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Abstract

In this work we present an approach for the sensitivity analysis of
linearly-implicit differential-algebraic equation systems. Solutions for
both, states and sensitivities are obtained by applying an extrapolated
linearly implicit Euler discretization scheme. This approach is compared
to the widely used sensitivity extensions of multi-step BDF methods
by means of case studies. Especially, we point out the benefit of this
method in the context of dynamic optimization using the sequential
approach.
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1 Introduction

Sensitivity analysis of differential-algebraic equation systems (DAEs) plays
an important role in many engineering and science disciplines. Applications
include parameter estimation, optimization, process sensitivity studies, model
reduction and experimental design [12, 17]. Consequently, there is the need
for algorithms which perform sensitivity computations in an efficient and
rapid manner.

A common way of obtaining sensitivity information for dynamic systems is the
numerical integration of the sensitivity equation systems, which emerge from
a differentiation of the DAE system with respect to the parameters of interest.
Various well established techniques make use of the fact that the sensitivity
integration depends on the solution of the DAE system. The algorithms
differ in the way they reuse information from the DAE integration for the
sensitivity integration. Many of the existing algorithms for a combined state
and sensitivity integration have been developed as extensions of the multi-
step BDF code DASSL or its variants. Caracotsios and Stewart [5] have
suggested a scheme in which the linear systems for the sensitivity corrector
steps are solved directly after convergence of the nonlinear corrector step.
Later, this method has been termed the staggered direct approach. Maly
and Petzold [17] have proposed a simultaneous corrector method, where the
DAE and sensitivity systems are solved simultaneously. A staggered corrector
method was developed by Feehery et al. [12]. Here, instead of solving the
linear systems arising in the sensitivity integration directly, they are solved by
a Newton iteration which uses the same iteration matrix as in the preceding
state integration. Comparisons of these different BDF based methods are
given in [12, 16].

For specific applications, such as dynamic optimization, also other methods
for sensitivity evaluation are available. Alternatives to the integration of the
sensitivity equations are backward integration of the adjoint system (e.g. [4]),
and perturbation approaches (e.g. [20] and references cited therein).

In this paper, we consider a one-step extrapolation method based on the lin-
early implicit Euler discretization as an alternative to the BDF based methods
for the integration of the combined state and sensitivity system. The basic
method has been developed and implemented as the code LIMEX for DAE
integration by Deuflhard et al. [9, 8]. This paper describes an extension
of LIMEX for sensitivity evaluation and compares its computational perfor-
mance with the established BDF based techniques.

Besides looking into the use for pure sensitivity evaluation we also consider
the special application in the context of dynamic optimization using the so-
called sequential approach [2, 14, 21]. The extrapolation-based sensitivity
integration appears to be especially beneficial for this class of application.



2 Problem formulation

In this work, we consider a system of linearly-implicit differential-algebraic
equations (DAEs) of the form

B(tay)y = f(tayap) (1)
y(to) = yo (2)

where y € R are the states and p € R" denotes the parameters of the
original DAE system. In principle, the matrix B may also depend on the pa-
rameters p. However, in order to simplify the presentation, we have dropped
this possible dependency. The matrix B may be singular, but the DAE sys-
tem is assumed to have a differential index up to one. yy € R™ are consistent
initial conditions. For ease of notation the arguments ¢, y and p are sometimes
left out in the following. Sensitivity analysis aims at finding the derivatives of
the states y with respect to the parameters p. Differentiating (1) with respect
to each parameter p; yields additional n, sensitivity equation systems of the
form

where s; = j—yi denotes the sensitivity of y with respect to the parameter p;.
The symbol I' has been introduced as

Ty

0B;; . .
Pi,lizz Byzl’]yj’ i=1,...,ny, l=1,...,ny, (4)

i=1

for simpler notation. The sensitivity systems (3) for each parameter p; are
DAEs themselves, which are independent from each other, but obviously
depending on the solution of the state system (1). Two special properties of
the sensitivity systems have to be mentioned: They are linear in s;, and, with
respect to s;, they possess the same Jacobian matrix as the state system. The
algorithms available for combined state and sensitivity integration [5, 12, 17]
all exploit these special properties in some way.

In the following, we first take a look at the solution of the state system itself,
before the sensitivity evaluation is addressed.

3 Linearly implicit extrapolation for state integra-
tion

This section summarizes the derivation of the linearly-implicit extrapolation
algorithm. The reader is referred to [9, 7, 8, 11] for more details.



Applying the linearly-implicit Euler discretization with a stepsize h to the
DAE system (1) yields

Ye+1 = Yk + (Bx — hAg) *hf (yk,p), (5)

where

is the Jacobian matrix of the residual of (1) and

AO = A(t7 y)'t:to .

It is important to note that the matrix Ay could also be replaced by an
approximation as long as the relevant parts are retained [18, 10].
_ By

If we denote the iteration matrix with M := (A — 3t), we can also write

Yrt1 = Y — My ' f (yr. D). (7)

The expression (7) (or (5)) corresponds to one Newton iteration for the non-
linear system which arises in the implicit Euler discretization [8].

The extrapolation method allows to construct approximations of higher order
based on this discretization. If H denotes a basic stepsize, approximations
Tj1 for y(to + H) can be obtained by using the described discretizations
with stepsizes h; = H/nj,j = 1,..., jmaz- The harmonic sequence {n;} =
{1,2,3,...} has proven to be a reliable choice. The extrapolation tableau

Tik1—Tj1 k1
/M1~ 1

Tjk:T,j,kfl‘l_ s k=1,...,7 (8)

then defines higher order approximations T} ;. The so-called subdiagonal
differences €; = ||T}; — Tjj—1|| are taken as error estimates. T}, can be
accepted as an approximation for y(tg + H), if the error estimate is less then
a predefined tolerance.

As mentioned above, this algorithm has been implemented into the code
LIMEX, including an advanced adaptive stepsize and order control mecha-
nism developed by Deuflhard [6]. The extensions for sensitivity evaluation,
which are presented in the following section, have been implemented based
on LIMEX.

A simplified algorithmic structure of the linearly-implicit extrapolation code
for one basic integration step H looks as follows [11]:



Algorithm 1: State integration

Compute Jacobian Ag = gy(f(yoap) — By)

for 7 =1,..., jmaz While convergence criterion not satisfied
hj = H/n;
fork=0,...,7—1
Ykt = Yk + (Bk — hjAo) " ;i f (yk, p)
Tj1 =y
if 7 > 1 compute T} ; and check convergence

Ynew = Tj,j

In order to make the solution of the linear system in the innermost loop most
efficient, an iterative procedure has been suggested [9, 7, 11], which utilizes
the fact that in most real problems the matrix B contains only relatively few
non-constant entries. In case of a constant matrix B this is not required,
rather a standard LU factorization can be used.

4 Extensions for sensitivity evaluation

4.1 Simultaneous state and sensitivity integration

For extending the linearly-implicit extrapolation algorithm for sensitivity
evaluation we consider a combined system of the original DAE system (1)
and the associated sensitivity systems (3):

: [ f(typ)
B J of _ + 9
B 51 dy 5 op1
- | O
B Snp _(g—f - P) Sn,, + aif,,
By using (6), introducing the combined vector Y := [y, s1,..., s,,] and defin-
ing
B [, y,zg}
B . B . As1+ KT
. C
B Asnp + m



We assume that consistent initial conditions for this system are provided.
sio and $;0 can be calculated from solving (3) at %o, using the knowledge
of yo and the fact that s; ;0 = ‘%’:(to) = 0 for those y;, which have been
chosen as dynamic degrees of freedom by fixing their initial conditions in (2).
In principal, the combined system (10) then could be integrated using the
method described in the previous section.

If we write the residual Jacobian matrix (6) for the combined system (9), we
obtain

f@%? B g
9 Asi + 3—;1 B $1
A = o : — . . . (11)
9 )
Asp, + apf; B 5n,

This can be reformulated as

Asy + g5~ — Bsy A A
Al n = 7 . (12)
Y : :
P .
m%+@%—3%p Ay, A

where A; = a% (Asi + g—é - Bs,) This leads to the following expression for
the iteration matrix M of (10):

A A
M:A—%: ! _ (13)

=|w

B
A”p A— ‘h
Consequently, the extension of (5) for sensitivity evaluation becomes
Y1 = Y — Mg (Y%, p). (14)

An implementation based on this would require expensive factorizations of
the matrix M. However, by replacing M by its block-diagonal part

B
M A-E

M A—
M = § - § (15)

S|

B
M A-2

the problem can be simplified significantly. In [17] a similar strategy has been
used to simplify the iteration matrix required by Newton’s method applied
to the system obtained by the implicit Euler discretization. Here, using M



instead of M can be seen as a result of approximating A by its block-diagonal
part. As mentioned before, the linear-implicit extrapolation algorithm allows
such an approximation, as long as the characteristics of the dynamic system
are preserved [10, 18]. The method is a well-defined one-step method even
for any choice of the iteration matrix M or M, respectively. Our numerical
experiments (cf. Section 5) have shown that the choice of M leads to very
satisfactory results.

Since the blocks M in the main diagonal of M are identical, the factorizations
LU = M, which are required for the solution of the DAFE states anyway, can
be reused for the integration of the sensitivities. This is also indicated in the
algorithmic structure for the extended extrapolation code:

Algorithm 2: Simultaneous state and sensitivity integration

Compute Jacobian Ag = 2(f(yoap) — By)

dy
for 7 =1,..., jmaz While convergence criterion not satisfied
hj =H / n;
B
LU = Ay — —
0 I

fork=0,...,57—1
Yk+1 = Yk = (LU) " fye, p)
Sije+1 = Sije — (LU) ™! (A(yk)sz‘,k + g—;(yk)) , i=1,...,my
Tj1 =Y
if j > 1 compute Tj ; and check convergence

Yoew = Tj,j

Note that the above algorithm has been written for the case B = const. for
simplicity. However, the procedure is not restricted to this case, rather the
same iterative method mentioned above (see [9, 11]) can be applied.

From the algorithm it follows that the additional effort required for sensitiv-
ity evaluation as compared to pure state integration comprises n, additional
evaluations of the sensitivity residuals and n, additional back substitutions
with the already available (LU)~!. Also, the effort required for the extrapo-
lation itself will be n, times larger.

Since in this approach the states and sensitivities are integrated simultane-
ously, the algorithm can be seen as an analog to the simultaneous corrector
extension for the BDF code DDASSL/DDASPK presented by Maly and Pet-
zold [17].

An important issue is the error control applied to the sensitivities. In [15]
a partial error control has been suggested which excludes the sensitivities



from the error tests and only controls the error on the DAE states. This
partial error control has been reported to possibly speed up computations
without significant loss of accuracy. With the same reasoning, the extension
to LIMEX described above has been equipped with the option to switch off
the error control for the sensitivities. Using partial error control could be
confirmed to be a reasonable approach by numerical experiments.

4.2 Staggered state and sensitivity integration

Algorithm 2 has a disadvantage in the case, where no convergence could be
achieved at jpmqz. In such cases the size of the basic stepsize H is reduced and
the entire extrapolation procedure has to be repeated. Since the sensitivities
depend on the results from the state integration, calculating them before a
potential stepsize reduction would waste computational resources. However,
the potential need for a stepsize reduction cannot be known beforehand.
Therefore, a modification of Algorithm 2 is conceivable. As suggested in [12]
for the BDF-based approaches, a staggered approach can also be used here.
The idea is to first converge the solution of y for the stepsize H (including
potential stepsize reductions) and then the sensitivities.

The algorithmic structure (again written for the case B = const.) looks as
follows:

Algorithm 3: Staggered state and sensitivity integration

Compute Jacobian Ay = %(f(yo,p) — By)

for 5 =1,..., jmaz While convergence criterion not satisfied
hj = H/n;
B
LU; = Ay — —
J 0 h]

fork=0,...,7—1

k1 = Yk — (LU;) "' f (yk, D)
ij,l =Yj
if 7 > 1 compute T]y] and check convergence
yn =T},
forj=1,...

~SENS
’Jma;c

for k=0,...,5—1

_ 0 )
Sips1 = sik — (LU;) 1(A<yk)si,k+8—zf(yk>), i=1,...in
1

S — a. .
Ti = si

if 7 > 1 compute Tﬁ ; and check convergence

while convergence criterion not satisfied

si,g = Tj



This algorithm would overcome the problem of superfluous sensitivity evalu-
ations in the case of stepsize reductions. However, a major drawback of this
modification is that the LU decompositions for different h;, which are used
during the state integration, have to be stored intermediately for later reuse
during the sensitivity integration. The same holds for the intermediate state
vectors yg.

If the initial stepsize H for the integration is chosen properly, in practical ap-
plications of LIMEX there is usually no need for frequent stepsize reductions.
Therefore the expected benefit of Algorithm & is limited and probably does
not justify the large bookkeeping and storage effort required for the interme-
diate LU decompositions and state vectors. Therefore, an implementation of
Algorithm 3 has not been considered, so far.

4.3 Sensitivity integration with numerical differentiation

In cases where the derivatives g_f are not available (or hard to implement)

one may use an alternative to the direct solution of the sensitivity equation
(3), either with Algorithm 2 or Algorithm 3. However, the classical numerical
differentiation approach, i.e., perturbing p;, repeating the state integration,
and forming the difference approximation

y(pi + dpi) — y(ps)

|~ 1
'SZ 6p, 9 ( 6)

is known to be inefficient and inaccurate, cf. [13]. Therefore, one should use
the so-called internal numerical differentiation. In this approach the deriva-
tives g L in the discretization are replaced by finite difference approximations.

This leads, e.g. for Algorithm 2, to the discretization

Sik+1=sik — (LU) (A(yk)si,lc + ka_pifk) (17)
where
fro = Fluk,pi)s  fr = f e+ siulpi,p + Ap;) . (18)

In contrast to the classical numerical differentiation approach, where the
perturbation should be chosen according to dp; ~ v/tol (tol = prescribed in-
tegration tolerance), the second approach allows the choice Ap; ~ /epmach
(epmach = relative machine precision). In both cases the error in the sensi-
tivities is known to be proportional to the magnitude of the perturbation.
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5 Case studies

In this section we investigate the algorithmic performance of the proposed
algorithm by means of four case studies. The sensitivity-extended version of
LIMEX (Algorithm 2) has been compared with DDASPK [15]. In DDASPK,
the three previously mentioned different algorithmic variants for the BDF
based sensitivity computation are implemented: the simultaneous corrector
method [17], the staggered corrector method [12] and the staggered direct
method [5]. In the case studies, the following abbreviations will be used:

LIMEX simultaneous LSIM
(Algorithm 2)
sim. corrector | DSIC
DDASPK stag. corrector | DSTC
stag. direct DSTD

5.1 Gas-0il Cracking Problem

The Gas-Oil Cracking Problem is a two dimensional ODE, which has been
used as test example e.g. in [12, 17]. The problem formulation results in

(3)1) _ (—(pl +p3)y%) (y1(0)> _ (1)

Y2 Pyt —paya )’ 42(0) 0

The problem has three parameters with respect to which the sensitivities are
to be calculated. The values are p; = 0.9875, ps = 0.2566, p3 = 0.3323. The

combined state and sensitivity system (9) for this example contains 2-(3+1) =
8 equations and reads as

1 —(p1 + p3)y? (v1(0) 1\
U2 Py} — payo 2(0) 0
51 —2s1(p1 +p3)y1 — 47 51(0) 0
$2| _ | 2sip1iy1 — s2p2 + 47 s2(0) | _ |0
53 —2s3(p1 +p3)y1 |’ s3(0) 0
54 253p1Y1 — S4P2 — Y2 54(0) 0
35 —2s5(p1 +p3)y1 — yi s5(0) 0
56 255p1Y1 — P26 s6(0) 0

This problem has been solved using LIMEX and DDASPK with its three
variants. The comparison has been done for different error tolerances. Since
in this problem scaling is not an issue, the relative and absolute tolerances
for all states and sensitivities have been set to the same value. The error
control is enabled for both, state and sensitivity values.

Table 1 shows computational statistics for this problem. Hereby, the number
of function evaluations refers to the evaluation of f(¢,y, p), whereas the num-
ber of sensitivity evaluations counts the computations of As; + g—gi. Jacobian
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Table 1: Gas-Oil Cracking Problem — computational statistics

function | sensitiv. | Jacob. | Jacob. LU back

eval. eval. (iter.) | (tot.) | decomp. | subst.
tolerance: 1075

LSIM | 8 | 8 [ 7 | 88 | 34 | 432

DSIC 93 93 14 107 14 372

DSTC 143 64 14 78 14 271

DSTD 141 64 64 128 64 269
tolerance: 10~ °

LSIM | 125 | 125 | 9 | 134 | 48 | 656

DSIC 139 139 16 155 16 556

DSTC 220 100 17 117 17 420

DSTD 191 87 87 174 87 365
tolerance: 10~7

LSIM | 183 | 183 | 11 | 194 [ 65 | 948

DSIC 149 149 26 175 26 596

DSTC 295 136 29 165 29 567

DSTD 271 122 124 246 124 515

evaluations are required not only for the iteration matrix of the integration,
but also for the evaluation of the sensitivity residuals. Therefore, in the Ta-
ble we show separate numbers for those due to iteration matrices and for the
total number of Jacobian evaluations. Finally, the number of LU decompo-
sitions and back substitutions in the linear algebra are reported. Due to the
small size of the problem, computation times are negligible and almost not
comparable and therefore not reported, here.

The LSIM algorithm could solve this problem successfully. A graphical rep-
resentation of the solution trajectories for states and sensitivities is identical
to those presented in [17] and is therefore not included in this paper.
Looking on the statistics, various observations can be made. LSIM always
needs much fewer Jacobian matrix evaluations for the integration iteration,
a typical feature of an extrapolation algorithm. LSIM also always needs
less function evaluations but more sensitivity evaluations than DSTC and
DSTD. Due to sensitivity evaluations, LSIM needs in total more Jacobian
calls than DSTC, but less than DSTD. Comparing LSIM and DSIC, which
are most comparable, it can be stated that for lower tolerances LSIM needs
less function, sensitivity and total Jacobian calls. For the tolerance 1077,
DSIC needs fewer calls to all these tasks than LSIM. Finally, LSIM needs
always significantly more LU decompositions than DSIC and DSTD, but less
than DSTD. LSIM needs more back substitutions than all other methods.
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Figure 1: No. of function calls vs. integration time for tolerance = 10~°
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Figure 2: No. of function calls vs. integration time for tolerance = 10~

Figures (1),(2) and (3) show the number of function calls done by the inte-
grator versus the integration time for each function call, plotted for LSIM
and DSIC for the different integration tolerances. Since both are simultane-
ous approaches, this number also corresponds to the number of sensitivity
evaluations (including the sensitivity part of the Jacobian evaluations).

The curves for LSIM nicely show the extrapolation behavior, i.e. that for
each large stepsize H the functions are evaluated on an increasingly finer
mesh corresponding to the small stepsizes hj. Also, it can be seen that
for tolerances of 1075 and 1076 the curve for LSIM lies below the one for
DSIC, which means that for reaching a certain time point within integration
tolerance, fewer function calls are required. For 10~7, LSIM is finally higher
than DSIC, which corresponds to the results reported above. Interesting in
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Figure (3) is the fact, that in the initial phase of the integration up to a time
of about 0.8, LSIM needs fewer function evaluations, but then crosses the line
for DSIC. This is due to the fact that DSIC, being a multi-step algorithm,
initially needs more steps to build up higher order information, but then runs
quite smoothly, where as the one-step extrapolation code does not have this
start-up behavior, but also does not benefit like a multi-step integrator in the
later part of the integration horizon. This fact becomes especially interesting
in the context of dynamic optimization, where many but short integration
intervals have to be solved, as we will show in subsection 5.3.

5.2 Batch-Reactor Problem

The Batch-Reactor Problem is a very stiff DAE system, which has been used
as test example e.g. in [5, 17]. The model equations are

( (I —P3Y2ys
Y2 —P1Y2Ye + P2Y10 — P3Y2Ys
U3 P3Y2Ys + Payale — P5Y9
Ya —P4Y1Ys + P5Y9
Us | _ P1Y2Y6 — P2Y10
U6 —P1Y2Y6 — PaY4yYs + P2y10 + P5Y9
0 —0.0131 + y6 + ys + yo + Y10 — Y7
0 pry1 — ys(p7 +y7)
Psy3 — Yo(ps + y7)

\ 0 peys — y10(Pe + y7)



14

with the following initial conditions and parameter values:

y1(0) 1.5776

y2(0) 8.32 (pl 21.893
y3(0) 0 P2 2.14 - 10°
y4(0) 0 P3 32.318
ys(0) | _ 0 pa| 21.893
ve(0) | — 0.0131 ’ ps | | 1.07-10°
y7(0) 0.79735 - 1075 D6 7.65-10718
ys(0) 0.79735 - 1075 p7 4.03 - 10~
y9(0) 0 8 ) 5.32-107!8
y10(0) 0

For this example, the same test studies as for the Gas-Oil Problem have been
carried out. Because DDASPK failed for high tolerances, if the full error con-
trol on states and sensitivities is applied, the computations have been done
using partial error control on the state variables only. Since within the New-
ton iteration of DDASPK an error check is always applied to all variables,
the tolerances for the sensitivities have to be carefully chosen. Proper scaling
is an important issue for this problem, because the problem parameters vary
quite significantly in order of magnitude. The absolute tolerances for the
sensitivities have been set according to the rule ATOL;; = RTOL;;/O(p;),
where RT'OL;; has been set to same value for all components j of all sen-
sitivities s;. The LSIM approach appeared to be less sensitive to proper
scaling.

This stiff DAE problem could be solved successfully by the LSIM algorithm.
When the sensitivities are plotted as in [5, 17], i.e. the sensitivity values
have been multiplied by the corresponding parameter value in order to get
the results in a comparable scale, then the same graphical representation is
obtained as in those references. Therefore, these plots are not shown in this
paper.

The computational statistics for this case study are shown in Table 2. Since
the solution for this problem is numerically more involved than in the previous
problem, here also the computation time in CPU seconds is given.

Again, various observations can be made by evaluating the results given in
Table 2. The computation times have to be interpreted carefully, because
DDASPK uses a dense solver for the linear algebra, whereas the LIMEX
version used for this test contains a sparse solver. Since the problem size is
very small, the performance of sparse solvers will not be significantly different
than the one of dense solvers. Due to this uncertainties a comparison of the
given CPU times is not rigorous. Nevertheless, it shows that the performance
of the LSIM implementation is comparable to the BDF based approaches.
DSTD is clearly fastest for this problem.

The observations regarding the various tasks called by the integration rou-
tines are similar to the Gas-Oil Example. Again, for low tolerances, LSIM
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Table 2: Batch-Reactor Problem — computational statistics

function | sensitiv. | Jacob. | Jacob. LU back | CPU

eval. eval. (iter.) | (tot.) | decomp. | subst. | sec.
tolerance: 10~°

LSIM | 234 | 234 | 20 | 254 | 113 | 2943 |0.169

DSIC 264 264 43 307 43 2376 | 0.231

DSTC | 425 196 34 230 34 1797 | 0.195

DSTD | 238 104 104 208 104 966 | 0.124
tolerance: 10 °

LSIM | 360 360 | 28 | 388 | 166 | 4482 | 0.272

DSIC 390 390 47 437 47 3510 | 0.340

DSTC | 684 323 37 360 37 2945 | 0.323

DSTD | 343 152 153 305 153 1407 [ 0.182
tolerance: 10~7

LSIM | 591 | 591 | 38 | 629 | 246 | 7191 | 0.430

DSIC 502 502 52 554 52 4518 [ 0.445

DSTC | 963 465 48 513 48 4218 | 0.461

DSTD | 491 217 221 438 221 2010 | 0.263

uses fewer function evaluations than the other methods. It always needs far
fewer Jacobian for the integration iteration, however not necessarily a smaller
total number Jacobian calls, due to the sensitivity evaluation. Again, LSIM
requires more LU decompositions and back substitutions than the other ap-
proaches.

The Batch-Reactor Problem has been also used to test the numerical inte-
gration approach described in Section 4.3. The problem has been solved for
different prescribed tolerances, while comparing the accuracy e of the sensitiv-
ities at the final integration point using a highly accurate reference solution.
Note that all tolerances and perturbations have to be understood as prop-
erly scaled values. In Table 3 these results and the results when doing this
experiment with the direct solution approach are collected. Obviously, the

Table 3: Batch-Reactor Problem - accuracy of sensitivities

tol

€num.dif f.

€direct

103
1074
1075
1076
1077

48 x10°°
2.8 x 1076
1.3 x 1076
41 %1077
47 %1077

48 x10°°
2.7 x 1076
1.4 x 1076
3.0 x 1077
1.2 x 1078
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internal numerical differentiation gives very satisfactory results until the ex-
pected limit, tol < Ap;, Ap; = 1077, is reached. Concerning computing time,
the required computing times for the both approaches are nearly identical for
this example.

5.3 Application to dynamic optimization

An interesting application of the one-step extrapolation method for state and
sensitivity integration is dynamic optimization. A detailed summary of the
theory, problem formulation and possible solution approaches for dynamic
optimization problems is beyond the scope of this paper. The reader is re-
ferred to the relevant literature.

One important approach to dynamic optimization is the so-called sequential
approach [2, 14, 21], where the control variables u; are approximated by
piecewise defined discretizations, such as

ui(t) Y cindik(?). (19)

kEA;

Here, c; ), are degrees of freedom for a nonlinear optimization problem (NLP)
solver. ¢; ;(t) defines the discretization functions, for example piecewise con-
stant or linear splines. The resolution of the control profiles depends on the
chosen discretization grid A;. The differential-algebraic model equations have
to be solved repeatedly as function evaluations for the NLP solver, and, in
order to provide the gradient information for the optimizer, sensitivities of
the model states with respect to c;; have to be computed, as well. The sen-
sitivity evaluation belongs to the most expensive tasks of solving dynamic
optimization problems with the sequential approach.

It is a known fact that one-step methods such as extrapolation have an in-
herent advantage over BDF methods when applied to DAEs with frequent
discontinuities [3, 10]. This is in line with the observed advantage of the
LSIM algorithm in the startup phase of the integration (cf. subsection 5.1).

Due to the discretization of the control variables, the number of parameters
for the sensitivity integration increases at each mesh point of A;. Therefore,
by running through the time horizon the integrator has to cope with a growing
combined state and sensitivity system. Also, the integration has to be re-
started at each mesh point, because discontinuities in the states and/or their
derivatives might occur. In this context, the aforementioned advantage of the
extrapolation method, also when applied to sensitivity equations, becomes
especially important.

To underline these aspects, we consider the Crane Example Problem [1]. The
problem formulation is as follows:
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min ®(ty)
1, uy
s.t.
1= Ya
Y2 = Us
U3 = Ye
ODE system Y4 = ui+ 17.2656y3

Us = up
?J.G = —1.0/y2(u1 + 27.0756 Y3 + 2y5y6)
® = 0.5(y3 +yg+0.01(u? +ud))

initial conditions y(0.0) = [0.0,22.0,0.0, 0.0, —1.0,0.0]”

endpoint constraints y(ty) = [10.0,14.0,0.0,2.5,0.0, 0.0/7
state path constraints lya(t)] < 2.5, Jys(t)| <1
control constraints lui(t)] <2.83374, —0.80865 < ug(t) < 0.71265
final time ty=19.0

This is a typical dynamic optimization problem involving two control vari-
ables (uq,u2), an ODE system of dimension 7, and various path and endpoint
constraints on state and control variables. In our case study, this problem
has been solved using the dynamic optimization software ADOPT [19], which
optionally uses LIMEX or DDASPK in the variants described earlier.
Results for a discretization of 1 and uo with 8 equidistant piecewise constant
functions for integration tolerances of 107, 107% and 107 are reported in
Table 4. The control profiles for this case are shown in the Appendix. It
was verified that each optimization run required the same number of calls
to the integrator. For example, in the case of an 8 interval discretization, 6
integrator calls were required.

The results in Table 4 show an advantage of the LSIM algorithm as compared
to the other methods. As observed in the previous examples, the relative
performance of LSIM is better for low integration tolerances.

In order to investigate the effect of the control discretization grid, the problem
has been solved also for control discretizations of 16 and 32 intervals. Since
the results in Table 4 indicate that DSIC performs best among the DDASPK
variants on this problem, all further comparisons have been done using LSIM
and DSIC, only.

Tables 5 and 6 show the results for 16 and 32 intervals, respectively. The
corresponding optimal control profiles are displayed in the Appendix. It can
be seen that the relative performance of LSIM as compared to DSIC increases
significantly with an increasingly refined mesh. Since the integration intervals
become shorter, the BDF approach can exploit the multi-step advantages less
and less and loses performance in the start-up phase. This is also illustrated
by Figure 4, which shows plots of the CPU time versus the A;-discretization
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8 discretization intervals

Table 4: Crane dynamic optimization problem — computational statistics for

function | sensitiv. | Jacob. | Jacob. | CPU

eval. eval. (iter.) | (tot.) | sec.
tolerance: 10~°

LSIM | 1510 | 1510 | 96 | 1606 | 0.81

DSIC 1845 1845 683 2528 | 1.39

DSTC 1715 1654 680 2334 | 1.73

DSTD 1694 1412 1369 2781 1.89
tolerance: 10~°

LSIM | 2408 | 2408 | 125 | 2533 | 1.29

DSIC 2285 2285 835 3120 | 1.64

DSTC 2286 2142 812 2954 2.54

DSTD 2097 1768 1720 3488 | 2.43
tolerance: 107

LSIM | 4408 | 4408 | 221 | 4629 | 2.18

DSIC 2935 2935 954 3889 | 2.12

DSTC 2818 2676 943 3619 | 2.89

DSTD 2635 2241 2193 4434 3.03

Table 5: Crane dynamic optimization problem — computational statistics for
16 discretization intervals

function | sensitiv. | Jacob. | Jacob. | CPU
eval. eval. (iter.) | (tot.) | sec.
tolerance: 10°
LSIM | 2292 | 2292 | 224 | 2516 | 1.45
DSIC | 3404 | 3404 | 1568 | 4972 [ 2.20
tolerance: 107°
LSIM | 3154 | 3254 | 224 | 3478 | 1.96
DSIC | 4470 | 4470 | 1904 | 6374 | 3.83
tolerance: 10~7
LSIM | 3782 | 3782 | 224 | 4006 | 2.44
[DSIC [ 5337 | 5337 [ 2194 | 7531 | 4.62 |

for different tolerances. It can be concluded that the integration of sensitivity
equations using one-step extrapolation is usually more efficient than BDF
based approaches for an application in dynamic optimization.
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Table 6: Crane dynamic optimization problem — computational statistics for
32 discretization intervals

function | sensitiv. | Jacob. | Jacob. | CPU

eval. eval. (iter.) | (tot.) | sec.
tolerance: 10~°

LSIM | 3527 | 3527 | 512 | 4039 | 2.87

DSIC | 6444 | 6444 | 3501 | 9945 | 7.47
tolerance: 107°

LSIM | 4728 | 4728 | 512 | 5240 | 3.72

DSIC | 8548 | 8548 | 4126 | 12674 | 9.22
tolerance: 10~7

LSIM | 5747 | 5747 | 512 [ 6259 | 4.30

| DSIC | 10322 | 10322 | 4940 | 15262 | 11.31 |

-

12 12 2
—— LSIM —— LSIM —— LSIM
10 = DSIC 10 = DSIC 10 —=— DSIC
. 8 . 8 . 8
1S3 1S3 (53
& & &
5 6 5 6 > 6
o o o
Oy Oy O 4
2 / 2 2
0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
discretization discretization discretization
-5 —6 -7
(a) 10 (b) 10 (c) 10

Figure 4: CPU time vs. discretization for crane example for different toler-
ances

6 Conclusions

In this paper, an alternative approach for combined state and sensitivity in-
tegration of differential-algebraic equations systems has been suggested. The
method uses one-step extrapolation of the linearly implicit Euler discretiza-
tion. It could be demonstrated with various case studies that this approach is
a clear alternative to the widely used BDF based approaches. Our method is
restricted to the class of linearly-implicit differential-algebraic equation sys-
tems. Potential savings can be expected especially in cases, where only mild
error tolerances are required, and in those cases, where many discontinuous
integration problems have to be solved, as it has been shown for dynamic
optimization. Furthermore, it is possible to apply extensions of LIMEX such
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as dynamic sparsing of the iteration matrix [18] and parallelization [11] in
the framework of sensitivity computation.

The extrapolation strategy for the sensitivities allows additional flexibility
with respect to the desired accuracy of the sensitivities. For applications,
which do not require sensitivities up to the same accuracy as the states, a
separate error control for the sensitivities offers a simple way to adjust their
accuracy. This is because the depth of the extrapolation tableau influences
the approximation order of the variables [8]. Therefore it is possible to ex-
clude sensitivities from further extrapolation as soon as their error criterion
is met. This allows to save a significant amount of computation time in those
cases, where the requirements on the accuracy of the sensitivities are modest,
because many sensitivity residual (and thereby Jacobian) evaluations as well
as back substitutions can be saved.
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A Appendix: Solution plots for Crane dynamic op-
timization problem
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Figure 5: Optimal control profiles for 8 discretization intervals.
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Figure 6: Optimal control profiles for 16 discretization intervals.
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Figure 7: Optimal control profiles for 32 discretization intervals.



