
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

YUJI SHINANO, DANIEL REHFELDT, THORSTEN KOCH

Building Optimal Steiner Trees on
Supercomputers by using up to 43,000

Cores

This work has also been supported by the Research Campus Modal Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of
Education and Research (BMBF Grant 05M14ZAM), and partially supported by the BMWi project Realisierung von Beschleunigungsstrategien der anwendung-
sorientierten Mathematik und Informatik für optimierende Energiesystemmodelle - BEAM-ME (fund number 03ET4023DE). All responsibility for the content of this
publication is assumed by the authors.

ZIB Report 18-58 (December 2018)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Building Optimal Steiner Trees on
Supercomputers by using up to 43,000 Cores

Yuji Shinano, Daniel Rehfeldt, Thorsten Koch∗†

February 11, 2019

Abstract

SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and
related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par-
allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK,
MPI] was the only solver that could run on a distributed environment at the (latest)
11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known
open instances and updated 14 best known solutions to instances from the bench-
mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con-
siderably improved. However, the improvements were not reflected on ug [SCIP-
JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI],
especially branching on constrains and a customized racing ramp-up. Furthermore,
the different stages of the solution process on a supercomputer are described in de-
tail. We also show the latest results on open instances from the STEINLIB.

1 Introduction
The Steiner tree problem in graphs (SPG) is one of the fundamental N P-hard opti-
mization problems [5]. Given an undirected connected graph G = (V,E), costs c : E→
Q≥0 and a set T ⊆V of terminals, the problem is to find a tree S⊆G of minimum cost
that includes T . The 2014 DIMACS Challenge, dedicated to Steiner tree problems,
marked a revival of research on the SPG and related problems. SCIP-JACK [2], which
is a customized SCIP solver for SPG and related problems, was initially developed
to attend the DIMACS Challenge. SCIP-JACK was by far the most versatile solver
participating in the Challenge, being able to solve the SPG and 10 related problems.
After the DIMACS Challenge, the performance of SCIP-JACK has continuously im-
proved, both for SPG [13] and related problems [11, 12, 14]. The improvements were
for instance marked by SCIP-JACK being the most successful solver at the PACE 2018
Challenge [1] dedicated to fixed-parameter tractable (FPT) SPG instances (although
SCIP-JACK does not include any FPT specific algorithms).

ug [SCIP-JACK, MPI] is an extension of SCIP-JACK to a massively parallelized
solver by using the Ubiquity Generator (UG) framework [16], a software package to
parallelize branch-and-bound (B&B) based solvers. ug [SCIP-JACK, MPI] was the
only solver which could run on a distributed environment at the 11th DIMACS Chal-
lenge. Moreover, it solved three open instances and updated 14 best known solutions
∗Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, {shinano, rehfeldt,

koch}@zib.de
†TU Berlin, Str. des 17. Juni 135, 10623 Berlin, Germany

1

to instances from the STEINLIB [7]. However, no detailed statistics on the solving
process have been published yet. After the DIMACS Challenge, solving new open
instances from the STEINLIB by ug [SCIP-JACK, MPI] looked hopeless for all open
instances—judging from their run-time log files—and there have been no new result
published prior to this paper. For the results presented throughout this paper, we used
the ug [SCIP-JACK, MPI] code included in the SCIP Optimization Suite 6.0 [3].

ug [SCIP-JACK, MPI] was not implemented from scratch by using UG, but it was
parallelized by using the ug[SCIP-*,MPI]-library, which is a software library to par-
allelize SCIP applications. SCIP is a plugin based software framework [3] and by
adding new user-plugins it can be extended to create a customized solver like SCIP-
JACK. The ug [SCIP-*,MPI]-library allows its users to include these user-plugins to
PARASCIP by adding a small amount of glue-code (typically 100− 200 lines). Usu-
ally, if a solver performance parallelized by UG is improved, this is directly reflected
in the performance of its parallel extension. Since the SCIP-JACK performance has
improved tremendously after the DIMACS Challenge, see Section 3, one would expect
the same of ug [SCIP-JACK, MPI]. However, several idiosyncrasies of SCIP-JACK re-
quired to develop new features of the ug [SCIP-*,MPI]-library, in order to also obtain
the performance improvements in its massively parallel extension.

In the following, we briefly describe UG, and go on to introduce the newly added
features of the ug [SCIP-*, MPI]-library that aim to improve the performance of ug
[SCIP-JACK, MPI]. Finally, first results obtained with the new features will be pre-
sented.

2 Key features of UG and ug [SCIP-*,MPI]-library
A uniqueness of UG is that it is a software framework to parallelize an existing state-
of-the-art B&B based solvers. We call the B&B based solver parallelized by UG base
solver. In UG, the base solver is encapsulated in an abstracted ParaSolver. The
ParaSolver accesses the base solver via its API. At run-time on a supercomputer,
there are ParaSolver processes, which solve subproblems, and there is a special
process called LoadCoordinator (LC) , which makes all decisions about load bal-
ancing among the ParaSolvers. To realize the load balancing, message passing
based protocols are defined between the LC and the ParaSolvers. The LC also
has a base solver environment, which does presolving (all ParaSolvers solve the
presolved instance internally) and converts the solution to the presolved problem to a
solution to the original one. Key features of UG are:
Ramp-up Ramp-up is the phase until all solvers have become active. In Normal ramp-

up, only one ParaSolver receives the root node, and it distributes one of the
branched nodes to the other solvers via the LC. All the ParaSolvers do the
same when they receive a node. The transferred node (subproblem) data con-
tains only the difference between the subproblem and the (presolved) instance
data. Racing ramp-up exploits the performance variability commonly observed
in MIP solving [6]. An instance is solved multiple times by ParaSolvers in
parallel, each time with a different parameter setting. If the instance has not been
solved to optimality once a predefined termination criterion, e.g., a time limit,
is reached, the most promising branch-and-bound tree is distributed among the
ParaSolvers and the default solving procedure is initiated. The effectiveness
of racing ramp-up is described in [17, 20].

Dynamic load balancing UG provides a Supervisor-Worker load coordination scheme [10].
In the Master-Worker paradigm, all B&B search tree data is managed by the

2

Master. In contrast to the Master-Worker paradigm, the idea of Supervisor-
Worker is that the Supervisor functions only to make decisions about the load
balancing, but does not actually store the data associated with the B&B search
tree. In UG, the Supervisor is the LC and the Workers are the ParaSolvers.
The B&B search tree data is managed by the ParaSolvers. The terminal
nodes (subproblems) of the B&B search tree in the ParaSolvers are sent on
demand to the LC; a set of subproblems in the LC works as a buffer to ensure
subproblems are available to idle ParaSolvers as needed.

Load balancing is accomplished mainly by switching the collection mode
in the ParaSolver. Turning collecting mode on results in additional “high
quality” subproblems being sent to the LC, which can then be distributed to the
ParaSolvers. The method of selecting which ParaSolver to collect from
is crucial and is controlled very carefully. Some additional keys to avoid having
the Supervisor becoming a communication bottleneck are:

• Frequency of status updates can be controlled depending on the number of
ParaSolvers.

• The maximum number of ParaSolvers in collection mode is capped and
the ParaSolvers are chosen dynamically.

A detailed description of the dynamic load balancing is presented in [18, 20].

Checkpointing and restrating mechanism By the dynamic load balancing of UG,
B&B nodes in a sub-tree can be transferred recursively to the other solvers.
Therefore, at each checkpoint, only essential B&B nodes, i.e., sub-tree roots
whose ancestor node is not available on a run-time system, are saved. The num-
ber of such nodes is extremely small compared to the number of open nodes;
thus the checkpointing is very light weight. However, a huge search tree has
to be regenerated at restart. This regeneration might look redundant and ineffi-
cient. However, for MIP solvers, this procedure has been shown to be notably
efficient [17], since dual bounds of the checkpoint nodes are calculated more
precisely and the B&B tree is regenerated based on these values at restart—the
regenerated B&B tree can thus be different than that of the previous run.

Deterministic mode for debugging One of the most difficult parts of software de-
velopment is debugging. Before running a parallel solver instantiated by UG,
extensive debugging for a set of instances with different number of solvers is
usually needed. Without having a deterministic mode, this would be extremely
inefficient.

PARASCIP (=ug [SCIP,MPI]) is an instantiated parallel solver that uses UG, in
which SCIP is the base solver. Since SCIP is plugin-based, it is natural to make a ug
[SCIP-*, MPI]-library in which user plugins are installed automatically by providing
a small amount of glue code. ug [SCIP-JACK, MPI] is realized by using such a library
and is distributed as a UG application. The Steiner tree application directory of SCIP
Optimization Suite 6.0 contains only one source file stp plugins.cpp and it has only
173 lines of glue code without empty and comment lines.

3

3 Improvements of SCIP-JACK after the DIMACS Chal-
lenge

SCIP-JACK has seen a large number of improvements after the 11th DIMACS Chal-
lenge, both for SPG and related problems. These developments include new primal and
dual heuristics [2, 14], reduction techniques [15], and various technical improvements
such as a fast maximum-flow implementation [8] (used for separation). Of particular
relevance for massive parallelization is the subsequently described improvement for
domain propagation: During the solving process it is usually possible to fix many (bi-
nary) edge variables of the IP formulation to 0 or 1—for instance by using reduced cost
arguments [2] or branching information. These fixings can be directly translated into
edge deletions and contractions in the underlying graph, which can allow for further
eliminations by the powerful graph reduction techniques of SCIP-JACK. However, as
already observed by other authors [9], such graph reductions can change the graph in
a complex way, which cannot be easily translated into variable fixings in the IP for-
mulation. However, we have devised a simple mapping that given an original instance
P = (V,E,T,c) and reduced instance P′ = (V ′,E ′,T ′,c′) allows to map P′ to a problem
P′′ such that P′′ can be obtained from P′ by deletion of edges only. First, note that the
reduction techniques of SCIP-JACK provide a mapping p : E ′→P (E) such that for
each (optimal) solution S′ ⊆ E ′ to P′, set

⋃
e∈S′ p(e) is an (optimal) solution to P. With

this information one obtains:
Proposition 1 Let P = (V,E,T,c) be an SPG and (V ′,E ′,T ′,c′) be an instance ob-
tained by using the reduction techniques of SCIP-JACK. Each solution S′′ to the SPG
P′′ = (V ′′,E ′′,T ′′,c′′) defined by

E ′′ :=
⋃

e∈E ′
p(e),

V ′′ := {v ∈V | ∃(v,w) ∈ E ′′,w ∈V},
T ′′ := {t ∈ T | ∃(t,w) ∈ E ′′,w ∈V},
c′′ := c|E ′′ ,

is a solution to P. Furthermore, if S′′ is an optimal solution to P′′, it is an optimal
solution to P.
One readily acknowledges, that V ′′⊆V and E ′′⊆E. Note, however, that usually |V ′′|>
|V ′| and |E ′′| > |E ′|, so we first apply only techniques that can be directly translated
into variable fixings (such as deletion of edges) and apply the corresponding fixings to
the IP; only afterward we perform more complex reductions (and use Proposition 1 to
apply further fixings).

4 New features of ug [SCIP-JACK, MPI]
In this section, we describe new general features added to ug [SCIP-*,MPI]-library,
and also specialized new features added to ug [SCIP-JACK,MPI].

4.1 Branching on constraints
After the DIMACS Challenge, instead of branching on variables, which in the case
of Steiner tree problem correspond to edges, default SCIP-JACK uses vertex branch-
ing [4]. During the B&B process, SCIP-JACK selects a non-terminal vertex of the
Steiner tree problem graph to be rendered a terminal in one B&B child node and to
be excluded in the other child. These two operations are modeled in the underlying IP

4

formulation by including one additional constraint. This procedure could not be used
in previous versions of ug [SCIP-JACK,MPI], since branching on constrains was only
possible in SCIP, but not in the ug [SCIP-*, MPI]-library. Therefore, a new feature
for transferring branching constrains has been added to the ug [SCIP-*, MPI]-library.
The new feature allows ug [SCIP-JACK,MPI] to use the vertex branching.

4.2 Callback to initialize a transferred subproblem
A distinguishing feature of UG solvers is that it can naturally realize layered presolv-
ing, in which B&B tree nodes are transferred to the other ParaSolvers recursively
and additional presolving is performed on the subproblems. The effectiveness of the
layered presolving is documented in [19, 20]. When using ug [SCIP-*, MPI]-library,
MIP presolving realized by SCIP can work without any additional coding. However,
SCIP-JACK performs presolving on the underlying graph before it formulates the sub-
problem as an IP. In order to realize the graph based presolving, a callback to initialize
the transferred subproblem has been added to the ug [SCIP-*, MPI]-library. To retain
previous graph based branching decisions, ug [SCIP-JACK,MIP] transfers the branch-
ing history together with a subproblem, enabling SCIP-JACK to change the underlying
graph (by adding terminals and deleting vertices). Additionally, whenever a subprob-
lem has been transfered, SCIP-JACK performs aggressive reduction routines to reduce
the (modified) problem further and translates the reductions into variable fixings by
means of Proposition 1.

4.3 Customized racing
The latest ug [SCIP-*, MPI]-library includes customized racing, which allows the user
to specify their own parameter settings for racing. If the number of UG solvers exceeds
the number of provided parameter sets, then the customized parameter settings are
combined with random number seeds. While the latest release version of PARASCIP
does not use customized racing by default, it is applied in ug [SCIP-JACK,MPI]. For
this article we used 30 parameter settings, where we varied: the aggressiveness of the
primal heuristics, the aggressiveness of domain propagation, the branching rule (LP-
based [2] or based on primal solution [9]), and various parameter for the cut selection.

5 Updated computational results for open instances
For solving open instances of the PUC test set from STEINLIB as of 1st of November
2018, we used two supercomputers. One is an ISM (Institute of Statistical Mathemat-
ics) supercomputer which is a HPE SGI 8600 with 384 compute nodes, each node has
two Intel Xeon Gold 6154 3.0GHz CPUs (18 cores×2) sharing 384GB of memory, and
an Infiniband (Enhanced Hypercube) interconnect. The other is HLRN III which is a
Cray XC40 with 1872 compute nodes, each node with two 12-core Intel Xeon Ivy-
Bridge/Haswell CPUs sharing 64 GiB of RAM, and with an Aries interconnect. The
interval time of checkpointing was set to 1,800 seconds. The maximum number of
ParaSolvers in collection mode was capped at 500.

5.1 hc9p (solved)
This instance was solved by five restarted runs and by using up to 24,576 cores. The
initial primal solution was found by ug [SCIP-JACK,MPI] at the DIMACS Challenge.
All computations were used to prove its optimality. The racing termination criteria was
a node limit of 50, that is: once the number of open B&B nodes in a ParaSolver

5

with the largest dual bound surpasses 50, racing is terminated. Table 1 shows the super-
computer used, the computing time in seconds (racing time is shown within parenthe-
ses), the idle time ratio for all ParaSolvers, the number of transferred B&B nodes
to ParaSolvers, primal and dual bounds, gap, the number of B&B nodes generated,
and the number of open B&B nodes for each run. The initial values are shown in the
upper row and the final values of those are shown in the lower row for each run.

The final dual bound in the previous run is sometimes slightly different from that
of the initial one in the following run. This means that the dual bound in the previous
run was updated after the final checkpoint. The number of open B&B nodes decreases
a lot at restart, since the checkpointing mechanism only saves essential sub-tree roots.
For example, run 1.1 ends up with 1,257,112 open B&B nodes, but run 1.2 starts with
15 open ones. This means that only 15 B&B sub-tree roots existed at the end of run 1.1
and the other sub-tree roots were descendants of one of the 15 B&B nodes.

The number of transferred B&B nodes can be considered as an indicator of how
frequently ParaSolvers became idle and also how frequently layered presolving
was applied. It is natural that at larger scale we can expect more layered presolving.
Actually, the number of transferred B&B nodes of run 1.1 with 72 cores was only 738
nodes in a one week long execution. It was increased by using 2,304 cores to 979,695 in
another one week execution. In the following bigger jobs it was drastically increased.

Figure 1 shows the evolution of the computation for the final run 1.5. The number
of B&B open nodes continuously increases and decreases during the computation and
it looks sometimes difficult to make all ParaSolvers active. However, dynamic load
balancing recovered the situation well and all the ParaSolvers were active during
almost the entire computing time. The idle time ratio was only 1.5%. The number of
checkpoint nodes also changed a lot during the computation.

We can obtain the idle time ratio for all ParaSolvers only if ug [SCIP-JACK,MPI]
finishes its computation and cannot get it if the program is canceled by the system in
case the time-limit is hit. After racing ramp-up, all ParaSolver statistics are col-
lected. Therefore, by using its partial data, an upper bound on the idle time ratio is
calculated. The lack of data is complemented by the maximum idle time ratio in the
case of racing ramp-up, and complemented by the idle time ratio of run 1.5. Table 1
also shows the upper bounds of the idle time ratio. The idle time ratios for all runs are
notably small, which indicates that the supercomputers are used efficiently.

Table 1: Statistics for solving hc9p on supercomputers

Run Computer Cores Time
(sec.)

Idle
(%) Trans. Primal bound

(Upper bound)
Dual bound

(Lower bound)
Gap
(%) Nodes Open nodes

1.1 ISM 72 604,796
(317) < 0.3 738 30,242.0000 29,879.3721 1.21 0 0

30,242.0000 30,058.9366 0.61 110,012,624 1,257,112

1.2 ISM 2,304 604,794 < 1.5 979,695 30,242.0000 30,058.7930 0.61 0 15
30,242.0000 30,102.7556 0.46 3,758,532,600 723,167

1.3 HLRN III 24,576 86,336 < 1.7 8,811,512 30,242.0000 30,102.6645 0.46 0 35
30,242.0000 30,116.3592 0.42 2,402,406,311 575,678

1.4 HLRN III 12,288 43,199 < 1.5 1,709,027 30,242.0000 30,115.3331 0.42 0 3,709
30,242.0000 30,120.4801 0.40 664,909,985 602,323

1.5 HLRN III 12,288 118,259 1.5 9,158,920 30,242.0000 30,120.4801 0.40 0 285
30,242.0000 30,242.0000 0.00 1,677,724,126 0

5.2 hc11p (updated the best known solution)
During the new developments in ug [SCIP-JACK, MPI], the best known solution to the
hc11p instance could be updated (with objective value 119,492 compared to 119,689

6

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 20000 40000 60000 80000 100000 120000
 0

 4000

 8000

 12000

 16000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

nodes received/sec
nodes sent/sec

nodes in check-point file

Figure 1: Evolution of computation for solving hc9p by using 12,288 cores (Run 1.5)

at the DIMACS Challenge). The first additional run 1 on the ISM supercomputer gen-
erated 11 new incumbent solutions, with the best objective value being 119,297. Af-
terwards we just solved it from scratch with the best solution in racing ramp-up (run
2.1) again, since it can be used for presolving, propagation, and heuristics. The racing
termination criteria for run 1 was the same as that for hc9p, but the node limit 100
was used for run 2.1. The restarted job was conducted from the checkpoint file of run
2.1, since run 2.1 could not improve the incumbent solution. Run 1 consumed 12,095
cores-hours (= (72× 604799)/3600) and it reached a 1.53(%) gap. Runs 2.1 and 2.2
consumed 118,582 cores-hours (= ((1288×43149)+(4300×86354))/3600) reached
a 1.56(%) gap. To improve the gap with the same amount of computing resources,
initial longer run at small scale look more promising than large scale runs with short
computing time.

Table 2: Statistics for solving hc11p on supercomputers

Run Computer Cores Time
(sec.)

Idle
(%) Trans. Primal bound

(Upper bound)
Dual bound

(Lower bound)
Gap
(%) Nodes Open nodes

1 ISM 72 604,799
(2,558) < 0.3 71 119,492.0000 117,388.8528 1.79 0 0

119,297.0000 117,496.5470 1.53 4,314,198 1,109,629

2.1 HLRN III 12,288 43,149
(7,164) < 0.5 31,304 119,297.0000 117,388.7971 1.63 0 0

119,297.0000 117,426.2226 1.59 28,491,470 5,433,482

2.2 HLRN III 43,000 86,354 < 4.9 86,152 119,297.0000 117,426.2226 1.59 0 103
119,297.0000 117,468.8459 1.56 267,513,609 40,499,188

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 0

 4000

 8000

 12000

 16000

 20000

 24000

 28000

 32000

 36000

 40000

 44000

 48000

 52000

 56000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

nodes received/sec
nodes sent/sec

nodes in check-point file

Figure 2: Evolution of computation for solving hc11p by using 43,000 cores (Run
2.2)

The numbers of transferred B&B nodes were very small compared to those for
hc9p. This shows a fundamental hardness of hc11p compared to that of hc9p. Fig-
ure 2 shows the evolution of computation for run 2.2—the largest scale used with ug

7

[SCIP-JACK, MPI] so far. The restart is always normal ramp-up from the nodes in
checkpoint file. In the normal ramp-up, all ParaSolvers send one of two branched
nodes to the other ParaSolvers via LC. This lasts until all ParaSolvers have
become active. SCIP-JACK does presolving and adds cutting planes aggressively at
its root node, making ramp-up difficult. Additionally, once in ramp-up the LC’s in-
ternal mode changes to collection mode. In this mode, only a restricted number of
ParaSolvers can be in collection mode. Therefore, the number of active ParaSolvers
decreases after the first peak. However, once the LC has collected enough nodes again,
the quality of the nodes in the LC is very good and less and less dynamic load balancing
is needed. Figure 2 shows this behavior. Taking into account this difficulty of ramp-
up, the idle time ratio of run 2.2 is less than 4.9%. The number of checkpoint nodes
stays the same and the open B&B nodes keep increasing. Thus further improvements
of SCIP-JACK or much larger runs are needed to solve hc11p.

6 Concluding remarks
We have extended ug [SCIP-JACK, MPI] to immediately obtain the benefits of any
SCIP-JACK improvements, allowing us to solve one previously unsolved benchmark
instance to optimality. We also showed that ug [SCIP-JACK, MPI] can run on up
to 43,000 cores efficiently in terms of computing resources usage. Therefore, when
SCIP-JACK has been further improved (as planned for the near future) we expect to
solve additional open instances. Also, the techniques presented in this paper work on
other problems related to the SPG that can be handled by SCIP-JACK.

7 Acknowledgements
The authors would like to thank Utz-Uwe Haus for his help in tracking down a partic-
ularly insistent bug. This work has been supported by the Research Campus MODAL
Mathematical Optimization and Data Analysis Laboratories funded by the Federal
Ministry of Education and Research (BMBF Grant 05M14ZAM). This work was also
supported by the North-German Supercomputing Alliance (HLRN). Supported by BMWi
project BEAM-ME (fund number 03ET4023DE).

References
[1] PACE Challenge 2018. https://pacechallenge.wordpress.com/

pace-2018/, accessed: November 10. 2018

[2] Gamrath, G., Koch, T., Maher, S., Rehfeldt, D., Shinano, Y.: SCIP-Jack—a solver
for STP and variants with parallelization extensions. Mathematical Programming
Computation 9(2), 231 – 296 (2017). https://doi.org/10.1007/s12532-016-0114-x

[3] Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L.,
Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M.,
Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C.,
Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T.,
Witzig, J.: The scip optimization suite 6.0. Tech. Rep. 18-26, ZIB, Takustr. 7,
14195 Berlin (2018)

[4] Hwang, F., Richards, D., Winter, P.: The Steiner tree problem. Annals of Discrete
Mathematics 53 (1992)

8

[5] Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

[6] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E.,
Danna, E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H.,
Ralphs, T., Salvagnin, D., Steffy, D., Wolter, K.: MIPLIB 2010. Mathematical
Programming Computation 3, 103–163 (2011)

[7] Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree prob-
lems in graphs. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries, pp.
285–325. Kluwer (2001)

[8] Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L.,
Hendel, G., Koch, T., Lübbecke, M.E., Miltenberger, M., Müller, B., Pfetsch,
M.E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano,
Y., Weninger, D., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 4.0. Tech.
Rep. 17-12, ZIB, Takustr.7, 14195 Berlin (2017)

[9] Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis,
Saarland University (2004), http://scidok.sulb.uni-saarland.de/
volltexte/2004/218/index.html

[10] Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel Solvers for Mixed
Integer Linear Optimization, pp. 283–336. Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-63516-3 8, https://doi.
org/10.1007/978-3-319-63516-3_8

[11] Rehfeldt, D., Koch, T.: Combining NP-Hard Reduction Techniques and
Strong Heuristics in an Exact Algorithm for the Maximum-Weight Con-
nected Subgraph Problem. SIAM Journal on Optimization 29(1), 369–
398 (2019). https://doi.org/10.1137/17M1145963, https://doi.org/10.
1137/17M1145963

[12] Rehfeldt, D., Koch, T.: Reduction-based exact solution of prize-collecting Steiner
tree problems. Tech. Rep. 18-55, ZIB, Takustr. 7, 14195 Berlin (2018)

[13] Rehfeldt, D., Koch, T.: SCIP-Jack—a solver for STP and variants with paral-
lelization extensions: An update. In: Operations Research Proceedings 2017. pp.
191 – 196 (2018)

[14] Rehfeldt, D., Koch, T.: Transformations for the Prize-Collecting Steiner Tree
Problem and the Maximum-Weight Connected Subgraph Problem to SAP. Jour-
nal of Computational Mathematics 36(3), 459 – 468 (2018)

[15] Rehfeldt, D., Koch, T., Maher, S.: Reduction Techniques for the Prize Col-
lecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph
Problem. Networks (in press). https://doi.org/10.1002/net.21857, https://
onlinelibrary.wiley.com/doi/abs/10.1002/net.21857

[16] Shinano, Y.: The ubiquity generator framework: 7 years of progress in paral-
lelizing branch-and-bound. In: Kliewer, N., Ehmke, J.F., Borndörfer, R. (eds.)
Operations Research Proceedings 2017. pp. 143–149. Springer International Pub-
lishing, Cham (2018)

9

[17] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solv-
ing hard miplip2003 problems with parascip on supercomputers: An update.
In: IEEE (ed.) IPDPSW’14 Proceedings of the 2014 IEEE, International Par-
allel & Distributed Processing Symposium Workshops. pp. 1552 – 1561 (2014).
https://doi.org/10.1109/IPDPSW.2014.174

[18] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solv-
ing open mip instances with parascip on supercomputers using up to 80,000 cores.
In: Proc. of 30th IEEE International Parallel & Distributed Processing Sympo-
sium (2016). https://doi.org/10.1109/IPDPS.2016.56

[19] Shinano, Y., Berthold, T., Heinz, S.: A first implementation of paraxpress: Com-
bining internal and external parallelization to solve mips on supercomputers. In:
Greuel, G.M., Koch, T., Paule, P., Sommese, A. (eds.) Mathematical Software –
ICMS 2016. pp. 308–316. Springer International Publishing, Cham (2016)

[20] Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP – a shared
memory parallelization of SCIP. INFORMS Journal on Computing 30(1), 11–
30 (2018). https://doi.org/10.1287/ijoc.2017.0762, https://doi.org/10.
1287/ijoc.2017.0762

10

