized and can be individually set for every neighborhood. Every neighbor-
hood h is initialized with a conservative target fixing rate of φh,1 = 0.9 (respectively the
user-defined maximum value), see Section 5 for details.

Node limit ν lim
t The main budget limitation of ALNS is a limit on the number of

branch-and-bound nodes. The node limit ν lim
t+1 for the next round of ALNS is adjusted

based on the results of the auxiliary problem of round t as follows.

ν
lim
t+1 =

{
ν lim

t , if s(Paux(t)) ∈ {opt, inf ,sol}
min{bν lim

t ·1.05c+1,5000}, if s(Paux(t)) = nosol

Similarly to other LNS heuristics in SCIP, ALNS uses an affine linear function of
the branch-and-bound nodes νbb in the main search to limit the search effort inside
auxiliary problems. Concretely, the next round t of ALNS is called as soon as the main
search has made sufficient search progress such that

κ0 +
u(t−1)+1
(t−1)+1

·κ1 ·νbb−
t−1

∑
i=1

(100+νi)≥ ν
lim
t . (3)

Here, κ0 and κ1 are positive coefficients, and u(t − 1) denotes the total number of
improving solutions found by the end of round t − 1. In 3, the linear growth of the
budget is increased or decreased based on the total number of improving solutions
that ALNS provided. With this strategy, ALNS slowly fades out if it does not find
improving solutions. The last term expresses the total node budget used so far with an
additional 100 nodes to account for the setup costs of Paux(i).

3.3 A Reward Function for Neighborhoods
All of the bandit selection strategies presented in Section 4 require the definition of
a suitable reward function. Intuitively, the reward should always be higher for neigh-
borhoods that improve over the current incumbent solution, but also depend on the
achieved objective quality. Furthermore, a neighborhood that failed fast should be re-
warded higher than an unsuccessful neighborhood whose execution required more of
the budget. In order for some of the selection strategies from Section 4 to work cor-
rectly, we require that a reward should be in the interval [0,1]. A reward of 0 is the
worst possible score, i.e., the maximum penalty.

Let ht ∈H denote the selected neighborhood in round t > 0, and let cold := cT xinc

denote the objective before the execution of ht , if an incumbent solution xinc ∈SP is
available, or cold := ∞, otherwise. Similarly, cnew is the objective of the best known
solution after running ht . Further, let ν lim

t and νt denote the node limit and amount of
nodes used by ht , respectively, and let nfix(t) denote the number of integer variables
fixed by ht .

12

Two reward functions are combined to reward both the presence of a new incum-
bent solution and the objective improvement. The former is expressed by the solution
reward

rsol(ht , t) :=

{
1, if s(Paux(t)) ∈ {opt,sol},
0, else.

The improvement in solution quality is measured by the closed gap reward

rgap(ht , t) :=
cold− cnew

cold− cdual ,

which evaluates to 0 if no improving solution could be found, and is 1 if the new
solution has an objective that is equal to the dual bound, i.e. that is optimal for P. As
a convention, the closed gap reward is 1 if the neighborhood could contribute the first
solution to the problem. Since most neighborhoods require a known solution as input
(cf. 1), this is only possible with RENS and Zero Objective.

Since the time measurement in SCIP is not deterministic, we approximate the effort
ξ (t) spent on the search of the auxiliary problem by using the number of nodes as

ξ (t) =
(

1− nfix(t)
ni

)
νt

ν lim
t

.

In order to compensate for different target fixing rates between different heuristics, ξ (t)
uses a scaling by the remaining number of free integer variables. The effort lies in the
interval [0,1]. It is ξ (t) = 1 if and only if the node limit was exhausted (νt = ν lim

t)
and no integer variables were fixed by the neighborhood. We propose to use the effort
in two ways. If a neighborhood fails to produce a better solution, the last of the three
individual reward functions is the failure reward

rfail(ht , t) :=

{
1, if s(Paux(t)) ∈ {opt,sol},
1−ξ (t), else,

which uses the effort directly and becomes smaller depending on the effort spent in an
auxiliary problem, if no improving solution was found. With two additional convex
combination parameters η1,η2 ∈ [0,1], the reward function of ALNS combines all
three rewards as

ralns(ht , t) := η1rfail(ht , t)+(1−η1) ·
η2rsol(ht , t)+(1−η2)rgap(ht , t)

1+ξ (t)
(4)

The first control parameter η1 separates the reward between runs that were success-
ful and runs that failed to improve the incumbent solution. The second parameter η2
adjusts between the solution and the closed gap rewards. The result, which is again
a reward in the interval [0,1], is scaled by the effort involved to reward fast neighbor-
hoods higher. Figure 1 depicts the individual elements of the ALNS reward function
visually. For the computational experiments, η1 = 0.5 and η2 = 0.8 were used.

4 Selection Strategies for Multi Armed Bandit Prob-
lems

The goal of the present work is a framework that selects among the LNS heuristics
presented in Section 2 and that tries to maximize their utility under a shared computing

13

ralns(ht , t)

+

+

rsol(ht , t)

·η2

rgap(ht , t)

·(1−η2)

scaling by 1+ξ (t)

·(1−η1)

rfail(ht , t)

·η1

Figure 1: Diagram of the proposed reward function.

budget. Such a sequential decision process from a finite set of actions (heuristics) with
unknown outcome appears in the literature as Multi Armed Bandit Problem [9].

The basic multi armed bandit problem can be described as a game, which is played
over multiple rounds. In every round t = 1,2, . . . , the player chooses one action ht ∈H
from a finite set of available actions. In return for playing ht , the player observes a re-
ward r(ht , t) ∈ [0,1] for the selected action. The aim for the player is to maximize
their total revenue ∑t r(ht , t). Since only the reward of the selected action can be ob-
served at a time, every suitable algorithmic strategy must find a good balance between
exploration across all actions and exploitation of the best action seen so far.

Depending on the nature of the reward distribution, we distinguish between two
main scenarios of multi armed bandit problems. In the stochastic scenario, the ob-
servable rewards r(h, t) for every action h∈H are independent, identically distributed
(i.i.d.) random draws over time from a probability distribution with unknown expected
reward µh ∈ [0,1]. In the stochastic scenario, a good strategy should play an action h∗

with maximum expected reward µh∗ ≥ µh′ ∀h′ ∈H as often as possible.
In the adversarial scenario, the player faces an opponent that chooses the rewards

with the goal to maximize the player’s regret–the discrepancy between the player’s rev-
enue and the best possible revenue. The opponent may take into account all choices
previously made by the player, but does not know the selected action at time t. After
the player and the opponent have each made their decisions, the player receives the
reward r(ht , t) for the selected action only, while the opponent is informed about the
player’s choice ht . It is noteworthy that in the adversarial scenario, the opponent has
an incentive to play rewards different from 0 in every round of the game because the
player’s regret is minimal in every round t where all actions have a reward of 0. In
the adversarial scenario, a good strategy must be necessarily randomized in some way
because every deterministic algorithm is easily fooled by the opponent, who can mini-
mize the player’s total revenue by assigning a reward of 0 to the player’s deterministic
next action, and 1 to all other actions.

14

Intuitively, the adversarial scenario seems much harder to approach than the stochas-
tic scenario because the latter is indifferent to choices made by the player, and estimates
of the expected rewards can be built over time. It turns out that it is possible, even for
the adversarial scenario, to create strategies that yield an asymptotically optimal rev-
enue in their respective scenario. The reader is referred to the survey [9] for more
information about and variants of the following algorithms.

4.1 Strategies for the Stochastic Scenario
The assumption of the stochastic scenario is that the observable reward of each action
h ∈H is the realization of a random variable Rh around its expected value

µh = E(Rh). Let Th(t) := ∑
t
i=11hi=h denote the number of times that action h has

been selected until round t. The sample average

r̄h(t) :=
1

Th(t)

t

∑
i=1

1hi=hr(h, i)

is an unbiased estimator of the unknown quantity µh.

Algorithm 1: ε-greedy
Input: Set of actions H , parameter ε ≥ 0

1 t← 0
2 while not stopped do
3 t← t +1

4 εt ← ε ·
√
|H |

t

5 Draw vt ∼ U([0,1])
6 if vt ≤ εt /* Selection of next action */

7 then
8 Draw ht ∼ U(H)
9 else

10 ht ← argmax
h∈H

r̄h(t)

11 Update r̄ht (t +1) by the observed reward r(ht , t)

Algorithm 1 is a very simple, randomized selection strategy for the multi armed
bandit problem. It uses the short notation U(X) to denote the uniform distribution over
a set X . The initial lack of reward information is compensated by a randomized selec-
tion of the first few actions. The amount of random selections decreases at the speed
of 1√

t and can be controled by the input parameter ε . With increasing t, it therefore
becomes less and less likely to choose an action at random, whereas the probability of
greedily exploiting the best action increases.

A different, deterministic approach to the stochastic scenario is based on the prin-
ciple of optimism at the face of uncertainty. The approach is called Upper Confidence
Bound (UCB) algorithm. Under the assumption that all rewards are in the interval [0,1],
it holds with a probability of at least 1−δ that

r̄h(t)+

√
2

Th(t)
ln

1
δ
> µh. (5)

15

The quantity on the left side of Equation 5 is an upper confidence bound for µh at
confidence level δ . With the goal to ultimately find the action h∗ with maximum ex-
pected reward µh∗ , the UCB algorithm selects the action that maximizes the upper
confidence bound instead, while increasing the confidence level as a function of time,
e.g., 1/δ = 1+ t. The rationale behind this is that also inferior actions become more
attractive to the algorithm after they have not been selected for a while. The width of
the confidence interval is further controlled by a parameter α ≥ 0. Let H be an ordered
tuple of the elements in H . The selection strategy α-UCB selects

ht ∈

argmax
h∈H

{
r̄h(t−1)+

√
α ln(1+t)
Th(t−1)

}
if t > |H |,

{Ht} if t ≤ |H |.
(6)

The case distinction in Equation 6 is necessary to obtain a meaningful initialization of
all sample means and because Th(|H |+ 1) ≥ 1 for all h ∈H is required for Equa-
tions 5 and 6 to be well defined. In the first case of Equation 6, eventual occuring ties
are broken uniformly at random. The special case of α = 0 yields a completely greedy
exploration strategy that does not take into account the upper confidence bound.

4.2 A Strategy for the Adversarial Scenario
Algorithm 2 is the standard algorithmic strategy for adversarial multi armed bandit
scenarios. It is briefly called Exp.3, which is an abbreviation of ”Exponential Weight
Algorithm for Exploration and Exploitation”. In each round t, the next action is se-
lected randomly from a probability distribution defined by marginal probabilities ph,t
for each h ∈H . After receiving the reward r(ht , t), the weight update is performed in
two steps. First, the cumulative reward of the selected action ht is updated in line 7. The
cumulative reward weighs the observed reward with the probability to select ht , thereby
emphasizing actions with a high reward compared to their current selection probability.
Second, the probabilities for the next iteration t +1 are computed as a convex combi-
nation of two probability distributions based on the choice of γ . In the two extreme
cases γ ∈ {0,1}, the algorithm either draws from a uniform distribution (γ = 1) in the
next iteration, or from a distribution defined by the normalized exponential function of
the cumulative rewards (γ = 0).

Algorithm 2: Exp.3
Input: Set of actions H , convex combination parameter γ ∈ [0,1]

1 ph,1← 1
|H | , Qh← 0 ∀h ∈H

2 t← 0
3 while not stopped do
4 t← t +1
5 Draw ht from probability distribution ph,t
6 Observe reward r(ht , t)

7 Qht ← Qht +
r(ht ,t)

ph,t

8 foreach h ∈H do
9 ph,t+1← (1− γ) exp(Qh)

∑h′ exp(Qh′)
+ γ

|H |

16

Table 2: Overview of involved parameters and values for the simulation and the MIP
experiments. All SCIP parameters are preceded by heuristics/alns/. The place-
holder * must be substituted by the name of a neighborhood, e.g., rens.

Symbol SCIP parameter(s) Section Ref. Simulation MIP

δ minimprov{low,high} 2 0.01 0.01
k crossover/nsols 2.1 2 2

dmax not parameterized 2.2 0.2 ·nb 0.2nb
|T | dins/npoolsols 2.2 5 5
ν lim

1 alns/minnodes 3.2 50 50
κ0 alns/nodesofs 3.2 500 500
κ1 alns/nodesquot 3.2 0.1 0.1
η1 rewardbaseline 3.3 0.5 0.5
η2 rewardcontrol 3.3 0.8 0.8

φht ,t */{min,max}fixingrate 3.1 {0.1,0.3, . . . ,0.9} dynamic in [0.3,0.9]
ε epsilon 4.1 – 0.4685844
α alpha 4.1 – 0.0016
γ gamma 4.2 – 0.07041455
– banditalgo 4 – {Exp.3,UCB,ε-greedy}

5 Computational Results
The proposed ALNS framework has been implemented and tested as an additional
plugin on top of SCIP 5.0, using CPLEX 12.7.1 as the underlying LP solver. All 8
neighborhoods listed in Table 1 have been incorporated into ALNS. As instance set,
we use the union of three MIPLIB collections 3.0, 2003, and 2010,[7, 3, 27] and the
Coral [11] instance set, totaling to 666 instances. The computational experiments for
the present work are split into two parts. The first part is an offline simulation that
uses reward information about all neighborhoods in each call to ALNS. This informa-
tion is used to compare neighborhoods directly, and to calibrate the parameters of the
bandit selection strategies from Section 4. Section 5.3 describes the results that we ob-
tained with the ALNS framework inside of SCIP using the readily calibrated selection
strategies. Since a lot of parameters have been introduced in the previous sections, Ta-
ble 2 summarizes the parameter settings used for the simulation and the performance
experiments in this section.

5.1 Neighborhood Comparison
The first part aims at providing a fair comparison between the neighborhoods that have
been implemented in the ALNS framework. Instead of choosing a single neighborhood
at each call, all neighborhoods are executed one after another, and their individual re-
wards are recorded. In order to ensure fairness, every found improving solution is only
recorded for the reward function. SCIP does not receive a solution as this would impact
consecutive neighborhoods. All dynamic decisions are deactivated for this experiment.
The target fixing rate is kept fixed at 0.1−0.9 in steps of 0.2, with a tolerance of ±0.1.
Recall that the additional generic fixings/unfixings are only applied if the obtained fix-
ing rate lies outside of the tolerance interval. The experiments have been conducted on
a Linux cluster using Ubuntu 16.04, with a time limit of 5h for each instance.

Not all neighborhoods can be used for all problems. Local Branching and Prox-
imity can only be executed for instances involving binary variables. Zero Objective
requires a nonzero objective function. Furthermore, DINS requires a solution pool

17

0

250

500

750

0 20 40 60
ALNS calls

In
st

an
ce

s

Fixing rate

0.1

0.3

0.5

0.7

0.9

Figure 2: Histogram of call frequencies.

Table 3: Number of successful calls of ALNS

Fixing rate Calls Success Succ. Rate

0.1 9037 841 0.093
0.3 9233 975 0.106
0.5 9789 1005 0.103
0.7 9925 1196 0.121
0.9 10085 1337 0.133

with at least 5 solutions, while RENS and RINS require a feasible LP relaxation at the
local node. For this experiment, the ALNS framework is only executed if all those
conditions are met.

Among the total set of instances, 494 instances allowed to execute all 8 neighbor-
hoods at least once. A histogram of the number of calls is shown in Figure 2 with a bin
width of 4 calls. One observes that for more than half of the instances, the heuristic is
called at most eight times. This means that a UCT selection algorithm would have tried
every neighborhood at most once in the real setup. On the other hand, the initialization
phase has been finished on more than 200 instances. On average, ALNS was executed
between 18.3 and 20.4 times per instance, depending on the fixing rate.

As one expects, the running time spent in a sub-MIP decreases with the fixing
rate. Therefore, the number of times that ALNS could be executed is different for
every fixing rate. Table 3 shows the number of finished calls to the framework for
every tested fixing rate. It ranges from 9037 at a fixing rate of 0.1 to 10085 at 0.9.
Particularly interesting are the calls where at least one of the tested neigborhoods finds
a solution. The number of successful calls of an oracle neighborhood is shown in
total in column “Success” and as a rate in column “Succ. Rate”. The success rate of

18

0.2

0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9
Fixing rate

S
ol

. r
at

e

Neighborhood

crossover

dins

localbranching

mutation

proximity

rens

rins

zeroobjective

Figure 3: Solution rate by neighborhood and fixing rate.

the oracle neighborhood ranges from 9.3% to 13.3% and increases with an increasing
fixing rate.

In all other calls, the selection process is only required to select a neighborhood
that fails fast, but cannot contribute to the overall search process with an incumbent
solution. Therefore, all results reported in the remainder of this section are reported for
the subset of calls where at least one neighborhood finds a solution.

For this set of calls, Figure 3 shows the average number of solutions for every
heuristic at every fixing rate. It can be observed that RINS, DINS, and Local Branching
are almost consistently the top three neighborhoods across all tested fixing rates. While
the solution frequency for those neighborhoods does not show monotonous trends, the
solution rates for Crossover, RENS, and Mutation are decreasing with an increasing
fixing rate.

The ranking between the neighborhoods is similar for the obtained rewards illus-
trated in Figure 4. Here, the average reward increases with the fixing rate. This is
partly because the reward definition penalizes neighborhoods with a high fixing rate
less strictly. A higher average reward results from an increased solution frequency, a
better solution quality, and/or less effort to solve the subproblem. The neighborhood
rewards at a particular fixing rate can be compared well.

As expected from the previous analysis, RINS, Local Branching, and DINS reach
high average rewards. The highest increase in average reward can be observed for
the Proximity and Zero Objective neighborhoods. At a high fixing rate of 0.9, RENS
achieves the smallest average reward. The reward for Mutation only increases up to
a fixing rate of 50%. Its reward is almost constant for all fixing rates ≥ 50%. RENS
lacks a reference solution for additional, generic fixings, which is why it can run less
frequently than others. A possible explanation for the decreasing scores of Crossover
is the random selection of reference solutions. Searching a narrow neighborhood of a
reference solution far away from the incumbent may lower its chances to find a better
solution. The lower scores of Mutation are remarkable because RINS and Mutation

19

0.3

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7 0.9
Fixing rate

A
vg

. r
ew

ar
d

Neighborhood

rens

rins

mutation

localbranching

crossover

proximity

zeroobjective

dins

Figure 4: Avg. reward by neighborhood and fixing rate.

0

500

1000

1500

2000

−1.0 −0.5 0.0 0.5 1.0

Reward difference between Rins and Mutation

In
st

an
ce

s

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75

Rins

M
ut

at
io

n

0.25

0.50

0.75

fixrate

Figure 5: Reward comparison of RINS and Mutation.

use the same reference solution, namely the incumbent. RINS may even need addi-
tional generic fixings to reach higher target fixing rates, whereas the Mutation scheme
always fixes the targeted percentage of integer variables. The large discrepancy in their
solution rates indicates that more informed approaches such as the LP driven neighbor-
hoods RINS or DINS are the most important fixing schemes.

One may ask the question whether a well-performing neighborhood such as RINS
entirely dominates the less well-performing neighborhoods such as Mutation. Figure 5
illustrates the measured rewards for RINS and Mutation, respectively. RINS has a clear
tendency to score higher, especially at larger fixing rates. However, also the execution
of Mutation can be beneficial, as it reaches a higher reward in about 30% of the cases.
Analogous comparisons for other pairs of neighborhoods yield similar results. Based
on these observations, it is reasonable to enable all 8 neighborhoods by default, and to
rely on the selection mechanism.

20

5.2 Simulation of the Selection Process
The rich data set from the previous section is now used for an offline calibration of the
three bandit selection strategies. Each of the three bandit selection methods presented
in Section 4 has a single parameter that can be calibrated for the use inside the ALNS
selection process. Therefore, all three UCB, Exp.3, and ε-greedy are run on the entire
collected data (all calls with and without at least one solution) with the aim to maximize
the average reward obtained. Average rewards are computed over 100 repetitions of
each algorithm. The simulation of the selection routines has been implemented in the
programming language R.

Ideally, the selection performs better than a pure random selection for instances
that allow for a certain number of calls to initialize the selection process. Note that
certain parameter choices of the Exp.3 (γ = 1) and ε-greedy bandits are equivalent to
a uniform random selection.

Figure 6 shows the selection quality for the three selection methods in terms of
the average reward and solution rate. As in the previous section, the figures in this
section refer to the subset of calls with at least one successful neighborhood. This
means that the solution rate of an optimal selection algorithm would be a horizontal
line with value 1.0 across all fixing rates. The first row depicts the selection quality of
Exp.3 at different values of the γ parameter. Some hand-picked values {0.05,0.5,0.95}
are compared to γ = 0.07041455, the optimal value for γ computed by the R function
optimize, and a pure random selection named “avg”. At all tested values of the γ-
parameter, the selection quality of Exp.3 is better than purely random. Furthermore,
the experiment reveals that higher values of γ decrease the selection quality across
all tested fixing rates. The choice of γ = 0.95 shows, as expected, almost the same
selection quality as a pure random selection.

The best choice for ε computed by R is 0.4685844. The results for ε = 4 are
indistinguishable from random sampling. The reason is the limited number of calls to
ALNS, for which εt ≥ 1 for all t ≤ 71, such that only random sampling is applied by
the ε-greedy algorithm.

Finally, the average reward of the UCB selection algorithm has been maximized
for the parameter choice of α = 0.0016. Its selection quality is depicted in the last row
of Figure 6. It can be noted that the average selection quality is higher for UCB and ε-
greedy than for Exp.3. Especially the solution rate is maximized by the UCB algorithm.
The optimal values for the different parameters can be interpreted as follows. The
optimal value for the γ-parameter is very close to a purely weight based Exp.3 selection
strategy. The optimal value of the α-parameter shows a higher selection quality than
the nearby value of α = 0, a purely greedy selection. This is seconded by the optimal
value of the ε-parameter. This shows that learning from past observations clearly helps
the selection process at later stages.

Another observation is that the plots of Figure 6 seldomly cross, i.e. the ranking
between different parameter choices is the same for different fixing rates. This indicates
that the selection algorithm can be safely combined with an adaptive fixing rate.

The learning success of the bandit selection methods is depicted in Figure 7. It
shows the average solution rate of Exp.3 as a function of the number of calls to the
ALNS framework for all four different choices of the parameter γ . As a comparison
serves the average solution rate per call. The picture illustrates that the solution rate
for the choice of γ = 0.07041455 is better than random after a small number of calls.
Furthermore, while the average solution rate stays relatively constant around 0.3, the
solution rate of Exp.3 has a clear tendency to increase with the number of calls. It

21

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9

Fixing rate

A
vg

. r
ew

ar
d

Exp.3

gamma_0.15

gamma_0.45

gamma_0.95

gamma_0.07041455

avg

0.400

0.425

0.450

0.475

0.500

0.1 0.3 0.5 0.7 0.9

Fixing rate

S
ol

. r
at

e

Exp.3

gamma_0.15

gamma_0.45

gamma_0.95

gamma_0.07041455

avg

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7 0.9

Fixing rate

A
vg

. r
ew

ar
d

Eps−greedy

eps_0.25

eps_0.5

eps_1

eps_2

eps_4

eps_0.4685844

avg

0.40

0.45

0.50

0.55

0.1 0.3 0.5 0.7 0.9

Fixing rate

S
ol

. r
at

e

Eps−greedy

eps_0.25

eps_0.5

eps_1

eps_2

eps_4

eps_0.4685844

avg

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7 0.9

Fixing rate

A
vg

. r
ew

ar
d

UCB

alpha_0

alpha_0.2

alpha_0.4

alpha_0.6

alpha_0.8

alpha_1

alpha_0.0016

avg

0.40

0.45

0.50

0.55

0.1 0.3 0.5 0.7 0.9

Fixing rate

S
ol

. r
at

e

UCB

alpha_0

alpha_0.2

alpha_0.4

alpha_0.6

alpha_0.8

alpha_1

alpha_0.0016

avg

Figure 6: Comparison of selection performance for different parameter choices.

22

reaches a solution rate of 0.6 after 63 calls.
The two other bandit algorithms achieve this mark much earlier. The second dia-

gram shows the solution rate by call for the ε-greedy algorithm for two choices of ε .
Compared to Exp.3, the selection achieves an even better solution rate. Its margin from
the average solution rate is higher. As an example, the (arbitrary) mark of a solution
rate of 0.6 is first reached after 24 calls, and reliably surpassed after 40 calls to the
selection routine.

The final plot shows that UCB outperforms the two other bandit selection routines.
The mark of 0.6 is reached after 17 calls for the first time, and almost consistently
surpassed after 30 calls. The price for this selection performance is that the first 8
observations must be spread over the 8 neighborhoods to select from, which is why
UCB achieves exactly average performance at this early stage. At a later stage, UCB
reaches a solution rate of 1.0 for the four rightmost observations, i.e., UCB can safely
identify and select a well performing neighborhood at this stage. Recall that these plots
represent average solution rates over 100 repetitions of the experiment.

As a conclusion, all three bandit selection algorithms achieve an above average
selection performance, as desired. With an increasing initialization time, the learning
effect becomes more pronounced. UCB achieves the best solution rate, followed by
ε-greedy and Exp.3. Arguably, the good solution rate is an indication that the designed
reward function, which the bandits actually receive, captures the ranking between the
neighborhoods sufficiently well within the ALNS framework.

5.3 MIP Performance
This section presents the computational benefit of ALNS inside SCIP in a real setting
where only one neighborhood can be called at a time. All 3 bandit selection methods
have been tested and compared to SCIP with deactivated ALNS. The individual selec-
tion parameters are set to their individual optimal value as described in the previous
section. The individual, existing Large Neighborhood Search heuristics RENS, RINS,
and Crossover are active independently from ALNS in all four settings, as this repre-
sents the default settings of SCIP 5.0 with CPLEX 12.7.1 as LP solver. This experiment
has been conducted on a Linux cluster of 32 computing nodes equipped with Intel Xeon
CPU E5-2670 v2 at 2.50GHz. The time limit was 2h for every instance. In order to
measure time as accurately as possible, every job has been scheduled exclusively.

Table 4 shows aggregated results for two performance measures, the solving time
to optimality and the primal integral. It has been prepared using the Interactive Per-
formance Evaluation Tools [23]. Individual outcomes for every instance and setting
are found in Table 5 in the appendix. The measures are presented as shifted geometric
mean time (using a shift of 1 sec.) and average primal integral. For a better quan-
titative assessment, relative percentage deviations from the fastest setting are shown.
Table 4 summarizes the performance for the entire test bed as well as three interesting
subgroups. The first subgroup “Diff” contains all instances on which activating ALNS
has an effect on the solving process of SCIP for at least one selection strategy. On the
complementary group “Equal”, ALNS does not alter the solving process. A change in
the path is detected by a change in the number of LP iterations of the main solution pro-
cess. Both groups drop all instances that could be solved by none of the four settings.
The last subgroup is the subset of MIPLIB 2010 [27] benchmark instances.

The overall fastest setting in this experiment is ALNS equipped with an Exp.3
selection algorithm. On the entire test bed, an approximate 2 % time improvement
can be observed. Also with a UCB or ε-greedy selection, a time improvement can be

23

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

Exp.3

gamma_0.15

gamma_0.45

gamma_0.95

gamma_0.07041455

avg

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

Eps−greedy

eps_0.5

eps_0.4685844

avg

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

UCB

alpha_0

alpha_0.0016

avg

Figure 7: Average solution rate as a function of the individual call.

24

Table 4: Performance results of ALNS with different selection algorithms

Group Setting Inst. Tlim Time Rel. Time % Integral Rel. Int. %

All Exp.3 665 263 358.61 -1.89 77204.62 -2.11
All Eps-greedy 665 266 360.90 -1.26 78001.49 -1.10
All UCB 665 264 360.17 -1.46 76516.88 -2.98
All ALNS off 665 265 365.52 0.00 78868.44 0.00

Diff Exp.3 110 2 136.40 -11.39 10281.80 -34.92
Diff Eps-greedy 110 5 137.21 -10.87 12278.62 -22.27
Diff UCB 110 3 137.55 -10.65 10046.82 -36.40
Diff ALNS off 110 4 153.94 0.00 15797.51 0.00

Equal Exp.3 293 0 35.05 0.19 12888.25 0.23
Equal Eps-greedy 293 0 35.49 1.46 12876.27 0.14
Equal UCB 293 0 35.29 0.88 12870.50 0.10
Equal ALNS off 293 0 34.98 0.00 12858.12 0.00

MIPLIB2010 Exp.3 87 6 314.01 -4.59 21610.16 -23.68
MIPLIB2010 Eps-greedy 87 7 321.02 -2.46 23195.39 -18.08
MIPLIB2010 UCB 87 6 323.58 -1.69 21097.42 -25.49
MIPLIB2010 ALNS off 87 7 329.12 0.00 28315.92 0.00

observed, albeit smaller. The time improvement is more pronounced for MIPLIB 2010,
where ALNS with Exp.3 is more than 2 % faster than its bandit competitors and 4.6
% faster than SCIP without ALNS. Finally, for the set of affected instances, the ALNS
time improvement (using Exp.3) is more than 11 %. A very similar time result has
been obtained for the other two selection algorithms.

The primal integral is minimized by ALNS with the UCB selection strategy, closely
followed by Exp.3. Overall, UCB achieves an improvement of 3 %, but the improve-
ment is substantial for the subgroups MIPLIB2010 and Diff, where improvements of
more than 25 % and 36 % are obtained, respectively. The ε-greedy selection also
yields improved primal integrals for all sets of instances, especially on the set of af-
fected instances. However, the improvements are less pronounced than for the other
bandit algorithms. The subgroup “Equal” shows that the primal integral is almost not
affected by ALNS if it does not affect the solution process. This indicates that the over-
head caused by ALNS is negligible in case its solutions do not contribute to the overall
search progress. Note that it is possible that the search is not affected even though
ALNS finds a solution.

Overall, ALNS improves SCIP with all tested selection strategies with respect to
both time and primal integral. The positive outcome for Exp.3 is unexpected because
Exp.3 scored worse than UCB and ε-greedy in the simulation experiment. A possible
explanation is the different scenario assumption of Exp.3. The important difference
between the simulation and the MIP performance results is that solutions found by
ALNS during the simulation experiment have been discarded and only reward infor-
mation was kept. It is not unlikely that during the simulation, repeated calls to the
same neighborhood resulted in the same solution. Designed for the stochastic scenario,
UCB and ε-greedy aim at identifying a single, best performing neighborhood, which
may give them an advantage over Exp.3 only in the simulation. The weighted random-

25

ized selection of Exp.3 may reduce the initial set of neighborhoods over time to two or
three equally strong neighborhoods for an instance, or even continue using all available
neighborhoods if they achieve similar rewards.

6 Conclusion
This article introduces Adaptive Large Neighborhood Search for MIP, a framework
around eight well-known LNS neighborhoods from the literature. It has been imple-
mented as a primal heuristic in SCIP and is publicly available since SCIP 5.0. The
framework combines a selection procedure, which is governed by algorithms for the
multi armed bandit problem, and the idea of generic additional variable fixings to ad-
just the complexity of the subproblems, as needed. We propose a reward function that
combines the important aspects of solution quality and subproblem effort into a single
number. We have used a simulation experiment to calibrate each bandit algorithm indi-
vidually. Training the bandit algorithms with this reward function shows a clear trend
to improve the solution rate with an increasing number of calls. As a byproduct of the
simulation, we could see clear differences between the neighborhoods regarding the
number of solutions they produce. Two of the neighborhoods that are most successful
in our experiments, DINS and Local Branching, have been previously inactive in SCIP.

We currently see two future perspectives for this work. Adaptive algorithm selec-
tion may also be beneficial in other parts of the solver where the choice between similar
methods largely affects the overall performance of the solver. In a recent article [25],
promising results are presented for diving heuristics, and for dynamic switching be-
tween different pricing strategies of the Dual Simplex procedure to maximize the node
throughput during the search. On the other hand, further algorithmic improvements
regarding the use of auxiliary problems in general can be more easily incorporated into
a single framework, such as the transfer of variable histories or conflict clauses, which
may be very useful for the remaining search process.

Acknowledgements
The work for this article has been conducted within the Research Campus MODAL
funded by the German Federal Ministry of Education and Research (BMBF grant
number 05M14ZAM). The author would like to thank his colleagues Timo Berthold
and Thomas Schlechte for their reviews and comments on earlier versions of this
manuscript.

References
[1] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Pro-

gramming Computation, 1(1):1–41, 2009.

[2] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics
for mixed integer programming. In D. Klatte, H.-J. Lüthi, and K. Schmedders,
editors, Operations Research Proceedings 2011, pages 71–76. Springer Berlin
Heidelberg, 2012.

[3] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):1–12, 2006.

26

[4] M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent.
Experiments in mixed-integer programming. Mathematical Programming, 1:76–
94, 1971.

[5] T. Berthold. Measuring the impact of primal heuristics. Operations Research
Letters, 41(6):611–614, 2013.

[6] T. Berthold. RENS–the optimal rounding. Mathematical Programming Compu-
tation, 6(1):33–54, 2014.

[7] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[8] R. Borndörfer, H. Hoppmann, and M. Karbstein. A configuration model for the
line planning problem. In D. Frigioni and S. Stiller, editors, ATMOS 2013 - 13th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems, volume 33, pages 68 – 79, 2013.

[9] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. CoRR, abs/1204.5721, 2012.

[10] COIN-OR branch-and-cut MIP solver, 2016. https://projects.coin-or.

org/Cbc.

[11] Coral mip benchmark library, 2016. http://coral.ise.lehigh.edu/data-sets/mixed-
integer-instances.

[12] IBM ILOG CPLEX Optimizer, 2016. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.

[13] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3):250–255, 1965.

[14] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming, 102(1):71–90,
2005.

[15] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1-
3):23–47, 2003.

[16] M. Fischetti and A. Lodi. Repairing milp infeasibility through local branching.
35:1436–1445, 05 2008.

[17] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex
programming. Journal of Heuristics, 20(6):709–731, Dec 2014.

[18] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical Programming
Computation, 1(2):201–222, Oct 2009.

[19] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-based primal
heuristics for mixed integer programming. In Optimization in the Real World,
volume 13, pages 37 – 53. 2015.

[20] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger. Progress in
presolving for mixed integer programming. Mathematical Programming Compu-
tation, 7(4):367–398, 2015.

27

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

[21] S. Ghosh. DINS, a MIP Improvement Heuristic. In M. Fischetti and D. P.
Williamson, editors, Integer Programming and Combinatorial Optimization:
12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007. Pro-
ceedings, pages 310–323, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[22] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald,
G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger,
B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert,
F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt,
and J. Witzig. The scip optimization suite 6.0. Technical Report 18-26, ZIB,
Takustr. 7, 14195 Berlin, 2018.

[23] G. Hendel. IPET interactive performance evaluation tools. https://github.

com/GregorCH/ipet.

[24] G. Hendel. New rounding and propagation heuristics for mixed integer program-
ming. Bachelor thesis, 2011.

[25] G. Hendel, M. Miltenberger, and J. Witzig. Adaptive algorithmic behavior for
solving mixed integer programs using bandit algorithms. Technical Report 18-
36, ZIB, Takustr. 7, 14195 Berlin, 2018.

[26] E. B. Khalil, B. Dilkina, G. Nemhauser, S. Ahmed, and Y. Shao. Learning to
run heuristics in tree search. In 26th International Joint Conference on Artificial
Intelligence (IJCAI), 2017.

[27] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathe-
matical Programming Computation, 3(2):103–163, 2011.

[28] P. Laborie and D. Godard. Self-adapting large neighborhood search: Application
to single-mode scheduling problems. In P. Baptiste, G. Kendall, A. Munier, and
F. Sourd, editors, MISTA-07, 08 2007.

[29] A. H. Land and A. G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):497–520, 1960.

[30] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald,
G. Hendel, T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E. Pfetsch,
C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano,
D. Weninger, J. T. Witt, and J. Witzig. The scip optimization suite 4.0. Tech-
nical Report 17-12, ZIB, Takustr. 7, 14195 Berlin, 2017.

[31] L.-M. Munguı́a, S. Ahmed, D. A. Bader, G. L. Nemhauser, and Y. Shao. Alter-
nating criteria search: a parallel large neighborhood search algorithm for mixed
integer programs. Computational Optimization and Applications, 69(1):1–24, Jan
2018.

[32] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Com-
puters & Operations Research, 34(8):2403 – 2435, 2007.

[33] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer Program-
ming Solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

28

https://github.com/GregorCH/ipet
https://github.com/GregorCH/ipet

[34] A. Sabharwal, H. Samulowitz, and C. Reddy. Guiding combinatorial optimization
with UCT. In N. Beldiceanu, N. Jussien, and E. Pinson, editors, CPAIOR, volume
7298 of Lecture Notes in Computer Science, pages 356–361. Springer, 2012.

[35] Xpress. FICO Xpress-Optimizer, 2016. http://www.fico.com/en/

Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx.

Appendix

Table 5: The MIP performance results from Section 5.3 for every instance. The 3 columns 2010, Diff, and Equal indicate the group membership
of an instance to the respective group in Table 4.

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

10teams X 13 13 13 12 558 588 599 606
22433 X 3 3 3 3 290 270 270 270
23588 X 6 6 6 6 212 202 222 202

30n20b8 X X 256 254 255 254 15902 15736 15769 15814
50v-10 7200 7200 7200 7200 2921 2916 2912 2970

Test3 X 5 5 5 5 195 195 195 195
a1c1s1 7200 7200 7200 7200 3913 2832 3189 2830

acc-tight4 X 170 170 170 171 17000 17000 17000 17100
acc-tight5 X X 118 116 117 116 11800 11600 11700 11600
acc-tight6 X 71 71 71 70 7060 7070 7100 7040
aflow30a X 27 27 27 27 718 736 753 718
aflow40b X X 900 900 898 894 3868 3879 3861 3725

air03 X 2 3 3 3 63 96 83 94
air04 X X 27 26 27 27 262 222 252 252
air05 X 18 18 19 17 172 206 193 166

aligninq X 16 16 16 16 380 370 380 370
app1-2 X X 5326 4415 7200 7200 177568 135961 309051 720001

arki001 X 7200 6777 7200 7200 392 416 434 431
ash608gpia-3col X X 61 61 61 61 6086 6074 6064 6097

atlanta-ip 7200 7200 7200 7200 46308 51595 42982 65872
atm20-100 7200 7200 7200 7200 720000 720000 720000 720000

b2c1s1 7200 7200 7200 7200 17792 9487 10847 24912
bab1 7200 7200 7200 7200 1650 1590 4326 3238
bab3 7200 7200 7200 7200 720271 720122 720545 720325
bab5 X X 677 871 1116 2819 2746 2707 2737 2896

bc X 1146 1151 1145 1143 15356 15685 15301 15302
bc1 X 254 254 251 247 6265 6306 6195 6165

beasleyC3 X X 99 76 108 72 532 504 515 556
bell3a X 8 8 8 8 0 0 0 0
bell5 X 1 1 1 1 10 10 10 0

berlin 5 8 0 7200 7200 7200 7200 1223 1232 1408 1232
bg512142 7200 7200 7200 7200 36444 38919 33846 37986

biella1 X X 722 722 234 709 2495 2521 1995 2418
bienst1 X 35 36 36 35 151 170 179 149
bienst2 X X 342 342 343 343 471 467 500 474

binkar10 1 X X 6 48 50 49 49 33 52 37
blend2 X 2 2 2 5 19 30 29 217

bley xl1 X X 177 176 178 177 16733 16728 16833 16795
blp-ar98 7200 7200 7200 7200 720000 720000 720002 720001
blp-ic97 7200 7200 7200 7200 3661 4616 4613 4602
bnatt350 X X 1093 1094 1095 1106 109300 109400 109500 110600
bnatt400 X 1302 1296 1300 1307 101100 100700 101000 101400

buildingenergy 7200 7200 7200 7200 17865 17868 17894 17887
cap6000 X 5 5 5 5 29 66 59 29
circ10-3 7200 7200 7200 7200 720002 720001 720001 720001

co-100 7200 7200 7200 7200 55008 54391 54275 54226
core2536-691 X X 59 49 58 108 273 249 273 357

core4872-1529 7200 7200 7200 7200 18330 19309 18893 19981
cov1075 X X 135 135 135 135 166 166 167 166

csched007 X 2802 2748 2749 2740 5341 5243 5239 5204
csched008 X 446 446 446 446 1454 1455 1464 1424
csched010 X X 2567 2569 2569 2567 4819 4829 4832 4817

d10200 7200 7200 7200 7200 750 751 751 751
d20200 7200 7200 7200 7200 1127 1124 1121 1121

dano3 3 X 69 54 69 68 535 577 535 535
dano3 4 X 82 62 82 37 457 437 477 477
dano3 5 X 158 166 183 159 376 399 376 396

dano3mip 7200 7200 7200 7200 27771 27675 27772 27754
danoint X X 5846 5841 5847 5957 584 585 759 598
datt256 7200 7200 7200 7200 719973 719952 719990 720043

dc1c 7200 7200 7200 7200 11541 10906 27174 11459
dc1l 7200 7200 7200 7200 43512 43428 45520 43059

dcmulti X 3 2 3 2 15 14 15 14
dfn-gwin-UUM X X 76 68 68 88 156 166 166 169

dg012142 7200 7200 7200 7200 175566 111040 161012 187792
disctom X 2 2 2 2 200 160 200 160
dolom1 7200 7200 7200 7200 549206 571878 549027 548652

ds 7200 7200 7200 7200 541837 542147 541870 541299
ds-big 7200 7200 7200 7200 510983 503225 454460 498603

dsbmip X 1 1 1 1 43 43 43 83

continued on next page . . .

29

http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

egout X 1 1 1 1 0 0 0 0
eil33-2 X X 113 113 116 113 634 649 665 611

eilA101-2 7200 7200 7200 7200 89667 90110 89880 90164
eilB101 X X 286 364 288 286 703 1090 730 700
enigma X 1 1 1 1 30 70 60 30

enlight13 X X 1 1 1 1 0 0 0 0
enlight14 X X 1 1 1 1 1 3 2 3
enlight15 X 1 1 1 1 0 10 10 10
enlight16 X 1 1 1 1 3 7 4 2
enlight9 X 1 1 1 1 1 0 1 0

ex10 X 506 515 504 515 50600 51500 50400 51500
ex1010-pi 7200 7200 7200 7200 20758 20757 20755 20755

ex9 X X 39 41 39 39 3910 4130 3930 3920
f2000 7200 7200 7200 7200 720001 720001 720001 720001

fast0507 X 57 55 57 54 245 234 237 244
fiball 7200 7200 7200 7200 15841 15826 15984 15813
fiber X 3 3 3 3 26 24 24 42

fixnet6 X 8 8 8 8 93 94 98 95
flugpl X 1 1 1 1 1 1 1 1

g200x740i 7200 7200 7200 7200 43809 29034 20994 29123
gen X 1 1 1 1 10 0 10 0

germanrr 7200 7200 7200 7200 58915 51678 59013 59020
germany50-DBM 7200 7200 7200 7200 6482 4321 6599 5701

gesa2 X 1 1 1 1 88 44 79 44
gesa2-o X 1 1 1 1 22 52 44 22

gesa3 X 5 5 5 5 12 10 20 30
gesa3 o X 3 3 3 3 60 90 90 90

glass4 X X 1526 1264 1710 3358 36139 28260 42952 80752
gmu-35-40 X 7200 7200 7200 7200 165 83 110 82
gmu-35-50 7200 7200 7200 7200 720036 720004 720005 720008

gmut-75-50 7200 7200 7200 7200 3821 4225 4706 3587
gmut-77-40 7200 7200 7200 7200 1355 2392 1600 2929

go19 7200 7200 7200 7200 293 296 293 293
gt2 X 1 1 1 1 9 9 9 9

hanoi5 7200 7200 7200 7200 720000 720000 720000 720000
haprp X 1 1 1 1 20 20 22 20

ic97 potential 7200 7200 7200 7200 784 384 1108 1234
iis-100-0-cov X X 1404 1404 1394 1406 257 258 256 257
iis-bupa-cov X X 6020 6024 6002 6019 1004 1001 1006 1002
iis-pima-cov X X 810 805 806 806 1111 1107 1089 1088

in 7189 7188 7189 7188 470211 470156 470244 470192
ivu06-big 7200 7200 7200 7200 26051 26051 26051 26151

ivu52 7200 7200 7200 7200 107599 114156 118778 108599
janos-us-DDM 7200 7200 7200 7200 280 282 288 280

k16x240 X 2347 2962 2340 2977 62 129 63 128
khb05250 X 1 1 1 1 2 4 4 3

l152lav X 2 2 2 2 23 43 44 22
lectsched-1 X 109 109 108 109 10900 10900 10800 10900

lectsched-1-obj 7200 7200 7200 7200 295659 294531 295109 293653
lectsched-2 X 28 28 28 28 2830 2780 2770 2760
lectsched-3 X 80 80 80 79 8010 7970 8010 7920

lectsched-4-obj X X 96 97 96 96 6573 6618 6536 6552
leo1 X 4498 4500 3445 4485 4319 4318 3575 4303
leo2 7200 7200 7200 7200 15384 15996 21447 16901

liu 7200 7200 7200 7200 88823 117481 119240 154173
lotsize 7200 7200 7200 7200 14444 14447 14347 14443

lrn X 898 960 1019 807 4526 4551 4557 4538
lrsa120 7200 7200 7200 7200 720001 720001 720001 720000

lseu X 1 1 1 1 8 16 15 8
m100n500k4r1 X 7200 7200 7200 7200 29184 29184 29190 29183

macrophage X X 183 183 183 184 431 425 424 431
manna81 X 1 1 1 1 13 12 13 25

map06 X 726 778 822 1094 7632 7315 9890 19657
map10 X 994 982 958 922 12046 11764 11677 11623
map14 X 807 808 825 806 3350 3350 3354 3350
map18 X X 346 337 351 337 1681 1671 1676 1686
map20 X X 235 237 247 234 1411 1409 1410 1406

markshare1 7200 7200 7200 7200 492445 605874 605909 605706
markshare2 7200 7200 7200 7200 685128 685178 686991 685154

markshare 5 0 7200 7200 7200 7200 397313 397155 397343 397371
mas74 X 1878 1891 1895 1883 315 317 315 315
mas76 X 165 163 164 164 14 7 7 14

maxgasflow 7200 7200 7200 7200 12821 12754 12769 12757
mc11 X 407 408 408 442 690 696 685 695

mcsched X X 281 279 281 282 158 155 158 172
methanosarcina 7200 7200 7200 7200 15003 15013 14974 15046

mik-250-1-100-1 X X 95 95 95 96 42 48 50 26
mine-166-5 X X 84 84 85 83 4150 4142 4192 4093
mine-90-10 X X 434 503 465 510 2855 2856 2779 2846

mining 7200 7200 7200 7200 774420 771961 770608 772441
misc03 X 1 1 1 1 25 10 25 10
misc06 X 1 1 1 1 0 0 10 10
misc07 X 8 8 8 8 91 71 111 111

mitre X 15 16 16 16 1490 1580 1560 1570
mkc 7200 7200 7200 7200 1058 1059 1464 1062

mkc1 X 56 33 47 35 51 87 48 90
mod008 X 1 1 1 1 0 0 0 0
mod010 X 1 1 1 1 53 21 53 21
mod011 X 202 190 196 190 2017 1994 1988 2028

modglob X 1 1 1 1 0 0 0 0
momentum1 7200 7200 7200 7200 104675 121615 290800 489700
momentum3 7200 7200 7200 7200 441021 337153 441953 443549

msc98-ip X X 787 2873 901 726 7720 21397 8033 10394

continued on next page . . .

30

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

mspp16 X X 711 711 712 701 28600 28800 28500 28400
mzzv11 X X 191 183 186 180 7483 7349 7434 7216

mzzv42z X 98 104 147 97 7325 7613 7467 7275
n15-3 7200 7200 7200 7200 148036 157588 160244 187870
n3-3 7200 7200 7200 7200 17848 18766 18114 21282

n3700 7200 7200 7200 7200 35056 35047 33779 47682
n3705 7200 7200 7200 7200 48923 48919 40248 48984
n370a 7200 7200 7200 7200 39635 39760 39649 39629

n3div36 X X 7153 7064 7140 7158 5566 5569 5568 5573
n3seq24 X 7200 7200 7200 7200 42413 41152 41927 41988

n4-3 X X 116 129 135 135 591 671 635 658
n9-3 7200 7200 7200 7200 9717 8942 2574 6976
nag 7200 7200 7200 7200 163774 163830 163781 163040

neos-1053234 X 128 127 129 127 30 10 20 10
neos-1053591 X 4 5 5 5 21 11 22 11
neos-1056905 7200 7200 7200 7200 52523 65360 88185 69906
neos-1058477 X 3 3 3 3 10 10 10 20
neos-1061020 X 3777 3621 3779 3775 8252 8171 8240 8251
neos-1062641 X 1 1 1 1 10 30 30 30
neos-1067731 7200 7200 7200 7200 1002 1001 1002 1001
neos-1096528 X 4563 4343 4542 4537 57648 56763 57428 57611
neos-1109824 X X 17 17 17 17 625 635 605 606
neos-1120495 X 6 6 6 6 542 553 562 523
neos-1121679 7200 7200 7200 7200 203015 263262 263381 264242
neos-1122047 X 7 7 7 7 690 690 680 700
neos-1126860 X 1803 1781 1833 1792 1977 1959 1974 4494
neos-1151496 X 4 4 4 4 370 420 400 410
neos-1171448 X 52 51 6 51 320 311 282 319
neos-1171692 X 28 57 24 21 157 142 137 151
neos-1171737 X 1879 6810 7200 3075 2390 10238 10038 6054
neos-1173026 X 1 1 1 1 19 19 15 15
neos-1200887 X 18 18 18 19 30 28 35 46
neos-1208069 X 39 39 39 39 3900 3880 3920 3855
neos-1208135 X 37 36 37 36 3550 3470 3570 3460
neos-1211578 X 2 2 2 2 8 25 25 25
neos-1215259 X 46 43 38 37 1408 1365 1343 1339
neos-1215891 X 74 74 75 75 741 771 761 741
neos-1223462 X 259 259 259 257 25900 25900 25900 25600
neos-1224597 X 2 2 2 2 160 190 200 160
neos-1228986 X 12 12 12 12 17 9 17 5
neos-1281048 X 9 9 9 10 312 312 312 352
neos-1311124 7200 7200 7200 7200 17 16 16 14
neos-1324574 X 2748 2715 2717 2755 20 20 20 20
neos-1330346 7200 7200 7200 7200 10 10 10 10
neos-1330635 X 1 1 1 1 28 51 48 51
neos-1337307 X 7200 7200 7200 7200 7977 7987 7957 7967
neos-1346382 7200 7200 7200 7200 29 19 19 31
neos-1354092 7200 7200 7200 7200 720000 720000 720000 720000
neos-1367061 X 18 18 18 17 986 986 986 986
neos-1396125 X X 78 78 78 78 1605 1577 1582 1570
neos-1407044 7200 7200 7200 7200 720001 720000 720000 720001
neos-1413153 X 5 5 5 4 203 229 237 197
neos-1415183 X 8 8 8 8 521 489 523 489
neos-1417043 X 10 10 10 10 990 980 990 980
neos-1420205 X 3 3 3 3 5 5 5 19
neos-1420546 7200 7200 7200 7200 2835 2848 2829 2829
neos-1420790 7200 7200 7200 7200 4985 4952 4948 4950
neos-1423785 7200 7200 7200 7200 138760 152139 153211 196728
neos-1425699 X 1 1 1 1 0 0 0 0
neos-1426662 7200 7200 7200 7200 70 82 64 101
neos-1427181 7200 7200 7200 7200 20 25 20 20
neos-1427261 7200 7200 7200 7200 422 298 284 424
neos-1429185 7200 7200 7200 7200 48 29 29 46
neos-1429212 7200 7200 7200 7200 720003 720001 720001 720002
neos-1429461 7200 7200 7200 7200 25 25 25 24
neos-1430701 X 13 12 13 13 13 13 28 31
neos-1430811 7200 7200 7200 7200 366219 356555 376302 476356
neos-1436709 7200 7200 7200 7200 22 22 22 23
neos-1436713 7200 7200 7200 7200 266 256 260 259
neos-1437164 X 1 1 1 1 62 91 102 61
neos-1439395 X 1900 1903 1905 1898 31 17 20 17
neos-1440225 X 77 77 78 77 7740 7730 7760 7740
neos-1440447 X 5 6 6 5 15 23 22 23
neos-1440457 7200 7200 7200 7200 19 18 23 18
neos-1440460 7200 7200 7200 7200 23 19 21 22
neos-1441553 X 2 2 2 2 196 156 204 174
neos-1442119 7200 7200 7200 7200 18 21 21 20
neos-1442657 7200 7200 7200 7200 16 16 15 16
neos-1445532 7200 7200 7200 7200 9821 9845 9884 9841
neos-1445738 7200 7200 7200 7200 62078 69034 69069 69707
neos-1445743 X 41 55 56 55 2478 2463 2497 2456
neos-1445755 X 45 62 60 62 2629 2540 2511 2535
neos-1445765 X 35 35 36 36 2520 2555 2498 2502
neos-1451294 X 1424 1427 1441 1424 48283 48511 48943 48284
neos-1456979 X 2839 2845 2870 2836 7720 7705 7876 7658
neos-1460246 7200 7200 7200 7200 23 23 23 23
neos-1460265 X 1 1 1 1 91 82 51 51
neos-1460543 7200 7200 7200 7200 9423 9422 9425 9425
neos-1460641 7200 7200 7200 7200 101 142 127 142
neos-1461051 X 22 22 22 22 2247 2233 2238 2245
neos-1464762 7200 7200 7200 7200 150 150 150 150
neos-1467067 7200 7200 7200 7200 18 15 23 18
neos-1467371 7200 7200 7200 7200 1528 2242 1530 1527

continued on next page . . .

31

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

neos-1467467 7200 7200 7200 7200 3623 3753 3867 4759
neos-1480121 X 1 1 1 1 3 4 3 8
neos-1489999 X 2 3 2 2 15 29 27 27
neos-1516309 X 1 1 1 1 42 82 82 41
neos-1582420 X 19 19 19 19 401 401 431 431
neos-1593097 7200 7200 7200 7200 1524 370 1369 2153
neos-1595230 7200 7200 7200 7200 71 70 65 71
neos-1597104 X 594 596 595 595 49694 49857 49783 49755
neos-1599274 X 1 1 1 1 53 43 53 33
neos-1601936 X X 1104 1104 1114 1092 107279 107297 108239 106136
neos-1603512 X 2 2 2 2 250 240 250 240
neos-1603518 X 10 10 10 10 990 980 990 1030
neos-1603965 7200 7200 7200 7200 1240 1262 1267 1272
neos-1605061 7200 7200 7200 7200 632446 632569 632550 632390
neos-1605075 X 4915 4857 7200 4850 476171 470463 548721 469782
neos-1616732 X 7128 7110 7159 7129 388 387 390 390
neos-1620770 7200 7200 7200 7200 158 158 158 158
neos-1620807 X 6 6 6 6 0 10 10 10
neos-1622252 7200 7200 7200 7200 21 21 61 52
neos-430149 X 35 35 35 35 418 452 411 465
neos-476283 X X 346 353 343 310 1567 1567 1579 1577
neos-480878 X 77 52 53 121 44 53 21 24
neos-494568 X 4 4 3 9 114 84 91 124
neos-495307 7200 7200 7200 7200 26 26 26 23
neos-498623 X 8 9 9 9 368 381 326 372
neos-501453 X 1 1 1 1 10 10 10 10
neos-501474 X 1 1 1 1 10 10 10 10
neos-503737 X 202 200 201 199 1086 1065 1095 1088
neos-504674 X 77 76 76 76 1029 995 1000 999
neos-504815 X 24 21 23 21 600 564 574 578
neos-506422 X 10 24 15 14 1050 2430 1500 1450
neos-506428 7200 7200 7200 7200 215960 216040 215480 215787
neos-512201 X 34 36 38 35 1088 1115 1057 1096
neos-522351 X 2 2 2 2 83 97 102 83
neos-525149 X 2 2 2 2 160 151 151 152
neos-530627 X 1 1 1 1 0 0 0 0
neos-538867 X 61 61 61 61 360 379 396 359
neos-538916 X 68 68 68 67 1131 1135 1110 1092
neos-544324 X 25 25 25 25 589 588 588 586
neos-547911 X 21 22 22 21 264 273 270 263
neos-548047 X 5865 5902 5898 5907 30820 31008 30966 31079
neos-548251 7200 7200 7200 7200 75429 74303 85178 74055
neos-551991 X 49 48 49 47 319 295 321 312
neos-555001 X 1 1 1 1 57 57 52 87
neos-555298 X 50 49 50 49 802 768 808 787
neos-555343 X 5858 2049 2039 2048 5426 4605 4582 4602
neos-555424 X 3327 4902 3658 4919 9595 11324 7116 11341
neos-555694 X 5 3 3 4 152 119 149 133
neos-555771 X 3 2 2 3 50 60 70 51
neos-555884 7200 7200 7200 7200 27176 27173 27173 27069
neos-555927 7200 7200 7200 7200 2758 2758 2756 2749
neos-565672 7200 7200 7200 7200 192119 192095 191394 191720
neos-565815 X 8 8 8 8 140 140 110 120
neos-570431 X 13 13 13 12 83 73 83 68
neos-574665 7200 7200 7200 7200 307 304 297 307
neos-578379 X 205 206 205 206 20500 20600 20500 20600
neos-582605 7200 7200 7200 7200 1200 1200 1200 1220
neos-583731 X 16 17 17 17 1630 1650 1650 1660
neos-584146 7200 7200 7200 7200 0 0 0 0
neos-584851 X 3 4 4 3 116 138 142 116
neos-584866 7200 7200 7200 7200 27892 27892 27928 27886
neos-585192 X 28 28 28 28 619 605 579 584
neos-585467 X 10 11 11 10 271 306 316 281
neos-593853 X 50 281 71 653 120 179 121 395
neos-595904 X 21 21 22 21 1280 1310 1350 1270
neos-595905 X 6 5 5 5 270 210 260 210
neos-595925 X 20 20 20 20 493 453 483 453
neos-598183 X 13 11 11 13 137 140 140 157
neos-603073 X 136 134 134 134 276 273 280 273
neos-611135 7200 7200 7200 7200 33923 51452 16642 25575
neos-611838 X 18 17 18 17 26 55 55 25
neos-612125 X 11 10 11 10 23 23 53 23
neos-612143 X 25 23 23 21 25 45 25 25
neos-612162 X 25 25 26 22 57 54 57 26
neos-619167 X 2547 1724 1735 1730 27457 25220 25573 25295
neos-631164 7200 7200 7200 7200 9186 9184 9184 9186
neos-631517 7200 7200 7200 7200 2951 2953 2954 2954
neos-631694 7200 7200 7200 7200 2100 2160 2160 2150
neos-631709 7200 7200 7200 7200 4431 4881 4908 4932
neos-631710 7200 7200 7200 7200 50634 50730 50494 50563
neos-631784 7200 7200 7200 7200 1479 1490 1490 1509
neos-632335 X 1 1 1 1 37 67 59 67
neos-633273 X 1 1 1 1 27 60 50 28
neos-655508 X 2 2 2 2 210 200 220 200
neos-662469 X 6551 7028 7200 6507 12132 12432 12771 11605
neos-686190 X X 143 142 142 141 1770 1764 1728 1723
neos-691058 7200 7200 7200 7200 188 191 188 189
neos-691073 7200 7200 7200 7200 147 147 147 147
neos-693347 X 1404 1383 1376 1373 30563 28957 28998 28500
neos-702280 7200 7200 7200 7200 28586 29694 28239 27805
neos-709469 X 1 1 1 1 60 60 60 100
neos-717614 X 38 5 6 933 122 121 122 125
neos-738098 7200 7200 7200 7200 720001 720000 720000 720001

continued on next page . . .

32

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

neos-775946 X 11 11 11 11 538 557 567 540
neos-777800 X 25 23 22 18 2510 2260 2200 1810
neos-780889 X 48 47 48 48 4800 4740 4830 4770
neos-785899 X 3 3 3 3 243 263 253 273
neos-785912 X 10 10 10 10 1012 976 972 1012
neos-785914 X 1 1 1 1 60 90 100 60
neos-787933 X 2 2 2 2 188 188 188 188
neos-791021 X 46 46 46 46 3571 3581 3582 3521
neos-796608 X 1 1 1 1 0 0 0 0
neos-799838 X 18 21 18 24 663 684 673 720
neos-801834 X 23 23 22 22 77 78 74 76
neos-803219 X 71 72 73 71 63 117 105 103
neos-803220 X 134 131 132 145 133 131 122 126
neos-806323 X 38 37 38 37 677 638 639 632
neos-807454 X 2 2 2 2 164 164 166 196
neos-807456 7200 7200 7200 7200 720000 720000 720000 720000
neos-807639 X 29 29 29 29 61 29 39 38
neos-807705 X 42 43 42 42 355 385 394 364
neos-808072 X 19 19 19 19 1408 1408 1407 1407
neos-808214 X 10 10 8 8 990 980 830 830
neos-810286 X 20 20 20 20 2020 2010 2010 2010
neos-810326 X 37 38 37 37 1242 1248 1257 1236
neos-820146 7200 7200 7200 7200 720000 720000 720000 720000
neos-820157 7200 7200 7200 7200 720000 720000 720000 720000
neos-820879 X 54 54 51 53 1209 1189 1151 1176
neos-824661 X 22 22 22 22 1078 1068 1080 1084
neos-824695 X 7 7 7 7 332 341 334 334
neos-825075 X 1 2 2 2 127 160 147 150
neos-826224 X 7 7 8 7 382 362 392 375
neos-826250 X 2 3 3 3 138 142 168 187
neos-826650 X 1742 1738 1738 1739 19725 19615 19615 19525
neos-826694 X 5 5 5 5 247 248 248 248
neos-826812 X 2 2 2 3 143 117 113 156
neos-826841 7200 7200 7200 7200 50 50 50 50
neos-827015 X 457 480 482 470 13786 12739 12738 12641
neos-827175 X 3 3 3 3 216 236 236 207
neos-829552 X 111 111 162 111 6921 6936 7681 6918
neos-830439 X 1 1 1 1 20 30 30 10
neos-831188 X 176 175 174 174 2710 2740 2690 2690
neos-839838 X 1601 1594 1598 1601 620 621 624 628
neos-839859 X 47 46 47 50 219 219 170 222
neos-839894 7200 7200 7200 7200 72120 45063 72203 72120
neos-841664 7200 7200 7200 7200 1178 1208 948 1248
neos-847051 7200 7200 7200 7200 50 52 52 44
neos-847302 7200 7200 7200 7200 1681 1648 1646 1660
neos-848150 X 1 1 1 1 60 60 60 60
neos-848198 7200 7200 7200 7200 17584 17969 17833 21044
neos-848589 7200 7200 7200 7200 85111 74440 74276 84883
neos-848845 X 367 364 367 363 36700 36400 36700 36300
neos-849702 X X 90 90 90 89 9010 8980 8950 8940
neos-850681 X 5 3 7 5 139 114 167 143
neos-856059 X 4377 4398 4408 4394 1907 1917 1920 1913
neos-859770 X 158 158 157 158 15758 15835 15706 15820
neos-860244 X 6 6 6 6 220 210 220 210
neos-860300 X 20 20 20 20 887 890 892 885
neos-862348 X 9 5 7 7 243 195 223 204
neos-863472 X 58 56 56 57 51 51 51 51
neos-872648 7200 7200 7200 7200 3932 4461 15298 15134
neos-873061 7200 7200 7200 7200 12466 5199 8936 12106
neos-876808 7200 7200 7200 7200 322179 281595 356148 359589
neos-880324 X 1 1 1 1 60 60 60 100
neos-881765 X 1 1 1 1 10 20 20 20
neos-885086 X 604 616 606 603 837 852 837 836
neos-885524 X 3758 7200 2326 7200 34332 46770 34624 46169
neos-886822 X 1883 1885 1884 1875 2329 2326 2292 2287
neos-892255 X 22 22 22 22 30 30 30 10
neos-905856 X 508 511 511 508 30367 30450 30367 30267
neos-906865 X 234 235 234 232 77 74 67 50
neos-911880 X 2625 2621 2627 2614 154 152 157 147
neos-911970 X 7 7 7 7 112 112 113 112
neos-912015 X 10 10 10 10 648 603 642 602
neos-912023 X 4 4 4 4 420 390 400 420
neos-913984 X 12 11 12 11 1190 1130 1170 1130
neos-914441 X 63 62 62 63 986 970 968 987
neos-916173 X 138 139 138 139 2289 2292 2328 2340
neos-916792 X X 1260 1229 1241 1253 4912 4992 5032 5137
neos-930752 7200 7200 7200 7200 7584 5332 7665 7560
neos-931517 7200 7200 7200 7200 50251 57152 57410 63640
neos-931538 X 9 9 9 9 500 480 480 503
neos-932721 X 8 2 8 8 86 105 85 95
neos-932816 X 5194 4977 5166 4252 27700 27721 27626 21493
neos-933364 X 326 327 326 325 49 51 55 49
neos-933550 X 4 3 4 3 390 350 390 350
neos-933562 7200 7200 7200 7200 999 986 1008 999
neos-933638 X 104 97 105 104 3001 2950 3031 3001
neos-933815 7200 7200 7200 7200 65 74 65 74
neos-933966 X 141 43 141 141 4123 4052 4122 4131
neos-934278 X X 140 139 140 139 4669 4667 4678 4667
neos-934441 7200 7200 7200 7200 4744 4890 4876 4876
neos-934531 X 265 267 264 266 26500 26700 26400 26600
neos-935234 7200 7200 7200 7200 5284 6070 6189 6248
neos-935348 7200 7200 7200 7200 6551 8185 8007 8185
neos-935496 7200 7200 7200 7200 3030 2913 3005 4746

continued on next page . . .

33

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

neos-935627 X 343 343 344 344 1995 1989 2004 2000
neos-935674 7200 7200 7200 7200 3307 3707 3415 3283
neos-935769 X 51 51 51 51 1716 1716 1723 1718
neos-936660 X 201 202 202 200 2825 2736 2850 2746
neos-937446 X 142 141 181 142 3675 3666 3491 3663
neos-937511 X 50 50 50 50 2478 2478 2480 2478
neos-937815 7200 7200 7200 7200 9310 11023 9240 9278
neos-941262 7200 7200 7200 7200 36301 36150 36578 36338
neos-941313 X 297 372 379 371 8089 8537 8577 8525
neos-941698 X 6 6 6 6 610 610 580 620
neos-941717 7200 7200 7200 7200 2005 1906 1990 1926
neos-941782 7200 7200 7200 7200 2095 2098 2107 2094
neos-942323 X 3 3 3 3 150 151 151 190
neos-942830 X 1563 1560 730 1559 1633 2057 1575 2039
neos-942886 X 1 1 1 1 17 48 45 46
neos-948126 7200 7200 7200 7200 62399 62449 62396 62354
neos-948268 X 5 5 5 5 470 490 470 450
neos-948346 7200 7200 7200 7200 27597 34850 35311 33226
neos-950242 X 494 492 493 492 33080 32960 32980 32880
neos-952987 7200 7200 7200 7200 720003 720121 720001 720000
neos-953928 X 48 54 180 54 1301 1291 1324 1301
neos-954925 X 431 633 325 588 6602 6409 6455 6458
neos-955215 X 3452 3416 3409 3402 35 35 56 35
neos-955800 X 71 72 72 71 3933 4425 4454 4405
neos-956971 X 251 228 424 476 3455 3463 3470 3455
neos-957143 X 174 59 170 174 3296 3299 3299 3316
neos-957270 X 3 3 3 3 280 280 290 280
neos-957323 X 56 40 39 37 851 842 851 849
neos-957389 X 18 18 17 17 1740 1740 1710 1710
neos-960392 X 132 119 130 129 3780 3616 3786 3774
neos-983171 7200 7200 7200 7200 33111 32832 35171 34935
neos-984165 7200 7200 7200 7200 74073 85280 104587 81329

neos13 X X 390 388 391 384 5682 5730 5733 5593
neos15 X 4334 7200 4425 6181 454 759 461 614
neos16 7200 7200 7200 7200 2174 2184 2154 2153
neos18 X X 56 56 56 56 383 372 380 359
neos6 X 62 110 74 73 2052 3055 4306 4244

neos788725 X 253 251 254 253 25308 25079 25369 25272
neos808444 X 3100 3107 3086 3119 310000 310700 308600 311900
neos858960 X 2377 2371 2381 2381 237667 237079 238050 238099

net12 X X 991 984 989 987 7754 7754 7754 7745
netdiversion X X 698 467 693 465 45150 41898 44710 41798

newdano X 7200 7200 7200 7200 2696 2633 2652 2655
nobel-eu-DBE 7200 7200 7200 7200 720000 720000 720000 720000

noswot X X 125 129 125 129 9 10 34 21
ns1111636 7200 7200 7200 7200 74578 74570 74555 74580
ns1116954 7200 7200 7200 7200 720002 720003 720003 720002
ns1158817 X 247 247 246 246 24672 24657 24594 24641
ns1208400 X X 364 364 366 361 36100 36100 36300 35700
ns1456591 7200 7200 7200 7200 244990 245058 246515 245984
ns1606230 X 6328 6325 6333 6323 506541 506275 507128 506152
ns1631475 7200 7200 7200 7200 267598 267815 266851 267707
ns1644855 X 986 986 980 985 98555 98643 98042 98500
ns1663818 7194 7194 7195 7195 719436 719421 719467 719459
ns1685374 7200 7200 7200 7200 720001 720001 720000 720001
ns1686196 X 13 13 13 13 1278 1329 1294 1314
ns1688347 X X 150 152 152 148 3636 3655 3646 3590
ns1696083 7200 7200 7200 7200 701703 705076 702220 703518
ns1702808 X 39 38 38 38 3860 3801 3826 3810
ns1745726 X 14 15 15 15 1427 1463 1498 1521
ns1758913 X X 3267 3266 3266 3251 235016 234846 234946 233825
ns1766074 X X 589 585 587 586 58928 58456 58695 58591
ns1769397 X 23 23 22 23 2289 2281 2246 2349
ns1778858 7200 7200 7200 7200 720000 720000 720000 720000
ns1830653 X X 218 219 219 219 4536 4568 4545 4546
ns1853823 7200 7200 7200 7200 699473 699473 699472 699474
ns1854840 7200 7200 7200 7200 683005 683005 683005 683005
ns1856153 7200 7200 7200 7200 250968 250899 250897 250905
ns1904248 7200 7200 7200 7200 109303 109302 109304 109295
ns1905797 7200 7200 7200 7200 720000 720000 720000 720000
ns1905800 7200 7200 7200 7200 720001 720001 720000 720000
ns1952667 X 1317 1286 1288 1272 131700 128600 128800 127200
ns2081729 7200 7200 7200 7200 720001 720003 720007 720003
ns2118727 X 831 833 835 834 83061 83270 83480 83429
ns2124243 7200 7200 7200 7200 50743 50744 50872 50642
ns2137859 7200 7200 7200 7200 131841 118770 132197 131600

ns4-pr3 7200 7200 7200 7200 124 102 65 103
ns4-pr9 7200 7200 7200 7200 28 18 35 44

ns894236 7200 7200 7200 7200 173111 173011 175517 172711
ns894244 X 1435 1441 1438 1438 143500 144100 143800 143800
ns894786 7200 7200 7200 7200 181800 182000 181500 180400
ns894788 7200 7200 7200 7200 720001 720000 720000 720000
ns903616 7200 7200 7200 7200 720001 720001 720000 720000
ns930473 7200 7200 7200 7200 89399 89457 89559 89425

nsa X 3 3 3 3 292 243 282 242
nsr8k 7200 7200 7200 7200 522791 404722 523587 511789

nsrand-ipx X 390 390 400 389 1546 1544 1567 1545
nu120-pr3 7200 7200 7200 7200 36343 36190 36351 36229
nu60-pr9 7200 7200 7200 7200 2970 2978 1428 2994

nug08 X 124 123 130 129 2699 2693 2834 2768
nw04 X 33 48 36 34 1403 1611 1415 1395

opm2-z10-s2 7200 7200 7200 7200 127518 98336 98440 127029
opm2-z11-s8 7200 7200 7200 7200 91206 91405 90793 91295

continued on next page . . .

34

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

opm2-z12-s14 7200 7200 7200 7200 180837 181287 181324 181653
opm2-z12-s7 7200 7200 7200 7200 281122 280743 281300 281374
opm2-z7-s2 X X 430 727 489 487 7305 4967 7470 8181

opt1217 X 1 1 1 1 0 0 0 10
p0033 X 1 1 1 1 1 1 1 10
p0201 X 1 1 1 1 12 31 30 14
p0282 X 1 1 1 1 7 3 5 1
p0548 X 1 1 1 1 8 10 10 15

p100x588b 7200 7200 7200 7200 6993 13682 12270 12265
p2756 X 4 4 4 4 63 83 92 59

p2m2p1m1p0n100 7200 7200 7200 7200 720000 720000 720000 720000
p6b 7200 7200 7200 7200 1687 1687 1691 1694

p80x400b 7200 7200 7200 7200 720000 720001 720027 720001
pb-simp-nonunif 7200 7200 7200 7200 346806 346826 346973 346753

pg X 69 67 57 67 383 358 358 375
pg5 34 X X 1217 1834 951 1026 129 182 105 118

pigeon-10 X X 594 588 589 586 110 110 110 110
pigeon-11 X 3752 3760 3741 3751 100 100 140 90
pigeon-12 7200 7200 7200 7200 264 296 271 270
pigeon-13 7200 7200 7200 7200 210 210 210 210
pigeon-19 7200 7200 7200 7200 847 914 836 940

pk1 X 174 174 174 174 1146 1147 1166 1181
pp08a X 2 2 2 2 51 31 50 34

pp08aCUTS X 2 2 2 2 37 38 37 52
probportfolio 7200 7200 7200 7200 65405 59265 60348 60345

prod1 X 24 24 24 25 20 17 20 23
prod2 X 196 196 195 196 929 920 918 931

protfold 7200 7200 7200 7200 144898 129453 111179 129346
pw-myciel4 X X 3756 3746 3744 3741 2419 2324 2316 2324

qap10 X 67 66 68 67 1561 1534 1609 1571
qiu X X 33 34 33 34 1275 1399 1255 1429

qnet1 X 3 3 3 3 56 88 80 88
qnet1 o X 1 2 1 2 23 54 40 38

queens-30 7200 7200 7200 7200 23032 23114 22985 23002
r80x800 7200 7200 7200 7200 227 428 323 442

rail01 X 7032 7035 7032 7033 703243 703478 703182 703295
rail02 7200 7200 7200 7200 254304 256166 254889 253207
rail03 7200 7199 7200 7200 719960 719918 719950 719966

rail507 X X 71 62 63 60 378 372 374 371
ramos3 7200 7200 7200 7200 116041 116043 116042 116041

ran14x18 X 2384 1694 2139 2318 756 613 674 726
ran14x18-disj-8 X 2086 2066 2070 2070 592 581 585 586

ran14x18 1 X 3501 3473 3467 3473 731 725 724 723
ran16x16 X X 62 76 62 61 53 81 51 68

rd-rplusc-21 7200 7200 7200 7200 14235 14234 14239 14238
reblock166 X 7200 7200 4715 7200 20103 20111 21157 19943
reblock354 7200 7200 7200 7200 5344 5108 4888 5595
reblock420 7200 7200 7200 7200 59084 59281 59189 58775
reblock67 X X 235 235 235 234 1592 1583 1570 1560

rentacar X 2 1 2 2 154 76 158 127
rgn X 1 1 1 1 23 23 23 46

rlp1 7200 7200 7200 7200 4 4 4 3
rmatr100-p10 X X 89 89 89 89 343 351 332 332
rmatr100-p5 X X 94 85 86 85 367 376 387 385

rmatr200-p10 7200 7200 7200 7200 24021 26472 32304 21643
rmatr200-p20 7200 7200 7200 7200 15005 19571 12388 15010
rmatr200-p5 7200 7200 7200 7200 15222 19624 7108 16546

rmine10 7200 7200 7200 7200 21535 21537 21455 21534
rmine14 7200 7200 7200 7200 605761 605764 605743 605728
rmine21 7199 7198 7198 7198 368578 368459 368619 368352
rmine25 7196 7197 7197 7197 673407 673451 673477 673407
rmine6 X X 1129 1122 1120 1118 1130 1121 1124 1120

rocII-4-11 X X 207 208 217 211 5269 5292 5467 5342
rocII-7-11 7200 7200 7200 7200 259280 259139 259269 259070
rocII-9-11 7200 7200 7200 7200 328847 331902 328876 327922

rococoB10-011000 7200 7200 7200 7200 5171 5246 5157 5165
rococoC10-001000 X X 443 411 397 442 1439 1630 1179 1432
rococoC11-011100 7200 7200 7200 7200 21247 21536 21147 21251
rococoC12-111000 7200 7200 7200 7200 49407 47670 55330 55328

roll3000 X X 46 46 46 46 393 393 393 393
rout X 121 137 135 135 101 94 81 82
roy X 1 1 1 1 7 7 7 10

rvb-sub 7200 7200 7200 7200 151881 151891 398547 151580
satellites1-25 X X 620 604 615 609 58700 57200 58200 57700

satellites2-60-fs 7200 7200 7200 7200 720000 720001 720001 720000
sct1 7200 7200 7200 7200 69014 80533 54244 53583

sct32 7200 7200 7200 7200 272300 272110 271956 270994
sct5 7200 7200 7200 7200 21924 53153 19131 18951

set1ch X 1 1 1 1 13 28 27 28
set3-10 7200 7200 7200 7200 147327 120736 69623 69541
set3-15 7200 7200 7200 7200 109638 68669 73577 101371
set3-20 7200 7200 7200 7200 64192 97008 66692 86169

seymour 7200 7200 7200 7200 1588 1742 1438 1264
seymour-disj-10 7200 7200 7200 7200 1906 2449 2339 1908

shipsched 7200 7200 7200 7200 294258 294107 294053 294241
shs1023 7200 7200 7200 7200 533971 534558 532187 530793

siena1 7200 7200 7200 7200 501518 180502 300985 176029
sing161 7200 7200 7200 7200 119015 118531 118168 117614

sing2 7200 7200 7200 7200 34156 37086 40746 40694
sing245 7200 7200 7200 7200 93315 93181 90179 92871
sing359 7200 7200 7200 7200 199281 198945 199536 199313

sp97ar X 4965 5119 5508 6092 3585 4022 4330 3962
sp97ic 7200 7200 7200 7200 1953 1600 1291 946

continued on next page . . .

35

ProblemName 2010 Diff Equal Time (sec.) Prim. Int.

Exp.3 UCB ε-greedy ALNS off Exp.3 UCB ε-greedy ALNS off

sp98ar 7200 7200 7200 7200 6469 4884 5810 4753
sp98ic X X 1434 1440 1441 1431 3189 3186 3188 3176
sp98ir X X 61 51 82 66 227 241 299 291

stein27 X 1 2 1 1 0 0 0 0
stein45 X 28 28 28 28 9 11 12 11

stockholm 7200 7200 7200 7200 73504 73507 73495 73496
stp3d 7200 7200 7200 7200 720003 720004 720002 720003

sts405 7200 7200 7200 7200 13499 13491 13487 13484
sts729 7200 7200 7200 7200 6714 6706 6727 6712
swath 7200 7200 7200 7200 4485 4502 4527 4457
t1717 7200 7200 7200 7200 182238 182192 182164 182199
t1722 7200 7200 7200 7200 97985 96676 91628 97322

tanglegram1 X X 385 390 388 386 895 900 905 894
tanglegram2 X X 9 9 9 9 177 169 169 195

timtab1 X X 89 100 95 101 578 859 609 860
timtab2 7200 7200 7200 7200 14860 14888 14883 14852
toll-like 7200 7200 7200 7200 1835 1844 1839 1841
tr12-30 X 1442 1444 1440 1442 61 60 61 59

triptim1 X X 447 268 447 450 22037 21026 22043 22053
triptim2 7200 7200 7200 7200 173782 174882 177781 174282
triptim3 7200 7200 7200 7200 81753 81753 81753 81853

tw-myciel4 7200 7200 7200 7200 1468 1507 1460 1457
uc-case11 7200 7200 7200 7200 8966 8957 8946 8939
uc-case3 7200 7200 7200 7200 8397 8038 8018 7946

uct-subprob X 1065 1064 1066 1062 1479 1494 1481 1478
umts X 3966 2698 6103 3945 406 402 619 389

unitcal 7 X X 275 274 274 274 4840 4820 4830 4850
usAbbrv-8-25 70 7200 7200 7200 7200 10781 10676 10683 10608

van 7200 7200 7200 7200 89471 93927 78965 70697
vpm1 X 1 1 1 1 0 0 0 0
vpm2 X 2 2 2 2 43 53 66 43

vpphard X 7200 7200 7200 7200 689845 690004 690144 689640
vpphard2 7200 7200 7200 7200 634470 634712 642961 634393
wachplan X 933 936 938 937 1680 1760 1830 1640

wnq-n100-mw99-14 7200 7200 7200 7200 531843 531683 531586 531843
zib01 30 31 30 30 3020 3097 3028 3025
zib02 7200 7200 7200 7200 0 0 0 0

zib54-UUE X X 2853 2291 2644 2310 1495 1545 1460 1502

36

	Introduction
	Related Work

	Large Neighborhood Search Heuristics for MIP
	Fixing Neighborhood LNS Heuristics
	LNS Heuristics Using Constraints and Auxiliary Objective Functions

	Adaptive Large Neighborhood Search for MIP
	Fixing and Unfixing Variables
	Dynamic Limits
	A Reward Function for Neighborhoods

	Selection Strategies for Multi Armed Bandit Problems
	Strategies for the Stochastic Scenario
	A Strategy for the Adversarial Scenario

	Computational Results
	Neighborhood Comparison
	Simulation of the Selection Process
	MIP Performance

	Conclusion

