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The perfect matching polytope, i.e. the convex hull of (incidence vectors
of) perfect matchings of a graph is used in many combinatorial algorithms.
Kotzig, Lovász and Plummer developed a decomposition theory for graphs
with perfect matchings and their corresponding polytopes known as the
tight cut decomposition which breaks down every graph into a number of
indecomposable graphs, so called bricks. For many properties that are of
interest on graphs with perfect matchings, including the description of the
perfect matching polytope, it suffices to consider these bricks. A key result by
Lovász on the tight cut decomposition is that the list of bricks obtained is
the same independent of the choice of tight cuts made during the tight cut
decomposition procedure. This implies that finding a tight cut decomposition
is polynomial time equivalent to finding a single tight cut.
We generalise the notions of a tight cut, a tight cut contraction and a

tight cut decomposition to hypergraphs. By providing an example, we show
that the outcome of the tight cut decomposition on general hypergraphs is
no longer unique. However, we are able to prove that the uniqueness of the
tight cut decomposition is preserved on a slight generalisation of uniform
hypergraphs. Moreover, we show how the tight cut decomposition leads to a
decomposition of the perfect matching polytope of uniformable hypergraphs
and that the recognition problem for tight cuts in uniformable hypergraphs is
polynomial time solvable.
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1 Introduction

A perfect matching of a graph G is a subset M ⊆ E(G) of the edges of G, such that for
every vertex v ∈ V (G) there is exactly one edge in M that contains v. Similarly, for a
hypergraph H a perfect matching is a subset M ⊆ E(H) of the (hyper)edges of H, such
that for every vertex v ∈ V (H) there is exactly one (hyper)edge in M that contains v.

The structure of graphs with perfect matchings is a well established and active field of
research (see for example [4, 16, 13]) and a main tool for the investigation of those graphs
is a decomposition theory based on tight cuts.
A cut in a graph G is a set of edges C such that there exists a two-partition of V (G)

and C is exactly the set of edges with endpoints in both partitions, which are called the
shores of C. Kotzig, Lovász and Plummer discovered that special kind of cuts, called
tight cuts, can be used to decompose the graph G into smaller graphs while maintaining
important information on the perfect matching polytope of the original graph (see [12]).
It is possible to decompose the smaller graphs obtained from a graph G by applying a
tight cut contraction, i.e. identifying one of the shores of the tight cut as a single vertex
and deleting multiple edges, even further until no tight cut can be found and thus a
decomposition of G into no longer decomposable graphs is obtained. These graphs are
called bricks, or bricks and braces if one wishes to distinguish between the non-bipartite
and the bipartite case. This procedure is known as the tight cut decomposition procedure
and, by a result due to Lovász (see [11]), the obtained set of indecomposable graphs is
unique, no matter how the tight cuts are chosen in the graph G.

When interested in the structure of perfect matchings and the perfect matching polytope,
it usually suffices to consider graphs that are connected and where every edge is contained
in at least one perfect matching. These are the matching covered graphs. Many structural
properties of matching covered graphs are preserved by tight cut contractions and thus it
suffices to consider the bricks and braces in these contexts. A famous example for this is
the problem of Pfaffian graphs (see [14] for a comprehensive overview on the topic).

While graphs with perfect matchings are well described by the theorems of Hall (see [12])
and Tutte (see [15]), where the latter is a generalisation of the first, the (perfect) matching
problem for hypergraphs is one of the the classical NP-complete problems of Karp (see [9]).
Still, a better understanding of the (perfect) matching structure of hypergraphs might
yield better insight and new techniques for both practical and theoretical applications.

Contribution In this work we study the structure of hypergraphs with perfect matchings.
A hypergraph H is called matching covered if it is connected and for every edge e ∈ E(H)
there is a perfect matching of H containing e. We consider a class of hypergraphs
that slightly generalises r-uniform hypergraphs: the uniformable hypergraphs. Loosely
speaking, a hypergraph is uniformable if it can be made r-uniform for some r by using
Berge’s concept of vertex multiplication (a formal definition is given in Section 1.1).
Uniformable hypergraphs naturally occur in the process of tight cut contractions where
the shore of a tight cut is replaced by a single vertex. While this operation does not
preserve uniformity, if H has a non-trivial tight cut and is uniformable, then so are its
two tight cut contractions (see Corollary 1.9).
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The main result of this work is the uniqueness of the tight cut decomposition for
matching covered, uniformable hypergraphs, which is a direct generalisation of Lovász’s
famous theorem. A matching covered, uniformable hypergraph is called a hyperbrick, if it
does not have a non-trivial tight cut.

Theorem 2.9. Any two tight cut decomposition procedures of a matching covered,
uniformable hypergraph yield the same list of hyperbricks up to parallel edges.

We provide an example that shows the tight cut decomposition of non-uniformable
matching covered hypergraphs is in general not unique.

In Section 3 we show that the tight cut decomposition of a matching covered hypergraph
also induces a decomposition of its matching polytope. Furthermore, we show that
balanced uniformable hypergraphs are closed under our hypergraphic version of tight cut
contractions.

Theorem 3.8. Let H be a balanced uniformable hypergraph and S ⊆ V (H) such that
∂H(S) is a non-trivial tight cut. Then the two contractions HS and HS are balanced.

The number of hyperbricks of a matching covered, uniformable hypergraph is linearly
bounded by the number of its vertices. Moreover, every tight cut decomposition corres-
ponds to a laminar family of tight cuts (see Corollary 2.2). Picking a single tight cut from
such a family yields two tight cut contractions and these, in turn, contain the remaining
tight cuts of the family (see Lemma 2.1). Hence, this result implies that the two problems
of finding a non-trivial tight cut in a matching covered, uniformable hypergraph and
finding its tight cut decomposition are polynomial time equivalent. In Section 4 we give
a polynomial time algorithm that decides whether a given cut is tight in a uniformable
hypergraph. In uniform balanced hypergraph we show that we can find in polynomial
time a non-trivial tight cut if any exists.

1.1 Preliminaries

We start by introducing some definitions and notation. For a more thorough introduction
to the topic we recommend the book on hypergraphs by Berge [1].
A hypergraph H consists of a finite set of vertices and a family of non-empty subsets

of vertices called edges. We denote the set of vertices of a hypergraph by V (H) and
its family of edges by E(H). We call two edges parallel if they contain the same set of
vertices.

For r ∈ N we call a hypergraph r-uniform if |e| = r for all edges e ∈ E(H).
The degree of a vertex v ∈ V (H) is the number d(v) of edges e ∈ E(H) with v ∈ e.
Given a subset S of the vertex set there are two possibilities to restrict the edges of H

using S. First, we can restrict E(H) by just considering edges lying completely in S. We
call the resulting hypergraph the subhypergraph induced by S and denote it by H[S]. This
hypergraph has vertex set S and contains all edges e ∈ E(H) with e ⊆ S. If H ′ ⊆ H is
induced by some set S ⊆ V (H), H ′ is called an induced subhypergraph.
Another possibility is to restrict every edge to S and take the non-empty elements

as the new edges. We denote the hypergraph on S with edges e ∩ S for all e ∈ E(H)
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with e ∩ S 6= ∅ by H(S) and call it the subhypergraph of H restricted to S. If H ′ ⊆ H is
restricted to some set S ⊆ V (H), H ′ is called a restricted subhypergraph.

Similarly, we can define a restriction of the vertex and edge set of H by a set of edges
F ⊆ E(H). The hypergraph with vertex set

⋃
F and edge set F is called the partial

hypergraph induced by F . If H ′ ⊆ H is induced by some set F ⊆ E(H) of edges, it is
called a partial hypergraph.

Definition 1.2 (Matchings/Perfect Matchings). A matching in a hypergraph H is a set
M ⊆ E(H) of pairwise disjoint edges and we denote the maximum size of a matching in
H by ν(H).
Let M ⊆ E(H) be a matching of H. A vertex x ∈ V (H) is covered by M , if there is

some edge e ∈M that contains x. Similarly, x is called exposed by M , if x is not covered
by M .

A vertex cover in H is a set of vertices T ⊆ E(H) such that every edge of H contains
at least one vertex of T and we denote the minimum size of a vertex cover in H by τ(H).

An edge cover in H is a set of edges R ⊆ E(H) such that every vertex of H is contained
in an edge of R and we denote the minimum size of an edge cover in H by ρ(H).

A maximum matching that is also an edge cover is called perfect. a

For r-uniform hypergraphs, many edge related parameters coincide. All maximum
cardinality matchings cover the same number of vertices, every perfect matching is also
of maximum cardinality, and every perfect matching is a minimum edge cover and vice
versa. While this is not true for all hypergraphs, there is a class that generalises uniform
hypergraphs and still has the above mentioned properties. To describe this class we use
the concept of vertex multiplication given by Berge [1].

Definition 1.3. Multiplying a vertex v in a hypergraph H by some natural number k ∈ N
results in the hypergraph with vertex set (V (H) \ {v}) ∪ {v1, . . . , vk} and whose set of
edges is given by {e ∈ E | v /∈ e} ∪ {e \ {v} ∪ {v1, . . . , vk} | e ∈ E, v ∈ e}.

Given a function m : V (H) → Z≥1, the hypergraph obtained from multiplying each
vertex v by m(v) is denoted by H(m). We call H(m) a multiplication of H. For S ⊆ V (H)
we introduce the shorthand m(S) :=

∑
v∈Sm(v). a

Loosely speaking, multiplying a vertex v by k means replacing v by k indistinguishable
copies. Berge also considered the multiplication of a vertex by zero which means that
we remove this vertex from all edges containing it. However, we restrict ourselves to
multiplications by positive integers because there is a one-to-one correspondence between
the set of matchings in a hypergraph H and its multiplication H(m) for functions m ≥ 1.
Similar, the set of perfect matching in H corresponds one-to-one to the set of perfect
matchings in H(m) for m ≥ 1.

Now, we call a hypergraph H uniformable if it has a uniform multiplication, i.e. there
exists a function m : V (H)→ Z≥1 and an integer r ∈ Z such that

∑
v∈em(v) = r for all

e ∈ E(H).
We can decide in polynomial time whether a hypergraph H is uniformable or not.
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Namely, H is uniformable if and only if the system∑
v∈e

m(v) = r ∀e ∈ E(H) (1)

m(v) ≥ 1 ∀v ∈ V (H) (2)

has an integral solution. This is the case if and only if it has a fractional solution
m ∈ QV (H), r ∈ Q because d ·m, d · r is an integral solution to eq. (1)-eq. (2) if d ∈ Z
is chosen such that d ·m(v) is integral for all v ∈ V (H). Deciding whether a system of
linear equations and inequalities has a fractional solution can be done in polynomial time.

The class of uniformable hypergraphs is a natural extension of uniform hypergraphs in
the matching setting. First, this is because of the one-to-one correspondence of perfect
matchings as mentioned above and, second, the tight cut contraction which is defined in
the next subsection, shrinks the shore of a tight cut to a single vertex and thus does not
preserve uniformity. However, as Corollary 1.9 shows, uniformability is preserved.
We are especially interested in a more restricted class of uniformable hypergraphs:

those where every edge lies in a perfect matching.

Definition 1.4. A hypergraph H is called matching covered, if it is connected, |E(H)| ≥ 1,
and every edge of H is contained in a perfect matching. a

The hypergraphs we consider in this paper will always be connected and have at least
one perfect matching. As edges not contained in any perfect matching do not play a role
in the structure of perfect matchings of a hypergraph, we assume throughout the paper
that all hypergraphs are matching covered.

1.2 Tight Cuts and their Contractions

Our goal is the generalisation of tight cuts to the hypergraphic setting. This subsection is
dedicated to the new definitions and includes some basic results on tight cut contractions
including the preservation of uniformability.

Definition 1.5. Let H be a matching covered, uniformable hypergraph, and S ⊆ V (H).
The cut ∂H(S) is tight if |M ∩ ∂H(S)| = 1 for all perfect matchings M of H. A cut ∂H(S)
is trivial if |S| = 1 or

∣∣S∣∣ = 1, otherwise it is called non-trivial. Here, S denotes the
complement set to S, namely V (H) \ S. a

We need the following simple observations concerning cuts and tight cuts in uniformable
hypergraphs. Both are straightforward generalisations of the graph case.

Proposition 1.6. Let H be a matching covered, uniformable hypergraph with a function
m : V (H)→ Z≥1 such that H(m) is r-uniform for some r ∈ Z.
(i) If ∂H(S) is a tight cut, then

∑
v∈e∩Sm(v) = k for all e ∈ ∂H(S), where k is the

unique integer with k ∈ {1, . . . , r − 1} and k ≡r
∑

v∈Sm(v).
(ii) If S ⊆ V (H) with

∑
v∈Sm(v) ≡r 0, then |M ∩ ∂H(S)| ≥ 2 or |M ∩ ∂H(S)| = 0 for

all perfect matchings M of H. If additionally S /∈ {∅, V (H)}, then there exists a
perfect matching M with |M ∩ ∂H(S)| ≥ 2.
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Figure 1: A perfect matching in a matching covered, uniformable hypergraph H and the
tight cut contractions HS and HS .

Proof. For the first observation let ∂H(S) be a tight cut, e′ ∈ ∂H(S) arbitrary, and M a
perfect matching containing e′. The set MS := {e ⊆ S | e ∈M} is a matching of H[S]
covering S \ e′. Summing the function m over all v ∈ V (MS) we get

∑
v∈Sm(v) −∑

v∈e′∩Sm(v). On the other hand,
∑

v∈V (MS)m(v) =
∑

e∈MS

∑
v∈em(v) = |MS | · r.

Together, we get
∑

v∈Sm(v) ≡r
∑

v∈e′∩Sm(v). As
∑

v∈e′∩Sm(v) ≤
∑

v∈e′ m(v)− 1 the
claim follows.
For the second part of the observation, let S ⊆ V (H). If S = ∅ or S = V (H), then

∂H(S) = ∅ and thus |M ∩ ∂H(S)| = 0 for all perfect matchings M of H. In the remainder
of the proof we assume that S /∈ {∅, V (H)}. This assumption together with the fact
that H is connected implies that ∂H(S) 6= ∅. The hypergraph H is matching covered
which implies that for every e′ ∈ ∂H(S) there exists a perfect matching containing e′.
Suppose that there exists a perfect matching M intersecting ∂H(S) in exactly one edge e′,
then

∑
v∈e′∩Sm(v) ≡

∑
v∈Sm(v) ≡r 0 follows. As m(v) ≥ 1 for all v ∈ V (H) and∑

v∈e′ m(v) = r, we get e′ ∩ S = ∅, contradicting e′ ∈ ∂H(S). Thus, if M is a perfect
matching intersecting ∂H(S), then |M ∩ ∂H(S)| ≥ 2.

Next, we define tight cut contractions. The basic idea is to replace a shore S of a tight
cut by a single vertex s which is included in all edges in ∂H(S) replacing the vertices of
S. For an illustration see Figure 1. Note that this procedure possibly introduces parallel
edges.

Definition 1.7 (tight cut contractions). Let H be a hypergraph and ∂H(S) a tight cut of
H. For every e ∈ ∂H(S) we define two new edges es = (e \ S)∪{s} and es = (e ∩ S)∪{s}
where s, s /∈ V (H) are two new vertices representing S and S, respectively.

The tight cut contractions of H w.r.t. S and S are the hypergraphs HS and HS where
V (HS) := {s} ∪ S and V

(
HS

)
:= {s} ∪ S are the vertices, and the edges are given by

E(HS) :=
{
e ∈ E(H) | e ⊆ S

}
∪ {es | e ∈ ∂H(S)} and E

(
HS

)
:= {e ∈ E(H) | e ⊆ S} ∪

{es | e ∈ ∂H(S)}. a

Tight cut contractions are useful because there is a correspondence between perfect
matchings of a hypergraph H and pairs of perfect matchings in the tight cut contractions
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HS and HS implying that the tight cut contractions of a matching covered hypergraph
remain matching covered.

Proposition 1.8. Let H be a hypergraph with a perfect matching and S ⊆ V (H) be a
set of vertices defining a tight cut ∂H(S). Then H is matching covered if and only if HS

and HS are matching covered.

Proof. We say that a perfect matchingMS of HS agrees with a perfect matchingMS of HS

on ∂H(S) if there exists an edge e ∈ ∂H(S) such that es is the unique edge in MS ∩∂HS
(s)

and es is the unique edge inMS∩∂HS
(s). In this case,M :=

(
MS ∪MS ∪ {e}

)
\{es, es} is

a matching of H covering V (MS \ {es})∪V
(
MS \ {es}

)
∪e =

(
S \ e

)
∪(S \ e)∪e = V (H).

Reversely, let M be a perfect matching in H and e the unique edge in M ∩ ∂H(S).
Consider MS :=

{
e′ ∈M | e′ ⊆ S

}
∪ {es}, and MS := {e′ ∈M | e′ ⊆ S} ∪ {es}. It is

straightforward to verify that MS and MS are perfect matchings of HS and HS agreeing
on ∂H(S).

The correspondence between perfect matchings in H and pairs of perfect matchings in
HS , HS agreeing on ∂H(S) implies that H is matching covered if and only if HS and HS

are matching covered.

Performing a tight cut contraction on a uniform hypergraph does not yield uniform
tight cut contractions in general. However, Proposition 1.6 implies that the tight cut
contractions of a uniformable hypergraph are again uniformable.

Corollary 1.9. Let H be a matching covered, uniformable hypergraph, and ∂H(S) a
tight cut. The two contractions HS and HS are matching covered and uniformable.

Proof. By Proposition 1.8 the hypergraphs HS and HS are matching covered. It remains
to show that they are uniformable. Let m : V (H)→ Z≥1 such that H(m) is r-uniform
for some r ∈ Z. By Proposition 1.6 there exists an integer k ∈ {1, . . . , r − 1} such that∑

v∈Sm(v) ≡r k and
∑

v∈e∩Sm(v) = k for all e ∈ ∂H(S). Using m we can define a
function mS : V (HS)→ Z≥1 such that H(mS)

S is r-uniform. Namely, mS(v) := m(v) for
all v ∈ S and mS(s) := k. If e ∈ E(HS) with e ⊆ S, then

∑
v∈emS(v) =

∑
v∈em(v) = r.

All other edges of HS are of the form e \ S ∪ {s} for some e ∈ ∂H(S). For those edges we
have∑
v∈e\S

mS(v) +mS(s) =
∑
v∈e\S

m(v) + k =
∑
v∈e

m(v)−
∑
v∈e∩S

m(v) + k = r − k + k = r.

Thus, H(mS)
S is r-uniform. Similarly, if we define mS : V

(
HS

)
→ Z≥1 by mS(v) := m(v)

for all v ∈ S and mS(s) := r − k, then H(mS)
S

is r-uniform.

2 The Tight Cut Decomposition

As we have seen, tight cuts and the tight cut contraction can be generalised to hypergraphs.
However, the properties of tight cut contractions and the tight cut decomposition do not
carry over to the world of hypergraphs as easily.
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In this section we formally introduce the tight cut decomposition of hypergraphs.
Then we will point out some of the difficulties in the properties of tight cuts and their
contractions and give an example of a matching covered hypergraph that has two distinct
tight cut decompositions. As the uniqueness for general hypergraphs cannot exist, we
then focus on the uniformable case in order to prove our main theorem.
First, we define formally what we mean by a tight cut decomposition by considering

Algorithm 1. It takes a matching covered hypergraph as an input and decomposes it along
a non-trivial tight cut if any exists. In this way, two new matching covered hypergraphs
arise. If at least one of them has a non-trivial tight cut, then the algorithm contracts
again both shores of this cut. In each iteration of the while loop the number of obtained
hypergraphs increases by one. As we always choose a non-trivial tight cut in line 5,
the hypergraphs (Hj)S and (Hj)S have less vertices than Hj . This implies that the
algorithm will eventually terminate because a hypergraph with less than four vertices has
no non-trivial tight cuts.

Algorithm 1 Tight Cut Decomposition Procedure
1: procedure Tight Cut Decomposition(H)
2: i← 1
3: H1 ← H
4: while ∃j ∈ {1, . . . , i} s.t. Hj has a non-trivial tight cut. do
5: Choose any such Hj and S ⊆ V (Hj) defining a non-trivial tight cut,
6: Hj ← (Hj)S ,
7: Hi+1 ← (Hj)S ,
8: i← i+ 1.
9: end while

10: return H1, . . . ,Hi.
11: end procedure

Now, a tight cut decomposition of a matching covered hypergraph H is the output
obtained from Algorithm 1. This means that a tight cut decomposition consists of a
list of matching covered hypergraphs without non-trivial tight cuts that where obtained
from H by successive tight cut contractions. Figure 2 shows an example of the tight cut
decomposition of a matching covered 3-uniform hypergraph H.
We do not specify the concrete choice of the tight cut in line 5 of Algorithm 1. Thus,

different runs might give different outputs. For a hypergraph H we denote the set of tight
cut decompositions by T D(H). We say that two tight cut decompositions H1, . . . ,Hi

and H ′1, . . . ,H
′
j are equivalent if and only if there exists a bijection φ : [i] → [j] such

that Hs and H ′φ(s) are isomorphic up to parallel edges. For graphs any two tight cut
decompositions are equivalent in this sense which was shown by Lovász [11].
This important result does not hold for general hypergraphs. A counterexample is

depicted in Figure 3. In its center it shows a matching covered hypergraph H and two
tight cuts ∂H(S), ∂H(T ). The two hypergraphs obtained by contracting S and S are
depicted below H and the ones obtained by contracting T and T above H. The resulting
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∂(A)

A A

HA
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∂(B)
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HA
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∂(C)
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∂(D)

D D

HD d HD
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HC

a c

HCc

∂(E)

E E

HEc

e

HE

e

Figure 2: A Tight Cut Decomposition of a matching covered hypergraph.

hypergraphs HS , HS , HT , HT have only trivial tight cuts, and they are not equivalent in
the sense described above. Thus, HS , HS and HT , HT are two non-equivalent tight cut
decompositions of H.
So in general we cannot hope for a theorem showing uniqueness of the tight cut

decomposition for hypergraphs. However, the hypergraph in Figure 3 is not uniformable.
What follows next is a series of lemmas analysing the properties of tight cuts and their
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∂(S)∂(T )

v

w
v

HS

w

HT

w

HS

v
HT

Figure 3: An example for the non-uniqueness of tight cut decompositions in non-
uniformable hypergraphs

contractions on uniformable hypergraphs. Eventually this analysis will show that no such
counterexample can be uniformable. In a first step of our analysis, we show that the tight
cuts of a tight cut contraction correspond to tight cuts in the original hypergraph.

Lemma 2.1. Let H be a matching covered hypergraph with a non-trivial tight cut ∂H(S)
defined by S ⊆ V (H). For T ⊆ S we have that ∂H(T ) is a tight cut in H if and only if
∂HS

(T ) is a tight cut in HS . Similarly, T ⊆ S defines a tight cut in H if and only if it
defines a tight cut in HS .

Proof. We only prove the claim for T ⊆ S since the other case is symmetric by interchan-
ging S and S.

First, we show that every set T ⊆ S that defines a tight cut in H also defines a tight cut
in HS . The hypergraph HS contains all e ∈ E(H) with e ⊆ S and for every e ∈ ∂H(S) it
contains the edge es = (e ∩ S) ∪ {s} where s is a new vertex representing S. Then

∂HS
(T ) = {e ∈ E(H) | e ⊆ S, e ∩ T 6= ∅, e \ T 6= ∅} ∪ {es | e ∈ ∂H(S) , e ∩ T 6= ∅} .

Let M1 be a perfect matching of HS . There exists a unique edge f ∈ M1 \ E(H), and
this edge is of the form f = ms for some m ∈ ∂H(S). Furthermore, there exists a perfect
matching M containing m such that M1 = {e ∈M | e ⊆ S} ∪ {f}. As ∂H(T ) is a tight
cut, there exists a unique edge m′ ∈ ∂H(T ) ∩M . This edge has a non-empty intersection
with S because T ⊆ S and T ∩m′ 6= ∅. Thus, m′ is either a subset of S or it lies in the
cut ∂H(S).
In the first case, m′ is an edge of HS with m′ ∈ ∂HS

(T ) ∩ M1, and in the latter
m′s = ms ∈ ∂HS

(T ) ∩M1. Thus,
∣∣∂HS

(T ) ∩M1

∣∣ ≥ |∂H(T ) ∩M | holds. On the other
hand, if e ∈ ∂HS

(T ) ∩M1, then either e ⊆ S and e ∈ ∂H(T ) ∩M or e = m′s for some
m′ ∈ ∂H(T ) ∩M . In total we get

∣∣∂HS
(T ) ∩M1

∣∣ = |∂H(T ) ∩M | = 1, and thus T also
defines a tight cut in HS .
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Second, suppose T ⊆ S defines a tight cut in HS . We claim that T also defines a tight
cut in H. Therefore, we have to show that |M ∩ ∂H(T )| = 1 for all perfect matchings
M of H. Given a perfect matching M of H, let M1 be the unique perfect matching of
HS such that M1 = {e ∈M | e ⊆ S} ∪ {ms} where m is the unique edge in ∂H(S) ∩M .
Using similar arguments as above, it follows that |∂H(S) ∩M | =

∣∣∂HS
(T ) ∩M1

∣∣ = 1.
Thus, ∂H(T ) is a tight cut.

We say that two sets S, T cross if all four of the following sets S ∩T, S ∩T , S ∩T, S ∩T
are non-empty, otherwise S, T are called laminar. It is sometimes more convenient to
talk about the cuts ∂(S) and ∂(T ). The cuts are called crossing, if S and T cross, and
otherwise they are called laminar.

With the help of the previous lemma we can show that every tight cut decomposition of
a hypergraph corresponds to a maximal family of pairwise laminar non-trivial tight cuts.

Corollary 2.2. Let H be a matching covered hypergraph. Every tight cut decomposition
{H1, . . . ,Hi} of H corresponds to a maximal family

F ⊆ {S ⊆ V (H) | ∂H(S) is a non-trivial tight cut.}

such that S, T ∈ F implies that S and T are laminar.

Proof. We prove this by induction on the number of hyperbricks in a tight cut decom-
position {H1, . . . ,Hi}. If i ∈ {1, 2}, the assertion is true as i = 1 implies that H itself
is a hyperbrick and thus F is empty. The case i = 2 implies that H1 and H2 are both
hyperbricks, obtained by the tight cut contractions of a single non-trivial tight cut ∂(S)
and thus, by Lemma 2.1, every tight cut in H crosses ∂(S).
Suppose that i ≥ 3. Let {H1, . . . ,Hi} be ordered such that there exists a tight cut

∂(S) where Hi = HS and {H1, . . . ,Hi−1} is a tight cut decomposition of HS . To see
the existence consider the tree of tight cut contractions constructed by the tight cut
decomposition procedure and use Lemma 2.1 to reorder the cuts chosen during its
application in the desired way. Now, by induction, {H1, . . . ,Hi−1} corresponds to a
maximal family F ′ of pairwise laminar tight cuts in HS . Let F := F ′ ∪ {S} and since HS

is a hyperbrick by assumption, Lemma 2.1 yields the maximality of F .

An important property of tight cuts in graphs is that crossing cuts can be uncrossed.
This means that if ∂(S) , ∂(T ) are two crossing tight cuts such that S ∩ T is of odd size,
then also ∂(S ∩ T ) and ∂(S ∪ T ) are tight. This uncrossing is not possible in general
hypergraphs. However, if we restrict our attention to uniformable ones, similar results
hold.

Lemma 2.3. Let H be a matching covered, uniformable hypergraph, S, T ⊆ V (H) be
crossing sets such that ∂H(S) and ∂H(T ) are tight. The cut ∂H(S ∩ T ) is tight if and
only if ∂H(S ∪ T ) is tight.

Proof. Suppose that ∂H(S ∩ T ) is tight but ∂H(S ∪ T ) is not tight. Furthermore, let
H(m) be a multiplication of H that is r-uniform for some r ∈ Z.

11
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Figure 4: Two crossing tight cuts ∂(S) and ∂(T ).

LetM ′ be a perfect matching with |M ′ ∩ ∂H(S ∪ T )| 6= 1. AssumeM ′∩∂H(S ∪ T ) = ∅,
then {e ⊆ S ∪ T | e ∈M ′} is a perfect matching of H[S ∪ T ], thus

∑
v∈S∪T m(v) ≡r 0.

By Proposition 1.6 there exists a perfect matching M with |M ∩ ∂H(S ∪ T )| ≥ 2. If
M ′ ∩ ∂H(S ∪ T ) 6= ∅, then |M ′ ∩ ∂H(S ∪ T )| ≥ 2. So in any case there exists a perfect
matching M that has at least two edges in the cut ∂H(S ∪ T ).
Every e ∈ ∂H(S ∪ T ) lies either in exactly one of the cuts ∂H(S) and ∂H(T ) or in

both. Thus, |M ∩ ∂H(S ∪ T )| = 2 and if e1, e2 are the two edges in the intersection
of M with ∂H(S ∪ T ), we can assume e1 ∈ ∂H(S) \ ∂H(T ) and e2 ∈ ∂H(T ) \ ∂H(S).
It follows that e1 ∩ S 6= ∅, e1 ∩

(
S ∩ T

)
6= ∅, e1 ⊆ T or e1 ⊆ T , thus e1 ⊆ T and

e1 /∈ ∂H(S ∩ T ). Similar, for e2 we get e2 ∩ T 6= ∅, e2 ∩
(
S ∩ T

)
6= ∅, e2 ⊆ S, and

thus e2 /∈ ∂H(S ∩ T ). This is a contradiction to the tightness of ∂H(S ∩ T ) because
M∩∂H(S ∩ T ) ⊆ (M ∩ ∂H(S))∪(M ∩ ∂H(T )) = {e1, e2}, and thereforeM∩∂H(S ∩ T ) =
∅.
The other direction follows by replacing S and T with S and T as ∂H

(
S
)

= ∂H(S),
∂H
(
T
)

= ∂H(T ), ∂H
(
S ∩ T

)
= ∂H(S ∪ T ), and ∂H

(
S ∪ T

)
= ∂H(S ∩ T ).

In Figure 4 we see two crossing tight cuts and the two corners S ∩ T and S ∪ T on the
diagonal marked in the same colour. If we apply this lemma to S and T and observe that
S ∪ T = S ∩ T , we immediately obtain the following corollary.

Corollary 2.4. Let H be a matching covered, uniformable hypergraph and S, T ⊆ V (H)
crossing sets such that ∂H(S) and ∂H(T ) are tight. Then the cut ∂H

(
S ∩ T

)
is tight if

and only if ∂H
(
S ∩ T

)
is tight.

So recalling Figure 4, if both ∂(S) and ∂(T ) are tight, then the two corners marked in
dark colour, or the two corners marked in light colour are also tight cuts. This is proven
in the next lemma.

Lemma 2.5. Let H be a matching covered, uniformable hypergraph and S, T ⊆ V (H)
be crossing sets such that ∂H(S) and ∂H(T ) are tight. If ∂H(S ∩ T ) is not tight, then
∂H
(
S ∩ T

)
is tight.

Proof. If ∂H(S ∩ T ) is not tight, then also ∂H(S ∪ T ) is not tight. Using the same
arguments as in the proof of Lemma 2.3 we can find a perfect matching M with the

12



property that |M ∩ ∂H(S ∪ T )| = 2. We have seen that such a matching does not
intersect ∂H(S ∩ T ). This implies that

∑
v∈S∩T m(v) ≡r 0 where H(m) is a r-uniform

multiplication of H.
Suppose that ∂H

(
S ∩ T

)
is not tight. By a symmetric argument, we can find a perfect

matching M with
∣∣M ∩ ∂H(S ∪ T )∣∣ = 2 and

∣∣M ∩ ∂H(S ∩ T )∣∣ = 0 which implies that∑
v∈S∩T m(v) ≡r 0.
Now,

∑
v∈Sm(v) =

∑
v∈S∩T m(v) +

∑
v∈S∩T m(v) ≡r 0 which contradicts Proposi-

tion 1.6.

We sum up the previous results in the following corollary.

Corollary 2.6. If H is a matching covered, uniformable hypergraph, and S, T ⊆ V (H)
are crossing sets such that ∂H(S) and ∂H(T ) are tight, then ∂H(S ∩ T ) and ∂H(S ∪ T ),
or ∂H

(
S ∩ T

)
and ∂H

(
S ∩ T

)
are tight.

For two crossing tight cuts ∂H(S) , ∂H(T ) we can always assume that ∂H(S ∩ T ) and
∂H(S ∪ T ) are tight after possibly replacing T by T . In the graph case, all four sets
S, T, S ∩ T , and S ∪ T would be of odd size. In uniformable hypergraphs it is possible
that ∂H(S) and ∂H(T ) coincide even if S 6= T and S 6= T . If two crossing sets define
distinct tight cuts, then similar parity results as in the graph case hold. Therefore, we
need the following observation concerning tight cuts.

Observation 2.7. If S defines a tight cut in a uniformable hypergraph H and ∂H(A) is
a non-empty cut with ∂H(A) ⊆ ∂H(S), then ∂H(A) = ∂H(S).

Proof. Suppose there exists a hyperedge e∗ ∈ ∂H(S)\∂H(A). LetM be a perfect matching
of H containing e∗. As |M ∩ ∂H(S) | = 1, it follows that M ∩ ∂H(A) = ∅. This implies
that m(A) ≡ 0 mod r for any function m : V (H) → N and r ∈ N such that H(m) is
r-uniform. By Proposition 1.6, there exists a perfect matching M ′ with |M ′∩∂H(A) | ≥ 2.
Thus, |M ′ ∩ ∂H(S) | ≥ 2, contradicting that ∂H(S) is tight.

Lemma 2.8. Let H be a matching covered, uniformable hypergraph, S, T ⊆ V (H) two
crossing sets such that S, T and S ∪ T define tight cuts in H. If ∂H(S) 6= ∂H(T ), then for
any function m : V (H)→ Z≥1 with the property that H(m) is r-uniform for some r ∈ Z
we have m(S) ≡r m(S ∩ T ) ≡r m(S ∪ T ) ≡r m(T ).

Proof. We first show that ∂H(S) 6= ∂H(T ) implies ∂H(S) 6= ∂H(S ∩ T ) and ∂H(S) 6=
∂H(S ∪ T ). Suppose that ∂H(S) = ∂H(S ∩ T ). As S and T are crossing, the set S ∩ T is
not empty and because H is connected ∂H

(
S ∩ T

)
6= ∅. Suppose that there exists an edge

e ∈ ∂H
(
S ∩ T

)
\ ∂H(S), then e ⊆ S or e ⊆ S. Because of e ∈ ∂H

(
S ∩ T

)
we have e ⊆ S

and e∩ (S ∩ T ) 6= ∅. But then e ∈ ∂H(S ∩ T )\∂H(S) which is not possible as we assumed
∂H(S ∩ T ) = ∂H(S). Thus, ∂H

(
S ∩ T

)
⊆ ∂H(S), and by Observation 2.7 equality holds.

Now, e′ ∈ ∂H(S) implies e′ ∈ ∂H(S ∩ T ) = ∂H
(
S ∩ T

)
, and thus e′ ∩ (S ∩ T ) 6= ∅ and

e′ ∩
(
S ∩ T

)
6= ∅, in particular, we get e′ ∈ ∂H(T ). It follows that ∂H(S) = ∂H(T ); a

contradiction.
If we interchange S with S and T with T the argument above shows that ∂H(S) =

∂H
(
S
)
6= ∂H

(
S ∩ T

)
= ∂H(S ∪ T ).
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Now, let e1 ∈ ∂H(S) \ ∂H(S ∩ T ), and choose a perfect matching M containing e1.
Let e2 ∈ M ∩ ∂H(S ∩ T ). It follows that e2 ∈ ∂H(T ), e2 /∈ ∂H(S), e2 /∈ ∂H(S ∪ T ),
e1 /∈ ∂H(T ), and e1 ∈ ∂H(S ∪ T ). Thus, e1 ∩

(
S ∩ T

)
6= ∅ and e1 ⊆ T , which implies∑

v∈S
m(v) ≡r

∑
v∈e1∩S

m(v) =
∑

v∈e1∩(S∪T )

m(v) ≡r
∑

v∈S∪T
m(v) .

For e2 we get e2 ∩ (S ∩ T ) 6= ∅ and e2 ⊆ S, thus∑
v∈T

m(v) ≡r
∑

v∈e2∩T
m(v) =

∑
v∈e2∩(S∩T )

m(v) ≡r
∑

v∈S∩T
m(v) .

Starting the same argument with e1 ∈ ∂H(S) \ ∂H(S ∪ T ) gives m(S) ≡r m(S ∩ T ) and
m(T ) ≡r m(S ∪ T ).

If ∂H(S) , ∂H(T ) are non-trivial tight cuts it is possible that ∂H(S ∩ T ) and ∂H(S ∪ T )
are trivial. In this case, |S ∩ T | = 1 =

∣∣S ∩ T ∣∣. The following lemma shows that in this
degenerate case the same, up to parallel edges, tight cut contractions are obtained.

Lemma 2.9. Let H be a matching covered, uniformable hypergraph, and S, T ⊆ V (H)
be sets such that |S ∩ T | = 1 =

∣∣S ∩ T ∣∣. If ∂H(S) and ∂H(T ) are non-trivial tight cuts
with ∂H(S) 6= ∂H(T ), then the tight cut contractions w.r.t. ∂H(S) yield the same two
hypergraphs as the contractions w.r.t. ∂H(T ) up to parallel edges.

Proof. As H is uniformable there exists a function m : V (H)→ Z≥1 such that H(m) is
r-uniform for some r ∈ Z. We denote the unique vertex in S ∩ T by v∗ and the unique
vertex in S ∩ T by w∗.

A crucial observation is that ∂H(S) ∩ ∂H(T ) = {{v∗, w∗}} if {v∗, w∗} ∈ E(H), and
∂H(S)∩∂H(T ) = ∅ otherwise. Namely, there exists an integer k ∈ {1, . . . , r−1} such that
m(S) ≡ m(T ) ≡ m(S ∩ T ) ≡ m(S ∪ T ) ≡r k by Proposition 1.6 and Lemma 2.8. This
implies that m(v∗) = k and m(w∗) = r − k. If there exists an edge e ∈ ∂H(S) ∩ ∂H(T ),
then e contains v∗ and w∗. As

∑
v∈em(v) = r and m(v) ≥ 1 for all v ∈ V (H), e is equal

to {v∗, w∗}.
Now, we show that HS and HT are equivalent up to multiple edges. We define a

function φ : V
(
HT

)
→ V (HS) by

φ(v) :=


v , if v ∈ S ∩ T
s , if v = v∗ ∈ S ∩ T
w∗ , if v = t ∈ V

(
HT

)
\ T.

Observe that V
(
HT

)
=
(
S ∩ T

)
∪ {v∗} ∪

{
t
}
and V (HS) =

(
S ∩ T

)
∪ {w∗} ∪ {s}. Thus,

φ is well defined and bijective. We claim that φ extends to a function from E
(
HT

)
to

E(HS) via φ(e) = {φ(v) | v ∈ e} for all e ∈ E
(
HT

)
. First, we show that φ(e) ∈ E(HS)

for all e ∈ E
(
HT

)
.

• If e ⊆ S ∩ T , then φ(e) = e ∈ E(HS).
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• If e ⊆ T and v∗ ∈ e, then φ(e) = e ∩ S ∪ {s} ∈ E(HS).
• If t ∈ e, then there exists an edge ẽ ∈ E(H) with (ẽ ∩ T ) ∪

{
t
}

= e. This edge ẽ
lies also in ∂H(S ∩ T ), ∂H(S ∪ T ), or in both. Thus, ẽ ∩ {v∗, w∗} 6= ∅.
If ẽ = {v∗, w∗}, then e =

{
v∗, t

}
, and φ(e) = {s, w∗} =

(
ẽ ∩ S

)
∪ {s} ∈ E(HS).

Next, we consider the case ẽ∩{v∗, w∗} = {w∗}. In this case, ẽ ⊆ S and ẽ ∈ ∂H(T )\
∂H(S). We get φ(e) =

((
ẽ ∩ S

)
∩ T

)
∪ {w∗} =

(
e \
{
t
})
∪ {w∗} = ẽ ∈ E(HS).

It remains to consider the case ẽ ∩ {v∗, w∗} = {v∗}. Now, ẽ ⊆ S. Let M̃ be a
perfect matching containing ẽ and let e′ ∈ M̃ ∩ ∂H(S). It follows that w∗ ∈ e′, and
e′ ∈ ∂H(S) \ ∂H(T ) thus e′ ⊆ T . Furthermore,

(
e′ ∩ S

)
∪ {s} = {w∗, s} implies

{w∗, s} ∈ E(HS). Now, φ(e) =
(
ẽ ∩
(
S ∩ T

))
∪ {s} ∪ {w∗} = {s, w∗} ∈ E(HS).

Next, we show that φ : E
(
HT

)
→ E(HS) is surjective, i.e. for every e ∈ E(HS) there

exists f ∈ E
(
HT

)
such that φ(f) = e.

• If e ⊆ S ∩ T , then e ∈ E
(
HT

)
and φ(e) = e.

• If e ⊆ S and w∗ ∈ e, then e ∈ ∂H(T ), thus (e ∩ T ) ∪
{
t
}
∈ E

(
HT

)
, and

φ
(
(e ∩ T ) ∪

{
t
})

= e.
• If s ∈ e, w∗ /∈ e, then e = ẽ ∩ S ∪ {s} where ẽ ∈ ∂H(S) with v∗ ∈ ẽ and w∗ /∈ ẽ. It
follows that ẽ /∈ ∂H(T ) and as v∗ ∈ ẽ this means ẽ ⊆ T . Thus, ẽ ∈ E

(
HT

)
and

φ(ẽ) = e.
• If s, w∗ ∈ e, then e =

(
ẽ ∩ S

)
∪ {s} where ẽ ∈ ∂H(S) with w∗ ∈ ẽ. If also

v∗ ∈ ẽ, then ẽ = {v∗, w∗} and
{
v∗, t

}
∈ E

(
HT

)
with φ

({
v∗, t

})
= {s, w∗} = e.

In the case v∗ /∈ ẽ, we know that ẽ /∈ ∂H(T ) and as w∗ ∈ ẽ we get ẽ ⊆ T . This
means that e = {s, w∗}. Now, let M̃ be a perfect matching containing ẽ and
e′ ∈ M̃ ∩ ∂H(T ). We get e′ ⊆ S because v∗ ∈ e′ and e′ /∈ ∂H(S). Therefore,{
v∗, t

}
= (e′ ∩ T ) ∪

{
t
}
∈ E

(
HT

)
and φ({v∗, t}) = {s, w∗} = e.

It remains to show that φ(e) = φ(e′) implies that e and e′ are parallel for all e, e′ ∈ E
(
HT

)
.

This is clear if φ(e) ⊆ S∩T as φ is the identity on S∩T . If φ(e) ⊆ S and w∗ ∈ φ(e), then
t ∈ e ∩ e′ and e ∩ T = e′ ∩ T , i.e. e and e′ are parallel. Now, if s ∈ φ(e) and w∗ /∈ φ(e),
then v∗ ∈ e∩ e′, and t /∈ e, t /∈ e′. This implies that e, e′ ⊆ T and thus e\{v∗} = e′ \{v∗}.
In total, e and e′ contain the same vertices and are therefore parallel. If both s and w∗

lie in φ(e), then φ(e) = {s, w∗} and e =
{
v∗, t

}
= e′.

In total, HT and HS are isomorphic via φ up to parallel edges.
By similar arguments, we can show that HT and HS are isomorphic up to parallel

hyperedges using the function φ : V (HT )→ V
(
HS

)
defined by

φ(v) :=


v, v ∈ S ∩ T
s, v = w∗ ∈ S ∩ T
v∗, v = t ∈ V (HT ) \ T .

With Lemma 2.9 we have the last piece in place to be able to prove our main result: the
uniqueness of the tight cut decomposition in uniformable matching covered hypergraphs.

Instead of considering the outcome of two different tight cut decomposition procedures,
we will use Corollary 2.2 to directly compare the choices of tight cuts made during the
process by looking at maximal families of pairwise laminar tight cuts. By Lemma 2.1 we
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can apply the tight cuts in one of those families in any order and will always obtain the
same list of hyperbricks. This allows us to quickly settle two major cases by applying
induction. The remaining cases are those in which for every choice of two tight cuts, one
from each of the two families, the two cuts are either the same but differ in shores, or
cross. These cases need further handling and some applications of the tools for uncrossing
tight cuts obtained earlier in this section.

Theorem 2.10. Any two tight cut decomposition procedures of a matching covered,
uniformable hypergraph yield the same list of indecomposable hypergraphs up to parallel
edges.

Proof. As in the graph case, we use induction on the number of vertices of H. If H has
at most three vertices, then H has no non-trivial tight cuts. Now, suppose the theorem
holds for all hypergraphs H with |V (H)| ≤ l. Let H be a hypergraph on (l + 1) vertices
and F ,F ′ two maximal families of pairwise laminar tight cuts. If H has no non-trivial
tight cuts, then F = F ′ = ∅. Otherwise, we distinguish the following cases where the first
and second one are identical to the ones in the graph case.

Case 1. F and F ′ have a common member S. We can start a tight cut decomposition
procedure with S resulting in the matching covered, uniformable hypergraphs HS

and HS with at most l vertices. By induction hypothesis, F \ S and F ′ \ S yield
the same decompositions on HS and HS . Thus, the decomposition procedures
associated to F and F ′ yield the same list of indecomposable hypergraphs.

Case 2. There exist S ∈ F , T ∈ F ′ such that S and T are laminar. Let F ′′ be any
maximal family of pairwise laminar tight cuts containing both S and T . By the
first case, every tight cut decomposition associated to F and F ′′ as well as F ′ and
F ′′ yield the same list of indecomposable hypergraphs.

Case 3. There exist S ∈ F , T ∈ F ′ such that ∂H(S) = ∂H(T ). Then, ∂H(S ∩ T ) =
∂H
(
S ∩ T

)
= ∂H

(
S ∩ T

)
= ∂H

(
S ∩ T

)
= ∂H(S). If one of the four sets S ∩ T, S ∩

T , S ∩ T, S ∩ T has size at least two, then it defines a non-trivial tight cut laminar
to S and T , and we can proceed as in the second case. Otherwise, |S| = |T | = 2,
|V (H)| = 4, and H consists of edges of the form {V (H)}. In this case, each of
the four hypergraphs HS , HS , HT , HT has three vertices and some parallel edges
containing all three vertices. As a hypergraph with at most three vertices has only
trivial cuts, we have F = {S} and F ′ = {T} and the tight cut contractions w.r.t.
∂H(S) and ∂H(T ) are isomorphic.

Case 4. Suppose that neither of the previous cases holds, and choose S ∈ F , T ∈ F ′
arbitrary.

By Corollary 2.6, we can assume that S∩T and S∪T define tight cuts. If |S ∩ T | > 1
or |V (H) \ (S ∪ T )| > 1, then U := S ∩ T or U := S ∪ T defines a non-trivial tight
cut which is laminar to both S and T . Let F ′′ be a maximal family of pairwise
laminar tight cuts containing U . By the second case, F and F ′′ as well as F ′′ and
F ′ yield the same tight cut decomposition.
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In the remainder we assume that |S ∩ T | = 1 and
∣∣S ∩ T ∣∣ = 1. If F and F ′ consist

of just one cut, then by Lemma 2.9 the tight cut contractions with respect to
∂H(S) and ∂H(T ) yield isomorphic hypergraphs. Otherwise, we may assume by
symmetry that F contains another cut ∂H(S′). As S′ is laminar to S, we can
assume S′ ∩ S = ∅, i.e. S′ ⊆ S. If S′ and T are laminar or ∂H(S′) = ∂H(T ), then
we are in one of the previous cases.

It remains to consider the case that S′ and T are crossing sets defining different
cuts. We know that S′ ∩ T 6= ∅ and S′ ∩ T 6= ∅. It follows that S′ ∩ T =
S′ ∩ S ∩ T = S ∩ T because

∣∣S ∩ T ∣∣ = 1. Let w∗ ∈ S ∩ T . We can write
S′ as S′ = {w∗} ∪ (S′ ∩ T ). Suppose that ∂H(S′ ∩ T ) is a tight cut, and let
m : V (H) → Z≥1 be a function such that H(m) is r-regular for some r ∈ Z. On
the one hand, due to Lemma 2.8, m(S′) ≡r m(S′ ∩ T ) ≡r m(T ) ≡r m(T ∩ S).
On the other hand, m(S′) = m(S′ ∩ T ) +m

(
S′ ∩ T

)
= m(S′ ∩ T ) +m

(
S ∩ T

)
≡r

m(T )−m(S ∩ T ) ≡r 0. However, as ∂H(S′) is a tight cut m(S′) cannot be divisible
by r. Thus, ∂H(S′ ∩ T ) is not tight and therefore ∂H

(
S
′ ∩ T

)
is a tight cut. This

cut is non-trivial because otherwise S′ ∩ T = S ∩ T would follows, which implies
that S′ = {w∗} ∪ (S′ ∩ T ) = S, contradicting the choice of S′. This means that
U = S

′ ∩ T defines a non-trivial tight cut that does not cross any cut of F or
F ′. Again, by considering a maximal family F ′′ of pairwise non-trivial tight cuts
containing U and using the second case, we get that F and F ′ yield equivalent tight
cut decompositions.

3 The Perfect Matching Polytope and Tight Cuts

One of the original motivations for the definition of tight cuts was to determine the
dimension of the perfect matching polytope of a graph. Edmonds gave the following
description of said polytope.

Theorem 3.1 (Edmonds, 1965 [5]). The perfect matching polytope of a graph G is
determined by the following set of inequalities:
(C1) x(e) ≥ 0 for all e ∈ E(G),
(C2) x(∂(u)) = 1 for all u ∈ V (G),
(C3) x(∂(U)) ≥ 1 for all U ⊆ V (G) with |U | ≥ 3 odd.

We call the inequalities from Constraint (C2) degree constraints and the inequalities
from Constraint (C3) odd set constraints. A non-trivial tight cut for a graph G is the
special case of an odd set constraint. Edmonds, Pulleyblank, and Lovász showed that the
dimension of the perfect matching polytope of a graph is determined by its number of
vertices, edges, and the number of bricks in a tight cut decomposition. Furthermore, one
can use the tight cut decomposition to give a non-redundant description of the perfect
matching polytope [6].
An important observation is that a tight cut induces a decomposition of the perfect

matching polytope. We establish a similar link between the perfect matching polytope of
a hypergraph and the perfect matching polytopes of its tight cut contractions.
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Bipartite graphs play a special role in the theory of matching covered graphs. In many
cases they are more accessible. The fact that, usually, one distinguishes between bricks,
non-bipartite graphs without non-trivial tight cuts, and braces, bipartite graphs without
non-trivial tight cuts, can be understood in the context of tight cut contractions. To be
more precise: Any tight cut contraction of a bipartite matching covered graph is again
bipartite. Hence the tight cut decomposition of a bipartite graph will never contain
a brick and therefore, in many cases it suffices to describe exactly the braces to make
statements about properties of bipartite matching covered graphs.

There are several possible ways to generalise bipartite graphs to hypergraphs [1]. One
of them is the notion of a balanced hypergraph as follows. A cycle in a hypergraph H is
a sequence C = x1e1x2 . . . xtetx1 with xi 6= xj and ei 6= ej for all i 6= j and xi, xi+1 ∈ ei
for all i ∈ {1, . . . t} with xt+1 = x1. The number of edges t in C is the length of C. A
cycle C is strong, if xj ∈ ei implies j ∈ {i, i+ 1} with xt+1 = x1.

Definition 3.2 (Balanced Hypergraph). A hypergraph is called balanced if it does not
contain a strong cycle of odd length. a

There are several characterisations of balanced hypergraphs, some of these can be
found in Berge’s book on hypergraphs. We will add a new characterisation of balanced
hypergraphs in terms of their perfect matching polytope. This characterisation together
with the decomposition theory for the perfect matching polytope of hypergraphs obtained
from the tight cut decomposition will yield the main result of this section:
Tight cut contractions of balanced uniformable hypergraphs are again balanced.
We start with a formal definition of the perfect matching polytope of a hypergraph.

First, we define the incidence vector of a set, which is the usual way to assign a vector to
a set.

Definition 3.3. Given some ground set N , the incidence vector of a subset S ⊆ N is the
vector χS ∈ QN defined by

χSi :=

{
1 if i ∈ S
0 else.

a

Now, we can define the perfect matching polytope as the convex hull of the incidence
vectors of all perfect matchings.

Definition 3.4. Let H be a hypergraph andM its set of perfect matchings. The perfect
matching polytope of H is denoted by PPM(H) and defined as

PPM(H) :=

{ ∑
M∈M

λMχ
M |

∑
M∈M

λM = 1, λM ≥ 0 for all M ∈M

}
.

a
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We have seen that if ∂H(S) is a tight cut in a hypergraphH, then every perfect matching
in H corresponds to a pair MS ,MS of perfect matchings in HS and HS that agree on
∂H(S). We say that MS and MS agree on ∂H(S) if there exists an edge e ∈ ∂H(S) such
that es ∈ ∂HS

(s) ∩MS and es ∈ ∂HS
(s) ∩MS . This decomposition carries over to the

corresponding perfect matching polytopes.
First, we show how to decompose a vector in QE(H) into vectors in QE(HS) and QE(HS).

Every e ∈ ∂H(S) corresponds to an edge es ∈ E(HS) and an edge es ∈ E
(
HS

)
. Thus, every

x ∈ QE(H) corresponds to xS ∈ QE(HS) and xS ∈ QE(HS) via xS(es) := xS(es) := x(e) for
all e ∈ ∂H(S) and xS(e) := x(e), xS(e′) := x(e′) for e ⊆ S and e′ ⊆ S. On the other hand,
if xS ∈ QE(HS) and xS ∈ QE(HS) are given with xS(es) = xS(es) for all e ∈ ∂H(S), then
we say that xS and xS agree on ∂H(S). In this case, we define a vector xS ⊕ xS ∈ QE(H)

by

x(e) :=


xS(e) if e ⊆ S
xS(e) if e ⊆ S
xS(es) if e ∈ ∂H(S) .

This implies that there is a one-to-one correspondence between vectors x ∈ QE(H) and
pairs of vectors xS ∈ QE(HS), xS ∈ QE(HS) agreeing on ∂H(S). For vectors we use
the same shorthand as for multiplicity that is if x ∈ QE(H) and E′ ⊆ E(H), then
x(E′) :=

∑
e∈E′ x(e).

Proposition 3.5. If ∂H(S) is a tight cut in a matching covered hypergraph H, then
x ∈ PPM(H) if and only if there exist xS ∈ PPM(HS), xS ∈ PPM

(
HS

)
agreeing on ∂H(S)

with x = xS ⊕ xS .

Proof. First, suppose x lies in the perfect matching polytope of H. This means that there
exist perfect matchings M1, . . . ,Mk and scalars λ1, . . . , λk ≥ 0 with x =

∑k
i=1 λiχ

Mi and∑k
i=1 λi = 1. Every perfect matching Mi corresponds to a pair of perfect matchings

M ′i ,M
′′
i in HS and HS agreeing on ∂H(S). So the edge e ∈Mi ∩ ∂H(S) corresponds to

the edges es ∈ M ′i and es ∈ M ′′i . Furthermore, since ∂H(S) is a tight cut it does not
contain any other edge of Mi.
Clearly,the vectors xS and xS defined by xS :=

∑k
i=1 λiχ

M ′
i and xS :=

∑k
i=1 λiχ

M ′′
i

agree on ∂H(S) and x = xS ⊕ xS . Furthermore, xS lies in the perfect matching polytope
of HS , and xS in the perfect matching polytope of HS .
For the other direction, write xS and xS as a convex combination of characteristic

vectors of perfect matchings: xS =
∑k

i=1 λ
′
iχ
M ′

i and xS =
∑k′

i=1 λ
′′
i χ

M ′′
i .

We show that x lies in the perfect matching polytope of H by induction on t :=
max {k, k′}.
If k = k′ = 1, then xS = χM

′
1 , xS = χM

′′
1 , and M ′1 and M ′′1 agree on ∂H(S) as

xS(es) = xS(es) for all e ∈ ∂H(S). This means that x = χM1 where M1 is the unique
matching in H corresponding to M ′1,M ′′1 . Now, assume x lies in the perfect matching
polytope of H if max {k, k′} ≤ t.
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For the induction step we can assume k = max {k, k′} = t+1. Fix some edge e∗ ∈ ∂H(S)
with xS(e∗s) > 0, and let IS := {i | e∗s ∈M ′i , i = 1, . . . , k}, IS := {i | e∗s ∈M ′′i , i = 1, . . . , k′}.
Because of xS(e∗s) = xS(e∗s), we know that

∑
i∈IS λ

′
i =

∑
i∈IS

λ′′i . We denote this value by
Λ. If Λ = 1, then IS = {1, . . . , k}, IS = {1, . . . , k′}, and every pair of perfect matchings
M ′i and M

′′
j for i = 1, . . . , k, j = 1, . . . , k′ agrees on ∂H(S) which means that it corres-

ponds to a unique perfect matching in H which we denote by Mi,j . Now, the following
procedure writes x as a convex combination of perfect matchings in H:

While not all λ′i = 0 choose i ∈ {1, . . . , k} , j ∈ {1, . . . , k′} with λ′i > 0 and λ′′j > 0, set

µi,j := min
{
λ′i, λ

′′
j

}
, and decrease λ′i and λ

′′
j by µi,j .

In every step of this procedure at least one of λ′i or λ
′′
j becomes zero, thus it terminates

after a finite number of steps. In the end
∑

i,j µi,jχ
Mi,j = x and

∑
i,j µi,j = 1 hold.

If Λ < 1, then we consider the two vectors

yS :=
1

1− Λ

 ∑
i∈[k]\IS

λ′iχ
M ′

i

 and yS =
1

1− Λ

 ∑
i∈[k′]\IS

λ′′i χ
M ′′

i

 .

The vector yS lies in the perfect matching polytope of HS , yS lies in the perfect matching
polytope of HS , and they are written as a convex combination of less than t+ 1 charac-
teristic vectors of perfect matchings. Furthermore, for every e ∈ ∂H(S) \ {e∗} we have
yS(es) = xS(es) = xS(es) = yS(es), and yS(e∗s) = 0 = yS(e∗s).
By induction hypothesis, it follows that y = yS ⊕ yS lies in the perfect matching

polytope of H. On the other hand, also zS =
(∑

i∈IS
λ′iχ

M′
i

)
/Λ, and zS =

(∑
i∈I

S
λ′′i χ

M′′
i

)
/Λ

define vectors of the perfect matching polytopes of HS and HS agreeing on ∂H(S) with
less then t + 1 summands in each convex combination. Thus, also z := zS ⊕ zS lies in
the perfect matching polytope of H. This implies that x is an element of the perfect
matching polytope of H as x = (1− Λ) y + Λz.

The polytope defined by Constraint (C1) (non-negativity) and Constraint (C2) (degree)
is called the fractional perfect matching polytope in the graph case. In the hypergraph
case, we can define this polytope in the same way and denote the fractional perfect
matching polytope of a hypergraph H by FPPM(H). Then, PPM(H) ⊆ FPPM(H) with
equality if and only if FPPM(H) defines an integral polytope. Proposition 3.5 implies
that tight cut contractions preserve the integrality of the fractional perfect matching
polytope.

Corollary 3.6. Let H be a matching covered hypergraph with a tight cut ∂H(S). If the
fractional perfect matching polytope of H is integral, then the fractional perfect matching
polytopes of the two contractions HS and HS are integral.

Proof. We show that the fractional matching polytope of HS is integral, the proof for HS

is symmetric. Let xS ∈ FPPM(HS) be arbitrary. We will show that xS lies in the perfect
matching polytope of HS .
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For every e ∈ ∂H(S) there exists a perfect matching Me in HS containing es. The
vector xS defined by xS :=

∑
e∈∂H(S) x

S(es)χ
Me lies in the perfect matching polytope

of HS as
∑

e∈∂H(S) x
S(es) = xS(∂HS

(s)) = 1. In particular, xS satisfies all degree and
non-negativity constraints (constraints (C1) and (C2)) for HS . Furthermore, xS and
xS agree on ∂H(S). Thus, we can define x ∈ QE(H) by x := xS ⊕ xS . This vector
is non-negative and satisfies Constraint (C2) on V (H). This means that x lies in the
fractional perfect matching polytope of H and thus in the perfect matching polytope of
H. By Proposition 3.5, xS lies in the perfect matching polytope of HS .

Our contribution to the various characterisations of balanced hypergraphs is the
following observation that the notion of a balanced hypergraph is closely linked to the
integrality of the fractional perfect matching polytope.

Lemma 3.7. A hypergraph H is balanced if and only if for all S ⊆ V (H) the fractional
perfect matching polytope of the subhypergraph H(S) is integral.

Proof. Let H be a balanced hypergraph, then the matching polytope is given by{
x ∈ RE(H) | x ≥ 0, x(∂H(v)) ≤ 1

}
,

see [1]. So in the balanced case the matching polytope and the fractional matching
polytope coincide. As the perfect matching polytope is a face of the matching polytope
the claim follows.

On the other hand, suppose H is not balanced. In this case we can find S ⊆ V (H) such
that H(S) contains an odd cycle (using edges of size two) spanning S. The vector xe = 0.5
for all edges of size two of this odd cycle is non-negative and satisfies Constraint (C2) but
it cannot be written as a convex combination of incidence vectors of perfect matchings of
H(S).

Using the previous result, we prove that the tight cut contractions of uniformable,
balanced hypergraphs remain balanced.

Theorem 3.8. Let H be a balanced uniformable hypergraph and S ⊆ V (H) such that
∂H(S) is a tight cut. The two tight cut contractions HS and HS are balanced.

Proof. As H is uniformable, we can assume H to be r-uniform for some r ∈ Z. We show
that HS is balanced. The proof for HS is symmetric (exchange S with S).
Due to Lemma 3.7 it suffices to show that for all S′ ⊆ V (HS) the perfect matching

polytope of HS(S′) is given by constraints (C1) and (C2). So let S′ ⊆ V (HS). If
s /∈ S′, then HS(S′) = H(S′) and the perfect matching polytope of HS(S′) is given by
constraints (C1) and (C2) as H is balanced.

Thus, we assume s ∈ S′ and set T := (S′ \ {s})∪S. Contracting S in the subhypergraph
H(T ) of H gives a hypergraph which is isomorphic to HS(S′). Since H is balanced so is
H(T ). Similar to the way we did in Proposition 3.5 we can identify vectors from H(T )
with vectors in H(T ) S and H(T ) S and therefore with vectors in HS(S′).
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Let x ∈ RE(HS(S′)) be a non-negative vector satisfying Constraint (C2) of HS(S′). For
every e ∈ ∂H(S) let Me be a perfect matching in H containing e. Every perfect matching
Me induces a perfect matching in H(T ) containing e ∩ T . Set Ne := {f ∈Me | f ⊆ S} ∪
{e ∩ T} and look at the vector z ∈ RE(H(T )) defined by z(f) := x(f) for f ∈ E(HS(S′))∩
E(H(T )). Add x(es ∩ S′)χNe to z for every e ∈ ∂H(S). Clearly, the resulting z is
non-negative.

We show that z satisfies Constraint (C2) for every v ∈ T . First, let v ∈ S′ \{s} = T ∩S.
An edge in HS(S′) containing v lies either completely in S or it contains s. In the first
case, e ∈ E(H(T )) and z(e) = x(e). In the second case, the edge is of the form es ∩ S′
for some e ∈ ∂H(S) and z(e ∩ T ) = x(es ∩ S′).

In total we get that z(∂(v)) = x(∂(v)) = 1 for all v ∈ S′ \ {s}. Now, consider a vertex
v ∈ S. This vertex is incident to exactly one edge in Ne for every e ∈ ∂H(S), and it is
not incident to any edge f ∈ E(HS(S′)) ∩ E(H(T )). Thus, we get

z(∂(v)) =
∑

e∈∂H(S)

x
(
es ∩ S′

)
=

∑
e∈E(HS(S′)),

s∈e

x(e) = x
(
∂HS(S′)(s)

)
= 1.

As H is balanced, it follows that z lies in the perfect matching polytope of H(T ).
Thus, we can write z as a convex combination of incidence vectors of perfect matchings:
z =

∑k
i=1 λiχ

Mi , where Mi is a perfect matching of H(T ). For every i = 1, . . . , k let

M ′i :=
{
f ∈Mi | f ⊆ S′ \ {s}

}
∪
{
es ∩ S′ | e ∈ ∂H(S) , e ∩ T ∈Mi

}
.

As x(e) = z(e) for all e ∈ E(HS(S′)) ∩ E(H(T )) and x(es ∩ S′)) = z(e ∩ T ) for all
e ∈ ∂H(S), we get x =

∑k
i=1 λiχ

M ′
i . We have to show that each M ′i is a perfect matching

in HS(S′). It is clear that every v ∈ S′ \ {s} is covered exactly once by each Mi.
Furthermore, the vertex s is contained in at least one of the edges of Mi. Otherwise, no
e ∈ ∂H(S) with e ∩ T ∈Mi exists. This implies that e ⊆ S or e ⊆ S for e ∩ T ∈Mi, and
the edges e ⊆ S of Mi form a matching covering S. But then |S| is divisible by r which
is impossible by Proposition 1.6 because S defines a tight cut and H is uniform.

It remains to show that s is covered by exactly one edge of M ′i . We get
1 =

∑
e∈∂H(S) x(es ∩ S′) =

∑k
i=1 λidegHS [M ′

i ]
(s) ≥

∑k
i=1 λi = 1.

This implies degHS [M ′
i ]

(s) = 1 and thus M ′i is a perfect matching. Thus, x =
∑k

i=1 λiχ
M ′

i

is a convex combination of perfect matchings, so x lies in the perfect matching polytope
of HS(S′). This concludes the proof.

We have seen that if ∂H(S) is a tight cut in a hypergraph H, then H is matching
covered if and only if HS and HS are matching covered. In the graph case there is a
larger class of cuts with this property, so-called separating cuts, which we investigate in
the remainder of this section.

Definition 3.9. A cut ∂H(S) in a matching covered hypergraph H is called separating if
HS and HS are matching covered. a
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Proposition 1.8 implies that every tight cut is separating. If a graph has a non-tight
separating cut, then the non-negativity and degree constraints do not suffice to describe
the perfect matching polytope or in other words the fractional perfect matching polytope
of this graph is not integral.
If ∂H(S) is a separating cut in a hypergraph H, then the inequality x(∂H(S)) ≥ 1

might not be valid for the perfect matching polytope. However, if H is uniformable,
then by similar arguments as in Proposition 1.6 |M ∩ ∂H(S) | ≥ 1 holds for all perfect
matchings M . Thus, x(∂H(S)) ≥ 1 is a valid inequality for all vectors x ∈ PPM(H). As
in the graph case, we use a separating cut that is not tight in a uniformable hypergraph
to construct a non-negative vector that satisfies all degree constraints but does not lie in
the perfect matching polytope.

Theorem 3.10. If H is a matching covered, uniformable hypergraph with a separating
cut ∂H(S) that is not tight, then the fractional perfect matching polytope is not integral.

Proof. Suppose that H has a separating cut ∂H(S) that is not tight. We proceed as in
the graph case [2] by constructing a vector x lying in the fractional perfect matching
polytope with x(∂H(S)) < 1.
Let M0 be a perfect matching of H with |M0 ∩ ∂H(S)| ≥ 2. For every e ∈M0 let Me

be a perfect matching containing e and intersecting ∂H(S) in exactly one hyperedge,
namely e. These matchings exists because ∂H(S) is assumed to be a separating cut that
is not tight. The vector x ∈ QE(H) defined by

x =
1

|M0| − 1

∑
e∈M0

χMe − χM0


is non-negative and satisfies x(δH(v)) = 1 for all v ∈ V (H) but

x(∂H(S)) =
|M0| − |M0 ∩ ∂H(S)|

|M0| − 1
< 1.

Thus, x /∈ PPM(H), which implies that the fractional perfect matching polytope of H is
not integral.

The previous theorem implies that uniformable hypergraphs for which the non-negativity
and degree constraints describe an integral polytope have no non-tight separating cuts.
This holds in particular for unimodular, balanced, normal, and mengerian hypergraphs.

Corollary 3.11. If H is a uniformable matching covered hypergraph with an integral
fractional perfect matching polytope, then every separating cut of H is tight.

If we consider hypergraphs that are not uniformable, then it is possible that the
fractional perfect matching polytope is integral but the hypergraph has a separating cut
that is not tight. For example, if we take H to be the complete bipartite graph K2,2

together with singleton hyperedges {v} for every vertex v, then we obtain a unimodular
hypergraph with a non-tight separating cut, see Figure 5.
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S S̄

Figure 5: A unimodular hypergraph with a separating cut that is not tight.

Corollary 3.11 generalizes the fact that a bipartite graph has no non-tight separating
cut, which can also be proven without polyhedral methods, see for example [3]. Namely,
if ∂G(S) is a non-tight separating cut in a graph G, then the subgraphs G[S] and G[S]
are non-bipartite. For hypergraphs we show that the shores of a non-tight separating cut
cannot induce r-partite subhypergraphs.

Theorem 3.12. Let H be a matching covered, r-uniform hypergraph and S ⊆ V (H) be
a set of vertices such that ∂H(S) is a non-tight separating cut. The subhypergraphs H[S]
and H[S] of H induced by S and S are not r-partite.

Proof. We only show that H[S] is not r-partite. The proof for H[S] is similar.
Suppose that there exists a partition S1 ∪ . . . ∪ Sr of S into r sets such that |e ∩ S1| =

. . . = |e ∩ Sr| = 1 for all e ∈ E(H[S]). We choose any hyperedge f ∈ ∂H(S) and let Mf

be a perfect matching of H withMf ∩∂H(S) = {f}. The setM ′f := {e ∈Mf | e ⊆ S} is a
matching of H[S] covering S \f . Without loss of generality we assume that there exists an
index k with 1 ≤ k ≤ r−1 such that f intersects S1, . . . , Sk and f has an empty intersection
with Sk+1, . . . , Sr. It follows that |S1 \ f | = . . . = |Sk \ f | = |Sk+1| = . . . = |Sr|.
Furthermore, as we have chosen f arbitrarily we get that |S1 \ e| = . . . = |Sk \ e| =
|Sk+1| = . . . = |Sr| for every e ∈ ∂H(S). Now, let M be a perfect matching of H
intersecting ∂H(S) in more than one edge. Again, the set M ′ := {e ∈M | e ⊆ S} forms
a matching of H[S]. If {m1, . . . ,ms} = M ′ ∩ ∂H(S), then M ′ covers the vertex set S \
(m1 ∪ . . . ∪ms). This implies that |S1 \ (m1 ∪ . . . ∪ms)| = . . . = |Sr \ (m1 ∪ . . . ∪ms)|,
which is impossible as |S1 \ (m1 ∪ . . . ∪ms)| = |S1| − s < |Sr| = |Sr \ (m1 ∪ . . . ∪ms)|.
Thus, H[S] is not r-partite.

As a corollary, we directly obtain that an r-partite hypergraph cannot have a non-tight
separating cut.

Corollary 3.13. If H is an r-partite hypergraph, then every separating cut is tight.

Carvalho, Lucchesi, and Murty proved that the reverse implication of Theorem 3.10
holds in the graph case. Namely, every graph with a non-integral fractional matching
polytope contains a separating cut that is not tight. This is not true for hypergraphs of
rank at least three. No 3-partite hypergraph has a non-tight separating cut but there
are 3-partite hypergraphs with a non-integral fractional perfect matching polytope, for
example a complete 3-partite hypergraph.

24



4 Algorithmic Consequences

Finding a perfect matching of maximum weight in a hypergraph with some weights
on the edges is an NP-complete problem. In practice, it can be solved quite efficiently
within a branch-and-cut framework by an integer programming solver. However, the
performance heavily depends on the size of the hypergraph. Therefore, it is of great use
if one can decompose the problem into smaller parts. This can be done using the tight
cut decomposition procedure as we have seen in the previous section.

Namely, every tight cut decomposition yields a decomposition of the perfect matching
polytope. By the uniqueness result of Theorem 2.10, all tight cut decompositions of
a uniformable hypergraph are equally good. Thus, in order to determine a tight cut
decomposition we only need an algorithm that finds a non-trivial tight cut or concludes
that none exists. We do not know whether a polynomial time algorithm for this problem
exists. In graphs one can determine a tight cut decomposition in polynomial time by
computing the brick decomposition (a special kind of tight cut decomposition) of a graph,
this is described in the second section of a result by Edmonds et al. [6]. For hypergraphs
it is not clear how to generalise this result. We show that on uniformable hypergraphs we
can at least decide in polynomial time whether a cut ∂(S) is tight or not. Afterwards,
we give a polynomial time algorithm that returns a non-trivial tight cut in a balanced
uniform hypergraph, or concludes that none exists.
We first focus on general uniform hypergraphs. Consider the following system of

inequalities and equations where H is an r-uniform hypergraph.
(C’1) xe ≥ 0 ∀e ∈ E(H)
(C’2) x(∂H(v)) = 1 ∀v ∈ V (H)
(C’3) x(∂H(S)) ≥ 1 ∀S ⊆ V (H) , r - |S|.

We denote by FP ′PM(H) the polytope defined by constraints (C’1) to (C’3). It contains
the perfect matching polytope of H and is generally a tighter relaxation of it than the
fractional perfect matching polytope. In the graph case, FP ′PM(H) = PPM(H). However,
this is not the case for r-uniform hypergraphs.

Example 4.1. Let H be the hypergraph on the vertex set {v1, . . . , v6} whose edges are all
three element subsets of V (H). Then, H is uniform and matching covered. We claim that
FP ′PM(H) 6= PPM(H). To prove this we construct a vector x ∈ FP ′PM(H) \ PPM(H).
Let x be the vector in QE(H) that takes value 1/2 on the edges {v1, v2, v3}, {v3, v4, v5},
{v5, v6, v1}, {v2, v4, v6}, and 0 on all other edges of H. In Figure 6 all edges with non-
zero x-value are drawn. The vector x satisfies constraints (C’1) and (C’2). Next, we
consider Constraint (C’3). If |S| = 1 or |S| = 5, then S = {v} or S = V (H) \ {v}, thus
x(∂H(S)) = x(∂H(v)) = 1. If |S| = 4, then we replace S by its complement. Thus, we
only have to show that x(∂H(S)) ≥ 1 for S with |S| = 2. All vertices of H are incident to
exactly two edges with xe > 0 and for two distinct vertices vi, vj there exists at most one
edge containing both. This implies that x(∂H(S)) ≥ 3 · 1

2 > 1. In total, we have shown
that x ∈ FP ′PM(H). Suppose that x can be written as a convex combination of incidence
vectors of perfect matchings M1, . . . ,Mk. Then, M1, . . . ,Mk are perfect matchings of the
subhypergraph of H induced by the edges e with xe > 0. However, this subhypergraph
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Figure 6: Support of the vector x ∈ FP ′PM(H) \ PPM(H)

does not have a perfect matching. Thus, x /∈ PPM(H).

The tight cuts of a hypergraph correspond exactly those inequalities of Constraint (C’3)
that are satisfied by equality for every vector x ∈ PPM(H). As PPM(H) ⊆ FP ′PM(H),
we know that ∂H(S) defines a tight cut if x(∂H(S)) = 1 for all x ∈ FP ′PM(H). An
important observation is that also the reverse implication holds.

Lemma 4.2. Let H be an r-uniform hypergraph, and S ⊆ V (H) be a set of size not
divisible by r. The cut ∂H(S) is tight if and only if x(∂H(S)) = 1 for all x ∈ FP ′PM(H).

Proof. If x(∂H(S)) = 1 holds for all x ∈ FP ′PM(H), then in particular χM (∂H(S)) = 1
and thus |M ∩ ∂H(S)| = 1 for all perfect matchings M of H.

For the other direction, let S ⊆ V (H) be a set defining a tight cut of size |S| ≡r k with
k ∈ {1, . . . , r − 1}, and let x ∈ FP ′PM(H). Proposition 1.6 implies that every e ∈ ∂H(S)
intersects S in exactly k vertices. On the one hand, if we sum over all degree constraints
for v ∈ S and use x(∂H(S)) ≥ 1 we get

|S| = r
∑

e∈E(H),
e⊆S

x(e) + k
∑

e∈∂H(S)

x(e) ≥ r
∑

e∈E(H[S])

x(e) + k (3)

for all x ∈ FP ′PM(H), and thus
∑

e∈E(H[S]) x(e) ≤ |S|−k
r . On the other hand, there

exists a matching M of E(H[S]) of size (|S|−k)/r, and summing the degree constraints
over v ∈ V (M) gives

r |M | =
∑

v∈V (M)

x(∂H(v)) =
∑

e∈E(H[S])

|e ∩ V (M)|x(e) ≤ r
∑

e∈E(H[S])

x(e) .

Thus,
∑

e∈E(H[S]) x(e) ≥ |M | = |S|−k
r and therefore

∑
e∈E(H[S]) x(e) = |S|−k

r . Together
with inequality (3) it follows that x(∂H(S)) = 1.

If we want to decide for a set S ⊆ V (H) of size not divisible by r whether x(∂H(S)) = 1
for all x ∈ FP ′PM(H) holds, we can equivalently solve max {x(∂H(S)) | x ∈ FP ′PM(H)}.
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The value of this linear optimisation problem is one if and only if x(∂H(S)) = 1 for all
x ∈ FP ′PM(H). We show that optimising a linear function over FP ′PM(H) lies in P in
contrast to the case PPM(H) for which this problem is NP-hard.

Theorem 4.3. Let H be a r-uniform hypergraph with |V (H)| ≡r 0. For any c ∈ QE(H)

the problem max
{
ctx | x ∈ FP ′PM(H)

}
lies in P.

Proof. By the well known equivalence of optimisation and separation [7], we can optimise
a linear function over FP ′PM(H) in polynomial time if and only if we can decide in
polynomial time whether a vector x ∈ QE(H) satisfies constraints (C’1) to (C’3) and in
case it does not, find a constraint violated by x.
As it is trivial to check whether constraints (C’1) and (C’2) are satisfied, we need to

consider the inequalities of type Constraint (C’3). The separation of Constraint (C’3) is
equivalent to the problem of finding a minimum weight cut ∂H(S) in an edge-weighted
hypergraph with the additional requirement that |S| is not divisible by r.
If H is an r-uniform hypergraph with weights w ∈ QE(H)

≥0 on the edges, then the
function f defined by f(S) := w(∂H(S)) for all S ⊆ V (H) is submodular and we can find
min {f(S) | ∅ 6= S * V (H)} in polynomial time [10].
Given a submodular function f : 2E → Q≥0, and integers a, b ∈ Z the problem

min {f(X) | X ⊆ E, |X| 6≡ a mod b} is polynomially time solvable if f is given by a
polynomial time oracle, see Corollary 10.4.7 [8]. Thus, min {f(S) | S ⊆ V (H) , |S| 6≡r 0}
can be solved in polynomial time as well. In particular, the separation of Constraint (C’3)
is polynomial time solvable as follows:
Given x ∈ QE(H)

≥0 we set w(e) := x(e) and calculate a minimum weight cut ∂H(S)
with |S| 6≡r 0. If w(∂H(S)) ≥ 1, then x satisfies all inequalities of type Constraint (C’3).
Otherwise, x(∂H(S)) = w(∂H(S)) < 1 and we obtain an inequality of type Constraint (C’3)
violated by x.

Now, we are able to show that we can decide in polynomial time whether a cut is tight
or not on uniformable hypergraphs. We always assume that every uniformable hypergraph
H is given together with a uniform multiplication H(m).

Corollary 4.4. Let H be a uniformable hypergraph, m : V (H)→ Z≥1 a function such
that H(m) is r-uniform for some r ∈ N, and S ⊆ V (H) a set of vertices. We can decide
in polynomial time whether ∂H(S) defines a tight cut.

Proof. The set S defines a tight cut in H if and only if S(m) :=
{
v1, . . . , vm(v) | v ∈ S

}
defines a tight cut in H(m). Therefore, we can assume that H is already r-uniform.

First, we check whether |S| is divisible by r which trivially can be done in polynomial
time. If |S| ≡r 0, then ∂H(S) cannot be a tight cut asH is r-uniform. Otherwise, we define
a weight function w : E(H) → Q≥0 by w(e) = 1 for all e ∈ ∂H(S) and w(e) = 0 for all
e ∈ E(H)\∂H(S). By Theorem 4.3 we can find a solution to max

{
wtx | x ∈ FP ′PM(H)

}
in polynomial time. The value of it is equal to 1 if and only if x(∂H(S)) = 1 for all
x ∈ FP ′PM(H) which is the case if and only if ∂H(S) is a tight cut by Lemma 4.2.
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In the remainder of this section we give a polynomial time algorithm that finds a
non-trivial tight cut in a uniform balanced hypergraph, or concludes that none exists. In
a uniform balanced hypergraph every separating cut is tight by Corollary 3.11. We can
exploit this fact as follows:

For every e ∈ E(H) we compute a perfect matching Me containing e. This can be done
in polynomial time by linear programming as the fractional perfect matching polytope of
a balanced hypergraph is integral. Now, if ∂H(S) is a tight cut, then |Me ∩ ∂H(S)| = 1
for all e ∈ E(H). On the other hand, if ∂H(S) is a cut such that |Me ∩ ∂H(S)| = 1 for all
e ∈ E(H), then ∂H(S) is a separating cut and also a tight cut as H is a uniform balanced
hypergraph. In total, ∂H(S) is tight if and only if |Me ∩ ∂H(S)| = 1 for all e ∈ E(H),
where {Me | e ∈ E(H)} is an arbitrary set of perfect matchings such that Me contains e
for every e ∈ E(H).
For every e ∈ E(H) we choose a perfect matching Me such that e ∈Me, and define a

weight function w : E(H) → Z by w(f) := |{e ∈ E(H) | f ∈Me}| for every f ∈ E(H).
The value w(f) of the function w at a hyperedge f is equal to the number of perfect
matchings in the set {Me | e ∈ E(H)} containing f . If S ⊆ V (H) is such that its size is
not divisible by r, then |M ∩ ∂H(S)| ≥ 1 for all perfect matchings M of H. In particular,
|Me ∩ ∂H(S)| = 1 for all e ∈ E(H) if and only if w(∂H(S)) = |E(H)| holds. Thus,
S ⊆ V (H) defines a tight cut if and only if |S| 6≡r 0 and w(∂H(S)) = |E(H)|. By
Corollary 10.4.7 [8], we can solve min {w(∂H(S)) | S ⊆ V (H) , |S| 6≡r 0} in polynomial
time. However, we want to find a non-trivial tight cut, thus we have to demand that
|S| ≥ 2 and |S| ≤ |V (H) | − 2. We show that also the optimization problem

min {w(∂H(S)) | S ⊆ V (H) , 2 ≤ |S| ≤ |V (H) | − 2, |S| 6≡r 0} (4)

is polynomial-time solvable.
Therefore, let A,B ⊆ V (H) be disjoint sets of vertices. The family of sets C(A,B) :=
{S ⊆ V (H) | A ⊆ S ⊆ V (H)\B} has the property that for every S, T ∈ C(A,B) also S∩T
and S ∪ T lie in C(A,B). Such a family is called a lattice family [8]. Again, by Corollary
10.4.7 [8] applied to C(A,B), we can solve min {w(∂H(S)) | S ∈ C(A,B), |S| 6≡r 0} in
polynomial time for every pair of fixed sets A,B ⊆ V (H).

Now, problem eq. (4) can be solved by calculating for all disjoint subsets A,B of V (H)
with |A| = |B| = 2 an optimal solution SA,B to the optimization problem min{w(∂H(S)) |
S ∈ C(A,B), |S| 6≡r 0}, and choosing a set

S∗ := argmin {w(δH(SA,B)) | A,B ⊆ V (H) , A ∩B = ∅, |A| = |B| = 2} .

If w(S∗) = |E(H)|, then δH(S∗) is a non-trivial tight cut in H. Otherwise, w(S∗) >
|E(H)|, and H contains only trivial tight cuts. As there are O(|V (H)|4) subsets with
A,B ⊆ V (H) with |A| = |B| = 2, this algorithm runs in polynomial time. In total, we
get the following result.

Theorem 4.5. Let H be an r-uniform, matching covered, balanced hypergraph. There
exists a polynomial time algorithm that either outputs a non-trivial tight cut ∂H(S) or
concludes that H has only trivial tight cuts.
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5 Conclusion

We have shown that the tight cut decomposition is unique for uniformable hypergraphs
and refuted a similar result for general hypergraphs. We also established that balanced
uniformable hypergraphs are closed under tight cut contractions. This might allow us
to further generalise the theory of braces, bipartite matching covered graphs without
non-trivial tight cuts, to the (balanced) hypergraphic setting.
We also made a first step towards a computational approach on the tight cut de-

composition by providing a polynomial algorithm that decides whether a given cut is
tight.
Three questions are immediate consequences of the uniqueness result:
(i) Is there a structural characterisation of hyperbricks?
(ii) Is there a polynomial time algorithm to find a non-trivial tight cut in a uniformable

matching covered hypergraph?
(iii) Are there specialised answers to the above questions on balanced uniformable

matching covered hypergraphs?
To the graphic versions of all three of these questions the answers are well known to be

yes. The results answering these questions on graphs are the cornerstones of the theory
of matching covered graphs. So, finding appropriate answers in the world of uniformable
hypergraphs, one might be able to establish a similar theory in a more general setting.
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