Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

TakustraRe 7
D-14195 Berlin-Dahlem
Germany

B. ERDMANN J. LANG R. ROITZSCH

KARDOS™ — User’s Guide

ZIB-Report 02-42 (November 2002)



KARDOS™ — User’s Guide

Bodo Erdmann* Jens Lang! Rainer Roitzsch*

Abstract

The adaptive finite element code KARDOS solves nonlinear parabolic
systems of partial differential equations. It is applied to a wide range
of problems from physics, chemistry, and engineering in one, two, or
three space dimensions. The implementation is based on the program-
ming language C. Adaptive finite element techniques are employed to
provide solvers of optimal complexity. This implies a posteriori error
estimation, local mesh refinement, and preconditioning of linear sys-
tems. Linearly implicit time integrators of Rosenbrock type allow for
controlling the time steps adaptively and for solving nonlinear prob-
lems without using Newton’s iterations. The program has proved to
be robust and reliable.

The user’s guide explains all details a user of KARDOS has to con-
sider: the description of the partial differential equations with their
boundary and initial conditions, the triangulation of the domain, and
the setting of parameters controlling the numerical algorithm. A cou-
ple of examples makes familiar to problems which were treated with
KARDOS.

We are extending this guide continuously. The latest version is
available by network: http://www.zib.de/SciSoft/kardos/ (Downloads).

*Konrad-Zuse-Zentrum fiir Informationstechnik, Takustr. 7, D-14195 Berlin, Germany.
E-Mail: {erdmann,roitzsch}@zib.de

fTU Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, D-64289 Darmstadt,
Germany. E-Mail: lang@mathematik.tu-darmstadt.de



Contents

1 Introduction 4
2 The Numerical Concept 7
2.1 Linearly Implicit Methods . . . . . ... ... ... ... ... 8
2.2 Multilevel Finite Elements . . . . . .. . ... ... ... ... 11

3 Applications 14
3.1 Determination of Thermal Conductivity . . .. .. .. .. .. 14
3.2 Vertical Bubble Reactor . . . . . . ... ... ... .. ... 15
3.3 Semiconductor. . . . . ... 20
3.4 Pattern Formation . . . ... ... .. ... ... 21
3.5 Thermo-Diffusive Flames . . . . . . . ... ... .. ... ... 25
3.6 Nonlinear Modelling of Heat Transfer in Regional Hyperthermia 31
3.7 Tumour Invasion . . . .. ... .. ... L. 33
3.8 Linear Elastic Modelling of the Human Mandible . . . . . . . 35
3.9 Porous Media . . . .. ... ... ..o 39
3.10 Sorption Technology . . . . . . . ... ... ... ... .... 44
3.11 Combinable Catalytic Reactor System . . . . ... ... ... 46
3.12 Incompressible Flows . . . . . . .. .. ... ... .. ..... 47

4 Installation Guidelines 51
5 Define a New Problem 53
5.1 Coefficient Functions . . . . . . . ... ... 53
5.2 Initial and Boundary Values . . . . .. . ... ... ... ... 60
5.3 Declare a Problem . . . . ... ... ... .. 62
5.4 Triangulation of Domain . . . . . . . . ... ... ... .... 71
5.4.1 1D-geometry . . . . . . ... 71

5.4.2 2D-geometry . . . ... 73



5.4.3 3D-geometry . . .. ... 80

5.5 Number of Equations . . . . . . . ... ... ... ... 89
5.6 Starting the Code . . . . . . . . .. ... ... ... ..., 90
6 Commands and Parameters 93
6.1 Command Language Interface . . . . . . . ... ... .. ... 93
6.2 Dynamical Parameter Handling . . . . .. ... .. ... ... 101
Appendix. Implementation of Examples of Use 113



1 Introduction

Dynamical process simulation is nowadays the central tool to assess the mod-
elling process for large scale physical problems arising in such fields as biology,
chemistry, metallurgy, medicine, and environmental science. Moreover, suc-
cessful numerical methods are very attractive to design and control plants
quickly and efficiently. Due to the great complexity of the established models,
the development of fast and reliable algorithms has been a topic of continuing
investigation during the last years.

One of the important requirements that software must meet today is to
judge the quality of the numerical approximations in order to assess safely
the modelling process. Adaptive methods have proven to work efficiently
providing a posteriori error estimates and appropriate strategies to improve
the accuracy where needed. They are now entering into real-life applications
and starting to become a standard feature in simulation programs. In a
set of publications (e.g., [51], [56], [60], [54], [59], [63], [67]) we presented
one successful way to construct discretization methods adaptive in space
and time which are applicable to a wide range of relevant problems. The
proposed algorithms were implemented in the code KARDOS at the Zuse
Institute Berlin. Here, the development of adaptive finite element codes
started 1988. In the beginning there was the implementation of the adaptive
multilevel code KASKADE solving linear elliptic problems. Starting with the
basic ideas of Deuflhard, Leinen and Yserentant ([19]) there were a lot of
extensions and some applications, e.g., [42], [43], [79], [10], [44], [11], [12],
[13], [14], [45], [26], [28], [15], [8], [22], [17]. Technical informations about the
C- and C++- versions of KASKADE can be found in [27] and [7], or on the
KASKADE website [2].

KARDOS is based on the elliptic solver but includes essential extensions. It
treats nonlinear systems of parabolic type by coupling adaptive control in
time and in space.

We consider the nonlinear initial boundary value problem

B(z,t,u, Vu)oyu =V - (D(z,t,u,Vu)Vu) + F(z,t,u, Vu),
r e te(0,7T],
Bu(z,t) = g(x,t,u(x,t)), x€dQte(0,T],
u(z,0) =wug(r), x€9Q,

(1)

where Q C R?, d=1, 2 or 3, is a bounded open domain with smooth boundary



0N lying locally on one side of €2, and T'>0. The coefficient functions B =
B(z,t,u,Vu), D = D(z,t,u, Vu) and the right-hand side F' = F(z,t,u, Vu)
may depend on the solution u and its gradient Vu. In particular, F allows for
a convective term C'- Vu, which also can be specified explicitely in KARDOS,
compare Section 5. C' = C(x,t,u) may depend on the solution u. The
boundary operator B = B(x,t,u, Vu) stands for an appropriate system of
boundary conditions and has to be interpreted in the sense of traces. The
following boundary conditions are implemented:

e DIRICHLET type (B = 1), i.e.

u(z,t) = gz, t,u(z, t)).

e CAUCHY type, i.e.

Dt V) 22D gt u(a,).
on
e NEUMANN type, i.e.
D(z,t,u, Vu) du(z, 1) = 0.

on

The function wug(z) describes the intial values. The unknown u = u(x,t) is
allowed to be vector—valued.

This guide is organized as follows. In Section 2, we give a summary of the
underlying numerical concept. A more detailed description can be found in
the book of LANG ([60]). A user who is not interested in the mathematical
background is recommended to skip this section and to continue with Sec-
tion 3, where we present a set of problems giving the motivation for using
adaptive finite element techniques. Afterwards, in Section 4, we explain the
structure of the code and give hints how to install the code. In Section 5 we
finally describe in detail how the user can prepare the program in order to
solve his problem. KARDOS can be controlled by its own command language
which is presented in Section 6. Finally in the appendix, we give a collection
of user functions corresponding to the examples we introduced in Section 3.
These examples support the more general explanations given in section 5.

We are extending this guide continuously. The latest version is available by
network: http://www.zib.de/SciSoft /kardos/ (Downloads).

Acknowledgement.



The authors want to thank all their collaborators which helped to make
KARDOS to a successful code by bringing their problems into the code.



2 The Numerical Concept

In the classical method of lines (MOL) approach, the spatial discretization is
done once and kept fixed during the time integration. Discrete solution val-
ues correspond to points on lines parallel to the time axis. Since adaptivity in
space means to add or delete points, in an adaptive MOL approach new lines
can arise and later on disappear. Here, we allow a local spatial refinement in
each time step, which results in a discretization sequence first in time then
in space. The spatial discretization is considered as a perturbation, which
has to be controlled within each time step. Combined with a posteriori error
estimates this approach is known as adaptive Rothe method. First theoreti-
cal investigations have been made by BORNEMANN [13] for linear parabolic
equations. LANG and WALTER [46] have generalized the adaptive Rothe
approach to reaction—diffusion systems. A rigorous analysis for nonlinear
parabolic systems is given in LANG [60]. For a comparative study, we refer
to DEUFLHARD, LANG, and NOWAK [24].

Since differential operators give rise to infinite stiffness, often an implicit
method is applied to discretize in time. We use linearly implicit methods
of Rosenbrock type, which are constructed by incorporating the Jacobian
directly into the formula. These methods offer several advantages. They
completely avoid the solution of nonlinear equations, that means no Newton
iteration has to be controlled. There is no problem to construct Rosenbrock
methods with optimum linear stability properties for stiff equations. Accord-
ing to their one—step nature, they allow a rapid change of step sizes and an
efficient adaptation of the spatial discretization in each time step. Moreover,
a simple embedding technique can be used to estimate the error in time satis-
factorily. A description of the main idea of linearly implicit methods is given
in a first subsection.

Stabilized finite elements are used for the spatial discretization to prevent
numerical instabilities caused by advection—dominated terms. To estimate
the error in space, the hierarchical basis technique has been extended to
Rosenbrock schemes in LANG [60]. Hierarchical error estimators have been
accepted to provide efficient and reliable assessment of spatial errors. They
can be used to steer a multilevel process, which aims at getting a successively
improved spatial discretization drastically reducing the size of the arising
linear algebraic systems with respect to a prescribed tolerance (BORNEMANN,
ERDMANN, and KORNHUBER [15], DEUFLHARD, LEINEN and YSERENTANT
[19], BANK and SMITH [6]). A brief introduction to multilevel finite element
methods is given in a second subsection.



The described algorithm has been coded in the fully adaptive software pack-
age KARDOS at the Zuse Institute Berlin. Several types of embedded Rosen-
brock solvers and adaptive finite elements were implemented. KARDOS is
based on the KASKADE-toolbox [27], which is freely distributed at [1]. Nowa-
days both codes are efficient and reliable workhorses to solve a wide class of
PDEs in one, two, or three space dimensions.

2.1 Linearly Implicit Methods

In this section a short description of the linearly implicit discretization idea
is given. More details can be found in the books of HAIRER and WANNER
[40], DEUFLHARD and BORNEMANN [21], STREHMEL and WEINER [87]. For
ease of presentation, we firstly set B=1 in (1) and consider the autonomous
case. Then we can look at (1) as an abstract Cauchy problem of the form

Ou= f(u), u(ty) =up, t>1g, (2)

where the differential operators and the boundary conditions are incorpo-
rated into the nonlinear function f(u). Since differential operators give rise
to infinite stiffness, often an implicit discretization method is applied to inte-
grate in time. The simplest scheme is the implicit (backward) Euler method

Uptl = Uy + T f(un-i-l) ) (3)

where 7=t,,1—1, is the step size and u,, denotes an approximation of w(t)
at t =t,. This equation is implicit in u,; and thus usually a Newton-like
iteration method has to be used to approximate the numerical solution itself.
The implementation of an efficient nonlinear solver is the main problem for
a fully implicit method.

Investigating the convergence of Newton’s method in function space, DEU-
FLHARD [23] pointed out that one calculation of the Jacobian or an approx-
imation of it per time step is sufficient to integrate stiff problems efficiently.
Using u, as an initial iterate in a Newton method applied to (3), we find

(I—7J,) K, = 7f(u,), (4)
Upt1 = Up + Kn s (5)

where J,, stands for the Jacobian matrix 0,f(u,). The arising scheme is
known as the linearly implicit Euler method. The numerical solution is now
effectively computed by solving the system of linear equations that defines
the increment K,,. Among the methods which are capable of integrating stiff



equations efficiently, linearly implicit methods are the easiest to program,
since they completely avoid the numerical solution of nonlinear systems.

One important class of higher—order linearly implicit methods consists of ex-
trapolation methods that are very effective in reducing the error, see DEU-
FLHARD [20]. However, in the case of higher spatial dimension, several draw-
backs of extrapolation methods have shown up in numerical experiments
made by BORNEMANN [11]. Another generalization of the linearly implicit
approach we will follow here leads to Rosenbrock methods (ROSENBROCK
[81]). They have found wide-spread use in the ODE context. Applied to (2)
a so—called s—stage Rosenbrock method has the recursive form

1—1 i—1
(I =9 ) Kni = 7f(un+ Y i Kog) + 700 75 Knj, i =1(1)s, (6)
j=1 Jj=1

Up+1 = Up + Z szm 5 (7)
=1

where the step number s and the defining formula coefficients b;, a;;, and
7i; are chosen to obtain a desired order of consistency and good stability
properties for stiff equations (see e.g. HAIRER and WANNER [40], IV.7). We
assume ; = v > 0 for all ¢, which is the standard simplification to derive
Rosenbrock methods with one and the same operator on the left—hand side
of (6). The linearly implicit Euler method mentioned above is recovered for
s=1and y=1.

For the general system
B(t,u)0wu = f(t,u), ul(to) =up, t>tg, (8)

an efficient implementation that avoids matrix—vector multiplications with
the Jacobian was given by LUBICH and ROCHE [71]. In the case of a time-
or solution—dependent matrix B, an approximation of d;u has to be taken
into account, leading to the generalized Rosenbrock method of the form

i—1
(W 2 (9)

where the internal values are given by

i—1 i—1
ti=t, + o7, Ui:un+zaij Unj , Zi:(l_ai)zn"i_ZSiUnja
T
j=1 j=1

9



and the Jacobians are defined by

Jn = au(f(t, U) - B(t7 U)Z)|u:un,t:tn,zzzn )
On = at(f(t7 u) - B<t7 U)Z)\u:un,t:tn,zzzn .

This yields the new solution

s
Upt1 = Up + E m; Um,
=1

and an approximation of the temporal derivative 0;u

Zn+l = Zn + Zml Z Czj — Sij)Unj + (Ui — 1)Zn) .
] 1

The new coeflicients can be derived from «;;, v;;, and b; [71]. In the special
case B(t,u)=1, we get (6) setting Un;i=73_,_, ;7ijKnj, i=1,...,s.

Various Rosenbrock solvers have been constructed to integrate systems of the
form (8). An important fact is that the formulation (8) includes problems of
higher differential index. Thus, the coefficients of the Rosenbrock methods
have to be specially designed to obtain a certain order of convergence. Oth-
erwise, order reduction might happen. In [73, 71], the solver ROWDAIND2
was presented, which is suitable for semi—explicit index 2 problems. Among
the Rosenbrock methods suitable for index 1 problems we mention R0OS2
[18], RowpA3 [74], Ros3p [64], and RODASP [86]. More informations can
be found in [60].

Usually, one wishes to adapt the step size in order to control the temporal
error. For linearly implicit methods of Rosenbrock type a second solution of
inferior order, say p, can be computed by a so—called embedded formula

s
Up+1 = Uy + E miUnia
=1

7

> 1
Bpr1 = Zn+ Zrhl - Z ¢ij — Sij)Unj + (07 — 1)zn) ,
— =

where the original weights m; are simply replaced by m;. If p is the order
of un41, we call such a pair of formulas to be of order p(p). Introducing an
appropriate scaled norm || - ||, the local error estimator

Tny1 = ”un—i-l - ﬁn-i-lH + ||7—(zn+1 - én-l-l)” (10)

10



can be used to propose a new time step by

T ( TOL, 1, ) /(1)
T -

(11)

Tn+l =

Tn—1 Tn+1 T'n+1

Here, TOL; is a desired tolerance prescribed by the user. This formula is
related to a discrete PI-controller first established in the pioneering works of
GUSTAFFSON, LUNDH, and SODERLIND [38, 37]. A more standard step size
selection strategy can be found in HAIRER, N@RSETT, and WANNER ([39],
I1.4).

Rosenbrock methods offer several structural advantages. They preserve con-
servation properties like fully implicit methods. There is no problem to con-
struct Rosenbrock methods with optimum linear stability properties for stiff
equations. Because of their one—step nature, they allow a rapid change of
step sizes and an efficient adaptation of the underlying spatial discretizations
as will be seen in the next section. Thus, they are attractive for solving real
world problems.

2.2 Multilevel Finite Elements

In the context of PDEs, system (9) consists of linear elliptic boundary value
problems, possibly advection—-dominated. In the spirit of spatial adaptivity a
multilevel finite element method is used to solve this system. The main idea of
the multilevel technique consists of replacing the solution space by a sequence
of discrete spaces with successively increasing dimension to improve their
approximation property. A posteriori error estimates provide the appropriate
framework to determine where a mesh refinement is necessary and where
degrees of freedom are no longer needed. Adaptive multilevel methods have
proven to be a useful tool for drastically reducing the size of the arising linear
algebraic systems and to achieve high and controlled accuracy of the spatial
discretization (see e.g. BANK [5], DEUFLHARD, LEINEN, and YSERENTANT
[19], LANG [56]).

Let T, be an admissible finite element mesh at ¢ =t¢, and S} be the asso-
ciated finite dimensional space consisting of all continuous functions which
are polynomials of order ¢ on each finite element 7" € T},. Then the standard
Galerkin finite element approximation U, € S{ of the intermediate values
U,; satisfies the equation

(Ln U,f;-,aﬁ) = (rni,¢) forall ¢ € SY, (12)

11



where L,, is the weak representation of the differential operator on the left—
hand side in (9) and r,; stands for the entire right—hand side in (9). Since the
operator L, is independent of ¢ its calculation is required only once within
each time step.

It is a well-known inconvenience that the solutions U" may suffer from nu-
merical oscillations caused by dominating convective and reactive terms as
well. An attractive way to overcome this drawback is to add locally weighted
residuals to get a stabilized discretization of the form

(Lo Upis @) + Y (La Ubiyw(@))7 = (rpis 8) + D (i w(@))r,  (13)

TET) TeT

where w(¢) has to be defined with respect to the operator L, (see e.g.
FRrRANCA and FREY [33], LUBE and WEISS [70], TOBISKA and VERFURTH
[88]). Two important classes of stabilized methods are the streamline diffu-
sion and the more general Galerkin/least—squares finite element method.

The linear systems are solved by direct or iterative methods. While di-
rect methods work quite satisfactorily in one-dimensional and even two—
dimensional applications, iterative solvers such as Krylov subspace methods
perform considerably better with respect to CPU-time and memory require-
ments for large two— and three-dimensional problems. We mainly use the
BicasTtaB-algorithm [90] with ILU-preconditioning.

After computing the approximate intermediate values U”, a posteriori error
estimates can be used to give specific assessment of the error distribution.
Considering a hierarchical decomposition

St =Siez", (14)

where Z,‘i“ is the subspace that corresponds to the span of all additional
basis functions needed to extend the space S{ to higher order, an attractive
idea of an efficient error estimation is to bound the spatial error by evalu-
ating its components in the space ZZH only. This technique is known as
hierarchical error estimation and has been accepted to provide efficient and
reliable assessment of spatial errors (BORNEMANN, ERDMANN, and KORN-
HUBER [15], DEUFLHARD, LEINEN and YSERENTANT [19], BANK and SMITH
[6]). In LANG [60], the hierarchical basis technique has been carried over to

time-dependent nonlinear problems. Defining an a posteriori error estimator
Eh,€ZI™ b
+1 y

EM = E" + Z m;E (15)

12



with E" approximating the projection error of the initial value wu,, in ZZH
and E" estimating the spatial error of the intermediate value U”,, the local
spatial error for a finite element T € T}, can be estimated by nr:=||E" | 7.
The error estimator E” 41 is computed by linear systems which can be de-
rived from (13). For practical computations the spatially global calculation of
E™_| is normally approximated by a small element—by—element calculation.
This leads to an efficient algorithm for computing a posteriori error estimates
which can be used to determine an adaptive strategy to improve the accu-
racy of the numerical approximation where needed. A rigorous a posteriori
error analysis for a Rosenbrock—Galerkin finite element method applied to
nonlinear parabolic systems is given in LANG [60]. In our applications we
applied linear finite elements and measured the spatial errors in the space of

quadratic functions.

In order to produce a nearly optimal mesh, those finite elements 7" having
an error ny larger than a certain threshold are refined. After the refinement
improved finite element solutions U" defined by (13) are computed. The
whole procedure solve—estimate-refine is applied several times until a pre-
scribed spatial tolerance || E!, ||| <TOL, is reached. To maintain the nesting
property of the finite element subspaces coarsening takes place only after
an accepted time step before starting the multilevel process at a new time.
Regions of small errors are identified by their n—values.

13



3 Applications

Equation (1) comprises all problems which can be treated by KARDOS.

In this section we present some examples. Details of implementation follow
in the next chapters and in the Appendix.

3.1 Determination of Thermal Conductivity

Measurement of the thermal conductivity of molten materials is very diffi-
cult, mainly because the mathematical modelling of heat transfer processes
at high temperatures, with several different media involved, is far from being
solved. However, the scatter of the experimental data presented by different
authors using several methods is so large that any scientific or technological
application is strongly limited without serious approximations. The devel-
opment of new instruments for the measurement of the thermal conductivity
of molten salts, metals, and semiconductors implies the design of a specific
sensor for the measurement of temperature profiles in the melt, apart from
the necessary electronic equipment for the data acquisition and processing,
furnaces, and gas/vacuum manifolds.

Figure 1: Scheme of the hot-strip sensor.

In our application ([68], [69]), we consider a planar, electrically conducting
(metallic) element mounted within an insulating substratum. This equip-
ment is surrounded by a material whose thermal properties have to be deter-
mined, see Figure 1. From an initial state of equilibrium, Ohmic dissipation
within the metallic strip results in a temperature rise on the strip, and a

14



conductive thermal wave spreads out from it through the substratum into
the surrounding material. The temperature history of the metallic strip, as
indicated by its change of electrical resistance, is determined partly by the
thermal conductivity and the diffusivity of this material.

In order to identify the thermal conductivity of the material from available
measurements, a heat transfer equation in two space dimensions has to be
solved several times

pCLOT [0t =V - (AVT) + Q

The properties A, p, and C), of the materials are piecewise constant. This
equation has to be applied to three distinct regions: to the strip, to the
substrate, and to the material.

Due to strongly localised source terms and different properties of the involved
materials, we observe at the beginning steep gradients of the temperature
profiles that decrease in time. In such a situation, a method with auto-
matic control of spatial and temporal discretization is an appropriate tool,
see Figure 2.

Figure 3 shows the result obtained for a specially designed sensor. The
agreement between experimental and numerical data is quite satisfactory,
and it results in a water thermal conductivity of 0.606Wm 1K ~! at 25°C, a
value within 0.1% of the recommended one.

3.2 Vertical Bubble Reactor

Gas—fluid systems give rise to propagating phase boundaries changing their
shape and size in time. In the following we consider a synthesis process of
two gaseous chemicals A and B in a cylindrical bubble reactor filled with a
catalytic fluid (see Figure 4).

The bubbles stream in at the lower end of the reactor and rise to the top
while dissolving and reacting with each other. The right proportions of such
reactors depend, among other things, on the rising behaviour of the bubbles
and specific reaction velocities. Therefore, modelling and simulation of the
underlying two—phase system can provide engineers with useful knowledge
necessary to construct economical plants.

A fully three—dimensional description of the synthesis process would become
too complicated. We have used a one-dimensional two—film model developed
by RUPPEL [82]. It is based mainly on the assumption that the interaction

15



\/ g
AR :’T‘f A, Z
WA |
NANNANN |
J‘f \ /; \‘\ / i
/ J
/ \ / \ / \\\

Figure 2: Adaptive grid and isotherms of the solution at time t = 1.0.

- m - Experimental
] A Numerical
0517
7 —— Spline interpalation
4
00
0.0 02 04 06 08 L0

time/s

Figure 3: Simulation for water at 25°C.

16



) ® e A+B — C+D
®e
e © OO o C+D — E

) ® ¢ — F+G
0, o0

0 o

Figure 4: Bubble reactor in section and reaction mechanism.

between the gas and the reactor fluid (bulk) takes place in very thin layers
(films) with time-independent thickness (see Figure 5). In the first film F)
the chemical A dissolves into the bulk. From there it is transported very
fast to the second film F, where reaction with chemical B takes place. As a
result new chemicals C' and D are produced causing further reactions.

Defining the assignment (A, B,C, D, E, F,G) — (uq,...,u7) the model can
be expressed by the following equations.

Diffusive process in I} only for the chemical A:

02'&1

_Dl ax = 07 S (61762)7

(16)
5 Ouy I3

041D1 u1(&1) — —(51) = Co—— D, ur(&5) = ui (&)

Transport of all the chemicals through the bulk:

17



Film
F )

A B X
Bulk
Bubble
CB
CcA -
cil F>
cﬁu Cp
ciQ
Bu
CB
R
&1 £ & Bulk Fy &3

Figure 5: Two-film model based on interaction zones with constant
thickness (top). Behaviour of the chemicals A and B on the computa-
tional domain (bottom).

a 7 a 7 7
o 81; = S, () D, 2 &) + Sa(t)D, Z(o*), v € (€,0),6> 0,
(17)
n _ aul , _ n
“1(52):U1(52 )7 (52)—07 i # 1, ui(O ) :“z‘(o )
Reaction and diffusion in Fj:
62ui
—Dzw = Z ki,jujui, T &€ (0,53),t > 0.
J
0
wl0%) =u(0), (o) + T2 e) =, ()
ap Dy Dy’

8uz

—(&) =0, 1742, ui(w,0) = .

18



Here, D; and f3; denote the diffusion and the coupling coefficient of the i—th
component, and «; represents the Henry coefficient. The specific exchange
areas S1 and Sy depend nonlinearly on the decreasing bubble radii () and

9 (t)

14

@

3
o -
@ - N

reactor height

o
ey

-5 5 10 15 20
0 X [micrometer]

20
X [micrometer] reactor height

Figure 6: Evolution of the chemical component A (left) and of the grid
(right) where the reactor height is taken as time axis.

As a consequence of the applied two—film model the dynamical synthesis
process can be simulated with a fixed spatial domain involving the bulk
and the film F;. Equation (16) is solved analytically. Clearly, the spatial
discretization needs some adaptation due to the presence of internal boundary
conditions between bulk and film. We refer to [52] for a more thorough
discussion. Here we will report only on the temporal evolution of the grid
used to resolve the reaction front in the film Fy = [0, 15]um. Fig. 6 shows
that at the beginning the reaction front is travelling very fast from the outer
to the inner boundary of the film where the chemical B enters permanently.
During the time period [0.1, 0.5] the reaction zone does not change its position
which allows larger time steps. After that with decreasing concentration of
the chemical A at the outer boundary the front travels back, but now with
moderate speed. Obviously, the adaptively controlled discretization is able
to follow automatically the dynamics of the problem.

19



3.3 Semiconductor

An elementary process step in the fabrication of silicon-based integrated cir-
cuits is the diffusion mechanism of dopant impurities into silicon. The study
of diffusion processes is of great technological importance since their quality
strongly influences the quality of electronical materials. Impurity atoms of
higher or lower chemical valence, such as arsenic, phosphorus, and boron,
are introduced under high temperatures (900 — 1100°C') into a silicon crystal
to change its electrical properties. This is the central process of modern sili-
con technology. Various pair-diffusion models have been developed to allow
accurate modelling of device processing (see Figure 7).

Figure 7: Scheme of pair diffusion.

See for more details in [65].

Multiple Species Diffusion: Dopant atoms occupy substitutional sites in
the silicon crystal lattice, losing (donors such as arsenic and phosphorus)
or gaining (acceptors such as boron) at the same time an electron. One
fundamental interest in semiconductor devices modelling is to study the in-
teraction of two unequally charged dopants and the influence of the chemical
potential. Here, we select arsenic (As) and boron (B). In the following Fig-
ure 8, the shape of the initial dopant implantations at 950°C' is visualized.
The solutions obtained after thirty minutes show that the boron profile is
mainly influenced by the chemical potential while the arsenic concentration
is changed only slowly by diffusion. It can nicely be seen that the dynamic
mesh chosen by KARDOS is well-fitted to the local behaviour of the solution.

Phosphorus Diffusion: Here, we simulate phosphorus diffusion using a
detailed par-diffusion model. Since a diffusion mechanism based only on the
direct interchange with neighbouring silicon atoms turns out to be energeti-
cally unfavourable, native point defects called interstitials and vacancies are
taken into account. The phosphorus concentration shows its typical "kink
and tail* behaviour, a phenomenon which is known as anomalous diffusion
of phosphorus.

20



21

LOG(CONCENTRATION) [L/cubic centimeter]
Pal

18

DESvZN
VAVAVAVAV
DS SISISHN

Figure 8: .

3.4 Pattern Formation

Numerical simulations of a simple reaction-diffusion model reveal a surprising
variety of irregular patterns changing in time and in space. These patterns
arise in response to finite-amplitude perturbations. Some of them resemble
the steady irregular patterns recently observed in thin gel reactor experi-
ments. Others consist of spots that grow until they reach a critical size, at
which time they devide in two. If in some region the spots become over-
crowded, all of the spots in that region decay into the uniform background.
For details of modelling we refer to PEARSON [77].

Patterns occur in nature at very different scales, which explains the great
scientific interest in new pattern formation phenomena.

In this application, we collect some numerical studies recently done to test
our adaptive code.

Gray-Scott Model: Spot-Replication: The spot-replication in the model
of Gray-Scott is defined by reaction-diffusion equations in dimensionless units
of the following type:

21



LG8 COORE RUTRETION [ ke cond rmaier|

Figure 9: Snapshot at t=3min of total and substitutional phosphorus concentra-
tion, interstitials and vacancies and 1D-cut of all.

22



ou

% V(uVu) = —uv?+ F(1 —u)
% — V(e Vv) = wv® — (F + k)v.

Here k is the dimensionless rate constant of the second reaction and F' is
the dimensionless feed rate. The system size is 2.5 by 2.5, and the diffusion
coefficients are p; = 2.0 - 107° and py = 107°. The boundary conditions are
periodic. Initially, the entire system was placed in the trivial state (u = 1,
v =0). An area located symmetrically about the center of the grid was then
perturbed to (u = 1/2, v = 1/4). These conditions were then perturbed with
1% random noise in order to break the square symmetry.

We show some results in the Figures 10 and 11.

Figure 10: Spot-Replication: Concentration of second component at t=0, 50, 100,
150, 350, 550 (left). Corresponding adaptive FE-grids (right).

23



Complex patterns in a simple system:

0.3 ———r

0.2

0.1

0.0

Figure 11: Phase diagram of the reaction kinetics (top left). Pattern for F=0.024,
k=0.060 (top right), Patterns for F=0.05, k=0.062 (bottom left), and F=0.05,
k=0.060 (bottom right).

24



Animal Coat Markings: Similar models were provided by J.D. Murray
[72] in order to describe animal coat markings. A typical result is shown in
Figure 12.

Figure 12: Animal coat markings

3.5 Thermo-Diffusive Flames

Combustion problems are known to range among the most demanding for
spatial adaptivity when the thin flame front is to be resolved numerically.
This is often required as the inner structure of the flame determines global
properties such as the flame speed, the formation of cellular patterns or even

25



LI

Figure 13: Flame through cooled grid, Le = 1, k = 0.1. Reaction
rate w at t = 1, 20, 40, 60.

more important the mass fraction of reaction products (e.g. NO, formation).
A large part of numerical studies in this field is devoted to the different in-
stabilities of such flames. The observed phenomena include cellular patterns,
spiral waves, and transition to chaotic behaviour.

In Figures 13 and 14 we show laminar flames moving through a cooled grid
and in Figure 15 a reaction front in a non-uniformly packed solid.

Introducing the dimensionless temperature 6 = (T — Tynpurnt)/(Tournt —
Tunburnt), denoting by Y the species concentration, and assuming constant
diffusion coefficients yields



Figure 14: Flame through cooled grid, Le = 1, k = 0.1. Spatial
discretization at t = 1, 20, 40, 60.

27



where the Lewis number Le is the ratio of diffusivity of heat and diffusivity
of mass. We use a simple one-species reaction mechanism governed by an
Arrhenius law

’ Y 15(9(51)1)
w = —Yel+tal-
2Le ’
in which an approximation for large activation energy has been employed.
For details of the problem see in [60].

Figure 15: Non-uniformly packed solid. Concentration of the reactant and grid at
time t = 0.07, where blue corresponds to the unburnt and red to the burnt state.

A characterictic of the example from solid-solid combustion is that convection
is impossible and that the macroscopic diffusion for the species in solids is in
general negligible with respect to heat conductivity. With the heat diffusion
time scale as reference, the equations for a one step chemical alloying reaction
read

oT 9

- _ T —

5 kV Qw
o _
ot~

where T is the temperature divided by the reference temperature, Y the
concentration of the deficient reactant and () a heat dissipation parameter.
Concerning the reaction term quite a number of different models are em-
ployed in the literature. They generally contain an Arrhenius term for the
temperature dependence and use a first order reaction, i.e.,

28



_E
w=KyYe T,

E is a dimensionless activation energy. Besides these equations we provide
appropriate boundary and initial values. Details can be found in the book
of LANG [60].

Stability of Flame Balls: The profound understanding of premixed gas
flames near extinction or stability limits is important for the design of effi-
cient, clean-burning combustion engines and for the assessment of fire and
explosion hazards in oil refineries, mine shafts, etc. Surprisingly, the near-
limit behaviour of very simple flames is still not well-known. Since these
phenomena are influenced by bouyant convection, typically experiments are
performed in a micro-gravity environment. Under these conditions transport
mechanisms such as radiation and small Lewis number effects, the ratio of
thermal diffusivity to the mass diffusivity, come into the play, see the Fig-
ure 16.

Heat and

Combustion Products//

Radiation |
Flame

(Reaction Zone)

s>

//’Fresh Mixture

Figure 16: Configuration of a stationary flame ball. Diffusional fluxes of heat
and combustion products (outwards) and of fresh mixture (inwards) together with
radiative heat loss cause a zero mass-averaged velocity

Seemingly stable flame balls are one of the most exciting appearances which
were accidentally discovered in drop-tower experiments by RONNEY (1990)
and confirmed later in parabolic aircraft flights. First theoretical investiga-
tions on purely diffusion-controlled stationary spherical flames were done by
ZELDOVICH (1944). 40 years later his flame balls were predicted to be unsta-
ble (1984). However, encouraged by the above new experimental discoveries,
BUCKMASTER ET AL. (1990) have shown that for low Lewis numbers flame

29



balls can be stabilized including radiant heat loss which was not considered
before.

Figure 17: Two-dimensional flame ball with Le = 0.3, ¢ = 0.01. Iso-
thermals T = 0.1, 0.2,..., 1.0 at times t = 10 and 30.

The processes are governed by equations of the following structure:

oT 9
il vl AR _
BT \Y% w— S,
N Loy _
ot Le - Y
3 BT -1)
= v P
wo= Y el o)
T —T*
s = Cm.

Here, T := ((T) — (T).)/((T)y — (T),) is the dimensionless temperature
determined by the dimensional temperatures 7', T,,, and T}, where the indices
u and b refer to the unburnt and burnt state of an adiabetic plane flame,
respectively. Y represents the mass fraction of the deficient component of the
mixture. The chemical reaction rate w is modelled by an one-step Arrhenius
term incorporating the dimensionless activation energy [, the Lewis number

Le, and the heat dissipation parameter a := ((T'), — (T"),)/(T),. Heat loss is

30



generated by a radiation term s modelled for the optically thin limit. Further
explanation can be found in the book of WOUVER, SAUCEZ, and SCHIESSER
[63].

Typically, instabilities occur which result in a local quenching of the flame
as can be seen in the Figure 17. After a while the flame is splitted into two
seperate smaller flames. Nevertheless, we found quasi-stationary flame ball
configurations, fixing the heat loss by radiation and varying the initial radii
for a circular flame.

3.6 Nonlinear Modelling of Heat Transfer in Regional
Hyperthermia

Hyperthermia, i.e., heating tissue to 42°C, is a method of cancer therapy. It
is normally applied as an additive therapy to enhance the effect of conven-
tional radio- or chemotherapy. The standard way to produce local heating
in the human body is the use of electromagnetic waves. We are mainly
interested in regional hyperthermia of deep-seated tumors. For this type of
treatment usually a phased array of antennas surrounding the patient is used,
see Figure 18.

N

Figure 18: Patient model (torso) and hyperthermia applicator. The patient is
surrounded by eight antennas emitting radio waves. A water-filled bolus is placed
between patient and antennas

31



The distribution of absorbed power within the patient’s body can be steered
by selecting the amplitudes and phases of the antennas’ driving voltages.
The space between the body and the antennas is filled by a so-called water
bolus to avoid excessive heating of the skin.

Perfusion in Fat Perfusion in Muscle Perfusion in Tumor
0.75 F—T—T— 1T 45 T 0.85 F—T—T—T—T— T
0.7 4+ 0.8 B
P o065 P s5f P 0B 1
€ € € 0.7 i
2 06 2 3 K i
g g £ o6 g
= 0.55 = 25 =
< < < 0.6 B
2 0.5 2 2+ 2
2 3 2 oss 4
& 0.45 & 15 & 05 i
0.4 1+ 0.45 i
0.35 Il Il Il Il Il Il Il 0.5 Il Il Il Il Il Il 0.4 Il Il Il Il Il Il Il
38 40 42 44 46 48 50 52 38 40 42 44 46 48 50 52 38 40 42 44 46 48 50 52
Temperature T [Celsius] Temperature T [Celsius] Temperature T [Celsius]

Figure 19: Nonlinear models of temperature-dependent blood perfusion for muscle
tissue, fat tissue, and tumor.

The basis model used in our simulation is the instationary bio—heat—transfer—
equation proposed by PENNES [78].

pc%—f =V(kVT) — c,W(T = Tp) + Q.,

where p is the density of tissue, ¢ and ¢, are specific heat of tissue and blood,
k is the thermal conductivity of tissue; Ty is the blood temperature; W is the
mass flow rate of blood per unit volume of tissue. The power (), deposited
by an electric field E in a tissue with electric conductivity o given by

1
Qe = §U‘E‘2

Besides the differential equation boundary condtions determine the temper-
ature distribution. The heat exchange between body and water bolus can be
described by the flux condition

orT

Ko = BTy — T)

where Ty, is the bolus temperature and ( is the heat transfer coefficient.
No heat loss is assumed in remaining regions. We use for our simulations

B = 45 [W/m?/°C] and Ty = 25 [°C].

32



Studies that predict temperatures in tissue models usually assume a constant-
rate blood perfusion within each tissue. However, several experiments have
shown that the response of vasculature in tissues to heat stress is strongly
temperature-dependent (SONG ET AL., 1984). So the main intention of this
work was to develop new nonlinear heat transfer models in order to reflect
this important observation.

We assume a temperature dependence of blood perfusion W in the tissues
muscle, fat, and tumor (compare Figure 19):

(T — 45.0)?
A4 . = Y T < 45.
Woaate = 4 040385 exp (=——55==), T <450
4.00, T > 45.0
(T — 45.0)?
0.36 + 0.36 —— 7)) T <450
Wat = 036 exp (——55—), T<
0.72, T > 45.0
0.833 T < 37.0
Wiumor = { 0.833 — (T — 37.0)*% /5438, 37.0 < T < 42.0
0.416, T > 42.0

There are significant qualitative differences between the temperature distri-
bution predicted by the standard (linear) and the nonlinear heat transfer
model. Generally, the self-regulation of healthy tissue is better reflected by
the nonlinear model which is now used in practical computations.

See [29], [30], and [59] for more details.

3.7 Tumour Invasion

A tumour arises from a single cell which is genetically disturbed. A local
tumour is growing but it doesn’t grow arbitrarily. In fact, we get a balance
between new and dying cells because the tumour cannot be sufficiently sup-
plied with oxygen and other nutrients. This equilibrium can take months or
years. However, some tumours are able to produce proteins initializing the
growth of blood vessels. If these proteins come close to existing blood vessels
then new blood vessels are generated growing in direction of the tumour and

33



penetrating it. This improves the supplement of the tumour with oxygen
and nutrients. The tumour strengthens its growth.

The tumour starts to produce metastasis when meeting some blood vessels.
We distinguish the following steps: 1. Tumour cells are seperated from the
original tumour. 2. The seperated cells penetrate the neighbouring tissue
and enter the circulation of blood and lymph being transported to other lo-
cations in the body. 3. Somewhere the tumour cells leave the circulation and
penetrate healthy tissue. There they generate new tumours called metastasis.

Each of these steps is influenced by different factors, e.g., the presence of
special proteins. We consider a taxis-diffusion-reaction model of tumour cell
invasion described in ANDERSON ET AL.[4] and used in the considerations of
GERISCH and VERWER [35]. It describes the cell propagation and the process
of penetration the neighbouring tissue. The interaction between extracellular
matrix (ECM) and matrix degradative enzymes (MDE) is responsible for
that. ECM integrates regular cells into tissue. ECM is reduced by MDE
when healing a wound or developing an embryo. The increase of metastasis
is also determined by the reduction of ECM. The MDE necessary for that
can be produced by the tumour itself.

The model describes the behaviour of three components: the density n of
the tumour cells, the density ¢; of ECM, and the concentration ¢y of MDE.

We use the following equations in two space dimensions:

0

a_’z = V- (eVn) = V- (mVae),
(901 _

—at == ncicy,

0

% = V- (dVe) + an — fe.

with the constant parameters e, v, n, ds, a, and §. We have boundary
conditions of NEUMANN type for the components n and cy. There is no need
for boundary values for ¢;. For the initial values we refer to the publication
of ANDERSON ET AL. [4].

In particular, we can simulate the fragmentation of an initial cell mass, see
Figure 20.

We refer to the diploma thesis of SCHUMANN [84] for more details.

34



Figure 20: Fragmentation of initial cell mass and corresponding FEM mesh.

3.8 Linear Elastic Modelling of the Human Mandible

A detailed understanding of the mechanical behaviour of the human mandible
has been an object of medical and biomedical research for a long time. Bet-
ter knowledge of the stress and strain distribution, e.g., concerning standard
biting situations, allows an advanced evaluation of the requirements for im-
proved osteosynthesis or implant techniques. In the field of biomechanics,
FEM-Simulation has become a well appreciated research tool for the pre-
diction of regional stresses. The scope of this project is to demonstrate the
impact of adaptive finite element techniques in the field of biomechanical
simulation. Regarding to their reliability, computationally efficient adaptive
procedures are nowadays entering into real-life applications and starting to
become a standard feature of modern simulation tools. Because of its com-
plex geometry and the complicated muscular interplay of the masticatory
system, modelling and simulaion of the human mandible are challenging ap-
plications.

In general, simulation in structural mechanics requires at least a represen-
tation of the specimen’s geometry, an appropriate material description, and
a definition of the loading case. In our field, the inherent material is bone
tissue, which is one of the strongest and stiffest tissues of the body. Bone
itself is a highly complex composite material. Its mechanical properties are
anisotropic, heterogeneous, and visco-elastic. At a macroscopic scale, two
different kinds of bone can be distinguished in the mandible: cortical or
compact bone is present in the outer part of bones, while trabecular, cancel-
lous or spongious bone is situated at the inner, see Figure 21.

35



cortical bone

Figure 21: The bone structure of the human mandible.

Figure 22: The separation of cortical and cancellous bone as realized in the sim-
ulations (left). Loading case (right).

36



Computed tomography data (CT) are the base of the jawbone simulation. By
this, the individual geometry is quite well reproduced, also the separation of
cortical and trabecular bone, see Figure 22 (left). In this project, we restrict
ourselves to an isotropic, but inhomogeneous linear elastic material law due
to Lamé. Figure 22 (right) gives a view on a loading case, here the lateral
biting situation.

If we denote the displacement vector by u = (uy, ug, u3) and the strain tensor
by £ then we can write

—2u divE(u) — X grad(divu) = f

supplied by appropriate boundary values.

This equation can be transformed to

—V - (DVu) = f
where
A+2u 0 0 0 A O 0 0 A
0 uw 0 pw 00 000
0 0 u 0 0O w00
0 p O L 0 0 0 0 O
D= A 00 0 A+2u 0 0 0 A
0 00 0 0 1 0 pu O
0 0 p 0 0 O @0 0
000 0 0 u 0 u 0
A0 0 0 X O 0 0 A+2u
We use the relationships
\_ Ev B E
T Wrn-20) Mo+

between the elastic coefficients A, u, E (Young’s modulus), and v (Poisson’s
ratio).

37



For pre- and postprocessing including volumetric grid generation we use the
visualization package AMIRA [91]. After semiautomatic segmentation of the
CT data, the algorithm for generation of non-manifold surfaces gives a quite
satisfying reconstruction of the individual geometry. After some coarsening,
we get a mesh (see Figure 23) which can be used as initial grid (11,395
tetrahedra resp. 2,632 points) in the adaptive discretization process.

Figure 23: Initial grid for the adaptive finite element method (left). Grid after
three steps of adaptive refinement (right).

According to the required accuracy, the volumetric grid is adaptively refined
from level 0 up to level 3. The finest grid is shown in Figure 23. In Figure
24, we present the maximum absolute values of deformation (occuring in the
processus coronoidus) for both adaptive and uniform refinement of the grid.
The comparison makes it comprehensible that the adaptive method is much
more efficient if high accuracy is required.

0.0018 -

0.0016 -

0.0014 -

0.0012 -

maximum deformation

0.001

adaptive —w—
0.0008 - uniform  —&—

0 20000 40000 60000 80000 100000 120000 140000 160000
number of grid points

Figure 24: Adaptive versus uniform mesh refinement: comparative maximum
deformation results.

In the following, the results after adaptive calculation of a common postpro-

38



cessing variable, the von Mises equivalent stress, is discussed. It represents
the distortional part of the strain energy density for isotropic materials. Fig-
ure 25shows a comparison between the results from a calculation on the
coarse (level 0) grid versus that from the finest (level 3) grid. In both calcu-
lations, the stress maximum occurs around the processus coronoidus of the
working side whereas the condyles are nearly at the minimum level in spite of
the conylar reaction forces. On the level 0, the observed stress maximum of
2.81 MPa is about 65 % less than the maximum stress of 4.34 MPa achieved
on the level 4 calculation.

Figure 25: Von Mises equivalent stress on level 0, maximum: 2.81 MPa (left).Von
Mises equivalent stress on level 4, maximum: 4.34 MPa (right).

3.9 Porous Media

Brine Transport in Porous Media. High—level radioactive waste is often
disposed in salt domes. The safety assessment of such a repository requires
the study of groundwater flow enriched with salt. The observed salt con-
centration can be very high with respect to seawater, leading to sharp and
moving freshwater—saltwater fronts. In such a situation, the basic equa-
tions of groundwater flow and solute transport have to be modified (HAS-
SANIZADEH and LELNSE [41]). We use the physical model proposed by
TROMPERT, VERWER, and BLoM [89] for a non—isothermal, single-phase,
two—component saturated flow. It consists of the brine flow equation, the

39



salt transport equation, and the temperature equation and reads

np(BOp + 0w +adT)+V-(pq) = 0, (19)
npdw+pq-Vw+ V- (pJY) = 0, (20)
(nep+ (1 = n)p*c*)O,T + peq- VT +V-J' = 0 (21)

supplemented with the state equations for the density p and the viscosity u
of the fluid

p = poexp (a(T —Ty) + B(p — po) +yw) ,
po= po (1.0 + 1.85w — 4.0w?).

Here, the pressure p, the salt mass fraction w, and the temperature T are the
independent variables, which form a coupled system of nonlinear parabolic
equations. n is the porosity, p® the density of the solid, ¢® the heat capacity
of the solid, and pg the freshwater density.

The Darcy velocity q of the fluid is defined as

K
q= —Z(Vp—pg)

where K is the permeability tensor of the porous medium, which is supposed
to be of the form K = diag(k), and g is the acceleration of gravity vector.
The salt dispersion flux vector J% and the heat flux vector J7? are defined as

N ((ndm +arla) I+ %qu) YV,

AL — A
JT = — ((Ko—i—)\ﬂq\)]—i— LT‘quT) VT,

where |q| =+/q7q. ar, ar denote the transversal resp. longitudinal disper-
sity, and Ay, Ar the transversal resp. longitudinal heat conductivity.

Writing the system of the three balance equations (19)—(21) in the form (8),
we find for the 3 x 3 matrix B

npB npy npa
Bp,w,T)=1 0 np 0
0 0 nep+ (1 —n)p°c
Since the compressibility coefficient  is very small, the matrix B is nearly

singular and, as known (HAIRER and WANNER [40], VL.6), linearly implicit

40



time integrators suitable for differential algebraic systems of index 1 do not
give precise results. This is mainly due to the fact that for 3=0 the matrix B
becomes singular and additional consistency conditions have to be satisfied to
avoid order reduction. We have applied the Rosenbrock solver ROWDAIND2
[71], which handles both situations, 3=0 and [5#0.

An additional feature of the model is that the salt transport equation (20) is
usually dominated by the advection term. In practice, global Peclet numbers
can range between 10% and 10%, as reported in [89]. On the other hand,
the temperature and the flow equation are of standard parabolic type with
convection terms of moderate size.

P =Do
d,w =10
0, T =0

(1,1)

¢1=20 G =0
O,w =10 Op,w =10
0, T =0 0, T =0
y (0,0)
\ G2 = qp /
w = Wy
T="1T,

Figure 26: Two—dimensional brine transport. Computational
domain and boundary conditions for ¢ > 0. The two gates
where warm brine is injected are located at (z,y) : ﬁ <zx<

2 igxgﬂ

117 11

117

y=0.

41

Two-dimensional warm brine injection. This problem was taken from [89].



We consider a (very) thin vertical column filled with a porous medium. This
justifies the use of a two—dimensional flow domain Q = {(z,y) : 0 <,y <
1} representing a vertical cross—section. The acceleration of gravity vector

points downward and takes the form g= (0, —g)?, where the gravity constant
g is set to 9.81. The initial values at t=0 are

p(:E,y,O) = Po + (1 - y)p097 ’lU(fL',y,O) = 07 and T(Q?,y,O) = TO .

I

i
i
“f"*‘h‘ \‘ m "n

L
il hﬁ‘w
)

ks
i

il
N"‘fl"‘;d‘!"'
i ’

i
i

/
i
bl
o

i
W/C'/»

\‘&‘NWMV Zawava
WA
'ﬁ%k\d g

Figure 27: Two-dimensional brine transport. Distribu-

tion of salt concentration at ¢ = 500, 5000, 10000, and
20000 with corresponding spatial grids.

The boundary conditions are described in Figure 26. We set w, = 0.25,

T, =292.0, and ¢, = 10~*. The remaining parameters used in the model are
given in [63].

Warm brine is injected through two gates at the bottom. This gives rise to
sharp fronts between salt and fresh water, which have to be resolved with fine
meshes in the neighbourhood of the gates, see Figure 27. Later the solutions
smooth out with time until the porous medium is filled completely with brine.

42



Our computational results are comparable to those obtained in [89] with a
method of lines approach coupled with a local uniform grid refinement. In
Figure 28 we show the time steps and the degrees of freedom chosen by the
KARDOS solver to integrate over ¢ € [0,2-10%. The curves nicely reflect the
high dynamics at the beginning in both, time and space, while larger time
steps and coarser grids are selected in the final part of the simulation.

Three—dimensional pollution with salt water. Here, we consider Problem III
of [9] and simulate a salt pollution of fresh water flowing from left to right
through a tank Q={(z,y,2) : 0 <2 <250<y <0.50 < 2z < 1.0} filled
with a porous medium. The flow is supposed to be isothermal (a=0) and
incompressible (3=0). Hence, the problem consists now of two PDEs with a
singular 2 X 2 matrix B(p,w) multiplying the vector of temporal derivatives.
The acceleration of gravity vector takes the form g=(0,0,—g)T.

Step Size Control
1000

100 F k|

10 b E

LOG10(STEP SIZE)

0.01 k|

0.001 ! ! ! ! ! ! !
0.001 0.01 0.1 1 10 100 1000 10000

LOG10(TIME)

Degrees of Freedom

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

NUMBER OF POINTS

I T T S TR S R B

L B B B B B

I I I I I - .
1 0.01 0.1 1 10 100 1000 10000
LOG10(TIME)

o
Q
S

Figure 28: Two—-dimensional brine transport. Evolution
of time steps and number of spatial discretization points
for TOL,=TOL,=0.005.

The brine having a salt mass fraction w, =0.0935 is injected through a small
slit S={(z,y,1) : 0.375 < x < 0.4375, 0.25 < y < 0.3125} at the top of the
tank. We note that the slit chosen here differs slightly from that used in [9].

43



The initial values at t=0 are taken as
p(ZE, Yy, z, 0) = po + (003 —0.012x +1.0 — Z)pog, w((lj’y7 Z, O) — 07

and the boundary conditions are

p=p(r,y,2,0), w=0, onz =0,
p=0p(r,y,2,0), Ow =0, onx =25,

=0, 0,w=0, ony=0andy=1,
3=0, O,w=0, onz=0and {z=1}\S5,

pgs = —4.95-1072, w = w, = 0.0935, on S.

The parameters used in the three—dimensional simulation are also given in
[63]. Additionally, the state equation for the viscosity of the fluid is modified
to

1= po(1.0 + 1.85w — 4.1w? + 44.5w%) .

In Figure 29 we show the distribution of the salt concentration in the plane
y=0.28125 after two and four hours. The pollutant is slowly transported by
the flow while sinking to the bottom of the tank. The steepness of the solution
is higher in the back of the pollution front, which causes fine meshes in
this region. Despite the dominating convection terms no wiggles are visible,
especially at the inlet. An interesting observation is the unexpected drift in
front of the solution — a phenomenon which was also observed by BLoMm and
VERWER [9].

Adiabatic Flow of a Homogeneous Gas. The Figure 30 shows a typical
two-dimensional Barenblatt solution.

3.10 Sorption Technology

The common application for active thermal solar systems is the supply of
buildings with hot water. The main obstacle for heating purposes is the gap
between summer, when the major amount of energy can be collected, and
winter, when the heating energy is required. This demands the application
of a seasonal energy storage with small heat loss over a long time and well
defined load and unload behavior. For that purpose a new technique has
been developed, which is based on the heat of adsorption resp. desorption of
stream on silicagel (MITTELBACH and HENNING, [76]). The load of water
on the gel is a function of H,O partial pressure and temperature.

44



.

N

S

ﬁ77/7/77 RNEERRN

S

A S T A A S

ST
r/uuinnumnnnuuuunnr‘nuuu
e

RRRRERRRANE T
FrbrhR maz.??;;ig?w

‘aluumnrruurnnuuuunr
Vuuuuummnuuurmﬂ

Amudunuwuﬂwurnnu
RRRTRrRRRRRR
ERRRRERRRReRRR R

S N W

Level

Three—dimensional brine transport.

Figure 29

m

0.0,0.01,...,0.09,

lines of the salt concentration w

and four
ds (bot-

)

the plane y = 0.28125 after two hours (top

i

hours (middle), and corresponding spatial gr

tom) in the neighborhood of the inlet.

45



Figure 30: Initial (top) and final (bottom) solution at t=0.05.

For understanding and predicting the operation behavior of the adsorption
storage the temperature field and vapor density field in the bed have to be
calculated. First computations with KARDOS can be found in the report
[85].

3.11 Combinable Catalytic Reactor System

In this project we develop robust and efficient numerical software for the sim-
ulation of a special type of a catalytic fixed-bed reactor, see Figure 31. Our
project partners are constructing a set of combinable catalytic reactors of
different size, appropriate connecting devices and measurement tools. Com-
bining these moduls in various ways allows to investigate a chemical process
of interest under quite different physical conditions. The final aim of the
cooperation is to provide a software tool which allows an a priori simulation
of a planned combination.

46



4]
-

2 T e T

L

Figure 31: Combinable catalytic reactor (left) and stationary temperature distri-
bution (right).

3.12 Incompressible Flows

The aim of this project is to extend the KARDOS-software to incompress-
ible flow problems. It includes thermally coupled flows satisfying the ther-
modynamic assumptions for the Boussinesq approximation. The equations
governing this flow are

polOw + (v- V)] — uV?v +Vp = pog[l — B(T — Tpy)] + F,,
Vv = 0, (22)
poCpl0T + (v-V)T] — kV?*T = Fr,

where v describes the velocity field, p is the pressure, pg is the (constant)
density of the fluid, p is the dynamical viscosity, T is the temperature,  is
the thermal conductivity, g is the gravitational acceleration, ¢, is the specific
heat at constant pressure, F;, and Fr are force terms. The parameter 3 is the
volume expansion coefficient and Ty refers to a reference temperature state.
A Galerkin/least-squares method is applied in space to prevent numerical
instabilities forced by advection-dominated terms. First results obtained for
various benchmark problems are very promising, showing that the adaptive
algorithm implemented in KARDOS can also be a useful means to handle
CFD problems, see [57].

The development of methods for CFD is not yet finished in KARDOS.

47



Therefore, we decided to offer the official version of KARDOS without CFD
features.

Laminar Flow Around a Cylinder:

The flow past a cylinder is a widely solved problem. To make our com-
putations comparable with the results of a benchmark [83], we skip the
temperature and solve the conservation equations of mass and momentum.
The fluid density is defined as py = 1.0kg/m3, and the dynamic viscosity is
p=0.001m?/s. No force term F, is considered. The computational domain
has length L =2.2m and height H = 0.41m. The midpoint of the cylinder
with diameter D =0.1m is placed at (0.2m,0.2m). The inflow condition at
the left boundary is

v:(0,y,t) = 4Vy(H — y)/HQ, v, =0,

with a mean velocity V' =0.3m/s yielding a Reynolds number Re=20. We
further use non-flux conditions at the right outflow boundary, and v, =v, =0
otherwise. The flow becomes steady and two unsymmetric eddies develop be-
hind the cylinder. We start with a very coarse approximation of the given
geometry (81 points) to test our automatic mesh controlling. The resulting
fine grid at the steady state contains 2785 points. The drag and lift coeffi-
cients as well as the pressure difference Ap=p(0.15m,0.2m)—p(0.25m, 0.2m)
are in good agreement with the results given in [83].

=

Figure 32: Initial and adapted spatial grid.

Thermo-Convective Poiseuille Flow: Introducing suitable reference val-
ues, the system (22) may be written for the so—called forced convection prob-
lem in dimensionless form as follows

v+ (v-Vv—xVu+Vp = —2Tg,
Vv = 0,
OT+ (v-V)T — VT = 0,

48



Figure 33: Streamlines.

where source terms have been omitted. F'r is the Froude number and the
vector ¢ in the momentum equation denotes now the normalized gravity ac-
celeration vector. We consider a two—dimensional laminar flow in a horizontal
channel Q=10, 10] x [0, 1] suddenly heated from below with constant temper-
ature T'=1.0. At the opposite wall we choose T'=0.0 and non—flux conditions
for the temperature at the inlet and outlet. The boundary conditions for the
velocity field are taken from the previous problem, whereas a parabolic inlet
profile is prescribed by

v:(0,y,t) =6y(l—y), v,=0.

Figure 34: Evolution of temperature.

The dimensionless parameters have been taken as Re=10, Fr=1/150 and
Pe=40/9. The same setting was studied in [16]. Travelling transverse waves
can be observed (see Figures 34, 35). We plot also the transient evolution
of the temperature at the central point (5.0,0.5). Comparing our curve with

49



0

s -

s

TEMPERETUFE

-3 o

o

O
o

o4 b

oz b

Erecluilon of Temperdre 2 (50,051

Figure 35: Evolution of temperature at central point.

that given in [16], we observe a smoother function due to the higher accuracy
provided by the devised adaptive approach.

50



4 Installation Guidelines

Though the underlying algorithms of KARDOS for one, two, or three space
dimensions agree on many points, we provide different programs for each case.
That is caused by historical reasons and by the fact that the C language
doesn’t offer comfortable features to organise all in one code. Normally,
the program will be offered as a compressed tar-file, e.g., kardos.tar.Z. For
installation you have to perform the following steps independent from the
space dimension your version is made for.

e uncompress kardos.tar.Z
e tar -xf kardos.tar
e cd kardos
1s
The moduls of KARDOS are assembled in different directories:
— kardos: contains main program and some files with specific defi-
nitions)
— kaskSource: grid and node management
— timeSource: time integration routines

— mgSource: routines for 1D and 2D graphics, graphic functions are
based on X11

— problems: directories with exemplary problem specifications

e cd kardos/mgSource
configure
make

e cd ../kaskSource
make

e cd ../timeSource
make

e cd ../kardos
make

o1



e cd ../problems/user
setLink

kardos
do userl.ksk

Note: The makefiles are prepared for SUN/Solaris systems. For installation
on another Unix platform you have to modify the makefile in ../kardos, in
particular you have to choose the correct libraries and to describe their lo-

cations in the system folder. We give an example for a Linux system in the
makefile ”Makefile.Linux”.

If there is no Fortran compiler called “f77” on your machine you have to call
the available one in the makefile " Makefile” in the directory ../kaskSource.

Furthermore you should select the correct clock in the file "portab.c”. On
Sun Solaris systems the function gethrvtime() is used, which is not available
on Linux machines. Linux offers the function ”clock” instead of that.

If there occur any problems when installing KARDOS,
please contact
erdmann@zib.de or roitzsch@zib.de.

Example userl (see userl.ksk) computes the solution of a simple transient
Poisson equation (compare Section 5).

52



5 Define a New Problem

In this section we want to give all the information a user needs to check in
his problem of type (1).

That means the user has to define:

e the coefficients B, D, and the right-hand side F' which may depend on
the coordinates, the time, the solution, and its gradient,

e the initial values at the starting time,

e the boundary values which may be of type DIRICHLET, CAUCHY, or
NEUMANN,

e the geometry (2,

e setting of parameters and the input files configuring the program for
the new problem.

5.1 Coefficient Functions

The coefficients B, D, and the right-hand side F' from equation (1) have
always to be defined by functions in the source code. We recommend to do it
in the file user. c that you can find in the directory kardos/problems/user.
Note that you always have to recompile the code if you have changed some-
thing in the source code. Compare Section 4 for details.

In that directory we already prepared two examples which we will explain in
the following. But first we shall give a description of the general case.

We can write equation (1) as set of n equations

n

= ouj(z,t) ,
;Bij]ait - ;Dijuj = Fi(z,t,u,Vu), i=1(1)n. (23)

That means we have to define the elements of the matrices B = (B;;), D =
(D;;), and the components of the vector F' = (F;), i,j = 1(1)n. Note that
the elements D;; are defined as follows

Dijuj = V . (PZJVU]) — Qij . VU]' (24)

53



PY = (p), k,1=1(1)s,

and

Q7= (Q)), k=1(1)s,

where s € {1,2,3} is the dimension of the space. P represents the diffusion

term. The convection term Q can alternatively be considered as part of the
right-hand side F'.

For example, P¥ and Q¥ have in two space dimensions the shape
o (2 74)
7 7 J
P Py

o (5
@ =(%)

Using these definitions we also can write system (23) in the form

resp.

By -+ Bin % pil ... pln Vu,
I : - V- A :
B,i -+ B ‘%" po... prm Vu,
Qll an vul
+ S N (25)
fi
fn

To define the elements of B the user has to program two functions as interface.
In 2D, we get the following form. In the 3D case you have to add the third
coordinate z and a variable uz for the derivative Ou/0z. In the 1D version we
have not yet considered the dependencies of the gradient, i.e. the parameter
ux is not implemented.

o4



static int UserParabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy, real **B)

{
B[0] [0] = B11;
B[0] [1] = B12;
B[ﬁ;i][n-l] = Bnn;
return true;

}

static int UserParabolicStruct(int **structB, int **dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

structB[0] [0] F_FILL; dependsS[0] [0] = false;

structB[n-1] [n-1] F_FILL; dependsS[n-1] [n-1] = false;

*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

Here the values of B11,... correspond to the values Bj,... in the equation
(23). In the function UserParabolicStruct the user has the possibility
to inform on which elements of B are equal 0 and which not. Is an ele-
ment 0 then the corresponding element in the array structB can be set to
F_IGNORE instead of F_FILL. In this case the corresponding value in the func-
tion UserParabolic must not be defined, it is ignored in all computations.
A value true for an element in the matrix dependsS indicates that the cor-
responding element in B depends on the coordinates. If the value is false
the element of B will be assumed to be constant. The variables dependsT,
dependsU, and dependsGradU show if the values B, the solution, or the gra-
dient of the solution depend on time, respectively. (Pay attention: these

95



three variables are not yet implemented in the 1D version!)

Note, that we start the numbering with index 0 instead of 1 as we did above.
That’s the difference between mathematical description and C programming.
This convention is used also in all the other interface functions.

Analogously we can describe the interface for the matrices P¥ and the vectors
Q%Y. For the two-dimensional space it reads

static int UserLaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real **matXY,
real **matYX, real **matYY)

matXX[0] [0] = P11_xx;
matXY[0] [0] = P11_xy;
matYX[0] [0] = P11_yx;
matYY[0] [0] = P1l_yy;

matXX[0] [1] = P12_xx;
matXY[0] [1] = P12_xy;
matYX[0] [1] = P12_yx;
matYY[0] [1] = P12_yy;

matXX[n-1] [n-1] = Pnn_xx;
matXY[n-1] [n-1] = Pnn_xy;
matYX[n-1] [n-1] = Pnn_yx;
matYY[n-1] [n-1] = Pnn_yy;

return true;

static int UserLaplaceStruct(int **structD, int **dependsS,
int *dependsT,
int *dependsU, int *dependsGradU)
{
structD[0] [0]
structD[0] [1]

false;
false;

F_FILL; dependsS[0] [0]
F_FILL; dependsS[0] [1]

56



structD[n-1] [n-1] = F_FILL; dependsS[n-1] [n-1] = false;

*dependsT = false;
*dependsU false;
*dependsGradU = false;

return true;

static int UserConvection(real x, real y,
int classA, real t, real *u,
real **matX, real **matY)

{
matX[0] [0] = Q11_1;
matY[0] [0] = Q11_2;
matX[0] [1] = Qi2_1;
matY[0] [1] = Q12_2;

matX[n-1] [n-1]
matY[n-1] [n-1]

Qnn_1;
Gnn_2;

return true;

static int UserConvectionStruct(int **structQ, int **dependsS,
int *dependsT, int *dependsU)

{
structQ[0] [0] = F_FILL; dependsS[0] [0] = true;
structQ[0] [1] = F_FILL; dependsS[0] [1] = true;
structQ[n-1] [n-1] = F_FILL; dependsS[n-1] [n-1] = true;
structQ[n-1] [n-1] = F_FILL; dependsS[n-1] [n-1] = true;

o7



*dependsT = false;
*dependsU false;

return true;

3

The use of the parameters dependssS, dependsT, dependsU, and dependsGradU
is the same as in the definition of the parabolic term B. If a matrix P¥ or a
vector Q% is zero it must not be mentioned in the functions UserLaplace and
UserLaplaceStruct, resp. UserConvection and UserConvectionStruct.
Alternatively, the user can explicitely assign F_IGNORE (default!) to that
element of structD or structQ.

The right-hand side (source term) of the equation is also coded in two func-
tions, here shown for the 2d case.

static int UserSource(real x, real y, int classA, real t,
real *u, real *ux, real *uy, real *vec)
{
vec[0]

F1;

vec[n-1] Fn;

return true;

¥

static int UserSourceStruct(int *structF, int *dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)
{
structF [0]

F_FILL; dependssS [0] false;

structF [n-1] F_FILL; dependsS [0] false;

*dependsT = false;

58



*dependsU = false;
*dependsGradU = false;

return true;

3

Dependencies of space, time, solution and its gradient are taken into account
in the same manner as in the parabolic or laplacian terms. A component in
structF is set to F_IGNORE if the corresponding component of F' vanishes.

If the right-hand side F' depends on the solution u, the user may specify the
values of the Jacobian matrix. See the following example for n equations in
two space dimensions.

static int UserJacobian(real x, real y, int classA,
real t, real *u, real *ux,
real *uy, real *xmat)

{
mat [0] [0] = dF1_duil;
mat [0] [1] = dF1_du2;
mat [0] [n-1] = dF1_dun;
mat [n-1] [0] = dFn_dul;
mat [n-1] [1] = dFn_du2;
mat[n-1] [n-1] = dF1_dun;

return true;

static int UserJacobianStruct(int **structld,
int **dependsXY)
{
structJ[0] [0]
structJ[0] [1]

F_FILL;  dependsXY[0] [0]
F_FILL;  dependsXY[0] [1]

true;
true;

59



structJ[0] [n-1] = F_FILL; dependsXY[0] [n-1] = true;
structJ[n-1] [0] = F_FILL; dependsXY[n-1] [0] = true;
structJ[n-1] [1] = F_FILL; dependsXY[n-1] [1] = true;

structJ[n-1] [n-1] F_FILL; dependsXY[n-1] [n-1] = true;

return true;

The terms of shape dFi_duj stand for 0F;/0u;. If these Jacobian functions
are not provided by the user the program will compute the derivatives nu-
merically.

5.2 Initial and Boundary Values

From equation (1) we can derive the boundary conditions in the following
form

U; = Y, 1=1 1)77,, on FD>

(
Z?:l PijVuj ‘n = gi, 1= 1(1)71, on Fc, (26)
> PyVu;-n = 0, i=1(1)n, onTy.
The parts I'p, ', and I' y must be specified by the description of the domain,
see subsection 5.4. Boundary values of DIRICHLET type (on I'p) have to be

defined in a function, which is evaluated in a boundary point for each of the
n equations.

static int UserDirichlet(real x, real y, int classA, real t,
real *u, int equation, real *bVal)

{
switch (equation)
{
case 0:
bval[0] = B1-u[0];
break;

60



case 1:

case n-1:
bVal[n-1] = Bn-ul[n-1];
break;

return true;

}

Note, that the boundary values must be written in the implicit form ~; — u;.
If the DIRICHLET boundary I'p is empty, then there is no need to define this
function. The values B1,....Bn correspond to 71,..., ¥, which may depend on
the coordinates z, ..., the time ¢, and the solution w.

Boundary values of type NEUMANN must not be specified.

However, for boundary values of type CAUCHY (on I'¢) the user has to supply
a function defining the value of &;, where the parameter equation denotes
the number ¢ of the considered equation. The values of £ may depend on the
coordinates x, ..., the time ¢, and the solution wu.

static int UserCauchy(real x, real y, int classA, real t, real *u,
int equation, real *fVal)
{
fval[0] = xi(equation);

return true;

3

The initial values are given by n (maybe constant) functions ug1,..., Ugn.
They will be specified in a function together with the derivatives Odug;/0t.
Note that the derivatives have to be specified only when the coefficients B;;
in (23) depend on the solution or the gradient of the solution.

static int UserInitialFunc(real x, real y, int classA,
real *start, real *startUt)

{
start [0] = U01;

61



startUt [0] = Ut01;
start [n-1] = UOn-1;
startUt[n-1] = UtOn-1;

return true;

5.3 Declare a Problem

Once the user has defined the functions specifying his problem, e.g.,
UserParabolic(...), UserParabolicStruct(...),

UserLaplace(...), UserLaplaceStruct(...),

UserConvection(...), UserConvectionStruct(...),

UserSource(...), UserSourceStructy...),

UserJacobian(...), UserJacobianStruct(...),

UserDirichlet(...), UserCauchy(...), and Userlnitial(...),

he can establish a new problem by calling the function SetTimeProblem in
the function SetUserProblems() at the end of the file user.c.

SetUserProblems ()
{

SetTimeProblem("user" ,userVarName,
UserParabolic,
UserParabolicStruct,
UserLaplace,
UserLaplaceStruct,
UserConvection,
UserConvectionStruct,
UserSource,
UserSourceStruct,
UserJacobian,
UserJacobianStruct,
UserInitialFunc,
UserCauchy,
UserDirichlet,

62



UserSolution));

Thus we get a new problem called “user” defined by all these functions as
introduced before. A problem with this name is already prepared by the
authors. The user can take this example and modify it in order to define his
problem. We prefer to introduce new function names and call the function
SetTimeProblem a second time. Thus we can save a set of problems which
are distinguished by their names. UserSolution can be used if the true
solution of the problem is known, e.g., when testing the code. If not, we set
it to 0. The same is valid for other functions. The parameter userVarName
is an array of names used to define names for the components of the solution,
e.g. first component means temperature’.

We give two examples:

Example 1. We want to compute the solution of the simple heat transfer
equation in 2D, given by

or

u = 0 onlIp, (27)
oT
k- = B(Ty—T) onTe.

k = k(x,y) may depend on the coordinates and F' = F(z,y,t) on time and
space.

First we implement our coefficient functions, boundary and initial values.

static int Ex1Parabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy, real **mat)

{
mat[0] [0] = 1.0;

return true;

}

static int Ex1ParabolicStruct(int **structM, int **dependsS,
int *dependsT,

63



int *dependsU, int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsS[0][0] = false;
*dependsT = false;
*dependsU = false;

*dependsGradU = false;

return true;

static int DemollLaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real *x*xmatXX, real *x*matXyY,
real **matYX, real **matYY)

{
matXX[0] [0] = k(x,y);
matXY[0] [0] = 0.0;
matYX[0] [0] = 0.0;
matYY[0] [0] = k(x,y);

return true;

static int ExlLaplaceStruct(int **structM, int **dependsS,
int *dependsT,
int *dependsU, int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsS[0][0] = true;
*dependsT = false;
*dependsU = false;

*dependsGradU = false;

return true;

static int Exl1Source(real x, real y, int classA, real t,
real *u,
real *ux, real *uy, real *vec)

64



vec[0] = F(x,y,t);

return true;

3

static int Exl1SourceStruct(int *structF, int *dependsS,
int *dependsT, int *dependsU, int *dependsGradU)

{
structF[0] = F_FILL; dependsS[0] = true;
*dependsT = true;
*dependsU = false;

*dependsGradU = false;

return true;

static int Exl1InitialFunc(real x, real y, int classA,
real *start, real *startUt)

{
start [0] = 0.0;

return true;

¥

static int Ex1Dirichlet(real x, real y, int classA, real t,
real *u,
int equation, real *fVal)

{
fVal[0] = 0.0-ul[0];

return true;

by

static int Ex1Cauchy(real x, real y, int classA, real t,
real *u, int equation, real *fVal)

{
fVal[0] = beta*x(TO - ul[0]);

return true;

3

65



Now we set up the new problem denoted by “examplel”.

SetTimeProblem("examplel",ex1VarName,
Ex1Parabolic,
Ex1ParabolicStruct,
Exl1Laplace,
Exl1LaplaceStruct,
0,

0,

Ex1Source,
Ex1SourceStruct,
0,

0,
Ex1InitialFunc,
Ex1Cauchy,
Ex1Dirichlet,
0));

We have no terms for the convection or the Jacobian nor for the true solution,
so we set the corresponding parameters in the call of SetTimeProblem to 0.
The parameter ex1VarName is used to set a name to the solution 7', e.g.,

static char *exlVarName[] = {"temperature"};

Example 2.

Here we present a system with two equations describing spot replication in
Q =10,1] x [0,1] in 2D, compare the example in Section 3.

ou

% V(uVu) = —uv?+ F(1 —u)

v 9

5 V(uaVo) = wv® — (F +k)v
u=1v=0 on I'p =00

66



and the initial condition in [0.25,0.75] x [0.25,0.75]:
u = 1.0—0.5sin?*(4.0mx) sin?(4.07y),

v = 0.25sin*(4.0mx) sin®(4.07y),

elsewhere: v = 1.0, v = 0.0.

We get the following implementation of these equations

static int Ex2Parabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **mat)
{
mat [0] [0]
mat [1] [1]

o
_ e
o O

return true;

¥

static int Ex2ParabolicStruct(int **structM, int **dependsS,
int *dependsT,
int *dependsU, int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsS[0] [0] = false;
structM[0] [1] = F_IGNORE; dependsS[0][1] = false;
structM[1] [0] = F_IGNORE; dependsS[1][0] = false;
structM[1] [1] = F_FILL; dependsS[1] [1] = false;
*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int Ex2Laplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real **matXY,
real **matYX, real **matYY)

67



matXX[0] [0] =
matXY[0] [0] =
matYX[0] [0] =
matYY[0] [0] =

matXX[1][1] =
matXY[1][1] =
matYX[1][1] =
matYY[1][1] =

return true;

N O O N

= O O =

.0e-5/0.25;
.0;
.0;
.0e-5/0.25;

.0e-5/0.25;
.0;
.0;
.0e-5/0.25;

static int Ex2LaplaceStruct(int **structM, int **dependsS,

structM[0] [0]
structM[0] [1]
structM[1] [0]
structM[1] [1]

*dependsT
*dependsU
*dependsGradU

return true;

int *dependsT,
int *dependsU, int *dependsGradU)

F_FILL; dependsS[0] [0] = false;
F_IGNORE; dependsS[0][1] = false;
F_IGNORE; dependsS[1][0] = false;
F_FILL; dependsS[1] [1] = false;
false;
false;
false;

static int Ex2Source(real x, real y, int classA, real t,

{

real *u, real *ux, real *uy,
real *vec)

vec[0] = -ul0]*ul1]*ul[1] + 0.024%(1.0-ul0]);

vec[1]

return true;

ulO0]*u[1]*ul[1] - (0.024+0.06)*u[1];

static int Ex2SourceStruct(int *structV, int *dependsS,

int *dependsT,

68



int *dependsU, int *dependsGradU)

{
structV[0] = F_FILL; dependsS[0] = true;
structV[1] = F_FILL; dependsS[1] = true;
*dependsT = false;
*dependsU = true;
*dependsGradU = false;

return true;

static int Ex2InitialFunc(real x, real y, int classA,
real *start, real *startUt)
{
if ((0.25<=x)&&(x<=0.75)&&(0.25<=y)&& (y<=0.75))
{

start[0] = 1.0 - 0.5*pow(sin(4.0*REALPI*x),2.0)
*xpow (sin(4.0*%REALPI*y),2.0);
start[1] = 0.25*pow(sin(4.0*REALPI*x),2.0)
*pow (sin(4.0*%REALPI*y),2.0);
}
else
{
start[0] = 1.0;
start[1] = 0.0;
}

return true;

3

static int Ex2Dirichlet(real x, real y, int classA, real t,
real *u, int equation, real *fVal)

{
switch (equation)
{
case 0: fVal[O] = ul[0] - 1.0;
break;
case 1: fVal[0O] = ull1] - 0.0;
break;
}

69



return true;

These functions are used to introduce the new example “example2” by the
function SetTimeproblem .

SetTimeProblem("example2",ex2VarName,
Ex2Parabolic,
Ex2ParabolicStruct,
Ex2Laplace,
Ex2LaplaceStruct,

Ex2Source,
Ex2SourceStruct,
0,

0,
Ex2InitialFunc,
0,

Ex2Dirichlet,
0));

The array of strings ex2VarName contains the names of the two components
of the solution , i.e.,

static
char *ex2VarName[] = {"concentration_0","concentration_1"}7};

Finally the user has to provide a geometrical description of the domain €2
including the specification of the boundaries as well as a classification of
subdomains (e.g., in order to distinguish material properties).

70



5.4 Triangulation of Domain

KARDOS expects a triangulation of the domain €2 in a file. The triangulation
has to be given in the following format:

5.4.1 1D-geometry

A triangulation in 1D means a partiton of an interval [a, b] and the definition
of the two boundary points a and b. The data have to be given in the form
(after a %-—sign the rest of a line is comment):

name of triangulation

Dimension: (number of points,number of edges)noOfBoundaryTypes
% noOfBoundaryTypes: number of boundary types

% definition of boundary types

0:boundary type

1l:boundary type
END
% it follows a list of points
0: coordinate of point 1,type of boundary
or ’I’ for inner point
1: coordinate of point 2,type of boundary
or ’I’ for inner point

2: coordinate of point n,type of boundary
or ’I’ for inner point
END
% in this section we find the edges defined by their vertices
0: (number vertex 1, number of vertex 2)
1: (number vertex 1, number of vertex 2)

m: (number vertex 1, number of vertex 2)
END

71



As an example, we give the triangulation (name unit) of the unit interval
[0, 1]. It comprises three points, two of them at the boundary, and two edges
[0,0.5], [0.5,1]. We have two types of boundary condition, DIRICHLET and
CAUCHY, referenced by BO and B1, respectively.

unit
Dimension: (3,2)2
0:D

1:C

END
0:0.00,B0
1:0.5,1I
2:1.00,B1
END
0:(0,1)
1:(1,2)
END

In the case of a system with n equations you have to define the boundary
type for each of the equations. If n = 4, the example could look like

unit
Dimension: (3,2)2
0:DDCC
1:CDCD
END
0:0.00,B0
1:0.5,1
2:1.00,B1
END
0:(0,1)
1:(1,2)
END

This shows that different components of the solution may have different
boundary types.

72



5.4.2 2D-geometry

Triangulations in 2D or in 3D have to be described by some keyword sections
using a keyword followed by specific informations.

Necessary keyword sections:

e no_of _points
Number of grid points in the triangulation.

e no_of boundary_edges Number of edges on the boundary of the trian-
gulation.

e no_of triangles
Number of triangles in the triangulation.

e boundary_types
For each component of the solution you have to write one letter as
description of its boundary condition, e.g.,

boundary_types
0:DDD
1:DNC

In this example we define two types of boundary conditions for a system
of three equations, i.e. the solution has three components. B0 means
that each component has Dirichlet boundary, B1 means that the first
component is of DIRICHLET type, the second of NEUMANN type, and
the third of CAUCHY type.

e points
Coordinates of the grid points. The enumeration of the points by non-
negative numbers is arbitrary. The point number can be referenced
when defining other properties (boundary type, class,...) of the point,
or the triangles or boundary edges. Example: definition of four grid
points with numbers 5, 6, 7, and 8.

Points

5: 0.000000e+00,0.000000e+00
6: 1.000000e+00,0.000000e+00
7: 1.000000e+00,1.000000e+00
8: 0.000000e+00,1.000000e+00

73



e triangles
Triangles are defined by three of the point numbers used in the points
section. The numbering of the triangles is arbitrary. The triangle
numbers can be referenced when defining other properties of a triangle,
e.g. a classification parameter.

As example, we show the definition of two triangles:

triangles
0: 5,6,7
1: 5,7,8

® boundary_edges
The edges on the boundary are given by a pair of point references
(defined in the point list), and a specifier of the boundary types list.

The definition of boundary conditions for four edges looks like

boundary_edges
(5,6):0
(6,7):0
(7,8):0
(8,5):0

e boundary_points
Points on the boundary are defined by the reference of that point and
the type of boundary condition.

See for example the definition of the boundary conditions in the points
5, 6, 7,and 8:

boundary_points
5:0
6:0
7:0
8:0
END

Auxilary keyword sections:

e name_of_triangulation
Name of the triangulation.

74



e no_of_edges
Number of edges in the triangulation.

e point_type_names
Each type name can be used to add an attribute to a point.

Example: definition of three types.

point_type_names
property_1
property_2
property_3

e edge_type_names
Each type name can be used to add an attribute to an edge.

Example: definition of two types.

edge_type_names
property_7
property_8

e triangle type_names
Each type type can be used to add an attribute to a triangle.

Example: definition of three material types.

triangle_type_names
Zinc

iron

copper

e point_type
Each point may get an attribute from the point_type names list. This
attribute can be used somewhere in the code.

Example: definition of types in two points with the reference numbers
5 and 6.

point_type
5:property_1
6:property_3

75



e edge_type
Each edge may get an attribute from the edge _type names list. This
attribute can be used somewhere in the code.

Example: definition of types in two edges defined by the points with
the reference numbers 0, 1, and 2.

edge_type
(0,1) :property_7
(1,2) :property_8

e triangle_type
Each triangle may get an attribute from the triangle type names list.
This attribute can be used somewhere in the code.

Example: definition of a material property in two triangles with the
reference numbers 0 and 1.

triangle_type
0:ZiNC
1:copper

e solution_at_point
For each point in the grid you can specify as many real numbers as you
have nodes in that point.

Example: Each of the points with reference numbers 5, 6, 7, 8 carries
two node values.

solution_at_point

5:0.000000e+00,0.000000e+00
6:1.000000e+00,1.000000e+00
7:2.000000e+00,2.000000e+00
8:3.000000e+00,3.000000e+00

e solution_at_edge
For each edge in the grid you can specify as many real numbers as you
have nodes in that edge.

Example: Each of the four edges (5,6), (6,7), (7,8), and (7,5) carries

two node values.

76



solution_at_edge

(5,6):0.000000e+00,0.000000e+00
(6,7):1.000000e+00,1.000000e+00
(7,8):2.000000e+00,2.000000e+00
(8,5) :3.000000e+00,3.000000e+00
(7,5):4.000000e+00,4.000000e+00

solution_at_triangle
For each triangle in the grid you can specify as many real numbers as
you have nodes in that triangle.

Example: Each of the two triangles carries one node value.

solution_at_triangle
0:0.000000e+00
1:1.000000e+00

no_of_circles

number of midpoints of circles which are used for providing circular
edge lines. Each of these edges will be treated internally as circle line
around the midpoint. Both a midpoint and the corresponding edges
are to be specified after the keyword circles.

circle_midpoints

In this section we provide a possibility to modify the refinement of an
edge. Normally it is refined generating two new edges, each of them
connects one of the boundary points of the edge with its midpoint.
Alternatively, we can determine other coordinates for the new point.
This can we done in a very general way, but we only offer the fol-
lowing possibility: Connect the edge you want to refine with another
point which has the same distance from each of the boundary points
of the edge, the so called “circle_midpoint”. Then, we take as new
point (instead of the midpoint) the point on the circle arount the “cir-
cle_midpoint” which is also on the straight line between the midpoint
and the “circle_midpoint’. This techniques can be used to introduce
circular boundaries during the refinement process.

Example: definition of one “circle_midpoint” with coordinates x, y.

circle_midpoints
0:x,y

7



Note that the index has to start with O.

e circle_edges
Corresponding to the points be defined in the circle-midpoints sec-
tion we can define a set of edges which will become circular during the
refinement process as decribed above.

Example: definition of four edges getting circluar during the refinement
process.

circle_edges
(5,6):0
(6,7):0
(7,8):0
(8,5):0

Sequence of keywords in an input data file:

In any case, the user has to specify

the number of points no_of points,

the number of boundary edges no_of_boundary_edges,

the number of triangles no_of_triangles,

the number of boundary types no_of _boundary_types, and the list of bound-
ary types boundary_types,

followed by the list of points points, triangles triangles, and boundary
edges boundary_edges.

All the other keyword sections are not necessary. If they are not used the code
sets default values, e.g. if the point_class keyword doesn’t occur we suppose
a value 0. If a material type is used (in the point_class, edge_class,
or triangle_class sections) it must have been defined before by the sections
no_of material types and material _types.

Note: A text after the character # in a keyword line is taken as comment.

A complete example:

name_of_triangulation
unit square

no_of_points # comment
4

no_of_edges

78



no_of_boundary_edges
4

no_of_triangles
2

boundary_types
0:DD
1:NN

point_type_names
1:Point_is_on_Circle
2:Point_is_on_Line

edge_type_names
Edge_is_on_Circle
Edge_is_on_Line

triangle_type_names
zinc

iron

copper

Points

5: 0.000000e+00,0.000000e+00
6: 1.000000e+00,0.000000e+00
7: 1.000000e+00,1.000000e+00
8: 0.000000e+00,1.000000e+00

boundary_points
5:0

0 N O
o O O

point_type
5:Point_is_on_Circle
6:Point_is_on_Line

79



triangles
0: 5,6,7
1: 5,7,8

triangle_type
0:zinc
1:copper

boundary_edges
(5,6):0
(6,7):0
(7,8):0
(8,5):0

edge_type
(6,7) :Edge_is_on_Line

circle_midpoints
0:0.5,0.5

circle_edges
(5,6):0
(6,7):0
(7,8):0
(8,5):0

solution_at_point

5:0.000000e+00,0.000000e+00
6:1.000000e+00,1.000000e+00
7:2.000000e+00,2.000000e+00
8:3.000000e+00,3.000000e+00

5.4.3 3D-geometry
Triangulations in 3D have to be described by some keyword sections using a

keyword followed by specific informations. The structure is analogous to the
2D—case.

Necessary keyword sections:
e no_of_points

80



Number of grid points in the triangulation.

no_of_tetrahedra
Number of tetrahedra in the triangulation.

no_of_boundary _triangles Number of triangles on the boundary of the
triangulation.

no_of_boundary_types
Number of boundary types, e.g. NEUMANN, DIRICHLET, or CAUCHY.

boundary_types

For each component of the solution you have to write one letter as de-
scription of its boundary condition, D for DIRICHLET, N for NEUMANN,
or C for CAuCHY. For example:

boundary_types
0:DDD
1:DNC

Here, we define two types of boundary conditions for a system of three
equations (the solution vector has three components). Condition 0
means that each component has Dirichlet boundary, condition 1 means
that the first component is of DIRICHLET type, the second of NEUMANN
type, and the third of CAUCHY type.

points

Coordinates of the grid points. The enumeration of the points by non-
negative numbers is arbitrary. The point number can be referenced
when defining other properties (boundary type, class,...) of the point,
or the triangles or boundary edges.

Example: definition of four grid points with numbers 5,6,7, and 8.

Points

5: 0.000000e+00,0.000000e+00,0.000000e+00
6: 1.000000e+00,0.000000e+00,1.000000e+00
7: 1.000000e+00,1.000000e+00,0.000000e+00
8: 0.000000e+00,1.000000e+00,1.000000e+00

tetrahedra
Triangles are defined by four point numbers as used in the points sec-
tion. The numbering of the tetrahedra is arbitrary. The tetrahedra

81



numbers can be referenced when defining other properties of a tetrahe-
dron, e.g. a classification parameter.

Example: definition of one tetrahedron.

tetrahedra
0: 5,6,7,8

e boundary_triangles
The triangles on the boundary are given by three point references (de-
fined in the point list), and a specifier of the boundary types list.

Example: definition of boundary conditions for two triangles.

boundary_triangles
(5,6,7):0
(6,7,8):1

Auxilary keyword sections:

e name_of_triangulation
name of the triangulation.

e no_of_edges
number of edges in the triangulation.

e boundary_points
Points on the boundary are defined by the reference of that point and
the type of boundary condition. Example: definition of the boundary
conditions in the points 5,6,7,and 8.

boundary_points
5:0
6:0
7:0
8:0
END

e point_type_names
Each type name can be used to add an attribute to a point.

Example: definition of three types of points.

82



point_type_names
1:property_1
2:property_2
3:property_3

e edge_type_names
Each type name can be used to add an attribute to an edge.

Example: definition of two types of edges.

edge_type_names
1:property_1
2:property_2

e triangle_type_names
Each type name can be used to add an attribute to a triangle.

Example: definition of three types of triangles.

triangle_type_names
1:type_1
2:type_2
3:type_3

e tetrahedron_type_names
Each type name can be used to add an attribute to a tetrahedron, e.g.,
a material property.

Example: definition of three types of tetrahedra.

tetrahedron_type_names
1:zinc

2:iron

3:copper

e point_type
Each point may get an attribute which can be used somewhere in the
code.

Example: definition of a property in two points with the reference
numbers 5 and 6.

83



point_type
5:property_1
6:property_2
END

edge_type
Each edge may get an attribute which can be used somewhere in the
code.

Example: definition of a property in two edges.

edge_type

(5,6) :property_1
(7,8) :property_2
END

triangle_type
Each triangle may get an attribute which can be used somewhere in
the code.

Example: definition of properties in two triangles.

triangle_type
(5,6,7) :type_1
(6,7,8) :type_2
END

tetrahedron_type
Each tetrahedron may get an attribute which can be used somewhere
in the code.

Example: definition of material properties in two tetrahedra with the
reference numbers 0 and 1.

triangle_type
0:zinc
1:copper

END

solution_at_point
For each point in the grid you can specify as many real numbers as you
have nodes in that point.

Example: Each of the points with reference numbers 5, 6, 7, 8 carries
two node values.

84



solution_at_point

5:0.000000e+00,0.000000e+00
6:1.000000e+00,1.000000e+00
7:2.000000e+00,2.000000e+00
8:3.000000e+00,3.000000e+00

solution_at_edge
For each edge in the grid you can specify as many real numbers as you
have nodes in that edge.

Example: Each of the four edges (5,6), (6,7), (7,8), and (7,5) carries

two node values.

solution_at_edge

(5,6):0.000000e+00,0.000000e+00
(6,7):1.000000e+00,1.000000e+00
(7,8):2.000000e+00,2.000000e+00
(8,5):3.000000e+00,3.000000e+00
(7,5):4.000000e+00,4.000000e+00

solution_at_triangle
For each triangle in the grid you can specify as many real numbers as
you have nodes in that triangle.

Example: Each of the two triangles carries one node value.

solution_at_triangle
(5,6,7):0.000000e+00
(6,7,8):1.000000e+00

solution_at_tetrahedron
For each tetrahedron you can specify as many real numbers as you have
nodes in that tetrahedron.

Example: Each of the two tetrahedra carries one node value.

solution_at_tetrahedron
0:0.000000e+00
1:1.000000e+00

85



Sequence of keywords in an input data file:

In any case, the user has to specify the number of points no_of points, the
number of boundary triangles no_of_boundary_triangles, the number of
tetrahedra no_of tetrahedra, the number of boundary types no_of boundary_types,
and the list of boundary types boundary_types, followed by the list of points
points, tetrahedra tetrahedra, and boundary triangles boundary_triangles.

All the other keywords are not necessary. If they are not used the code sets
default values, e.g. if the point_type keyword doesn’t occur we suppose a
value undefined. If a type name is used (in the point_type, edge type,
triangle_type, or tedrahedron_type sections) it must have been defined
before by the sections point_type_names, edge_type_names, triangle_type_names,
or tetrahedron_type names. The code stores the type names in suitable
string arrays, each type name at the position which is set in the type name
sections. This position is also stored in the data structure (component
classA) of the corresponding object (point, edge,...). The parameter classA
in the definition of the coefficient functions (compare the first subsections of
Section 5) is exactly this component in the data structure. There it can be
used to distinguish different properties (e.g., materials) of the objects.

Note: A text after the character # in a keyword line is taken as comment.
A complete example:

name_of_triangulation
tet8

no_of_points
10

no_of_tetrahedra
8

no_of_boundary_triangles
16

boundary_types
0:DD
1:CC

point_type_names
1:property_1
2:property_2

86



edge_type_names
1:property_3
2:property_4

triangle_type_names
1:property_b
2:property_6

tetrahedron_type_names

1:zinc

2:iron

points

0: 0.000000e+00, 0.000000e+00, 0.000000e+00
1: 0.000000e+00, 0.000000e+00, 1.000000e+00
2: 0.000000e+00, 1.000000e+00, 0.000000e+00
3: 1.000000e+00, 0.000000e+00, 0.000000e+00
4: 0.000000e+00, 5.000000e-01, 5.000000e-01
5: 5.000000e-01, 0.000000e+00, 5.000000e-01
6: 5.000000e-01, 5.000000e-01, 0.000000e+00
7: 0.000000e+00, 0.000000e+00, 5.000000e-01
8: 5.000000e-01, 0.000000e+00, 0.000000e+00
9: 0.000000e+00, 5.000000e-01, 0.000000e+00
boundary_points

0: 0

1: 0

2: 0

3: 0

4: 0O

5: 1

6: 1

7: 1

8: 1

9: 0

tetrahedra

0: 9, 8, 7, 0

1: 9, 4, 6, 2

87



~N O O W N
U1 © ©O© O 0 N
© 00 O O O
~N OO W

-

point_type

:property_1
:property_1
:property_2
:property_2
:property_1
:property_2
:property_2
:property_2
:property_2

0 ~NO Ok WN - O

edge_type
(4,6) :property_3
(56,1) :property_4

triangle_type
(4,6,2) :property_5
(6,1,4) :property_6

tetrahedron_type
:zinc
:iron
:iron
:iron
:iron
:zinc
:zinc
:zinc

~NOo Ok W N~ O

boundary_triangles

88



M

-
N

-

-

-
[EY

-

w

-
-

-

-
(62

-

(@]

-
-

-

-
[EY

-

-

-
w

-

(@]

-
-

-

-
N

.

-

-
w

-

.

-
(0]

-

.

-
(@]

-

-

-
-

-

-

-
N

.

AN AN AN AN AN AN AN A A A A A A A A A

©O© O b N 00 00 O WO 00 00 U1 N O O O >

NP N O OO0 O 00N O N 00O
(2]

NN N NG NG N N NG NG N N N AR

el eolNeolNolNolNolNololNolNolNolNolNolNo)

S

-
-

solution_at_point
2.0,1.0

O O O O O O O O O
N = T o S = N =V Sy SN
O O O O O O O o O

-

- - -

© 00 NO O > W N+~ O
O OO OO O NNDN

-

5.5 Number of Equations

First of all the user has to announce the number of equations in his problem.
This has to happen in the source file kardos. c in the directory kardos/kardos.
There you can find the line

noO0fEquations = ...;

For instance, you may set

89



noOfEquations = 1;

if you have a scalar equation as in many heat transfer problems.

5.6 Starting the Code

After recompiling you can start the program in the directory where you
have defined your problem, normally in kardos/problems/user. To avoid
copying the executable into this directory or typing long path specification
you should set links. For that purpose just type setLink. This script file sets
the links to the executable and to the file kardos/kardos/kardos.def and
kardos/kardos/kask.color which include some presetting information.

Having been started by typing 'kardos’, the program will write out the
prompter 'Kardos:’. Now you are in the command mode and can communi-
cate with the code by supplying a command from the list of commands, see
Section 6.

Normally, you will use commands in the following sequence:

e read filename
reads the file with the name filename, e.g., user.geo, including the tri-
angulation of the domain (see Subsection 5.4). The initial grid is con-
structed.

Example: read user.geo
e timeproblem problem name

selects the problem with the name problem name, i.e. the coefficients,
the boundary and initial values of your equation (1).

Example: timeproblem user
e seltimeinteg time integrator

selects a method for time integration. Possible methods are rosl, ros2,
ros3, ros3p, rodas3, rowdadind2, rowda3, rodas4, rodas4p.

Example: seltimeinteg ros2
e selestimate error estimator

selects a method for estimation of the spatial errors in each time step.
Possible estimators are hb (hierarcical bases) and cv (curvature).

Example: selestimate hb

90



e selrefine refinement strategy
selects a strategy for refining the mesh by evaluating the local errors
provided by the error estimator. The following methods are available:
all, maxvalue_e, meanvalue_e, and extrapol_e.

Example: selrefine maxvalue_e
e seliterate iteration method
selects an iterative solver for the linear algebraic systems which have

to be solved in each time step. Available are: BICGStab-method
(pbicgstab), cg-method (pcg), and the gmres-solver (pgmres).

Example: seliterate pbicgstab
e selprecond preconditioner

selects a preconditioner for the iterative solver. Available are: ILU,
SSOR, block-SSOR, or NONE for no preconditioning.

Example: selprecond ilu
e setpartime sets parameters for the time integration. The main impor-
tant are
— tstart: initial time. Default value: 0.0.
— tend: time up to which a calculation has to be computed.
— maxsteps: maximum number of time steps.
— timetol: maximum tolerance for error in time discretization.
— spacetol: maximum tolerance for error in space discretization.
— globtol: maximum tolerance for global discretization error.
— timestep: step size in the next time step.
— direct: enables direct instead of iterative solving for linear system.

The direct solver is selected by the seldirect command.

e timestepping
starts the solution algorithm. Some output informs on the progress of
the process.

e quit
quits the program.

The user can write all the commands for his run of KARDOS in a file. One
line can contain one command. We call such a file a command file, and prefer

91



filenames with the extension ksk, e.g., user.ksk. If this file is given to the
program by the do-command, all the included commands will be executed
before asking for a new command.

Example: do user.ksk

Only the commands read, timeproblem, and timestepping are mandatory.
The other commands are used to set parameters controlling and optimizing
the numerical algorithm. Default values are provided.

A typical command file may have the following form:

read user.geo

timeproblem user

setpartime tstart 0.0 tend 10.0 timestep 0.1 globtol 0.01
timestepping

In the Section 6 we provide a list of all important commands and give some
explanations about their algorithmic background.

92



6 Commands and Parameters

In Section 5 we described most of the work necessary to get a new problem
into the code. Now we present two features which allow to control the solving
process and to supply problem specific parameters (e.g. material properties,
physical constants) interactively.

6.1 Command Language Interface

The command language interface to the KARDOS program consists of a set
of commands with parameters. The input source can be stdin or text files.

This command language has a simple syntactic structure. A command is
limited by a newline or a command delimiting character. Parameters are
seperated by white space (e.g. blanks or tabs), exceptions are strings which
are quoted by string delimiting characters.

The rest of an input line is ignored after a comment character (predefined
'%’). Capitel letters are treated as small letters.

More details about the command language can be found in [25].

Some of the informations of this subsection have already been mentioned in
the end of Section 5.

Having been started by typing 'kardos’, the program will write out the
prompter 'Kardos:’. Now you are in the command mode and can communi-
cate with the code by supplying a command from the list of commands. We
know one exception: If the user supplies a file called kardos.ksk containing a
set of commands it will be executed just after the program has been started.
This allows batch processing. If no quit is included, more commands are
requested from standard input.

A complete command file should comprise commands to

select the problem (e.g. timeproblem),

read the geometric input data (e.g. read),

e set parameters describing the solution method (e.g. seltimeinteg),

request output processing (e.g. window, graphic).

Alphabetical list of commands:

93



e amiramesh
prints the current triangulation and the solution into a file AmiraMesh.geo
using the format of the visualization software amira™. Only for three-
dimensional grids!

checktri
checks the consistency and completeness of the triangulation, e.g. miss-
ing boundary conditions are reported.

do filename
reads a file filename which may include a sequence of commands. Fach
of the commands will be executed.

® error parameter
computes the true error of the computed FEM solution if the exact
solution is known and specified by the user, see Section 5. parameter
may be one of the values max, 12, or hl and selects the norm in which
the error is computed. This command makes sense only after having
computed the FEM solution.

Example: error 12
By this command the error is computed in the Lo-norm.
e graphic
selects graphic parameters. This command selects for the current
graphical output stream the requests for the actual drawing (see the

command show or the parameter automatic of the window command).
Only for 1- and 2-dimensional applications!

The main important parameters are

— triangulation: draw the triangulation,
— boundary: draw the boundary of the triangulation,
— solution: draw isolines of a component of the solution vector,
— temperature: draw the solution as color-washed graphic,
— levels: define number of levels in an isoline plot, default is 10,
— areas: draw elements (1D: edges, 2D: triangles) in different colours,
— clear: delete all preceding parameter settings.
e help name
prints some information about the command name.

Example: help do

94



help
prints a list of all commands.

infgraphic
informs on graphic parameters.

infpar
prints a list of all user defined parameter lists. See next subsection for
some explanations of the dynamical parameter handling.

infpar parameter name
informs on the current values of the user defined parameters in the
parameter list called parameter name.

inftimeinteg
informs on the parameters of the time integration process. These pa-
rameters are set by the commands setpartime and seltimeinteg.

Example:
Kardos: inftimeinteg

Current time integrator is ’rowda3’
Current parameters are:

scaling 0 (0= off, 1= on, scaled error norm used)
direct 0 (0= off, 1= on, direct solver used)
maxsteps 1000  (maximal time steps)
maxreductions 10 (maximal reductions per time step)
stdcontrol 0 (0= off, 1= on, standard controller used)
tstart 0.00e+00  (starting time)
tend 0.00e+00  (final time)
timestep 1.00e-04  (proposed time step)
maxtimestep 1.00e+20  (maximal allowed time step)
timetol -1.00e+00 (desired tolerance for time integrator)
spacetol -1.00e+00 (desired tolerance for spatial solver)
globtol 0.00e+00  (desired global tolerance)
timetolfac 5.00e-01  (timetol/globtol)
spacetolfac 5.00e-01  (spacetol/globtol)

inftimeproblem

informs on the structure of the selected parabolic problem.

inftri
informs on the current triangulation.

Example:

95



Kardos: inftri
Tri: current triangulation ’Square’ from ’Grids/flame.geo’

noOfPoints : 79
noOfEdges : 190
noOfTriangles ;112
noO0fInitPoints : 79
noOfInitEdges : 190
noOfInitTriangles ;112
reflevel : 0
maxDepth : 0

Kardos:

infwindow

informs on parameters of the window driver.

quit
quits the program.

read filename

reads the file with the name filename, e.g., user.geo, including the tri-
angulation of the domain (see Subsection 5.4). The initial grid is con-
structed.

Example: read user.geo
seldirect direct solver

selects a method for direct solution of the linear algebraic systems,
default: ma28. As direct solver we supply

— fullchol: Cholesky algorithm for general symmetric, positive definit
problems,

— envchol: Cholesky algorithm for sparse symmetric, positive definit
problems using particular storage (envelope) scheme for matrix
and renumbering of nodes (Reverse Cuthill/McKee),

— maZ28: MA28 method from the Harwell library, for unsymmetric
problems.

seldraw variable
selects the variable (component of the solution vector) to be drawn.

selestimate error estimator
selects a method for estimation of the spatial errors in each time step.

96



Possible estimators are hb (hierarchical bases) and c¢v (curvature). The
user may also select none when he wants to switch off error estimation.

Example: selestimate hb

seliterate iteration method

selects an iterative solver for the linear algebraic systems to be solved
in each time step. Available are: BICGStab-method (pbicgstab), cg-
method (pcg), and the gmres-solver (pgmres).

Example: seliterate pbicgstab

selprecond preconditioner
selects a preconditioner for the iterative solver. Available are: ILU,
SSOR, block-SSOR, or NONE for no preconditioning.

Example: selprecond ilu

selrefine refinement strategy

selects a strategy for refining the mesh by evaluating the local errors
provided by the error estimator. The following methods are available:
all, maxvalue_e, meanvalue_e, and extrapol_e.

Example: selrefine maxvalue_e

seltimeinteg time integrator
selects a method for time discretization. Possible time integrators are
rosl, ros2, ros3, ros3p, rodas3, rowdadind2, rowdad, rodas4, rodas4p.

Example: seltimeinteg ros2

setpar
changes values in the parameter list defined by the first parameter,
followed by pairs of names and values.

Example: setpar ssor omega 0.5

Here we have the parameter list ssor which includes at least one pa-
rameter, i.e. omega. By this command the value of omega is set to 0.5.
See for details in the next subsection.

setpardirect The direct solver implemented in KARDOS has three
parameters: dropfac, licnfac, and lirnfac with the following meaning

— dropfac is an real variable. If it is set to a positive value, then any
non-zero whose modulus is less than dropfac will be dropped from
the factorization. The factorization will then require less storage
but will be inaccurate. Default value: 0.0.

97



— licnfac is an integer variable, proportional to length of array for
column indices, default=1, has to be increased if direct solver calls
for more memory.

— lirnfac proportional to length of array for row indices, default=1,
has to be increased if direct solver calls for more memory.

Example: setpardirect licnfac 2
This command allows double as much memory for storing column in-
dices as allowed by default.

setparerror norm

enables the computation of the true error of the FEM solution after
each time step. This option makes sense only if the exact solution is
known and specified by the user, see Section 5. norm may be one of
the values max, 12, or hl and selects the norm in which the error is
computed.

setpariter parameters

First the user has to select a method for solving the linear algebraic
system by the seliterate command. Then he can define parameters
determining details of the iteration process:

— itertol: relative precision of solution of linear system,
— itermaxsteps: maximal number of iteration steps,

— krylovdim: maximal dimension of Krylov space. Only for iteration
method gmres.

Example: setpariter itertol 1.0e-5 itermaxsteps 200

setparrefine parameters

By this command the user can influence the adaptive refinement pro-
cess. The error estimator (selected by the command selestimate)
provides informations about the distribution of local errors. The re-
finement strategy (selected by the command selrefine) evaluates the
local errors and determines where to refine the grid. The parameters
supplied by the setparrefine command provide another possibility to
affect the refinement process:

— maxpoints: maximal number of points in grid. If this number is
reached, no further refinenement is allowed.

98



— refrate: determines the rate of increasing points from one level of
refinement to the next, e.g. refrate=0.3 means that the number
of points has to increase by at least 30 %.

— maxdepth: maximal number of refinement depth. If this depth is
reached, no further refinement is allowed.

Example: setparrefine refrate 0.3

e setpartime parameters

sets parameters for the time integration. The main important are
— tstart: initial time. Default value: 0.0.
— tend: time up to which a calculation has to be computed.
— maxsteps: maximum number of time steps.
— timetol: maximum tolerance for error in time discretization.
— spacetol: maximum tolerance for error in space discretization.
— globtol: maximum tolerance for global discretization error.
— timestep: step size in the next time step.

— direct: enables direct instead of iterative solving for linear system.
The direct solver is selected by the seldirect command.

Example: setpartime tend 3600.0 globprec 1.0e-2
or
Example: setpartime direct 1

e setscaling parameters
sets the parameters atol and rtol which determine how accurate each of
the components of the solution vector is computed. rtol measures the
relative precision of a component. If the modulus of a component is less
than atol then there are no further efforts to compute this component
more accurate.

To say it precisely: The relative discretization error e; of the approxi-
mate solution u = (u;);=1, on the triangulation 7, is given by

len.q|

lenll = ; ATOL; + ||u;|| RTOL;

where ey, ; is the error of the i-th component.

Example:
setscaling atol 1.0e-12 1.0e-12 1.0e-12 rtol 1.0 1.0 1.0

99



e show
draws a picture. The number of a graphical port can be used as param-
eter of the command. This is useful if there are more than one windows
for graphical output.

Example: show 1

e timeproblem problem name
selects the problem with the name problem name, i.e. the coefficients,
the boundary and initial values of your equation (1).

Example: timeproblem user

e solveinform parameter
selects different levels of information by the code. By default, the user
only gets short messages about the progress of the program. More de-
tails can be ordered by setting some of the parameters iterinfo, estiinfo,
refinfo, or solveinfo to 1:

iterinfo: information about the solution of the linear systems

estiinfo: information about the error estimation

refinfo: information about the adaptive refinement process

— solveinfo: same effect as setting the three preceding parameters
to 1.

Example:
solveinform iterinfo 1 estiinfo 1

e timestepping
starts the solution algorithm. Some output informs on the progress of
the process.

e write filename
writes the current triangulation into the file with the name filename,
e.g., user.geo. The standard geometry format is used as described in
Section 5. The output of the write command can be reread by the read
command.

Example: write user.geo

100



e window parameters
open (or update) a graphical window. The file parameter defines the
output file name for postscript. The name parameter defines the win-
dow headline for screen. automatic can be used to call drawing routines
at certain events, e.g. when a time step is finished.

Example: window new automatic postscript file "picture.ps"

In this example, a new port for postscript output is opened. The port
is connected to a file with the name picture.ps. After each time step
a new picture is generated. What kind of graphics is drawn has to be
defined by the graphic command.

6.2 Dynamical Parameter Handling

The parameter module includes routines to handle named parameter lists.
A parameter list itself contains a list of parameter values of fixed size. A list
of parameter names and a list of named values may be maintained. All the
technical details about dynamical parameter handling can be read in [25].

From the user’s point of view, it is most important to know the routine

(char*) NewParamList(char *buf, char *listName, int noOfParams,
int valueSize, char **names, int type,
int noOfValNames, char **valNames, char vals,
int (*UserParamChanged) (char*,char*,int),
int (*UserListChanged) (charx*))

This function uses buf as storage for a parameter list or, if buf==nil allocates
new storage. listName is checked for double definitions. The result of the
function is the address to an array of noOfParams blocks of valueSize bytes
of memory.

Parameter values may be named to allow a user—friendly input via the setpar
command. A list of name-value pairs with length no0fValNames is defined
by valNames and vals.

If the user wants to be notified on changes of parameters or the complete list
a user routine UserParamChanged or respectively UserListChanged may be
supplied. When using the function NewParamList the include file params.h
has to be added in top of the file.

Example:

101



Here we introduce a parameter list coefficients with two real parameters
called alpha and beta.

#include "params.h"

static real *userData = nil;
static char *coefficientNames[] = {"alpha","beta"};

if (userData==nil)
{
userData = (real*)NewParamList(nil,"coefficients",
2,sizeof (real),
coefficientNames,T_REAL,O, (char **)nil,
(ptr)nil, (int (*) (char*,char*,int))nil,
(int (*) (char*))nil);

userDatal0] 1.0;
userDatal1] 20.0

I

3

It is recommended to do these definitions directly before defining the problem
by SetTimeProblem. The statements

userDatal[0] = 1.0;
userDatall] = 20.0

)

define some initial values for these parameters. The parameter userData[0]
is associated with the name alpha, and the parameter userData[1] is asso-
ciated with the name beta. These names can be used when changing these
parameters during runtime by the setpar command, e.g.

Kardos: infpar coefficients

coefficients alpha 1.0000e+00  beta 2.0000e+1
Kardos: setpar coefficients alpha 0.5 beta 10.0
Kardos: infpar coefficients

coefficients alpha 5.0000e-01 beta 1.0000e+1

Once we have defined such a parameter list, we can use it somewhere in the
code, e.g. when we define the function for the diffusion in a system of two
equations (compare Example 2 in Section 5).

102



static int Ex2Laplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real *x*matXY,
real **matYX, real **matYY)

matXX[0] [0] = userDatal0];
matXY[0] [0] = 0.0;
matYX[0] [0] = 0.0;
matYY[0] [0] = userDatal0];

matXX[1] [1] = userDatall];
matXY[1] [1] = 0.0;
matYX[1] [1] = 0.0;
matYY[1] [1] = userDatall];

return true;

103



References

1]
2]
3]
[4]

[11]

[12]

ftp://ftp.zib.de/pub/kaskade
http://www.zib.de/SciSoft/kaskade
http://www.zib.de/SciSoft/kardos

A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele,
A .M. Thompson: Mathematical modelling of tumor invasion and metas-
tasis, J. of Theor. Medicine, 2000.

R.E. Bank: PLTMG: A Software Package for Solving Elliptic Partial
Differential Equations - User’s Guide 8.0, STAM, 1998.

R.E. Bank, R.K. Smith: A Posteriori Error Estimates Based on Hierar-
chical Bases, SIAM J.Numer. Anal., 30 (1993), 921-935.

R. Beck, B. Erdmann, R. Roitzsch: KASKADE 3.0 - An object-oriented
adaptive finite element code, TR-95-04, Konrad-Zuse-Zentrum Berlin,
1995.

R. Beck, B. Erdmann, R. Roitzsch: An Object-Oriented Adaptive Finite
Element Code and its Application in Hyperthermia Treatment Planning.
In: Erlend Arge, Are Magnus Bruaset und Hans Petter Langtangen
(eds.): Modern Software Tools for Scientific Computing. Birkhéuser,
1997.

J.G. Blom, J.G. Verwer: VLUGRS3: A Vectorizable Adaptive Grid Solver
for PDEs in 3D, I. Algorithmic Aspects and Applications, Appl. Nu-
mer.Math. 16 (1994), 129-156.

F. Bornemann: An Adaptive Multilevel Approach to Parabolic Equa-
tions I. General Theory and 1D-Implementation, IMPACT Comput. Sci.
Engrg. 2, 279-317(1990).

F. Bornemann: An Adaptive Multilevel Approach to Parabolic Equa-
tions II. Variable Order Time Discretization Based on a Multiplicative
Error Correction, IMPACT Comput. Sci. Engrg. 3, 93-122 (1991).

F. Bornemann, B. Erdmann, R. Roitzsch: KASKADE - Numerical Ex-
periments, TR-91-01, Konrad-Zuse-Zentrum Berlin, 1991.

104



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

F. Bornemann: An Adaptive Multilevel Approach to Parabolic Equa-
tions III. 2D Error Estimation and Multilevel Preconditioning, IMPACT
Comput. Sci. Engrg. 4, 1-45 (1992).

F. Bornemann, B. Erdmann, R. Kornhuber: Adaptive multilevel-
methods in three space dimensions, Int. J. Num. Meth.in Eng, Vol. 36,
(1993), 3187-3203.

F. Bornemann, B. Erdmann, R. Kornhuber: A Posteriori Error Esti-
mates for Elliptic Problems in Two and Three Space Dimensions, STAM
J. Numer. Anal. 33, 1188-1204 (1996).

R. Codina: A Finite Element Formulation for Viscous Incompressible
Flows, Monografia No. 16, Enero 1993, Centro Internacional de Metodos
Numericos en Ingenieria, Barcelona, Espana.

D. Braess, P. Deuflhard, K. Lipnikov: A Subspace Cascadic Multigrid
Method for Mortar Elements. Preprint SC 99-07, Konrad-Zuse-Zentrum
Berlin.

K. Dekker, J.G. Verwer: Stability of Runge-Kutta Methods for Stiff
Nonlinear Differential Equations, North-Holland Elsevier Science Pub-
lishers,1984.

P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an Adaptive Hi-
erarchical Finite Element Code. IMPACT Comp. Sci. Eng. 1 (1989),
3-35.

P. Deuflhard, Recent Progress in Extrapolation Methods for Ordinary
Differential Equations, SIAM Rev. 27 (1985), 505-535.

P. Deuflhard, F. Bornemann: Numerische Mathematik II, Integration
Gewohnlicher Differentialgleichungen, De Gruyter Lehrbuch, Berlin,
New York, 1994.

P. Deuflhard, K. Lipnikov: Domain Decomposition with Subdomain
CCG for Material Jump Elliptic Problems. In: East-West J. Numer.
Math., Vol. 6, No. 2, 81-100 (1998).

P. Deuflhard: Uniqueness Theorems for Stiff ODE Initial Value Prob-
lems, in: D.F. Griffiths and G.A. Watson (eds.), Numerical Analysis
1989, Proceedings of the 13th Dundee Conference, Pitman Research

Notes in Mathematics Series 228, Longman Scientific and Technical
(1990), 74-87.

105



[24]

[25]

[26]

[27]

28]

[31]

[32]

P. Deuflhard, J. Lang, U. Nowak: Adaptive Algorithms in Dynamical
Process Simulation, in: H. Neunzert (ed.), Progress in Industrial Math-
ematics at ECMI 94, 122-137 (Wiley-Teubner 1996).

B. Erdmann, J. Lang, R. Roitzsch: KASKADE-Manual, Technical Re-
port TR 93-05, Konrad—Zuse—Zentrum Berlin (ZIB), 1993.

B. Erdmann, M. Frei, R.H.W. Hoppe, R. Kornhuber, U. Wiest(1993),
Adaptive finite element methods for variational inequalities, East-West
J. Numer. Math. 1 (1993), 165-197.

B. Erdmann, J Lang, R. Roitzsch, KASKADE Manual, Version 2.0,
TR-93-05, Konrad-Zuse-Zentrum Berlin, 1993.

B. Erdmann, R.H.W. Hoppe, R. Kornhuber, Adaptive multilevel-
methods for obstacle problems in three space dimensions, in W. Hack-
busch, & G. Wittum (eds.), ‘Adaptive Methods - Algorithms, Theory
and Applications’, Vieweg (1994), 120-141.

B. Erdmann, J. Lang, M. Seebass: Adaptive Solutions of Nonlinear
Parabolic Equations with Application to Hyperthermia Treatments, in:
Graham de Vahl Davis and Eddie Leonardi (eds.), CHT’97: Advances
in Computational Heat Transfer, 103-110, (Cesme, 1997; Begell House
Inc., New York 1998).

B. Erdmann, J. Lang, M. Seebass: Optimization of Temperature Distri-
butions for Regional Hyperthermia Based on a Nonlinear Heat Transfer
Model, in: K. Diller (ed.), Biotransport: Heat and Mass Transfer in
Living Systems, Annals of the New York Academy of Sciences, Vol. 858,
36-46, 1998.

B. Erdmann, J. Lang, R. Roitzsch: Adaptive Linearly Implicit Meth-
ods for Instationary Nonlinear Problems, in: Finite Element Methods:
Three-dimensional Problems, GAKUTO International Series: Mathe-
matical Sciences and Applications, Vol. 15 (2001), 66-75.

B. Erdmann, C. Kober, J. Lang, P. Deuflhard, H.-F. Zeilhofer, R. Sader:
Efficient and Reliable Finite Element Methods for Simulation of the Hu-
man Mandible, to appear in Proceedings of Medicine Meets Mathemat-
ics, Hartgewebe-Modellierung, Kloster Banz/Staffelstein, April 2001,
Report ZIB 01-14 (2001), Konrad-Zuse-Zentrum Berlin.

L.P. Franca, S.L. Frey: Stabilized Finite Element Methods, Comput.
Methods Appl. Mech. Engrg. 99 (1992), 209-233.

106



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Frohlich, J. Lang, R. Roitzsch: Selfadaptive Finite Element Compu-
tations with Smooth Time Controller and Anisotropic Refinement, in:
J.A. Desideri, P.Le. Tallec, E. Onate, J. Periaux, E. Stein (eds.), Nu-
merical Methods in Engineering 96, 523-527 (John Wiley & Sons, New
York 1996).

A. Gerisch, J.G. Verwer: Operator splitting and approximate factoriza-
tion for taxis-diffusion-reaction models, Appl. Numer. Math., Volume
42 (2002), 159-176.

J. Frohlich, J. Lang: Twodimensional Cascadic Finite Element Compu-
tations of Combustion Problems, Comp. Meth. Appl. Mech. Engrg. 158
(1998), 255-267.

K. Gustafsson: Control-Theoretic Techniques for Stepsize Selection in
Implicit Runge-Kutta Methods, ACM Trans. Math. Software 20 (1994),
496-517.

K. Gustafsson, M. Lundh, G. Séderlind: A PI Stepsize Control for the
Numerical Solution of Ordinary Differential Equations. BIT 28 (1988),
270-287.

E. Hairer, S.P. Norsett, G. Wanner: Solving Ordinary Differential Equa-

tions I, Nonstiff Problems, Springer—Verlag, Berlin, Heidelberg, New
York, 1987.

E. Hairer, G. Wanner: Solving Ordinary Differential Equations II, Stiff
and Differential-Algebraic Problems, Second Revised Edition, Springer—
Verlag, Berlin, Heidelberg, New York, 1996.

S.M. Hassanizadeh, T. Leijnse: On the Modeling of Brine Transport in
Porous Media, Water Resources Research 24 (1988), 321-330.

R. Kornhuber, R. Roitzsch: Adaptive Finite-Elemente-Methoden fr
konvektionsdominierte Randwertprobleme bei partiellen Differentialgle-
ichungen, in ‘Proc. 4. TECFLAM - Seminar’, Stuttgart (1988), 103-116.

R. Kornhuber, R. Roitzsch: On adaptive grid refinement in the presence
of internal or boundary layers’, IMPACT Comput. Sci. Engrg. 2 (1990),
40-72.

R. Kornhuber, R. Roitzsch: Self adaptive computation of the breakdown
voltage of planar pn-junctions with multistep field plates, in W. Fichtner
& D. Hemmer (eds.), ‘Proc. 4th International Conference on Simulation

107



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

of Semiconductor Devices and Processes’, Hartung-Gorre (1991), 535-
543.

R. Kornhuber, R. Roitzsch: Self adaptive finite element simulation of
bipolar, strongly reverse biased pn-junctions’, Comm. Numer. Meth.
Engrg. 9 (1993), 243-250.

J. Lang, A. Walter: A Finite Element Method Adaptive in Space and
Time for Nonlinear Reaction-Diffusion-Systems, Impact Comput. Sci.
Engrg. 4 (1992), 269-314.

J. Lang: Raum- und zeitadaptive Finite-Elemente-Methoden fiir
Reaktions-Diffusionsgleichungen, in: Modellierung Technischer Flam-
men, Proc. 8. TECFLAM-Seminar, 115-123 (Darmstadt 1992).

J. Lang, A. Walter: An Adaptive Rothe-Method for Nonlinear Reaction-
Diffusion-Systems, Appl. Numer. Math. 13 (1993), 135-146.

J. Lang, A. Walter: An Adaptive Discontinuous Finite Element Method
for the Transport Equation, J. Comp. Phys. 117 (1995), 28-34.

J. Lang, J. Frohlich: Selfadaptive Finite Element Computations of Com-
bustion Problems, in: R.W.Lewis, P.Durbetaki (eds.), Numerical Meth-
ods in Thermal Problems Vol. IX, 761-769 (Pineridge Press, Swansea
1995).

J. Lang: Two-Dimensional Fully Adaptive Solutions of Reaction-
Diffusion Equations, Appl. Numer. Math. 18 (1995), 223-240.

J. Lang: High-Resolution Self-Adaptive Computations on Chemical
Reaction-Diffusion Problems with Internal Boundaries, Chem. Engrg.
Sci. 51 (1996), 1055-1070.

J. Lang: Numerical Solution of Reaction-Diffusion Equations, in: F.Keil,
W.Mackens, H.Voss, J.Werther (eds.), Scientific Computing in Chemical
Engineering, 136-141 (Springer 1996).

J. Lang, B. Erdmann, R. Roitzsch: Three-Dimensional Fully Adaptive
Solution of Thermo-Diffusive Flame Propagation Problems, in: R.W.
Lewis, J.T.Cross (eds.), Numerical Methods in Thermal Problems, 857-
862 (Pineridge Press, Swansea, UK 1997).

J. Lang, B. Erdmann, R. Roitzsch: Adaptive Time-Space Discretiza-
tion for Combustion Problems, in: A. Sydow (ed.), 15th IMACS World

108



[56]

[57]

[58]

[59]

[60]

[61]

[64]

Congress on Scientific Computation, Modelling and Applied Mathemat-
ics, Vol. 2 (Numerical Mathematics), 149-155 (Wissenschaft und Technik
Verlag, Berlin, 1997).

J. Lang: Adaptive FEM for Reaction-Diffusion Equations, Appl. Numer.
Math. 26 (1998), 105-116.

J. Lang: Adaptive Incompressible Flow Computations with Linearly
Implicit Time Discretization and Stabilized Finite Elements, in: K.D.
Papailiou, D. Tsahalis, J. Periaux, C. Hirsch, M. Pandolfi (eds.), Com-
putational Fluid Dynamics ‘98, 200-204 (John Wiley & Sons, New York
1998).

J. Lang, W. Merz: Dynamic Mesh Design Control in Semiconductor
Device Simulation, in: V.B. Bajic (ed.), Advances in Systems, Signals,
Control and Computers, Vol. 2, 82-86 (Academy of Nonlinear Science,
Durban, South Africa, 1998).

J. Lang, B. Erdmann, M. Seebass: Impact of Nonlinear Heat Transfer on
Temperature Distribution in Regional Hyperthermia, IEEE Transaction
on Biomedical Engineering 46 (1999), 1129-1138.

J. Lang: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Sys-
tems. Theory, Algorithm, and Applications, Lecture Notes in Computa-
tional Science and Engineering, Vol. 16, 2000, Springer.

J. Lang: Adaptive Multilevel Solutions of Nonlinear Parabolic PDE
Systems, in: P. Neittaanmki, T. Tiithonen, P. Tarvainen (eds.), Numeri-
cal Mathematics and Advanced Applications, 141-145 (World Scientific,
Singapore, New Jersey, London, Hong Kong 2000).

J. Lang: Adaptive Linearly Implicit Methods in Dynamical Process Sim-
ulation, CD-ROM Proceedings of the European Congress on Computa-
tional Methods in Applied Sciences and Engineering (ECCOMAS’00,
Barcelona, 2000).

J. Lang, B. Erdmann: Adaptive Linearly Implicit Methods for Heat
and Mass Transfer, in: A.V. Wouver, P. Saucez, W.E. Schiesser (eds.),
Adaptive Metod of Lines, 295-316 (CRC Press, 2000).

J. Lang, J. Verwer: ROS3P - an Accurate Third-Order Rosenbrock
Solver Designed for Parabolic Problems, BIT 41 (2001) 730-737.

109



[65]

[66]

[69]

[72]

73]

[74]

[75]

J. Lang, W. Merz: Two-Dimensional Adaptive Simulation of Dopant
Diffusion in Silicon, Computing and Visualization in Science 3 (2001),
169-176.

J. Lang, B. Erdmann: Three-Dimensional Adaptive Computation of
Brine Transport in Porous Media, in: G. de Vahl Davis and E. Leonardi
(eds.), CHT’01: Advances in Computational Heat Transfer, 1001-1008
(Begell House Inc., New York 2001).

J. Lang, B. Erdmann: Three-Dimensional Adaptive Computation of
Brine Transport in Porous Media, (enlarged version), Numerical Heat
Transfer: Applications, Vol. 42, No. 1 (2002), 107-119, Taylor & Francis.

M.J. Lourenco, S.C.S. Rosa, C.A. Nieto de Castro, C. Albuquerque,
B. Erdmann, J. Lang, R. Roitzsch: Simulation of the Transient Heat-
ing in an Unsymmetrical Coated Hot-Strip Sensor with a Self-Adaptive
Finite Element Method, in: M.S. Kim and S.T. Ro (eds.), Proc. 5th
Asian Thermophysical Properties Conference, Seoul, 1998, Vol. 1, 91-94
(Seoul National University, 1998).

M.J. Lourenco, S.C.S. Rosa, C.A. Nieto de Castro, C. Albuquerque,
B. Erdmann, J. Lang, R. Roitzsch: Simulation of the Transient Heat-
ing in an Unsymmetrical Coated Hot-Strip Sensor with a Self-Adaptive
Finite Element Method, Int. J. Thermophysics 21 (2000) 377-384.

G. Lube, D. Weiss: Stabilized Finite Element Methods for Singularly
Perturbed Parabolic Problems, Appl. Numer. Math. 17 (1995), 431-459.

Ch. Lubich, M. Roche: Rosenbrock Methods for Differential-Algebraic
Systems with Solution—Dependent Singular Matrix Multiplying the
Derivative, Comput., 43 (1990), 325-342.

J.D. Murray: A Pre-pattern Formation Mechanism for Animal Coat
Markings, J. theor. Biol., 88 (1981), 161-198.

M. Roche: Runge-Kutta and Rosenbrock Methods for Differential—
Algebraic Equations and Stiff ODEs, PhD thesis, Université de Geneve,
1988.

M. Roche: Rosenbrock Methods for Differential Algebraic Equations,
Numer. Math. 52 (1988), 45-63.

W. Merz, J. Lang: Analysis and Simulation of Two-Dimensional Dopant
Diffusion in Silicon, in: K.-H.Hoffmann (ed.), Smart Materials, Proceed-
ings of the First Caesarium, Springer-Verlag, 2001.

110



[76]

[77]

[78]

[79]

[30]

[81]

[82]

[83]

[85]

[36]

[87]

W. Mittelbach, H.-M. Henning: Seasonal Heat Storage Using Adsorp-
tion Processes, in IEA Workshop Advanced Solar Thermal Storage Sys-
tems, Helsinki, 1997.

J.E. Pearson: Complex Patterns in a Simple System, Science, Vol. 261
(1993), 189-192.

H.H. Pennes: Analysis of tissue and arterial blood temperatures in the
resting human forearm, J. Appl. Phys. 1 (1948), 1299-1306.

R. Roitzsch, R. Kornhuber: BOXES, a programm to generate triangula-
tions from a rectangular domain description, Technical Report TR 90-9
(1990), Konrad-Zuse-Zentrum Berlin.

R. Roitzsch, B. Erdmann, J. Lang: The Benefits of Modularization:
from KASKADE to KARDOS, Report, SC-98-15 (1998), Konrad-Zuse-

Zentrum Berlin.

H.H. Rosenbrock: Some General Implicit Processes for the Numerical
Solution of Differential Equations, Computer J. (1963), 329-331.

W. Ruppel, Entwicklung von Simulationsverfahren fiir die Reaktion-
stechnik, manuscript, BASF research, 1993.

M. Schafer, S. Turek: Benchmark Computations of Laminar Flow
Around a Cylinder, Preprint 96-03 (SFB 359), IWR, Heidelberg, 1996.

D. Schumann: Eine anwendungsbezogene Einfhrung in die adaptive
Finite Elemente Methode, Diplomarbeit, Tech. Fachhochschule Berlin,
2001.

F. Seewald, A. Pollei, M. Kraume, W. Mittelbach, J. Lang: Numerical
Calculation of the Heat Transfer in an Adsorption Energy Storage with
KARDOS, Report SC-99-04 (1999), Konrad-Zuse-Zentrum Berlin.

G. Steinebach: Order-Reduction of ROW-methods for DAEs and
Method of Lines Applications, Preprint 1741, Technische Hochschule
Darmstadt, Germany, 1995.

K. Strehmel, R. Weiner: Linear—implizite Runge-Kutta—Methoden
und ihre Anwendungen, Teubner Texte zur Mathematik 127, Teubner
Stuttgart, Leipzig, 1992.

111



[33]

[89]

[90]

[91]

L. Tobiska, R. Verfiirth: Analysis of a Streamline Diffusion Finite El-
ement Method for the Stokes and Navier—-Stokes Equation, SIAM J.
Numer. Anal. 33 (1996), 107-127.

R.A. Trompert, J.G. Verwer, J.G. Blom: Computing Brine Transport
in Porous Media with an Adaptive-Grid Method, Int. J. Numer. Meth.
Fluids 16 (1993), 43-63.

H.A. van der Vorst: BI-CGSTAB: A fast and smoothly converging vari-
ant of BI-CG for the solution of nonsymmetric linear systems, STAM J.
Sci. Stat. 13 (1992), 631-644.

D. Stalling, M. Zockler, H.-C. Hege: AMIRA — Advanced Visualization,
Data Analysis and Geometry Reconstruction. http://amira.zib.de.

112



Appendix
Implementation of Examples of Use
In the Section 3 we made the reader familiar to a lot of applications which

we treated with KARDOS. In this appendix we complete these examples by
showing how we brought them into the code.

Determination of Thermal Conductivity

static int SensorParabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy, real **C)

{
real p = 0.0;
switch (classA)
{
case 1: p = 2852850.0; break;
case 2: p = 3280394.0; break;
case 3: p = 3418205.0; break;
case 4: p = 4164469.0; break;
}
cl[ol[0] = p;
return true;
}

static int SensorParabolicStruct(int **structC, int **dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

structC[0] [0] = F_FILL;
dependsS[0] [0] = false;

*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

113



static int SensorLaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real **matXY,
real **matYX, real **matYY)

real e = 0.0;

switch (classA)
{

72.0; Dbreak;
25.5; Dbreak;
32.3; Dbreak;
0.606; break;

case 1:
case 2:
case 3:
case 4:

® ® ® @
o

matXX[0] [0]
matXY[0] [0]
matYX[0] [0]
matYY [0] [0]

return true;

static int SensorLaplaceStruct(int **structD,
int **dependsS, int *dependsT,
int *dependsU, int *dependsGradU)

{
structD[0] [0] = F_FILL; dependsS[0] [0] = false;
*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int SensorSource(real x, real y, int classA, real t,

114



real *u, real *ux, real *uy, real *vec)

{
real s = 0.0;
switch (classA)
{
case 1: s = 170.45e+9; break;
case 2: s = 0.0; break;
case 3: s = 0.0; break;
case 4: s = 0.0; break;
}
vec[0] = s;
return true;
}

static int SensorSourceStruct(int *structF, int *dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structF[0] = F_FILL; dependsS[0] = false;
*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int SensorInitialFunc(real x, real y, int classA,
real *start, real *startUt)

{
start [0] = 0.0;

return true;

3

static int SensorDirichlet(real x, real y, int classA, real t,

115



{

}

bval[0] = u[0];

return true;

real *u, int equation, real

static char *tempVarName = {‘‘temperature’’};

int SetSensorProblems()

{

¥

if (!SetTimeProblem("sensor",tempVarName,

return true;

SensorParabolic,

SensorParabolicStruct,

SensorLaplace,
SensorLaplaceStruct,

SensorSource,
SensorSourceStruct,
0,

0,
SensorInitialFunc,
0,

SensorDirichlet,
0)) return false;

116

*bVal)



Pattern Formation

static
char *tempVarName[] = {"concentrationO","concentrationl"};

static int GrayScottParabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **mat)
{
mat [0] [0]
mat [1] [1]

]
_ e
o O

return true;

¥

static int GrayScottParabolicStruct(int #**structM, int **dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_IGNORE; dependsXY[0] [1] = false;
structM[1] [0] = F_IGNORE; dependsXY[1][0] = false;
structM[1] [1] = F_FILL; dependsXY[1] [1] = false;
*dependsT = false;
*dependsU = false;

*dependsGradU = false;

return true;

static int GrayScottLaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real *x*matXY,
real **matYX, real **matYY)

{
matXX[0] [0] = 2.0e-5/0.25;
matXY [0] [0] 0.0;
matYX[0] [0] 0.0;
matYY[0] [0] = 2.0e-5/0.25;

117



matXX[1] [1] = 1.0e-5/0.25;
matXY[1] [1] 0.0;
matYX[1] [1] 0.0;
matYY[1] [1] = 1.0e-5/0.25;

return true;

static int GrayScottLaplaceStruct(int **structM, int **dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_IGNORE; dependsXY[0] [1] = false;
structM[1] [0] = F_IGNORE; dependsXY[1][0] = false;
structM[1] [1] = F_FILL; dependsXY[1] [1] = false;

*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int GrayScottSource(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real *vec)
{
vec[0]
vec[1]

—ul0]*ul[1]*ul1] + 0.024*(1.0-ul[0]);
ul0]*ul[1]*ul[1] - (0.024+0.06)*ul1];

return true;

static int GrayScottSourceStruct(int *structV, int *dependsXY,
int *dependsT, int *dependsU,

int *dependsGradU)

{
structV[0]
structV[1]

F_FILL; dependsXY[0] = true;
F_FILL; dependsXY[1] true;

118



*dependsT = false;
*dependsU true;
*dependsGradU = true;

return true;

static int GrayScottInitialFunc(real x, real y, int classA,
real *start, real *dummy)

{
if ((0.25<=x)&&(x<=0.75)&&(0.25<=y)&& (y<=0.75))
{
start[0] = 1.0
- 0.5%pow(sin(4.0*REALPI*x),2.0)
*xpow (sin(4.0*REALPIx*y),2.0);
start[1] = 0.25*pow(sin(4.0*REALPI*x),2.0)
xpow(sin(4.0*REALPI*y),2.0);
+
else
{
start[0] = 1.0;
start[1] = 0.0;
}

return true;

¥

static int GrayScottDirichlet(real x, real y, int classA, real t,
real *u, int variable, real *fVal)
{

switch (variable)

{
case 0: fVall[O]
break;
case 1: fVal[O]
break;

ul0] - 1.0;

ul1] - 0.0;
}

return true;

¥

119



int SetGrayScottProblem()
{

if (!SetTimeProblem("gray_scott",tempVarName,

return true;

}

120

GrayScottParabolic,
GrayScottParabolicStruct,
GrayScottLaplace,
GrayScottLaplaceStruct,
0,

0,

GrayScottSource,
GrayScottSourceStruct,
0,

0,
GrayScottInitialFunc,
0,

GrayScottDirichlet,

0)) return false;



Thermo-Diffusive Flames
static char *flameVarNames[] = {"temperature",'"concentration"};

static int ThinFlameParabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **mat)
{
mat [0] [0]
mat [1] [1]

I
_ e
o O

return true;

}

static int ThinFlameParabolicStruct(int **structM, int **dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_IGNORE; dependsXY[0] [1] = false;
structM[1] [0] = F_IGNORE; dependsXY[1][0] = false;
structM[1] [1] = F_FILL; dependsXY[1] [1] = false;
*dependsT = false;
*dependsU = false;

*dependsGradU = false;

return true;

static int ThinFlamelaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real **matXY,
real **matYX, real **matYY)

matXX [0] [0]
matXY [0] [0]
matYX [0] [0]
matYY [0] [0]

matXX[1] [1]

1.0/flameCoeff [0];

121



)

matXY[1] [1] 0.0
matYX[1] [1] 0.0;
matYY[1] [1] 1.0/flameCoeff [0];

return true;

static int ThinFlameLaplaceStruct(int **structM, int **dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_IGNORE; dependsXY[0] [1] = false;
structM[1] [0] = F_IGNORE; dependsXY[1][0] = false;
structM[1] [1] = F_FILL; dependsXY[1][1] = false;

*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int ThinFlameSource(real x, real y, int classA, real t,
real *u, real *ux, real *uy, real *vec)

{
real helpl, help2;
helpl = 1.0-u[0];
help2 = flameCoeff [1]*flameCoeff [1]*u[1]*

exp(-flameCoeff [1]*helpl/(1.0-flameCoeff [2]*helpl))
*HALF/flameCoeff [0] ;

vec[0] = help2;
vec[1] = -help2;

return true;

static int ThinFlameSourceStruct(int *structV, int *dependsXY,
int *dependsT, int *dependsU,

122



int *dependsGradU)

structV[0]
structV[1]

F_FILL; dependsXY[0] = true;
F_FILL; dependsXY[1] true;

*dependsT = false;
*dependsU = true;
*dependsGradU = false;

return true;

static int ThinFlameJacobian(real x, real y, int classA,

real t, real *u, real *ux,
real *uy, real **mat)

real helpO, help2, valO, valil;

help0 = 1.0-u[0];
help2 = 1.0-flameCoeff [2]*helpO;
val0 = flameCoeff[1]*flameCoeff[1]*flameCoeff [1]*ul[1]x*
exp(-flameCoeff [1]*helpO/help2) *HALF
/ (flameCoeff [0] *help2*help2) ;
vall = flameCoeff[1]*flameCoeff [1]
*xexp (-flameCoeff [1] *help0/(1.0-flameCoeff [2] *helpO))
*HALF/flameCoeff [0] ;
mat[0] [0] = wvalO;
mat [0] [1] = wvall;
mat[1] [0] = -valO;
mat[1] [1] = -valil;

return true;

static int ThinFlameJacobianStruct(int **structM,

{

int **dependsXY)

structM[0] [0] = F_FILL; dependsXY[0] [0] = true;
structM[0] [1] = F_FILL; dependsXY[0] [1] = true;
structM[1] [0] = F_FILL; dependsXY[1] [0] = true;

123



structM[1] [1] = F_FILL; dependsXY[1] [1] = true;

return true;

3

static int HandFlameInitialFunc(real x, real y, int classA,
real *start, real *dummy)
{
real x0 = flameCoeff[5]*0.15,
length = flameCoeff [5];

if ((0.0<=x)&&(x<=x0))

{
start[0] = 1.0;
start[1] = 0.0;
}
else if ((x0<x)&&(x<=length))
{
start[0] = exp(-x+x0);
start[1] = 1.0-exp(flameCoeff [0]*(-x+x0));
}

else return false;
return true;
static int HandFlameDirichlet(real x, real y, int classA,

real t, real *u,
int variable, real *fVal)

{
switch (variable)
{
case 0: if (x==0.0) fVal[O0] = u[0] - 1.0;
else if (x==flameCoeff[5]) fVal[O0] = ul0];
else ZIBStdOut("error in HandFlameDirichlet\n");
break;
case 1: if (x==0.0) fVall[O0] = ul1l];
else if (x==flameCoeff[5]) fVal[O] = ul[l] - 1.0;
else ZIBStdOut("error in HandFlameDirichlet\n");
break;
}

124



return true;

3

static int HandFlameCauchy(real x, real y, int classA, real t,
real *u, int equation, real *fVal)

{
switch (equation)
{
case 0: if ( (x!=0.0)
&& (x!'=flameCoeff [5])&&(y!=flameCoeff [6])
&& (y!=-flameCoeff [6]))
fVal[0] = -flameCoeff[3]*ul0];
else ZIBStdOut("error in HandFlameCauchy\n");
break;
case 1: ZIBStdOut("error in HandFlameCauchy\n");
break;
}

return true;

¥

int SetFlameProblems()
{
if (!SetTimeProblem("handflame",flameVarNames,

ThinFlameParabolic,
ThinFlameParabolicStruct,
ThinFlamelaplace,
ThinFlamelaplaceStruct,
0,
0,
ThinFlameSource,
ThinFlameSourceStruct,
ThinFlameJacobian,
ThinFlameJacobianStruct,
HandFlameInitialFunc,
HandFlameCauchy,
HandFlameDirichlet,
0)) return false;

125



return true;

126



Nonlinear Modelling of Heat Transfer in Regional Hyperthermia
static char *hyperVarName[] = {"temperature'};

static real temp_bolus = 25.0;
static real temp_air = 25.0;

static real tramsportAir = 15.0;
static real transportWater = 45.0;

static int HyperParabolic(real x, real y, real z, int classA,
real t, real *u, real *ux, real *uy,
real *uz, real **mat)

{

mat [0] [0] = rc_tissuel[classA]*scaleTime;

return true;

}

static int HyperParabolicStruct(int **structM, int **dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

structM[0] [0] = F_FILL; dependsS[0][0] = false;

*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int HyperLaplace(real x, real y, real z, int classA,
real t, real *u,
real *ux, real *uy, real *uz,
real **matXX, real *x*matXY, real **matXZ,
real **matYX, real **matYY, real **matYZ,
real **matZX, real **matZY, real **matZZ)
{
matXX [0] [0]
matXY [0] [0]

kappa_tissue[classA];
0.0;

127



matXZ[0] [0] = 0.0;
matYX[0] [0] = 0.0;
matYY[0] [0] = kappa_tissue[classA];
matYZ[0] [0] = 0.0;
matZX[0] [0] = 0.0;
matZY[0] [0] = 0.0;
matZZ[0] [0] = kappa_tissuel[classA];

return true;
static int HyperLaplaceStruct(int **structM, int **dependsS,
int *dependsT,int *dependsU,
int *dependsGradU)
structM[0] [0] = F_FILL; dependsS[0] [0] = false;
*dependsT = false;

*dependsU = false;
*dependsGradU = false;

return true;

static int HyperSource(real x, real y, real z, int classA,
real t, real *u, real *ux, real *uy,
real *uz, real *vec)

/* SAR-scaling: 0.181, 0.11342, 0.284 4
real sarScale = hyper_datal[15];

vec[0] = sarScalexSAR(x,y,z);
return true;
static int HyperSourceStruct(int *structV, int *dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)
{

structV[0] = F_FILL; dependsS[0] = true;

128



*dependsT = true;
*dependsU = true;
*dependsGradU = false;

return true;

static int HyperInitial(real x, real y, real z, int classA,
real *start, real *startUt)
{
start [0]

hyper_datal[14];

return true;

¥

static int HyperCauchy(real x, real y, real z, int classA,
real t, real *u, int equation,
real *fVal)
{
if (classA==3)
fVal[0] = transportWater*(temp_bolus - u[0]);
else
if (classA==5 || classA==2)
fVal[0] = transportAir*(temp_air - u[0]);
else
printf ("\n undefined boundary condition");

return true;

¥

static int HyperDirichlet(real x, real y, real z, int classA,
real t, real *u, int equation,
real *fVal)

{
fVal[0]= 37.0-ul0];

return true;

}

129



int SetHyperProblems ()
{
if (!SetTimeProblem("hyper" ,hyperVarName,

HyperParabolic,
HyperParabolicStruct,
HyperLaplace,
HyperLaplaceStruct,
0,
0,
HyperSource,
HyperSourceStruct,
0,
0,
HyperInitial,
HyperCauchy,
HyperDirichlet,
0)) return false;

return true;

130



Tumour Invasion

#define CELL_KAPPA 0.7
#define CELL_ALPHA 10.0
#define CELL_BETA 4.0
#define CELL_GAMMA 1.0
#define CELL_LAMBDA 1.0
#define CELL_CSTAR 0.2
#define CELL_MU 100.0
#define CELL_EPSILON 0.001
static

char *cellVarNames[] = {"density of blood cells","concentration taf"};
static
char *timVarNames[] = <{"density of tumor cells","ecm",'"mde"};

[ xR BB B AR
#

# Example: Tumor angiogenesis model
#

# u[0]: density

# ul1]: taf

#

S S S S S s S s R S s
*/

static int CellParabolic(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **mat)
{
mat [0] [0]
mat [1] [1]

I
= e
o O

return true;

}

static int CellParabolicStruct(int **structM, int **dependsXY,
int *dependsT, int *dependsU,

131



int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_IGNORE; dependsXY[0] [1] = false;
structM[1] [0] = F_IGNORE; dependsXY[1][0] = false;
structM[1] [1] = F_FILL; dependsXY[1] [1] = false;
*dependsT = false;
*dependsU = false;

*dependsGradU = false;

return true;

static int Celllaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real *x*matXY,
real **matYX, real **matYY)

matXX[0] [0] = CELL_EPSILON;
matXY[0] [0] = 0.0;
matYX[0] [0] = 0.0;
matYY[0] [0] = CELL_EPSILON;

matXX[0] [1] = -u[0]*CELL_KAPPA;
matXY[0][1] = 0.0;
matYX[0] [1] = 0.0;
matYY[0] [1] = -u[0]*CELL_KAPPA;

matXX[1][1] =
matXY[1][1] =
matYX[1][1] =
matYY[1][1] =

o e

= O O =
O O O O

return true;

static int CellLaplaceStruct(int **structM, int **dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

132



structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_FILL; dependsXY[0] [1] = true;
structM[1] [0] = F_IGNORE; dependsXY[1][0] = false;
structM[1] [1] = F_FILL; dependsXY[1] [1] = false;

*dependsT = false;
*dependsU = true;
*dependsGradU = false;

return true;

static int CellSource(real x, real y, int classA, real t,
real *u, real *ux, real *uy, real *vec)

{
vec[0] = CELL_MU*u[0]*(1.0-u[0])*MAXIMUM(0.0,ul1]-CELL_CSTAR)
-CELL_BETA*u[0] ;
vec[1] = -CELL_LAMBDAx*ul[1]

-CELL_ALPHA*u[0]*u[1]/(CELL_GAMMA+u[1]);
return true;
static int CellSourceStruct(int *structV, int *dependsXY,

int *dependsT, int *dependsU,
int *dependsGradU)

{
structV[0] = F_FILL; dependsXY[0] = true;
structV[1] = F_FILL; dependsXY[1] = true;
*dependsT = false;
*dependsU = false;

*dependsGradU = false;

return true;

static int CelllInitialFunc(real x, real y, int classA, real *start,
real *dummy)

{
if ( (x >= 0.95) && ( (y>=0.2 && y<=0.27)

133



Il (y>=0.5 && y<=0.57) ||
(y>=0.7 && y<=0.77) ))

{
start [0]=1.0;
}
else
{
start[0] = 0.0;
}

start[1] = cos(REALPI/2.0*x)*(2.0%(1.0-x)+2.0+
cos (2.0%REALPI*(0.5-y)))/5.0
*xexp((-1.0)*(1.0-cos(REALPI/2.0%*x)));

return true;

3

static int CellDirichlet(real x, real y, int classA, real t,
real *u, int equation, real *fVal)

{
real u0[2], ut0[2];
CellInitialFunc(x, y, classA, u0, utO);

switch (equation)

{
case 0: *fVal = u0[0]-u[0];
break;
case 1: *fVal = uO[1]-u[1];
break;
}
return true;
}
/%

S S S S s S S s S s
#

# Example: Tumor invasion model

134



ul[0]: tumor cell density
u[1]: density of the extracellular matrix, ECM
u[2]: density of the matrix degradative enzymes, MDE

H H H HH

S s S S s s
*/

static int TIMParabolic(real x, real y, int classA, real t, real *u,
real *ux, real *uy, vreal **mat)
{
mat [0] [0]
mat [1] [1]
mat [2] [2]

o
= e
o O O

return true;

static int TIMParabolicStruct(int **structM, int **dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[1] [1] = F_FILL; dependsXY[1] [1] = false;
structM[2] [2] = F_FILL; dependsXY[2] [2] = false;

*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int TIMLaplace(real x, real y, int classA, real t,
real *u, real *ux, real *uy,
real **matXX, real **matXY,
real **matYX, real **matYY)
{
matXX [0] [0]
matXY [0] [0]

0.1xCELL_EPSILON;
0.0;

135



matYX[0] [0] =
matYY[0] [0] =

matXX[0] [1] =
matXY[0] [1] =
matYX[0] [1] =
matYY[0] [1] =

matXX[2][2] =
matXY[2][2] =
matYX[2][2] =
matYY[2][2] =

return true;

0.0;
0.1*CELL_EPSILON;

-u[0]*0.005;
0.0;
0.0;
-u[0]*0.005;

.001;

b

o O O O
o O O O

01;

static int TIMLaplaceStruct(int **structM, int #**dependsXY,

int *dependsT, int *dependsU,
int *dependsGradU)

structM[0] [0] = F_FILL; dependsXY[0] [0] = false;
structM[0] [1] = F_FILL; dependsXY[0] [1] = true;

structM[2] [2] = F_FILL; dependsXY[2] [2] = false;
*dependsT = false;

*dependsU = true;

*dependsGradU = false;

return true;

static int TIMSource(real x, real y, int classA, real t,

{

real *u, real *ux, real *uy, real *vec)

vec[0] = 0.0;
vec[1] = -10.0*ul[1]*u[2];
vec[2] = 0.1*xul0];

return true;

136



static int TIMSourceStruct(int *structV, int *dependsXY,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structV[1] = F_FILL; dependsXY[1] = true;
structV[2] = F_FILL; dependsXY[2] = true;
*dependsT = false;
*dependsU = true;

*dependsGradU = false;

return true;

static int TIMInitialFunc(real x, real y, int classA, real *start,
real *dummy)

{
real qdist = (x-0.5)*(x-0.5)+(y-0.5)*(y-0.5),
dist = sqrt(qdist);

start[0] = exp(-qdist/0.0025);

start[1] = 0.5+0.5
*sin(10.0*x*(dist+0.1)*REALPI/(y+1.0))
*sin(10.0%x*(dist+0.1) *REALPI*y)
*sin(10.0%(1.0-x)*(dist+0.1)*REALPI/(y+1.0))
*sin(10.0%(x-1.0)*(dist+0.1) *REALPI*(y-1.0));

start[2] = exp(-qdist/0.0025);

return true;

static int TIMDirichlet(real x, real y, int classA, real t,
real *u, int equation, real *fVal)
{
switch (equation)

{
case 0: *fVal = -ul0];
break;

return true;

137



static int TIMSolution(real x, real y, int classA, real t,
real *u, real *ux, real *uy)
{
ul[0]=0.0;
ul[1]=0.0;
ul[2]=0.0;

ux[0]=0.0;
ux[1]=0.0;
ux[2]=0.

o

uy [0]=0.
uy[1]=0.
uy [2]=0.

o O O

return true;

int SetCellProblems()
{
if (!SetTimeProblem("cell",6cellVarNames,

CellParabolic,
CellParabolicStruct,
Celllaplace,
CelllLaplaceStruct,
0,
0,
CellSource,
CellSourceStruct,
0,
0,
CellInitialFunc,
0,
CellDirichlet,
0)) return false;

if (!SetTimeProblem("tim",timVarNames,
TIMParabolic,

138



3

return true;

TIMParabolicStruct,
TIMLaplace,
TIMLaplaceStruct,
0,

0,

TIMSource,
TIMSourceStruct,
0,

0,
TIMInitialFunc,
0,

TIMDirichlet,

TIMSolution)) return

139

false;



Linear Elastic Modelling of the Human Mandible

static char *elastVarName[] = {"u","v","w"};

static int ElastParabolic(real x, real y, real z, int classA,
real t, real *u, real *ux, real *uy,
real *uz, real **mat)

mat [0] [0]
mat [1] [1]
mat [2] [2]

]
= e
O O O

return true;

o e

static int ElastParabolicStruct(int **structM, int **dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

structM[0] [0]
structM[0] [1]
structM[0] [2]
structM[1] [0]
structM[1] [1]
structM[1] [2]
structM[2] [0]
structM[2] [1]
structM[2] [2]

*dependsT
*dependsU
*dependsGradU

return true;

static int ElastLaplace(real x, real vy,

F_FILL;

F_IGNORE;
F_IGNORE;
F_IGNORE;

= F_FILL;

F_IGNORE;
F_IGNORE;
F_IGNORE;
F_FILL;

false;
false;
false;

dependsS[0] [0] = false;
dependsS[0] [1] false;
dependsS[0] [2] = false;
dependsS[1] [0] = false;
dependsS[1] [1] = false;
dependsS[1] [2] = false;
dependsS[2] [0] false;
dependsS[2] [1] false;
dependsS[2] [2] = false;
real z, int classA,

real t, real *u,

real *ux, real *uy, real *uz,

140



real **xmatXX, real **matXY, real **matXZ,
real **matYX, real **matYY, real **matYZ,
real **matZX, real **matZY, real **matZZ)

real lambda, my;

lambda
my

tissue[classA] .lambda;
tissue[classA] .mu;

matXX[0] [0] = lambda + 2.0*my;
matXY[0] [0] = 0.0;
matXZ[0] [0] = 0.0;
matYX[0] [0] = 0.0;
matYY[0] [0] = my;
matYZ[0] [0] = 0.0;
matZX[0] [0] = 0.0;
matZY[0] [0] = 0.0;
matZZ[0] [0] = my;

matXX[0] [1] = 0.0;
matXY[0] [1] = lambda;
matXZ[0] [1] = 0.0;
matYX[0] [1] = my;
matYY[0][1] = O
matYZ[0][1] = O
matZX[0] [1] = O.
matZY[0] [1] = O
matZZ[0] [1] = O

matXX[0] [2] = 0.0;
matXY[0][2] = 0.0;
matXZ[0] [2] = lambda;
matYX[0] [2] = 0.0;
matYY[0] [2] = 0.0;
matYZ[0] [2] = 0.0;
matZX[0] [2] = my;
matZY[0] [2] = 0.0;
matZZ[0] [2] = 0.0;

matXX[1][0] = 0.0;
matXY[1] [0] = my;

141



matXZ[1]1[0] =
matYX[1][0] =
matYY[1][0] =
matYZ[1][0] =

matZX[1] [0]
matZY[1] [0]

matZZ[1] [0] =

matXX[1] [1]

matXY[1] [1] =

matXZ[1] [1]
matYX[1] [1]
matYY[1] [1]
matYZ[1] [1]
matZX [1] [1]

matZY[1] [1] =

matZZ[1] [1]

matXX[1] [2] =
matXY[1] [2] =

matXZ[1] [2]
matYX[1] [2]

matYY[1][2] =
matYZ[1][2] =
matzZX[1][2] =
matZY[1][2] =

matZZ[1] [2]

matXX[2] [0]
matXY[2] [0]
matXZ[2] [0]

matYX[2] [0] =
matYY[2] [0] =
matYZ[2] [0] =
matZX[2] [0] =

matZY[2] [0]
matZZ[2] [0]

matXX[2] [1]

matXY[2] [1] =
matXZ[2] [1] =

0.0;

my;

142



matYX [2] [1]
matYY[2] [1]
matYZ[2] [1]
matZX [2] [1]
matZY [2] [1]
matZZ[2] [1]

matXX [2] [2]
matXY [2] [2]
matXZ[2] [2]
matYX [2] [2]
matYY[2] [2]
matYZ[2] [2]
matZX [2] [2]
matZY [2] [2]
matZZ[2] [2]

return true;

structM[0] [0]
structM[0] [1]
structM[0] [2]
structM[1] [0]
structM[1] [1]
structM[1] [2]
structM[2] [0]
structM[2] [1]
structM[2] [2]

*dependsT
*dependsU

*dependsGradU

return true;

0.
0.

0;
0;

my;

0.

0;

lambda;

0.

0;

my;

0.
0.
0.

0;
0;
0;

my;

0.
0.
0.

0;
0;
0;

lambda+2.0*my;

F_FILL,;
F_FILL,;
F_FILL;
F_FILL;
F_FILL,;
F_FILL,;
F_FILL,;
F_FILL;
F_FILL;

false;
false;
false;

static int ElastLaplaceStruct(int **structM, int

*xdependss,

int *dependsT, int *dependsU,

int *dependsGradU)

dependsS[0] [0] = true;
dependsS[0] [1] = true;
dependsS[0] [2] = true;
dependsS[1] [0] = true;
dependsS[1] [1] = true;
dependsS[1] [2] = true;
dependsS[2] [0] = true;
dependsS[2] [1] = true;
dependsS[2] [2] = true;

143



static int ElastSource(real x, real y, real z, int classA,
real t, real *u, real *ux, real *uy,
real *uz, real *vec)

vec [0]
vec[1]
vec[2]

o
o O O
o O O

return true;

static int ElastSourceStruct(int *structV, int *dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structV[0] = F_IGNORE; dependsS[0] = false;
structV[1] = F_IGNORE; dependsS[1] = false;
structV[2] = F_IGNORE; dependsS[2] = false;
*dependsT = false;
*dependsU = false;
*dependsGradU = false;

return true;

static int ElastDirichlet(real x, real y, real z, int classA,
real t, real *u, int variable,
real *fVal)
{
switch (variable)
{
case 0: fVall[O]
break;
case 1: fVall[O]
break;
case 2: fVall[0]
break;

3

0.0 - ul0];

0.0 - ul1]l;

0.0 - ul2];

144



return true;

3

static int ElastInitialFunc(real x, real y, real z,
int classA, real *start,
real *dummy)

{
start[0] = 0.0;
start[1] = 0.0;
start[2] = 0.0;
return true;

}

static int ElastCauchy(real x, real y, real z, int id, real t,
real *u, int equation, real *fVal)
{
switch (equation)
{
case 0O:
fVal[0]
break;
case 1:
fVal[0]
break;
case 2:
fVal[0]
break;

3

forcelid] .fx;

forcel[id].fy;

forcel[id] .fz;

return true;

3

int SetElastProblems()
{
if (!SetTimeProblem("elast",elastVarName,
ElastParabolic,
ElastParabolicStruct,

145



ElastLaplace,
ElastLaplaceStruct,
0,

0,

ElastSource,
ElastSourceStruct,
0,

0,
ElastInitialFunc,
ElastCauchy,
ElastDirichlet,
0)) return false;

146



Porous Media
static char *brineVarName[] = {"p","w"};

static real Rho(real p, real w)

{
real rhoO = BRINE_rhoO;

return rhoO*exp (BRINE_beta*p+BRINE_gamma*w) ;
}

static real Mu(real w)

{
return BRINE_muO*(1.0+1.85*%w—4.1%wxw+44.5xwxw*w) ;

static int BrineParabolic(real x, real y, real z, int classA,
real t, real *u,
real *ux, real *uy, real *uz,
real **mat)

' real rho = Rho(u[0],ul1]);
mat [0] [0] = BRINE_n*rho*BRINE_beta;
mat [0] [1] = BRINE_n*rho*BRINE_gamma;
mat[1] [1] = BRINE_nx*rho;
return true;

}

static int BrineParabolicStruct(int **structM, int **dependsS,
int *dependsT,
int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsS[0] [0] = true;
structM[0] [1] = F_FILL; dependsS[0] [1] = true;
structM[1] [0] = F_IGNORE; dependsS[1] [0] = false;
structM[1] [1] = F_FILL; dependsS[1] [1] = true;

147



*dependsT = false;
*dependsU = true;
*dependsGradU = false;

return true;

static int Brinelaplace(real x, real y, real z, int classA,
real t, real *u,
real *ux, real *uy, real *uz,
real **matXX, real **matXY, real **matXZ,
real **matYX, real **matYY, real **matYZ,
real **matZX, real **matZY, real **matZZ)
{
real rho = Rho(u[0],ul1]),
mu = Mu(u[1]),
ql, 92, q3, absQ, pX, pY, pZ,

gl = BRINE_gx,
g2 = BRINE_gy,
g3 = BRINE_gz,
k = BRINE_k;

if (classA==1) k = BRINE_k;
else if (classA==2) k = BRINE_k2;

GiveGradVar(x,y,z, 0,&pX,&pY,&pZ);
ql = -(k/mu)*(pX-rhox*gl);

q2 = -(k/mu)*(pY-rhox*g2) ;

g3 = -(k/mu) *(pZ-rho*g3) ;

absQ = sqrt(ql*ql+q2*q2+q3+*q3) ;

if (absQ==0.0) { absQ=1.0;}

matXX[0] [0] = rhoxk/mu;
matXY[0] [0] = 0.0;
matXZ[0] [0] = 0.0;
matYX[0] [0] = 0.0;
matYY[0] [0] = rhoxk/mu;
matYZ[0] [0] = 0.0;
matZX[0] [0] = 0.0;
matZY[0] [0] = 0.0;

148



matZZ[0] [0] rhoxk/mu;

matXX[1] [1] = rho*(BRINE_n*BRINE_Dmol+BRINE_alphaT*absQ
+(BRINE_alphal-BRINE_alphaT)*ql*ql/absQ) ;

matXY[1] [1] = rho*(BRINE_alphal-BRINE_alphaT)*ql*q2/absQ;

matXZ[1] [1] = rho*(BRINE_alphal-BRINE_alphaT)*ql*q3/absQ;

matYX[1] [1] = rho*(BRINE_alphal-BRINE_alphaT)*q2*ql/absQ;

matYY[1] [1] = rho*(BRINE_n*BRINE_Dmol+BRINE_alphaT*absQ
+(BRINE_alphal-BRINE_alphaT)*q2+q2/absQ) ;

matYZ[1] [1] = rho*(BRINE_alphal-BRINE_alphaT)*q2*q3/absQ;

matZX[1] [1] = rho*(BRINE_alphal-BRINE_alphaT)*q3*ql/absQ;

matZY[1] [1] = rho*(BRINE_alphal.-BRINE_alphaT)*q3*q2/absQ;

matZZ[1] [1] = rho*(BRINE_n*BRINE_Dmol+BRINE_alphaT*absQ
+(BRINE_alphaL-BRINE_alphaT)*q3*q3/absQ) ;

return true;

static int BrineLaplaceStruct(int **structM, int **dependsS,
int *dependsT, int *dependsU,
int *dependsGradU)

{
structM[0] [0] = F_FILL; dependsS[0] [0] = true;
structM[0] [1] = F_IGNORE; dependsS[0] [1] = false;
structM[1] [0] = F_IGNORE; dependsS[1] [0] = false;
structM[1] [1] = F_FILL; dependsS[1] [1] = true;
*dependsT = false;
*dependsU = true;

*dependsGradU = false;

return true;

static int BrineConvection(real x, real y, real z,
int classA, real t, real *u,
real **matX, real **maty,
real **matZ)
{
real rho = Rho(ul[0],ul1]),

149



mu = Mu(u(1]),
ql, 92, g3, gradX[2], gradY[2], gradZ[2],
gl = BRINE_gx,
g2 = BRINE_gy,

o
w
I

BRINE_gz,
k = BRINE_k;

if (classA==1) k = BRINE_k;
else if (classA==2) k = BRINE_k2;

GiveGrad(x,y,z,gradX,gradY,gradZ) ;

ql
q2
q3

matX [0] [0]
matY [0] [0]
matZ[0] [0]
matX [0] [1]

-(k/mu) * (gradX [0] -rho*gl) ;
- (k/mu) * (gradY [0] -rho*g?2) ;
- (k/mu) * (gradZ [0] -rho*g3) ;

2.0*(k/mu) *rho*rho*BRINE_betaxgl;
2.0*(k/mu) *rho*rho*BRINE_betaxg2;
2.0% (k/mu) *rho*rho*BRINE_betax*g3;
2.0%(k/mu) *rho*rho*BRINE_gamma*gl

- (k/mu/mu) *rho*rho*BRINE_muO*(1.85-8.2%u[1]
+133.5*%u[1]*u[1])*gl;

matY[0] [1] =

2.0* (k/mu) *rho*rho*BRINE_gamma*g?2

- (k/mu/mu) *rho*rho*BRINE_muO*(1.85-8.2%u[1]
+133.5*%u[1]*u[1])*g2;

matZ[0] [1] =

2.0%(k/mu) *rho*rho*BRINE_gamma*g3

- (k/mu/mu) *rho*rho*BRINE_muO* (1.85-8.2*u[1]
+133.5*%u[1]*u[1])*g3;

matX[1] [1] =
matY[1] [1] =
matZ[1] [1] =

matX[1] [0] =
matY[1] [0] =
matZ[1] [0] =

return true;

rhoxql;
rho*q2;
rho*q3;

-rho* (k/mu) *gradX [1] ;

-rho* (k/mu) *gradyY[1] ;
-rho* (k/mu) *gradZ[1] ;

150



static int BrineConvectionStruct(int **structM,
int **dependsS,
int *dependsT,
int *dependsU)

{
structM[0] [0] = F_FILL; dependsS[0] [0] = true;
structM[0] [1] = F_FILL; dependsS[0] [1] = true;
structM[1] [0] = F_FILL; dependsS[1] [0] = true;
structM[1] [1] = F_FILL; dependsS[1] [1] = true;
*dependsT = false;
*dependsU = true;

return true;

static int BrineSource(real x, real y, real z, int classA,
real t, real *u,
real *ux, real *uy, real *uz,
real *vec)

real rho = Rho(ul[0],ul1]),
mu = Mu(u[1]),
gradX[2], gradY[2], gradZ[2],
k = BRINE_k;

if (classA==1) k = BRINE_k;
else if (classA==2) k = BRINE_k2;

GiveGrad(x,y,z,gradX,gradY,gradZ) ;
vec[1] = -rho*(k/mu)*
(gradX[0]*gradX[1]+gradY [0]*gradY[1]
+gradZ[0] *gradZ[1]) ;

return true;

static int BrineSourceStruct(int *structV, int *dependsS,

151



int *dependsT, int *dependsU,
int *dependsGradU)

{
structV[0] = F_IGNORE; dependsS[0] = false;
structV[1] = F_FILL; dependsS[1] = true;
*dependsT = false;
*dependsU = true;

*dependsGradU = false;

return true;

static int BrineInitialFunc(real x, real y, real z,
int classA, real *start,
real *startUt)

{

start [0]
start [1]

(0.03-0.012*x+1.0-z)*BRINE_rhoO*BRINE_g;
0.0;

return true;

}

static int BrineDirichlet(real x, real y, real z,
int classA, real t,
real *u, int equ, real *fVal)

real tRamp = 10.0;

if (equ==0)
{
fVal[0] = ul[0]-(0.03-0.012*x+1.0-z)*BRINE_rhoO*BRINE_g;
return true;

}

if (equ==1)
{
if ( (classA==6) || (classA==7) )
{
if (t<=tRamp)
fVal[0] = u[1]-t*BRINE_wO/tRamp;

152



{

3

3

else
fVal[0] = u[1]-BRINE_wO;

else if (classA==b)

fVal[0] = ul1];

}

else
printf ("\n weder classA==5 noch classA==6");

return true;

return true;

static

real

if (
else
else
else

int BrineCauchy(real x, real y, real z, int classA,
real t, real *u, int equ,
real *fVal)

rho = Rho(u[0],ul1]),
mu = Mu(ul1]),
g3 = BRINE_gz, k = BRINE_k;

classA==2 ) fVal[0]
if ( classA==3 ) fVall[0]
if ( classA==6 ) fVall[O]
if ( classA==7 ) fVall[O]

-k/mu*g3+*rho*rho;
k/mu*g3*rho*rho;
k/mu*g3*rho*rho+BRINE_qc;

-k/mu*xg3*rho*rho+BRINE_qc;

return true;

int SetBrineProblem()

{

if (

ISetTimeProblem("brine-isothermal" ,brineVarName,

BrineParabolic,
BrineParabolicStruct,
BrinelLaplace,
BrinelaplaceStruct,

153



BrineConvection,

BrineConvectionStruct,

BrineSource,

BrineSourceStruct,

(int (%) (real,real,real,int,real,realx*,
real*,real*,real*,real**))nil,

(int (%) (int**,int**))nil,

BrineInitialFunc,

BrineCauchy,

BrineDirichlet,

BrineSol)) return false;

return true;

¥

154



	Abstract
	Contents
	Introduction
	Numerical Concept
	Linearly Implict Methods
	Multilevel Finite Elements

	Applications
	Determination of Thermal Conductivity
	Vertical Bubble Reactor
	Semiconductor
	Pattern Formation
	Thermo-Di usive Flames
	Regional Hyperthermia
	Tumour Invasion
	Linear Elastic Modelling of the Human Mandible
	Porous Media
	Sorption Technology
	Combinable Catalytic Reactor System
	Incompressible Flows

	Installation Guidelines
	Define a New Problem
	Coefficient Functions
	Initial and Boundary Values
	Declare a Problem
	Triangulation of Domain
	Number of Equations
	Starting the Code

	Commands and Parameters
	Command Language Interface
	Dynamical Parameter Handling

	References
	Implementation of Examples of Use
	Determination of Thermal Conductivity
	Pattern Formation
	Thermo-Di usive Flames
	Nonlinear Modelling of Heat Transfer in Regional Hyperthermia
	Tumour Invasion
	Linear Elastic Modelling of the Human Mandible
	Porous Media


