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Reduction-based exact solution of prize-collecting Steiner

tree problems

Daniel Rehfeldt∗† · Thorsten Koch

Abstract

The prize-collecting Steiner tree problem (PCSTP) is a well-known generalization of the
classical Steiner tree problem in graphs, with a large number of practical applications. It
attracted particular interest during the latest (11th) DIMACS Challenge and since then a
number of PCSTP solvers have been introduced in the literature, some of which drastically
improved on the best results achieved at the Challenge. The following article aims to further
advance the state of the art. It introduces new techniques and algorithms for PCSTP,
involving various forms of reductions of PCSTP instances to equivalent problems—which for
example allows to decrease the problem size or to obtain a better IP formulation. Several
of the new techniques and algorithms provably dominate previous approaches. Further
theoretical properties of the new components, such as their complexity, are discussed, and
their profound interaction is described. Finally, the new developments also translate into
a strong computational performance: the resulting exact solver outperforms all previous
approaches—both in terms of run-time and solvability—and can solve formerly intractable
benchmark instances from the 11th DIMACS Challenge to optimality.

1 Introduction

The Steiner tree problem in graphs (SPG) is one of the fundamental (NP-hard) combinatorial op-
timization problems [19]. A well-known generalization is the prize-collecting Steiner tree problem
(PCSTP), stated as follows: Given an undirected graph G = (V,E), edge-weights c : E → Q>0,
and node-weights (or prizes) p : V → Q≥0, a tree S = (V (S), E(S)) ⊆ G is required such that

C(S) :=
∑

e∈E(S)

c(e) +
∑

v∈V \V (S)

p(v) (1)

is minimized. By setting sufficiently high node weights for its terminals, each SPG instance can
be reduced to a PCSTP. However, while the number of real-world applications of the classical
Steiner tree problem in graphs is limited [13], the PCSTP entails many practical applications,
which can be found in various areas, for instance in the design of telecommunication networks [24],
electricity planning [6], computational biology [17], or geophysics [31].

The PCSTP has been extensively discussed in the literature, see e.g. [5, 7, 18, 23]. More-
over, many exact and heuristic solving approaches have been suggested. The problem attracted
particular interest in the wake of the 11th DIMACS Challenge [1] in December 2014—dedicated
to Steiner tree problems—where the PCSTP categories could boast the most participants by
far. Furthermore, in the last two years a number of solvers for the PCSTP have been described
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in the literature [3, 11, 12, 13, 22, 25, 32], some of which, in particular [22], could drastically
improve on the best results achieved at the DIMACS Challenge—being able to not only solve
many instances orders of magnitude faster, but also to solve a number of instances for the first
time to optimality. Exact approaches for PCSTP are usually based on branch-and-bound or
branch-and-cut [11, 13], include specialized (primal and sometimes dual) heuristics [20, 22], and
make use of various preprocessing methods to reduce the problem size [23, 29].

This article introduces new techniques and algorithms for solving PCSTP, most of which are
based on, or result in reductions of the PCSTP to equivalent problems—these problems can be
PCSTPs itself, but can also be from different problem classes. The reductions can for example
decrease the problem size or allow to obtain a stronger IP formulation. Moreover, several of the
new methods provably dominate previous approaches. While some of the techniques require to
solve NP -hard subproblems (not yet described in the literature), the underlying concepts allow
to design empirically efficient heuristics. Practically also the integration of the new methods into
an exact solver will be described and computational experiments on a large number of benchmark
instances will be presented—along with a comparison with a state-of-the-art solver. What sets the
new techniques apart from other approaches for combinatorial optimization problems is the deep
and intricate interaction of the individual components combined with their wide applicability
within a branch-and-cut framework—from preprocessing and probing to IP formulation and
separation to heuristics, domain propagation and branching. While interaction between solution
techniques and multiple usability has been described in state-of-the-art solvers for problems such
as the traveling salesman problem [4] or (even more pronounced) the SPG [26], we are not
aware of any other approach for which such a broad impact on the overall solving procedure and
profound interrelation can be achieved by such a, comparatively, small number of techniques.
We would also like to point out that the newly developed software has been integrated into the
academic Steiner tree framework SCIP-Jack [13] and will be made publicly available as part of
its next major release.

Finally, while it will be shown that one set of methods is also directly applicable for the
SPG, one can furthermore extend several of the presented techniques and algorithms to related
combinatorial optimization problems such as the node-weighted Steiner tree, or the maximum-
weight connected subgraph problem.

1.1 Preliminaries and notation

Throughout this article it will be presupposed that a PCSTP instance IPC = (V,E, c, p) is given
such that (V,E) is connected; otherwise one can optimize each connected component separately.
For a graph G we denote its vertices by V (G) and its edges by E(G); similarly, for a finite walk
W we denote the set of vertices and the set of edges it contains by V (W ) and E(W ). We call
Tp := {t1, t2, ..., ts} := {v ∈ V | p(v) > 0} the set of potential terminals [22].

By d(vi, vj) we denote the distance of a shortest path (with respect to c) between vertices
vi, vj ∈ V . Similarly, d(vi, vj) is defined as the distance between vi and vj in the graph induced
by V \ (Tp \ {vi, vj}) [29]. To each vertex vi ∈ V \ T , the k d-nearest potential terminals
will be denoted by vi,1, vi,2, ..., vi,k (ties are broken arbitrarily). Moreover, for any function
x : M 7→ Q with M finite, and any M ′ ⊆ M define x(M ′) :=

∑
i∈M ′ x(i). For U ⊆ V

define δ(U) := {{u, v} ∈ E | u ∈ U, v ∈ V \ U}; for a directed graph D = (V,A) define
δ+(U) := {(u, v) ∈ A | u ∈ U, v ∈ V \ U} and δ−(U) := δ+(V \ U). We also write δG or δ+

D, δ
−
D

to distinguish the underlying graph. For an IP formulation F we denote the optimal objective
value and the set of feasible points of its LP relaxation by vLP (F ) and PLP (F ), respectively.
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2 Reductions within the problem class

The reductions described in the following aim to reduce a given instance to a smaller one of the
same problem class. Several articles have addressed such techniques for the PCSTP, e.g. [22, 23,
29, 33], but most are dominated by the methods described in the following. The new methods
will not only be employed for classical preprocessing, but also throughout the entire solving
process, e.g. for domain propagation or within heuristics.

2.1 Taking short walks

The following approach uses a new, walk-based, distance function. It generalizes the bottle-
neck distance concept that was the central theme of [33]. Let vi, vj ∈ V . A finite walk
W = (vi1 , ei1 , vi2 , ei2 , ..., eir , vir ) with vi1 = vi and vir = vj will be called prize-constrained
(vi, vj)-walk if no v ∈ Tp ∪ {vi, vj} is contained more than once in W . For any k, l ∈ N with
1 ≤ k ≤ l ≤ r define the subwalk W (vik , vil) := (vik , eik , vik+1

, eik+1
, ..., eil , vil); note that

W (vik , vil) is again a prize-constrained walk. Furthermore, define the prize-collecting cost of W
as

cpc(W ) :=
∑

e∈E(W )

c(e)−
∑

v∈V (W )\{vi,vj}

p(v). (2)

Thereupon, define the prize-constrained length of W as

lpc(W ) := max{cpc(W (vik , vil)) | 1 ≤ k ≤ l ≤ r, vik , vil ∈ Tp ∪ {vi, vj}}. (3)

Intuitively, lpc(W ) provides the cost of the least profitable subwalk of W . This measure will
in the following be useful to bound the cost of connecting two disjoint trees that contain the
first and the last vertex of W , respectively. Finally, we denote the set of all prize-constrained
(vi, vj)-walks by Wpc(vi, vj) and define the prize-constrained distance between vi and vj as

dpc(vi, vj) := min{lpc(W ′) |W ′ ∈ Wpc(vi, vj)}. (4)

Note that dpc(vi, vj) = dpc(vj , vi) for any vi, vj ∈ V . By using the prize-constrained distance
one can formulate a reduction criterion that dominates the special distance test from [33]—it
identifies (and allows to delete) all edges found by [33] and can (and usually does) identify
further ones:

Proposition 1. Let {vi, vj} ∈ E. If

c({vi, vj}) > dpc(vi, vj) (5)

is satisfied, then {vi, vj} cannot be contained in any optimal solution.

Proof. Let S be a tree with {vi, vj} ∈ E(S). Further, let W = (vi1 , ei1 , ..., eir , vir ) be a prize-
constrained (vi, vj)-walk with lpc(W ) = dpc(vi, vj). Remove {vi, vj} from S to obtain two new
trees. Of these two trees denote the one that contains vi by Si and the other (containing vj) by Sj .
Define b := min{k ∈ {1, ..., r} | vik ∈ V (Sj)} and a := max{k ∈ {1, ..., b} | vik ∈ V (Si)}. Further,
define x := max{k ∈ {1, ..., a} | vik ∈ Tp ∪ {vi}} and y := min{k ∈ {b, ..., r} | vik ∈ Tp ∪ {vj}}.
By definition, x ≤ a < b ≤ y and furthermore:

cpc(W (via , vib)) ≤ cpc(W (vix , viy )). (6)
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Reconnect Si and Sj by W (via , vib)), which yields a new connected subgraph S′. If S′ is not
a tree, make it one by removing redundant edges, without removing any node (which can only
decrease C(S′)). For this tree it holds that:

C(S′) ≤ C(S) + cpc(W (via , vib))− c({vi, vj})
(6)

≤ C(S) + cpc(W (vix , viy ))− c({vi, vj})
≤ C(S) + lpc(W )− c({vi, vj})
= C(S) + dpc(vi, vj)− c({vi, vj})
(5)
< C(S).

Because of C(S′) < C(S) no optimal solution can contain {vi, vj}.

Since computing the Steiner bottleneck distance is already NP-hard [33], it does not come
as a surprise that the same holds for dpc (which can be shown in the same way). However,
the definition of dpc allows to design a simple algorithm for finding upper bounds that yields
empirically strong results. The method is an extension of Dijkstra’s algorithm [8] (with priority
queue), and is run from both endpoints of an edge e = {vi, vj} that one attempts to delete. We
sketch the procedure for endpoint vi: Let dist(v) be the distance value of Dijkstra’s algorithm for
each v ∈ V , initialized with dist(v) :=∞ for all v ∈ V \ {vi} and dist(vi) := 0. Start Dijkstra’s
algorithm from vi, but apply the following modifications: First, do not update vertex vl from
vertex vk if dist(vk) + c({vk, vl}) ≥ c(e). Second, for t ∈ Tp \ {vi} set dist(t) (as computed by
Dijkstra) to max{dist(t)− p(t), 0} before inserting t into the priority queue or when updating t
(if it already is in the priority queue). Third, all v ∈ V \ (Tp∪{vi, vj}) can be reinserted into the
priority queue after they have been removed. Fourth, exit if vj is visited. If dist(vj) < c(e), we
can remove e. Bounds on the number of visited edges are set to limit the run time. Note that
both Proposition 1 and the heuristic can be extended to the case of equality.

By using the prize-constrained distance, further reduction tests from the literature can be
strengthened, such as Non-Terminal of Degree k [33]; a related walk-based concept introduced in
Section 3 allows to strengthen additional methods such as Nearest Vertex [29], or Short Links [29].

2.2 Using bounds

Bound-based reductions techniques identify edges and vertices for elimination by examining
whether they induce a lower bound that exceeds a given upper bound [10, 26]. For the subse-
quent reduction techniques of this type we introduce the following concept: a terminal-regions
decomposition of IPC is a partition H =

{
Ht ⊆ V | Tp ∩ Ht = {t}

}
of V such that for each

t ∈ Tp the subgraph induced by Ht is connected. Define for all t ∈ Tp

rpcH (t) := min
{
p(t),min{d(t, v) | v /∈ Ht}

}
. (7)

The terminal-regions decomposition concept generalizes the Voronoi decomposition for the PC-
STP introduced in [29] and can easily be extended to SPG by using min{d(t, v) | v /∈ Ht} instead
of rpcH (t)—which generalizes the SPG Voronoi concept [26]. In [28] we introduced a related con-
cept for the maximum-weight connected subgraph problem. For ease of presentation assume
rpcH (ti) ≤ rpcH (tj) for 1 ≤ i < j ≤ s.
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Proposition 2. Let vi ∈ V \ Tp. If there is an optimal solution S such that vi ∈ V (S), then a
lower bound on C(S) is defined by

d(vi, vi,1) + d(vi, vi,2) +

s−2∑
k=1

rpcH (tk). (8)

The proposition can be proven similarly to the Voronoi decomposition results [29], see Ap-
pendix B.1. Each vertex vi ∈ V \Tp with the property that the affiliated lower bound (8) exceeds
a known upper bound can be eliminated. Moreover, if a solution S corresponding to the upper
bound is given and vi /∈ V (S), one can also eliminate vi if the lower bound stated in Proposition 2
is equal to C(S). A result similar to Proposition 2 can be formulated for edges of an optimal
solution. Finally, the following proposition allows to pseudo-eliminate [10] vertices, i.e., to delete
a vertex and connect all its adjacent vertices by new edges.

Proposition 3. Let vi ∈ V \ Tp. If there is an optimal solution S such that δS(vi) ≥ 3, then a
lower bound on C(S) is defined by

d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3) +

s−3∑
k=1

rpcH (tk). (9)

To efficiently apply Proposition 2, one would like to maximize (8)—and for Proposition 3 to
maximize (9). However, as shown in Appendix B.2, one obtains

Proposition 4. Given a vi ∈ V \Tp, finding a terminal-regions decomposition that maximizes (8)
is NP-hard. The same holds for (9).

Thus, to compute a terminal-regions decomposition a heuristic approach will be used; still,
the flexibility of the terminal regions concept allows to design a heuristic that computes bounds
that are at least as good as those provided by the Voronoi decomposition method [29], and
empirically often better—allowing for significantly stronger graph reductions.

Figure 1 depicts a PCSTP, a corresponding Voronoi decomposition as described in [29]—
which is in fact a particular terminal-regions decomposition—and an alternative terminal-regions
decomposition, found by our heuristic. The second terminal-regions decomposition yields a
stronger lower bound than the Voronoi decomposition. For the filled vertex the lower bounds
are 10 and 11, respectively (10 is also the optimal solution value for the instance).

3 Changing the problem class

A cornerstone of the reduction approach described in this section is the Steiner arborescence
problem (SAP), which is defined as follows: Given a directed graph D = (V,A), costs c : A →
Q≥0, a set T ⊆ V of terminals and a root r ∈ T , a directed tree (arborescence) S ⊆ D of
minimum cost

∑
a∈A(S) c(a) is required such that for all t ∈ T the tree S contains a directed

path from r to t. Associating with each a ∈ A a variable x(a) that indicates whether a is
contained in a solution (x(a) = 1) or not (x(a) = 0), one can state the well-known directed cut
(DCut) formulation [34] for an SAP (V,A, T, c, r):

Formulation 1. Directed cut (DCut)

min cTx (10)

x(δ−(U)) ≥ 1 for all U ⊂ V, r /∈ U,U ∩ T 6= ∅, (11)

x(a) ∈ {0, 1} for all a ∈ A. (12)
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1

3

1

(a) PCSTP instance (b) Voronoi decomposition

(c) terminal-regions decomposition

Figure 1: Illustration of a PCSTP instance (a), a Voronoi decomposition (b), and a second
terminal-regions decomposition (c). Potential terminals are drawn as squares. All potential
terminals have a prize of 5. If an upper bound less than 11 is known, the filled vertex in (c) can
be deleted by means of the terminal-regions decomposition depicted in (c), but not by means of
the Voronoi decomposition, unless also an optimal solution tree is given.

In [34] also a dual-ascent algorithm for DCut was introduced that allows to quickly compute
empirically strong lower bounds. Dual-ascent is one of the reasons it has proven advantageous to
transform undirected problems such as the SPG to SAP [21, 26] and use DCut, but furthermore
such transformations can provide stronger LP relaxations, both theoretically and practically [10,
16]. For the PCSTP such a transformation can be stated as follows [27]:

Transformation 1 (PCSTP to SAP).
Input: PCSTP (V,E, c, p)
Output: SAP (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, and c′ : A′ → Q≥0 with c′(a) :=
c({v, w}) for a = (v, w) ∈ A′; define M :=

∑
t∈Tp

p(t).

2. Add vertices r′ and v′0 to V ′.

3. For each i ∈ {1, ..., s}:

(a) add arc (r′, ti) of weight M to A′;

(b) add node t′i to V ′;
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(c) add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0;

(d) add arc (v′0, t
′
i) of weight p(ti) to A′.

4. Define set of terminals T ′ := {t′1, ..., t′s} ∪ {r′}.

5. Return (V ′, A′, T ′, c′, r′).

The underlying idea of the transformation is to add a new terminal t′i for each original
potential terminal ti and provide additional arcs that allow to connect t′i from any original
potential terminal tj with cost p(tj). Note that one can use a, similar, simplified transformation
if one adds an additional constraint to the resulting SAP [13]. However, besides providing a
“pure” SAP, Transformation 1 allows to directly apply dual-ascent. The following results still
hold if Transformation 1 is replaced by the simpler version.

Each optimal solution to the SAP obtained from Transformation 1 can be transformed to an
optimal solution to the original PCSTP. For IPC = (V,E, c, p) one can therefore define the follow-
ing formulation, which uses the SAP (V ′, A′, T ′, c′, r′) obtained from applying Transformation 1
on IPC :

Formulation 2. Transformed prize-collecting cut (PrizeCut)

min c′
T
x−M (13)

x satisfies (11), (12) (14)

y({vi, vj}) = x((vi, vj) + x((vj , vi)) for all {vi, vj} ∈ E (15)

y(e) ∈ {0, 1} for all e ∈ E. (16)

The y variables correspond to the solution to IPC ; note that removing them does not change
the optimal solution value, neither that of the LP relaxation. To avoid adding an artificial root
(which entails big M constants and symmetry) in the transformation to SAP, one can attempt to
identify vertices that are part of all optimal solutions. To this end, let vi, vj ∈ V , and let W be a
prize-constrained (vi, vj)-walk (as defined in Section 2). Define the left-rooted prize-constrained
length of W as:

l−pc(W ) := max{cpc(W (vi, vik)) | vik ∈ V (W ) ∩ (T ∪ {vj})}. (17)

Furthermore, define the left-rooted prize-constrained (vi, vj)-distance as:

d−pc(vi, vj) := min{l−pc(W ′) |W ′ ∈ Wpc(vi, vj)}. (18)

Note that in general d−pc is not symmetric. Definition (18) gives rise to

Proposition 5. Let vi, vj ∈ V . If
p(vi) > d−pc(vi, vj) (19)

is satisfied, then every optimal solution that contains vj also contains vi.

Proof. Let S be a tree with vj ∈ V (S) and vi /∈ V (S). Further, let W = (vi1 , ei1 , ..., eir , vir ) be
a prize-constrained (vi, vj)-walk with l−pc(W ) = d−pc(vi, vj) and define a := min{k ∈ {1, ..., r} |
vik ∈ V (S)} and b := min{k ∈ {a, a+ 1, ..., r} | vik ∈ Tp ∪ {vj}}. Note that

cpc(W (vi, via)) ≤ cpc(W (vi, vib)). (20)
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Add the subgraph corresponding to W (vi, via) to S, which yields a new connected subgraph S′.
If S′ is not a tree, make it one by removing redundant edges, without removing any node (which
can only decrease C(S′)). It holds that:

C(S′) ≤ C(S) + cpc(W (vi, via))− p(vi)
(20)

≤ C(S) + cpc(W (vi, vib))− p(vi)
≤ C(S) + l−pc(W )− p(vi)
= C(S) + d−pc(vi, vj)− p(vi)
(5)
< C(S).

The relation C(S′) < C(S) implicates that an optimal solution that contains vj also contains
vi.

As for dpc, computing d−pc is NP-hard. However, one can devise a simple algorithm for
finding upper bounds similar to the one for dpc: Let t0 ∈ Tp. The following adaptation of
Dijkstra’s algorithm provides a set of vertices T̄t0 such that d−pc(t0, v) < p(t0) for all v ∈ T̄t0 .
Initialize dist(v) := ∞ for all v ∈ V \ {t0}, and dist(t0) := 0. Start Dijkstra’s algorithm
from t0, but apply the following modifications: First, do not update vertex vj from vertex vi if
dist(vi) + c({vi, vj}) ≥ p(t0). Second, for t ∈ Tp \ {t0} set dist(t) (as computed by Dijkstra) to
dist(t)− p(t) before inserting t into the priority queue or when updating t (if it already is in the
priority queue). Third, all v ∈ V \ Tp can be reinserted into the priority queue after they have
been removed. Finally, define T̄t0 := {v ∈ V | dist(v) < p(t0)}.

By using LP information, this heuristic can be combined with Transformation 1 to obtain a
criterion for potential terminals to be part of all optimal solutions. First, note that if a separation
algorithm or dual-ascent is applied, one obtains reduced costs for an LP relaxation of DCut that
contains only a subset of constraints (11). Second, observe that given an SAP I ′ obtained from
IPC with corresponding optimal solutions S′ and S, for ti ∈ Tp it holds that ti ∈ V (S) if and
only if (v′0, t

′
i) /∈ A′(S′). As a consequence one obtains

Proposition 6. Consider (V ′, A′, T ′, c′, r′) obtained by applying Transformation 1 on IPC . Let
Ũ ⊆ {U ⊂ V ′ | r′ /∈ U,U ∩ T ′ 6= ∅} and let L̃ be the objective value and c̃ the reduced costs of an
optimal solution to the LP:

min c′
T
x−M (21)

x(δ−(U)) ≥ 1 for all U ∈ Ũ , (22)

x(a) ∈ [0, 1] for all a ∈ A′. (23)

Moreover, let U be an upper bound on the cost of an optimal solution to IPC . Finally, let ti ∈ Tp
and let T̄i ⊆ Tp such that V (S) ∩ T̄i 6= ∅ ⇒ ti ∈ V (S) for each optimal solution S to IPC . If∑

j|tj∈T̄i

c̃((v′0, t
′
j)) + L̃ > U (24)

holds, then ti is part of all optimal solutions to IPC .

If a ti ∈ Tp has been shown to be part of all optimal solutions, by building T̄i with Propo-
sition 5 and using (24), Proposition 5 can again be applied—to directly identify further tj ∈ Tp
that are part of all optimal solutions by using the condition p(tj) > d−pc(tj , ti). Identifying such

9



fixed terminals can considerably improve the strength of the techniques described in Section 2,
which usually leads to further graph reductions and the fixing of additional terminals. More-
over, in this case the PCSTP can be reduced to a rooted prize-collecting Steiner tree problem
(RPCSTP)1, which incorporates the additional condition that a non-empty set Tf ⊆ V of fixed
terminals needs to be part of all feasible solutions. Assuming Tp \ Tf = {t1, ..., tz}, we introduce
the following simple transformation:

Transformation 2 (RPCSTP to SAP).
Input: RPCSTP (V,E, Tf , c, p) and tp, tq ∈ Tf
Output: SAP (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, c′ := c, r′ := tq.

2. For each i ∈ {1, ..., z}:

(a) add node t′i to V ′,

(b) add arc (ti, t
′
i) of weight 0 to A′,

(c) add arc (tp, t
′
i) of weight p(ti) to A′.

3. Define set of terminals T ′ := {t′1, ..., t′z} ∪ Tf .

4. Return (V ′, A′, T ′, c′, r′).

A comparison of Transformation 1 and Transformation 2 is illustrated in Figure 2.

p=2.5p=7

1.10.6

1.5

(a) PCSTP instance

r′

M M

00

00

7 2.5

1.10.6

1.5

(b) SAP instance obtained
from Transformation 1

r′
02.5

1.10.6

1.5

(c) SAP instance obtained
from Transformation 2

Figure 2: Illustration of a PCSTP instance (left) and the equivalent SAP obtained by Transfor-
mation 1 (middle). Given the information that the potential terminal with weight p = 7 is part
of at least one optimal solution, Transformation 2 yields the SAP depicted on the right. The
terminals of the SAPs are drawn as squares and the (two) potential terminals for the PCSTP
are enlarged.

For an RPCSTP (V,E, Tf , c, p, r) we define the transformed rooted prize-collecting cut (PrizeRCut)
formulation, similar to PrizeCut, based on the SAP instance (V ′, A′, T ′, c′, r′) obtained from
Transformation 2:

Formulation 3. Transformed rooted prize-collecting cut (PrizeRCut)

min{c′Tx | x satisfies (11), (12), (x, y) satisfies (15), y satisfies (16)}. (25)
1Note that in the literature it is more common to denote only problems with exactly one fixed terminal as

rooted prize-collecting Steiner tree problem.

10



By PrizeRCut(IRPC , tp, tq) we denote the PrizeRCut formulation for an RPCSTP IRPC

when using (fixed) terminals tp, tq in Transformation 2. One may wonder whether the choice of
tp and tq affects vLP (PrizeRCut(IRPC , tp, tq)); in fact, it does not, and even more:

Proposition 7. Let IRPC be an RPCSTP and let tp, tq, tp̃, tq̃ be any of its fixed terminals. Define
R(ti, tj) := PLP (PrizeRCut(IRPC , ti, tj)). It holds that:

projy(R(tp, tq)) = projy(R(tp̃, tq̃)). (26)

Proof. Let (V,E, Tf , c, p) be the RPCSTP IRPC and denote the SAP resulting from applying
Transformation 2 on (IRPC , tp, tq) by (V ′, A′, T ′, c′, tq). Set D = (V ′, A′). Furthermore, let x, y
be a feasible solution to the LP relaxation of PrizeRCut(IRPC , tp, tq)—so (x, y) ∈ R(tp, tq). For
ease of presentation, we will use the notation xij instead of x((vi, vj)) for an arc (vi, vj). The
proposition will be proved in two steps: first by fixing tq and changing tp, and second by fixing
tp and changing tq. Note that due to symmetry reasons in both cases it is sufficient to show that
one projection is contained in the other.

1) projy(R(tp, tq)) = projy(R(tp̃, tq)) Let Ĩp̃ = (Ṽ , Ã, T̃ , c̃, tq) be the SAP resulting from ap-

plying Transformation 2 on (IRPC , tp̃, tq), and set D̃ := (Ṽ , Ã); note that Ṽ = V ′ and T̃ = T ′.

Define x̃ ∈ [0, 1]Ã by x̃((tp̃, t
′
i)) := x((tp, t

′
i)) for i = 1, ..., z (with the notation from Transforma-

tion 2) and by x̃ij := xij for all remaining arcs. Suppose that there is a U ⊂ Ṽ with tq /∈ U and

U ∩ T̃ 6= ∅ such that x̃(δ−
D̃

(U)) < 1. From x(δ−D(U)) ≥ 1 and the construction of x̃ it follows that

tp̃ ∈ U—otherwise x̃(δ−
D̃

(U)) ≥ x(δ−D(U)). For Uz := U \ {t′1, ..., t′z} one obtains

x(δ−D(Uz)) = x̃(δ−
D̃

(Uz)) ≤ x̃(δ−
D̃

(U)) < 1. (27)

Because of tq /∈ Uz and Uz ∩ T̃ ⊇ {tp̃} 6= ∅, one obtains a contradiction from (27). Therefore, x̃

satisfies (11) for the SAP Ĩp̃. Furthermore, ỹ defined by ỹ({vi, vj}) := x̃ij +x̃ji for all {vi, vj} ∈ E
satisfies ỹ = y.

2) projy(R(tp, tq)) = projy(R(tp, tq̃)) Define the SAP Ĩq̃ := (V ′, A′, T ′, c′, tq̃) (the result of
transforming (IRPC , tp, tq̃)). As there is only one underlying directed graph (namely D), in the
following we write δ− instead of δ−D. Let f be a 1-unit flow from tq to tq̃ such that fij ≤ xij for
all (vi, vj) ∈ A′. Define x̃ by x̃ij := xij + fji − fij for all (vi, vj) ∈ A′. Let U ⊂ V ′ such that
tq̃ /∈ U and U ∩ T ′ 6= ∅. If tq /∈ U , then f(δ−(U)) = f(δ+(U)) and so x̃(δ−(U)) = x(δ−(U)) ≥ 1.
On the other hand, if tq ∈ U , then f(δ+(U)) = f(δ−(U)) + 1, so

x̃(δ−(U)) ≥ x(δ−(U)) + 1 ≥ 1. (28)

Consequently, x̃ satisfies (11) for the SAP Ĩq̃. From xij + xji ≤ 1 for all (vi, vj) ∈ A′, it follows

that x̃ ∈ [0, 1]A
′
, and for the corresponding ỹ one verifies ỹ = y.

Consequently, if only the y variables are of interest, we write PrizeRCut(IRPC) instead
of PrizeRCut(IRPC , tp, tq). For the (heuristic) dual-ascent algorithm the choice of tp and tq
still matters, as it can change both lower bound and reduced costs. Therefore, we repeat the
dual-ascent reduction techniques [29] on several SAPs resulting from different choices of tp and
tq.

From the definitions of Transformation 1 and 2 one can acknowledge that switching from
PrizeCut to PrizeRCut (if possible) does not deteriorate (and can improve) the tightness of
the LP relaxation; due to its importance we formally state this observation:
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Lemma 1. For IPC = (V,E, c, p) let T0 ⊆ Tp such that T0 ⊆ V (S) for at least one optimal solu-
tion S to IPC . Let IT0

:= (V,E, T0, c, p) be an RPCSTP . With RT0
:= PLP (PrizeRCut(IT0

)),
R := PLP (PrizeCut(IPC)) it holds that

projy(RT0
) ⊆ projy(R). (29)

Proposition 8. With T0 and IT0 defined as in Lemma 1 the inequality

vLP (PrizeCut(IPC)) ≤ vLP (PrizeRCut(IT0)) (30)

holds and can be strict.

A proof of Proposition 8 is given in Appendix B.3.
Finally, by combining the reductions to RPCSTP and SAP with the reductions techniques

described in Section 2, it is sometimes possible to either eliminate or fix each potential terminal.
Hence the instance becomes an SPG, which allows to apply a number of further algorithmic
techniques [13, 26].

4 Reduction-based exact solving

This section describes how the new algorithms are integrated within a branch-and-cut framework.
Also, the performance of the resulting solver is discussed.

4.1 Interleaving the components within branch-and-cut

The exact solver described in this article is realized within the branch-and-cut based Steiner tree
framework SCIP-Jack [13]. SCIP-Jack already includes reduction techniques for PCSTP [29]
(in the sense of Section 2), but almost all of them have been replaced by new methods intro-
duced in this article. Furthermore, we use the reduction techniques for domain propagation,
translating the deletion of edges and the fixing of potential terminals into variable fixings in
the IP. Additionally, we employ a technique similar to the probing [30] approach for general
MIPs: Instead of setting binary variables to 0 or 1, we fix or delete potential terminals. By using
the left-rooted prize-constrained distance, in each case it is often possible to either fix or delete
additional potential terminals—which usually allows for further graph reductions.

SCIP-Jack also includes several (generic) primal heuristics that can be applied for PCSTP.
Most compute new solutions on newly built subgraphs (e.g. by merging feasible solutions). For
these heuristics the new reduction techniques can often increase the solution quality. In turn,
an improved upper bound can allow for further graph reductions (e.g. by the terminal-regions
composition) or to fix additional terminals (by means of Proposition 6). Additionally, we have
implemented a new primal heuristic that starts with a single (potential or fixed) terminal and
connects other terminals ti to the current subtree S if minv∈V (S) d

−
pc(ti, v) ≤ p(ti) (only upper

bounds on d−pc are used). A similar approach has been implemented as a local search heuristic.
Also the LP kernel interacts with the remaining components: By means of the prize-constrained

distances and upper bounds provided by the heuristics it is usually possible to switch to the
PrizeRCut formulation. In turn, the reduced costs and lower bound provided by an improved
LP solution can be used to reduce the problem size [29]—which can even enable further prize-
constrained walk based reductions. Moreover, besides the separation of (11), already imple-
mented in SCIP-Jack, we also separate constraints for TransRCut of the form

x(δ−(vj)) + x((tp, t
′
i)) ≤ 1 ti ∈ Tp \ Tf , vj ∈ {v ∈ V | d−pc(ti, v) < p(ti)}.

12



The constraints represent the implication that v ∈ V (S)⇒ t ∈ V (S) for any optimal solution S
if d−pc(t, v) < p(t). Corresponding constraints are separated for TransCut.

Finally, branching is performed on vertices—by rendering vertex vi to branch on a fixed
terminal (and transforming the problem to RPCSTP if not already done) in one branch-and-
bound child node and removing it in the other. As in probing, the implications from the left-
rooted prize-constrained distance often allow further graph changes. Throughout the solving
process, we switch to the SPG solver of SCIP-Jack [13] if all potential terminals could be fixed.

4.2 Computational results

To the best of our knowledge, the three strongest exact algorithms for PCSTP are from [11, 13,
22]. While no solver dominates on all benchmark test sets, the branch-and-bound solver from [22]
is competitive on almost all, and on several ones orders of magnitude faster—it is even faster
than state-of-the-art heuristic methods [12]. Thus it will in the following be used for comparison.

Table 1: Details on PCSTP tests sets.

Name Instances |V | |E| Status Description

JMP 34 100 - 400 315 - 1576 solved Sparse instances of varying structure,
introduced in [18].

Cologne1 14 741 - 751 6332 - 6343 solved
 Instances derived from the design of fiber

optic networks for German cities [24]
.

Cologne2 15 1801 - 1810 16719 - 16794 solved

CRR 80 500 - 1000 25000 solved Mostly sparse instances, based on
C and D test sets of the SteinLib [24].

E 40 2500 3125 - 62500 solved Mostly sparse instances originally for
SPG, introduced in [24].

ACTMOD 8 2034 - 5226 3335 - 93394 solved Real-world instances derived from
integrative biological network analysis [9].

HANDBI 14 158400 315808 unsolved
 Images of hand-written text derived

from a signal processing problem [1].
HANDBD 14 169800 338551 unsolved

PUCNU 18 64 - 4096 192 - 28512 unsolved Hard instances derived from the PUC set
for SPG. From 11th DIMACS Challenge.

H 14 64 - 4096 192 - 24576 unsolved Hard instances based on hypercubes.
From 11th DIMACS Challenge.

The computational experiments were performed on Intel Xeon CPUs E3-1245 with 3.40 GHz
and 32 GB RAM. For our approach CPLEX 12.7.12 is employed as underlying LP solver—
[22] does not use an LP solver. Furthermore, only single-thread mode was used (as [22] does
not support multiple threads. For the following experiments 11 benchmark test sets from the
literature and the 11th DIMACS Challenge are used, as detailed in Table 1.

Table 2 provides aggregated results of the experiments with a time limit of one hour. The
first column shows the test set considered in the current row. Columns two and three show the
shifted geometric mean [2] (with shift 1) of the run time taken by the respective solvers. The
next two columns provide the maximum run time, the last two columns the number of solved
instances.

The new solver is on each test set faster than or as fast as [22], both in terms of the maximum
and average run time. While both solvers can solve all instances from JMP, CRR, Cologne1,
Cologne2, and ACTMOD to optimality, on all remaining test sets except HANDBD the new
approach solves more instances than [22]. Moreover, it solves all instances solved by [22], and
the primal-dual gap on each instance that cannot be solved by either solver is smaller than

2http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 2: Computational comparison of the solver described in [22], denoted by [22], and the
solver described in this article, denoted by new.

mean time [s] max. time [s] # solved

Test set # [22] new [22] new [22] new

JMP 34 0.0 0.0 0.0 0.0 34 34
Cologne1 14 0.0 0.0 0.1 0.0 14 14
Cologne2 15 0.1 0.1 0.2 0.1 15 15
CRR 80 0.1 0.1 5.7 1.1 80 80
ACTMOD 8 0.9 0.3 3.5 1.5 8 8
E 40 1.8 0.2 >3600 34.5 37 40
HANDBI 14 36.5 14.9 >3600 >3600 12 13
HANDBD 14 34.1 17.9 >3600 >3600 13 13
I640 100 8.7 6.1 >3600 >3600 90 91
PUCNU 18 278.9 80.2 >3600 >3600 7 11
H 14 488.7 477.4 >3600 >3600 4 5

that of [22]—usually by a factor of more than 2. Furthermore, the new solver improves the
best known upper bounds for more than a third of the previously unsolved instances from the
DIMACS Challenge, with two being solved to optimality, as detailed in A.
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[20] Gunnar W. Klau, Ivana Ljubić, Andreas Moser, Petra Mutzel, Philipp Neuner, Ulrich Pfer-
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Table 3: Improvements on unsolved DIMACS instances.

Name gap [%] new UB previous UB
cc7-3nu opt 270 271
cc10-2nu opt 167 168
cc11-2nu 1.2 304 305
cc12-2nu 1.0 565 568
hc9p2 1.4 30230 30242
hc10p 1.4 59778 59866
hc10p2 1.5 59807 59930
hc11p 1.6 118729 119191
hc11p2 1.8 118979 119236
i640-341 0.5 29691 29700
i640-344 0.6 29910 29921

A Results for unsolved DIMACS instances

Using an extended time limit of four hours, we could improve or even solve more than one third
of the (previously) unsolved PCSTP instances from the 11th DIMACS Challenge. All improved
instances are listed in Table 3, with the first column giving the name of the instance, the second
its primal-dual gap, the third the improved found bound, and the fourth the previously best
known one.3

B Further proofs

B.1 Proof of Proposition 2

Proof. Initially, define b : V → Tp such that v ∈ Hb(v) for all v ∈ V . Assume that there exists
an optimal solution S such that vi ∈ V (S). Denote the (unique) path in S between vi and any
tj ∈ V (S) ∩ Tp by Qj and the set of all such paths by Q. First, note that |Q| ≥ 2, because if
Q just contained one path, say Ql, the single-vertex tree {tl} would be of smaller cost than S.
Second, if a vertex vk is contained in two distinct paths in Q, the subpaths of these two paths
between vi and vk coincide. Otherwise there would need to be a cycle in S. Additionally, there
are at least two paths in Q having only the vertex vi in common. Otherwise, due to the precedent
observation, all paths would have one edge {vi, v′i} in common, which could be discarded to yield
a tree of smaller cost than C(S).

Let Qk ∈ Q and Ql ∈ Q be two distinct paths with V (Qk) ∩ V (Ql) = {vi} such that

|{{vx, vy} ∈ E(Qk) ∪ E(Ql) | b(vx) 6= b(vy)}| (31)

is minimized. Define Q− := Q \ {Qk, Ql}. For all Qr ∈ Q−, denote by Q′r the subpath of Qr

between tr and the first vertex not in Htr . Suppose that Qk has an edge e ∈ E(S) in common
with a Q′r: Consequently, Ql cannot have any edge in common with Qr, because this would
require a cycle in S. Furthermore, Qk and Qr have to contain a joint subpath including vi and e.
But this would imply that Qk contained at least one additional edge {vx, vy} with b(vx) 6= b(vy).
Thus, Qr would have initially been selected instead of Qk.

Following the same line of argumentation, one validates that Ql has no edge in common with

3The solution of the instance cc7-3nu is already noted in the report [15], but is based on techniques described
in this article (which have not been published before).
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any Q′r. Conclusively, the paths Qk, Ql and all Q′r are edge-disjoint. Thus one obtains:

C(S) =
∑

e∈E(S)

c(e) +
∑

v∈V \V (S)

p(v)

≥
( ∑

Qr∈Q−
c(E(Q′r))

)
+ c(E(Qk)) + c(E(Ql)) +

∑
v∈V \V (S)

p(v)

≥
s−2∑
q=1

rpcH (tq) + c(E(Qk)) + c(E(Ql))

≥
s−2∑
q=1

rpcH (tq) + d(vi, vi,1) + d(vi, vi,2),

which proves the proposition.

B.2 Proof of Proposition 4

We will show theNP-hardness already for the SPG variant of the terminal-regions decomposition
(which implies the NP-hardness for PCSTP). For an SPG (V,E, T, c) define the terminal-regions
decomposition as a partition H =

{
Ht ⊆ V | T ∩Ht = {t}

}
of V such that for each t ∈ T the

subgraph induced by Ht is connected. Define for all t ∈ T

rH(t) := min{d(t, v) | v /∈ Ht}. (32)

Note that this definition is just a special case of the PCSTP version (for PCSTP instances with
sufficiently high vertex weights). First, the decision variant of the terminal-regions decomposition
problem is stated. Let α ∈ N0 and let G0 = (V0, E0) be an undirected, connected graph with
costs c : E → N. Furthermore, set T0 := {v ∈ V0 | p(v) > 0}, and assume that α < |T0|. For each
terminal-regions decomposition H0 of G0 define T ′0 ( T0 such that |T ′0| = α and rH0

(t′) ≥ rH0
(t)

for all t′ ∈ T ′0 and t ∈ T0 \T ′0. Let CH0
:=
∑

t∈T0\T ′0
rH0

(t). We now define the α terminal-regions

decomposition problem as follows: Given a k ∈ N, is there a terminal-regions decomposition
H0 such that CH0

≥ k? The next lemma forthwith establishes the NP-hardness of finding a
terminal-regions decomposition that maximizes (8), or (9)—which corresponds to α = 2 and
α = 3, respectively.

Lemma 2. For each α ∈ N0 the α terminal-regions decomposition problem is NP-complete.

Proof. Given a terminal-regions decomposition H0 it can be tested in polynomial time whether
CH0 ≥ k. Consequently, the terminal-regions decomposition problem is in NP.

In the remainder it will be shown that the (NP-complete [14]) independent set problem can be
reduced to the terminal-regions decomposition problem. To this end, let Gind = (Vind, Eind) be
an undirected, connected graph and k ∈ N. The problem is to determine whether an independent
set in Gind of cardinality at least k exists. To establish the reduction, construct a graph G0 from
Gind as follows. Initially, set G0 = (V0, E0) := Gind. Next, extend G0 by replacing each edge
el = {vi, vj} ∈ E0 with a vertex v′l and the two edges {vi, v′l} and {vj , v′l}. Define edge weights
c0(e) = 1 for all e ∈ E0 (which includes the newly added edges). If α > 0, choose an arbitrary

vi ∈ V0∩Vind and add for j = 1, ..., α vertices t
(j)
i to both V0 and T0. Finally, add for j = 1, ..., α

edges {vi, t(j)
i } with c0({vi, t(j)

i }) = 2 to E0.
First, one observes that the size |V0| + |E0| of the new graph G0 is a polynomial in the

size |Vind| + |Eind| of Gind. Next, rH0
(vi) = 2 holds for a vertex vi ∈ G0 ∩ Gind if and only
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if Hvi contains all (newly inserted) adjacent vertices of vi in G0. Moreover, in any terminal-

regions decomposition H0 for (G0, c0), it holds that rH0
(t

(j)
i ) = 2 for j = 1, ..., α. Hence, there

is an independent set in Gind of cardinality at least k if and only if there is a terminal-regions
decomposition H0 for (V0, E0, T0, c0) such that

CH0
≥ |Vind|+ k

This proves the proposition.

B.3 Proof of Proposition 8

Proof. First it follows from the construction of Transformation 1 and 2 that each optimal so-
lution x0, y0 to the LP relaxation of TransRCut(IT0

) can be transformed to a solution x, y
to the LP relaxation of TransCut(IPC) without changing the objective value: By setting
x((vi, vj)) := x0((vi, vj)) and x((vj , vi)) := x0((vj , vi)) for all {vi, vj} ∈ E, x((r′, t0)) := 1
for any t0 ∈ T0, x((ti, t

′
i)) := 1 for all ti ∈ T0, and by setting the remaining x((vi, vj)) accord-

ingly. Thus vLP (PrizeCut(IPC)) ≤ vLP (PrizeRCut(IT0)). To see that the inequality can be
strict, consider the following wheel instance (which is well-known to have an integrality gap for
DCut on SPG):

v0

v1v2

v3

v4 v5

v6

1

1

1

2

2

2

2

2

2

Set p(v0) = p(v1) = p(v3) = p(v5) = 4, p(v2) = p(v6) = 0, and p(v4) = ε with 0 < ε < 1. Let
T0 := {v0, v1, v3, v4, v5}. Let I be the PCSTP and IT0

the corresponding RPCSTP. It holds that

vLP (TransCut(I)) = 7.5 +
ε

2
< 8 = vLP (TransRCut(IT0

)). Part of the solution corresponding

to vLP (TransCut(I)) is shown below (with numbers next to the arcs denoting the x values), the
remaining x and y are set accordingly (e.g., x((r′, v1)) = 1).

v0

v1v2

v3

v4 v5

v6

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
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