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Abstract

Recent research has shown that piecewise smooth (PS) functions can be approximated by
piecewise linear functions with second order error in the distance to a given reference point.
A semismooth Newton type algorithm based on successive application of these piecewise
linearizations was subsequently developed for the solution of PS equation systems. For local
bijectivity of the linearization at a root, a radius of quadratic convergence was explicitly
calculated in terms of local Lipschitz constants of the underlying PS function. In the present
work we relax the criterium of local bijectivity of the linearization to local openness. For
this purpose a weak implicit function theorem is proved via local mapping degree theory. It
is shown that there exist PS functions f : R2 → R2 satisfying the weaker criterium where
every neighborhood of the root of f contains a point x such that all elements of the Clarke
Jacobian at x are singular. In such neighborhoods the steps of classical semismooth Newton
are not defined, which establishes the new method as an independent algorithm. To further
clarify the relation between a PS function and its piecewise linearization, several statements
about structure correspondences between the two are proved. Moreover, the influence of the
specific representation of the local piecewise linear models on the robustness of our method
is studied. An example application from cardiovascular mathematics is given.

Keywords Piecewise Smoothness, Newton’s Method, Semismooth Newton, Robustness, Sensi-
tivity Analysis, Cardiovascular Mathematics

MSC2010 65D25, 65K10, 49J52

1 Introduction

The main objective of this article is the study of the generalized Newton’s methods developed
in [GSL+17] for solving the equation

F (x∗) = 0 ,

where F : Rn → Rm is a continuous, piecewise smooth function. We are especially interested in
situations that are singular in that there may be singular matrices both in the interior and the
boundary of the Clarke Jacobian at x∗. That is, there may be singular limiting Jacobians in the
sense of Facchinei and Pang, cf. [FJS03, p.627].
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Throughout we assume that F can be computed by a finite program called evaluation procedure.
An evaluation procedure is a composition of so-called elemental functions which make up the
atomic constituents of more complex functions. In the classical setting of algorithmic differenti-
ation (AD) functions are admissible to a library Φ of elemental functions if they are at least once
Lipschitz-continuously differentiable on their valid open domains. This condition is also called
elemental differentiability (ED), cf. [GW08, p.23]. Common examples are:

Φ := {+,−, ∗, /, sin, cos, tan, cot, exp, log, . . . } .

In our case, we will allow the evaluation procedure of F : D ⊆ Rn → Rm to contain, in addition
to the usual smooth elementals, the absolute value abs(x) = |x|, that is, our library is of the
form

Φabs := Φ ∪ {abs} .

Consequently, we can also handle the maximum and minimum of two values via the identi-
ties

max(u, v) =
u+ v + |u− v|

2
, min(u, v) =

u+ v − |u− v|
2

. (1)

We call the resulting class of functions piecewise composite smooth (PCS) and denote it by
span(Φabs). PCS functions are locally Lipschitz continuous and differentiable almost everywhere
in the classical sense. Furthermore, they are differentiable in the sense of Bouligand and Clarke,
cf. [Cla83].

It has been shown in [Gri13] that PCS functions can be approximated locally with a second order
error in the distance to a given reference point by piecewise linear (PL) models. In analogy to
second order tangent and secant local linear approximations of smooth functions a tangent and a
secant piecewise linearization mode were constructed. We will denote the tangent mode piecewise
linearization of a PCS function F : Rn → Rm at a reference point x̊ by ♦x̊F . The secant mode
piecewise linearization at a pair of reference points x̌, x̂ will be denoted by ♦x̂x̌F . A key feature of
these local models is that they vary Lipschitz-continuously with respect to perturbations of their
reference point(s). This allowed to devise two generalized Newton’s methods for PCS functions
F : Rn → Rn, one using tangent mode piecewise linearizations (Algorithm 1)

Algorithm 1: Tangent Mode Generalized Newton
Step 0: x0 ∈ Rn close to root of F
Step k: Compute tangent piecewise linearization ♦xk−1

F at xk−1 and set xk to solution
of ♦xk−1

F = 0 with minimal distance to xk−1

and one using their secant mode counterpart (Algorithm 2).

Algorithm 2: Secant Mode Generalized Newton
Step 0: x0, x1 ∈ Rn close to root of F
Step k: Compute secant piecewise linearization ♦xk

xk−1
F at xk−1, xk and set xk+1 to

solution of ♦xk
xk−1

F with minimal distance to xk

In Algorithm 3 we present a schematic of semismooth Newton for locally Lipschitz functions
f : Rn → Rn (LSSN), cf. [Kum88]. Comparing it to Algorithms 1 and 2 one can see that
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the local PL approximations take over the role that generalized (Clarke) Jacobians have in the
classical algorithm. Tangent mode PL approximations and Clarke Jacobian reduce to local
linear approximations (i.e., Jacobians) at nonsingular reference points. Hence, in the smooth
case Algorithms 1 and 3 coincide with Newton’s method. The secant mode PL approximations
reduce to a form which is best described as a finite difference approximation of the Jacobian, cf.
Section 2.

Algorithm 3: Semismooth Newton with Clarke Derivatives
Step 0: x0 ∈ Rn close to root of F
Step k: Select invertible element A of Clarke Jacobian at xk−1 and compute

xk := A−1[Axk−1 − f(xk−1)]

It was proved in [GSL+17] that if the tangent mode piecewise linearization at a root x∗ of a
PCS function F : Rn → Rn is locally homeomorphic in some neighborhood of x∗, then close to
this root the tangent and the secant mode of generalized Newton converge (quadratically resp.
superlinearly) to x∗. In this work we will, after a brief introduction to the theory of PL functions
and the piecewise linearization of PCS functions (Section 2), relax this criterium to local openness
of the tangent mode piecewise linearization at x∗ (Section 3.2). A necessary condition for local
openness of the tangent mode piecewise linearization at x∗ is local openness of the underlying
PCS function at x∗. A sufficient condition is metric regularity of the underlying PCS function
at x∗ (Section 3.2).

One rather intriguing feature of the local openness condition is that it includes cases where the
Clarke Jacobian at x∗ is singular, while the classical criterium for convergence of Algorithm 3
requires nonsingularity of the Clarke Jacobian at x∗, cf. [QS93]. Moreover, the set of limiting
Jacobians of ♦x∗F at x∗ is merely a subset of the limiting Jacobians of F at x∗. Hence ♦x̊F
may be locally open even if some of the limiting Jacobians at x∗ are singular. We will present
an example problem for which this is the case in Section 3.3.

Another aspect that has to be considered comparing our methods to LSSN are the different
computational challenges that arise during the determination of the successive iterates. The
question whether a given piecewise linear system has a solution is NP-complete. This follows
immediately from Chung’s proof of the NP-completeness of the general linear complementarity
problem (LCP) [Chu89] since the latter can be equivalently reformulated as a piecewise linear
system called absolute value equation (AVE); see, e.g., [Pro07] or [Man14], also compare Section
4.1. In consequence, finding a root with minimal distance to a reference point of a piecewise lin-
earization is a potentially hard computational task. Moreover, any perturbation of the reference
point may cause an exponential number of roots to appear or to vanish at arbitrary locations.
We thus devote Section 4 to the study of conditions for the unambiguous computation of the
next iteration point.

In Section 5 we present an example application from cardiovascular mathematics. We conclude
with some final remarks.

2 Algorithmic Piecewise Linearization

In this section we will present the tangent and secant linearization modes which were developed
in [Gri13] and further analyzed in [GSL+17] and [GHR+17].
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x̊

(a) Tangent mode linearization

x̌ x̂

(b) Secant mode linearization

Figure 1: Piecewise linearization modes

2.1 Piecewise Linear Functions

A continuous function F : Rn → Rm is called piecewise linear if there exists a finite set of affine
functions Fi(x) = Aix + bi, such that F coincides with an Fi for every x ∈ Rn [Sch12, p.15ff].
The Fi are called selection functions. If F coincides with Fi on a set U ⊆ Rn, we say that Fi is
active on U . Any piecewise linear function F : Rn → Rm admits a corresponding (nonunique)
partition of Rn into nonempty (and thus n-dimensional) convex polyhedra such that on each
polyhedron in the partition exactly one selection function is active [Sch12, p.28].

A piecewise linear function F : Rn → Rn is called (locally) coherently oriented if the linear parts
of its selection functions all have the same nonzero determinant sign (on some some neighborhood
U ⊆ Rn). It is well known that for piecewise linear functions the properties of (local) coherent
orientation and (local) openness are equivalent; cf [Sch12, Prop. 2.3.7].

Let the index set I = {1, ..., k} of the selection functions be given. According to [Sch12,
Prop.2.2.2] we can find subsets M1, ...,Ml ⊆ I so that a scalar valued piecewise linear func-
tion F can be expressed as

F (x) = max
1≤i≤l

min
j∈Mi

Fj(x) .

This concept, which is called max-min form, naturally carries over to vector valued functions F ,
where we can find such a decomposition for every component of the image. Via (1) the max-min
form can be expressed in terms of s ≥ 0 encapsulated absolute absolute value functions |zi|,
whose arguments zi are called switching variables. Observing that each zi is an affine function of
absolute values |zj | with j < i and the independents xk for k ≤ n, one arrives at an abs-normal
form (ANF) [

z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z|

]
. (2)

Here the two vectors and four matrices specifying the function F have the formats

c ∈ Rs, Z ∈ Rs×n, L ∈ Rs×s, b ∈ Rm, J ∈ Rm×n, Y ∈ Rm×s.
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The matrix L is strictly lower triangular so that for given x the components of z = z(x) and
thus |z| can be unambiguously computed one by one. In this sense, the ANF can be regarded as
a matrix representation of the straight-line code of a piecewise linear function. We give a simple
R2 → R2 example to illustrate this:

0
0
0
0
0

+


1 −1 0 0 0
0 1 0 0 0
1 0 0 −1 0
1 0 1 0 1
0 1 0 0 0




x1

x2

|z1|
|z2|
|z3|

 =


z1

z2

z3

y1

y2


z1 = x1 − x2

z2 = x2

z3 = x1 − |z2|
F1(x1, x2) = x1 + |z1|+ |z3|
F2(x1, x2) = x2

For more detailed information on this structure and its properties we refer to [Gri13], and
[GBRS15].

2.2 Piecewise Linearization

We now want to compute an incremental approximation ∆y = ∆F (̊x; ∆x) to F (̊x+∆x)−F (̊x) at
a given x̊ and for a variable increment ∆x. Assuming that all functions other than the absolute
value are differentiable, we introduce the propagation rules for binary arithmetic operations,
unary smooth functions ϕ and the absolute value

∆vi = ∆vj ±∆vk for v̊i = v̊j ± v̊k ,
∆vi = v̊j ∗∆vk + ∆vj ∗ v̊k for v̊i = v̊j ∗ v̊k ,
∆vi = c̊ij∆vj for v̊i = ϕi(̊vj), ϕi 6= abs , with c̊ij = ϕ′i(̊vj)
∆vi = abs(̊vj + ∆vj)− abs(̊vj) for v̊i = abs(̊vj) .

(3)

Whenever F is ED and thus globally differentiable (i.e., there are no abs calls in the evaluation
procedure) we get ∆y = F ′(̊x)∆x, where F ′(̊x) ∈ Rm×n is the Jacobian of F at x̊.

The propagation rules (3) define the tangent mode piecewise linear approximation of F at a
certain point x̊. However, there are applications of piecewise linearization (especially concerning
ODE integration) where one wants to consider approximations of F based on secants in the
following sense. Given two points x̌, x̂ in the domain, the secant approximation will be a piecewise
linear approximation of F that is exact at the points x̌ and x̂ and reduces to the secant over
the line through x̌, hx for smooth functions complying with ED. For the notation of the secant
approximation the increment ∆F (∆x) = ∆F (x̌, x̂; ∆x) will be relative to the reference point
x̊ = (x̌+ x̂)/2 and the reference value F̊ = (F (x̌) + F (x̂))/2, that is

F (x) ≈ F̊ + ∆F (x̌, x̂;x− x̊) . (4)

The actual definition of the secant approximation in (4) is again given recursively over the
composition steps which allows a direct translation into an AD like algorithm. The differentiation
rules for the secant mode are mostly similar to the ones for the tangent mode in (3), with the
following modifications

• the tangent slope c̊ij in the third line has to be replaced by the secant slope

c̊ij =


ϕ′i(̊vj) if v̌j = v̂j

v̂i − v̌i
v̂j − v̌j

otherwise
. (5)
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• in the last line the offset has to be taken against the reference value,

∆vi = abs(̊vj + ∆vj)− v̊i, where now v̊i =
v̌i + v̂i

2
=
|v̌j |+ |v̂j |

2
. (6)

The secant approximation depends to an even greater degree on the given composition of F by
elementary functions, a different evaluation procedure for the same function may give a different
secant approximation.

Similar to the tangent mode, if F complies with ED and is thus again globally differentiable, the
secant approximation is linear in the x increment. We can write this as

∆F (x̂, x̌; ∆x) = ∇x̂x̌F (x̌, x̂) ·∆x, (7)

and call ∇x̂x̌F the propagated secant matrix. The entries of the propagated secant matrix are
calculated using the rules in table (3) while employing the secant slope formula (5) for c̊ij .
Moreover, if x̌ = x̂, we obtain ∆F (x̌, x̂; ∆x) = ∆F (̊x,∆x), i.e., in this case the tangent and
secant linearizations are identical.

A complete discussion of this topic can be found in [Gri13, Sec. 7]. Additionally, a division-free
and thus numerically stable implementation is detailed in [GSL+17, Sec. 6].

Approximation quality

Denote by ♦x̊F (x) ≡ F (̊x) + ∆F (̊x;x− x̊) the tangent mode piecewise linearization of F at the
reference point x̊ ∈ Rn and by ♦x̂x̌F (x) ≡ 1

2 (F (x̂) + F (x̌)) + ∆F (x̂, x̌;x − 1
2 (x̂ + x̌)) the secant

mode piecewise linearization at the reference points x̌, x̂ ∈ Rn. The two results from [GSL+17]
that we will draw on frequently, are:
Proposition 2.1. Suppose x̌, x̂, y̌, ŷ, ž, ẑ ∈ Rn are restricted to a sufficently small closed convex
neighborhood K ∈ Rn where the evalution procedure for F : Rn 7→ Rm is well defined. Then there
exists a Lipschitz constant γF such that it holds

1. For all x ∈ K we have:

‖F (x)− ♦x̂x̌F (x)‖ ≤ 1
2γF ‖x− x̂‖‖x− x̌‖ ,

‖F (x)− ♦x̊F (x)‖ ≤ 1
2γF ‖x− x̊‖

2 .

2. For all x ∈ Rn we have:

‖♦ẑžF (x)− ♦ŷy̌F (x)‖ ≤ γF max [‖ẑ − ŷ‖max(‖x− y̌‖, ‖x− ž‖),
‖ž − y̌‖max(‖x− ŷ‖, ‖x− ẑ‖)] ,

‖♦z̊F (x)− ♦ẙF (x)‖ ≤ γF ‖z̊ − ẙ‖max(‖x− ẙ‖, ‖x− z̊‖) .

Note that in [GSL+17] it was also described how to calculate an upper bound for γF .

Representation in abs-normal form

We will represent all our piecewise linearizations in ANF. For the tangent mode the ANF can be
computed as follows. Let F : Rn → Rm be a PCS function, then there are smooth vector valued
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evaluation procedures G : Rn × Rs → Rs and F̃ : Rn × Rs → Rm of operations in Φ and hence
complying to ED so that

z = G(x, |z|) and F (x) = F̃ (x, |z|) , (8)

where the partial derivative matrix ∂
∂wG(x,w) is always of strictly lower triangular form. Ap-

plying an order 1 Taylor Expansion on F̃ and G yields:[
z
y

]
=

[
G(̊x, |̊z|)
F̃ (̊x, |̊z|)

]
+

[
∂
∂xG(̊x, |̊z|) ∂

∂|z|G(̊x, |̊z|)
∂
∂x F̃ (̊x, |̊z|) ∂

∂|z| F̃ (̊x, |̊z|)

]
·
[
x− x̊
|z| − |̊z|

]
. (9)

Now system (9) is a piecewise linear operator mapping x to y = ♦x̊F (x) via intermediate vector
switching variables z. Setting Z ≡ ∂

∂xG, L ≡
∂
∂|z|G, J ≡

∂
∂xF , Y ≡

∂
∂|z|F as well as c ≡

G(̊x, |̊z|)− Zx̊− L|̊z| and b ≡ F̃ (̊x, |̊z|)− Jx̊− Y |̊z|, system (9) becomes the ANF (2).

Similar to the tangent case, an ANF-representation of secant piecewise linearizations can be
computed by replacing the Jacobi matrices with the propagated secant matrices of (7) at the
combined base points (x̌, ž) and (x̂, ẑ). The coefficient vectors c, b and four matrices Z,L, J and
Y of the ANF are then obtained from

c ≡ G̊− L · |G̊| ∈ Rs, b ≡ F̊ − Y · |F̊ | ∈ Rm, [Z L] = ∇x̂,|ẑ|x̌,|ž|G, [J Y ] = ∇x̂,|ẑ|x̌,|ž|F ,

where x̊ = (x̌+ x̂)/2 and

G̊ ≡ G(x̌, |ž|) +G(x̂, |ẑ|)
2

F̊ ≡ F (x̌, |ž|) + F (x̂, |ẑ|)
2

.
Remark 2.2. (Dimensions of the ANF) Let F : Rn → Rm be a PCS function with s absolute
values occurring in its evaluation procedure. Then the two vectors and four matrices of its
tangent or secant mode piecewise linearization in ANF have the formats

c ∈ Rs, Z ∈ Rs×n, L ∈ Rs×s, b ∈ Rm, J ∈ Rm×n, Y ∈ Rm×s,

irrespective of the choice of the reference point(s). In the sensitivity analysis of Section 4.1
this key fact will allow us to analyze successive piecewise linearizations of a PCS function as
perturbations of a single ANF.

3 Generalized Newton methods by piecewise linearization

We will now present and analyze the piecewise differentiable Newton’s methods proposed in
[GSL+17]. The merit of these methods is the fact that they impose no strong differentiability
requirements but need only piecewise differentiability at the root which is to be computed.
Definition 3.1. (Newton operator) Let F ∈ span(Φabs) and x∗ be an isolated root of F in an
open neighborhood D. The Newton step for F is definable on D in tangent or secant mode if the
piecewise linear equation ♦x̊F (x) = 0 resp. ♦x̂x̌F (x) = 0 has at least one root for all x̊ ∈ U resp.
x̌, x̂ ∈ D.

Then the Newton operator is defined in tangent mode as

N (̊x) = arg min{‖x− x̊‖ : ♦x̊F (x) = 0} ,
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and in secant mode as
N (̊x) = arg min{‖x− x̊‖ : ♦x̂x̌F (x) = 0} ,

where x̊ = 1
2 (x̌+ x̂).

Employing coherent orientation to replace the invertibility of the Jacobian in the smooth Newton
method as a regularity condition, we will proceed to show that close to a root x∗ of F

• the Newton step can be defined

• the Newton step stays close to x∗

• the tangent mode Newton method converges quadratically and the secant mode Newton
method converges with the golden mean as order.

For most of the following results up to the last it is sufficient to consider the secant mode
piecewise linear approximation of F , as results for the tangent mode can be obtained by setting
x̌ = x̂ = x̊.

The general bound for the distance between piecewise linearizations with different basis points
ž, ẑ and y̌ = ŷ = ẙ can be refined to a tighter bound in case one expresses that bound exclusively
in terms of distances to ẙ.
Lemma 3.2. (Refinement for the distance between piecewise linearizations) Let the second order
constant γF be valid on some convex set U and x, ẙ, ž, ẑ ∈ U . Then

‖♦ẑžF (x)− ♦ẙF (x)‖ ≤ γF
(

max(‖ẑ − ẙ‖, |ž − ẙ‖) ‖x− ẙ‖+
1

2
‖ẑ − ẙ‖ ‖ž − ẙ‖

)
Proof. Select some N ∈ N and consider the subdivision of the segments [ž, ẙ] and [ẑ, ẙ]. by
ǔk = ẙ + k

n (x̌− ẙ) and ûk = ẙ + k
n (x̂− ẙ) Then by Proposition 2.1

‖♦ûk+1

ǔk+1
F (x)− ♦ûk

ǔk
F (x)‖ ≤ γF max

(
‖ûk+1 − ûk‖ max(‖x− ǔk+1‖, ‖x− ǔk‖)
‖ǔk+1 − ǔk‖ max(‖x− ûk+1‖, ‖x− ûk‖)

)

≤ γF max

(
1
N ‖ẑ − ẙ‖

(
‖x− ẙ‖+ k+1

N ‖ž − ẙ‖
)

1
N ‖ž − ẙ‖

(
‖x− ẙ‖+ k+1

N ‖ẑ − ẙ‖
))

= γF
(

1
N max(‖ẑ − ẙ‖, ‖ž − ẙ‖)‖x− ẙ‖+ k+1

N2 ‖ẑ − ẙ‖ |ž − ẙ‖
)

(10)

Summation and taking the limit for N →∞ results in the claim.

3.1 Mapping Degree

The following definitions and facts can be found, e.g., in [OR09, p. 111ff]. Let f : Rn → Rn
be a continuous function, Ω ⊆ Rn a bounded domain, and let y ∈ Rn \ f(∂Ω̄), where Ω̄ is the
closure of Ω and ∂Ω̄ denotes the boundary of Ω̄. We say y is a regular value of f |Ω if either
(f |Ω )−1(y) = ∅ or if the differential Dxf of all x ∈ f−1(y) exists and is invertible. The local
(Brouwer) degree of y on Ω is denoted by deg(f,Ω, y). We will need the following two of its
properties:

1. deg(f,Ω, y) =
∑
x∈

(
f|Ω

)−1
(y)

sign[det(Dxf)] – which especially implies that

(
f |Ω

)−1

(y) 6= ∅ if deg(f,Ω, y) 6= 0 .
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2. Nearness property: Let y, y′ be regular values of f |Ω . If

dist(y, y′) < dist(y, f(∂Ω̄)) ,

then deg(f,Ω, y) = deg(f,Ω, y′).

3. The regular values of f are dense in the codomain.

Also note that for a piecewise affine function F : Rn → Rn the set F−1(y) of preimages of any
regular value y of F is finite and discrete.

3.2 Weak Implicit Function Theorem and Convergence

Denote by Br(x) a full-dimensional ball of radius r, centered at x.
Lemma 3.3. Let F ∈ span(Φabs) and x∗ be an isolated root of F in an open neighborhood D. If
♦x∗F is coherently oriented on D, then there exist radii r,R > 0 so that for any α ∈ (0, 1) and
x̌, x̂ ∈ B(1−α)R(x∗) a ball about the root is contained in the image of the linearization at x̌, x̂,

Bαr(0) ⊆ ♦x̂x̌F (D)

Proof. Set RD = dist(x∗, ∂D) and for any R ∈ (0, RD)

r = ρ(R) = dist[0,♦x∗F (∂BR(x∗))]

By coherent orientation of ♦x∗F , x∗ is isolated so that for R > 0 small enough one will get r > 0.
Increasing R might bring the sphere ∂BR(x∗) close to a different root, decreasing r towards zero
in consequence. Pick an R̃ > 0 with r = ρ(R̃) > 0. Let the second order constant γF of F be
valid on D and set

R = min

(
R̃,

2r

3γF R̃

)
We now show that this pair of r and R satisfies the claim of the lemma. To that end consider
the set

Ω ≡ (♦x∗F )−1 [Br(0) ∩ ♦x∗F (BR̃(x∗))]

which is open as the coherent orientation implies the openness of ♦x∗F . By construction we find
‖♦x∗F (z)‖ = r for all z ∈ ∂Ω.

Fix α ∈ (0, 1) and x̌, x̂ ∈ B(1−α)R(x∗). Then for any z ∈ ∂Ω

‖♦x̂x̌F (x)− ♦x∗F (x)‖ ≤ γF
(

(1− α)R R̃+
1

2
(1− α)2R2

)
≤ 3

2
(1− α)γF R̃ R ≤ (1− α)r (11)

For the linear homotopy Ht = (1 − t)♦x∗F + t♦x̂x̌F , t ∈ [0, 1], we thus know that none of the
pre-images H−1

t (Bαr(0)) will cross ∂Ω. Thus for any regular value y ∈ Bαr(0) the Brouwer
degree satisfies

deg(Ht,Ω, y) = deg(♦x∗F,Ω, y) 6= 0 ,

which implies that at least one solution of Ht(x) = y exists for any y ∈ Bαr(0) and t ∈ [0, 1].
Thus

Bαr(0) ⊆ ♦x̂x̌F (Ω) ⊆ ♦x̂x̌F (BR̃(x∗)) ⊆ ♦x̂x̌F (D) ,

which completes the proof.
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Remark 3.4. Lemma 3.3 states that 0 is contained in the image of the perturbed piecewise linear
model. This does not mean that it is a regular value. In fact, an exponential number [in O(2s)]
of nonempty polyhedra may be mapped to 0 by arbitrarily small perturbations of the piecewise
linearization at x∗. Hence, in the worst case one has to compute the point on these polyhedra
with minimal distance to the reference point of the current linearization. Further, even if 0 is a
regular value, arbitrarily small perturbations of the reference point of the piecewise linearization
may add or remove an exponential even number of roots [again in O(2s)], cf. Figure 3

As the root x∗ is isolated, moving a small distance away from x∗ will increase the norm of
♦x∗F (x) linearly in ‖x− x∗‖ with some positive slope. This idea generalizes into the concept of
metric regularity.
Definition 3.5. (Metric regularity [Mor06, p. 20]) A locally Lipschitz continuous function
F : Rn → Rm is called metrically regular at x∗ ∈ Rn if there exist a constant c > 0, and
neighborhoods D ⊆ Rn of x∗, and V ⊆ Rm of F (x∗) such that

‖x− F−1(y)‖ ≤ c‖y − F (x)‖ ∀ x ∈ D, y ∈ V .

We say F : Rn → Rm is metrically regular on an open neighborhood D ⊆ Rn if it is metrically
regular at all points x ∈ D.
Remark 3.6. Let F : Rn → Rn be piecewise affine and coherently oriented on a connected set
D ⊆ Rn. Denote by F1, . . . , Fk the affine selection functions which are active on D and by
A1, . . . , Ak their (by hypothesis invertible) linear parts. Then F is metrically regular on D with
associated constant

c := max{‖A−1
1 ‖, . . . , ‖A

−1
k ‖} .

This allows to further quantify the previous result and strengthen its claim.
Proposition 3.7. (Contractivity) Let F ∈ span(Φabs) and x∗ be an isolated root of F in an
open neighborhood D so that ♦x∗F is coherently oriented on D. Let further ♦x∗F be strongly
metrically regular on B(x∗, R̃) ⊆ D, R̃ > 0, in that for some c > 0 and all x ∈ B(x∗, R̃) we have

‖x− x∗‖ ≤ c‖♦x∗F (x)‖ .

Then for

R = min

(
R̃

3
,

2

3cγF

)
the Newton operator both in tangent and secant mode of the piecewise linearization is contractive
on B(x∗, R).

Proof. As for any z ∈ ∂BR̃(x∗) the piecewise linearization has a lower bound

c · ‖♦x∗F (x)‖ ≥ R̃ ,

we obtain from the previous lemma that ♦x̂x̌F (x) = 0 will have a root x ∈ BR̃(x∗) if the radii are
chosen according to r = c−1R̃, R ≤ min(R̃, 2

3cγF
) and x̌, x̂ ∈ BR(x∗).

For any root x of ♦x̂x̌F inside BR̃(x∗) we find further that by metric regularity and stability of
the piecewise linear approximations

‖x− x∗‖ ≤ c‖♦x∗F (x)‖ = c‖♦x
∗

x∗F (x)− ♦x̂x̌F (x)‖
≤ cγF

(
max(‖x̌− x∗‖, ‖x̂− x∗‖)‖x− x∗‖) + 1

2 |x̂− x
∗‖ ‖x̌− x∗‖

)
(12)

≤ 2

3

(
‖x− x∗‖+ 1

2 max(‖x̌− x∗‖, ‖x̂− x∗‖)
)
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which implies ‖x− x∗‖ ≤ max(‖x̌− x∗‖, ‖x̂− x∗‖) ≤ R. Hence, the distance from this root x to
x̌ or x̂ does not exceed 2R, and any root of ♦x̂x̌F outside BR̃(x∗) has a distance greater R̃ − R
from these basis points, so that for R ≤ 1

3 R̃ the result of the Newton operator consists only of
roots inside BR(x∗). Moreover, via

N(x̌, x̂) ⊆ B(x∗,max(‖x̌− x∗‖, ‖x̂− x∗‖))

we obtain strict contractivity

Corollary 3.8. In the situation of Proposition 3.7, if F is (globally) coherently oriented, i.e., if
D = Rn, then

R =
2

3cγF
.

Theorem 3.9. (Quadratic or super-linear convergence) Let F ∈ span(Φabs) and x∗ be an isolated
root of F in an open neighborhood D. If ♦x∗F is coherently oriented on D, then there exist a
radius R > 0 so that for any initial point(s) x0 (, x1) ∈ B(x∗, R) the Newton iteration

xj+1 ∈ N(xj)

in tangent mode converges quadratically resp.

xj+1 ∈ N(xj , xj−1)

in secant mode converges with order 1+
√

5
2 towards x∗.

Proof. Using the same constants as in the previous proof, inequality (12) can be also transformed
into

‖xj+1 − x∗‖ ≤
3

2
cγF ‖x̌− x∗‖ ‖x̂− x∗‖ ≤

1

R
‖x̌− x∗‖ ‖x̂− x∗‖

where (x̌, x̂) = (xj , xj) in tangent mode and = (cj , cj−1) in secant mode. The claim about the
order of convergence follows directly.

Proposition 3.10. (Sufficient condition for convergence) Let F ∈ span(Φabs) be metrically
regular at x∗. Then ♦x∗F is open in some neighborhood of x∗.

Proof. If F is metrically regular at x∗, the limiting Jacobians at x∗ are coherently oriented
[Fus13, Thm. 2.4]. But it was shown in [Gri13] that the linear parts of the selection functions of
♦x∗F which are active at its development point x∗ are a subset of the limiting Jacobians of F
at x∗. Hence,♦x∗F is coherently oriented and thus open in some neighborhood of x∗.

Remark 3.11. (Open Problem) The argumentation of the proof of Proposition 3.10 especially
implies that if F is metrically regular at x∗, there exists a neighborhood of x∗ such that all
piecewise linearizations developed therein are locally coherently oriented in some neighborhood
about their respective reference points. It is not clear, however, whether the intersection of these
neighborhoods again contains a nonempty neighborhood about x∗. In this case all piecewise
linearizations developed sufficiently close to x∗ would (locally) have the same number of isolated
roots whose movements could then be tracked unambiguously since their respective ranges of
motion would be bounded by the Lipschitz constants in Proposition 2.1. It was already noted in
Remark 3.4 that in general arbitrarily small perturbations of the reference point(s) of a piecewise
linearization may cause an even number of O(2s) additional roots to arise, leading to a potentially
hard computation of the Newton sequence.
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Proposition 3.12. (Necessary condition for open linearization) Let F ∈ span(Φabs) and assume
that F (x∗) = 0. Then, if ♦x∗F is metrically regular in some neighborhood about x∗, F is open
in x∗.

The proof is modeled after the standard proof for the implicit function theorem.

Proof. Consider the fixed-point operator

T (x) = x+ x∗ − (♦x∗F )−1(F (x)− y)

where the inverse is constrained to a suitably small neighborhood B(x∗, R̄) of x∗. By metric
regularity, we have

‖T (x)− x∗‖ = ‖x− (♦x∗F )−1(F (x)− y)‖ (13)
≤ c‖♦x∗F (x)− F (x) + y‖ (14)

≤ c
γF
2
‖x− x∗‖+ c‖y‖ .

Set R = min
(
R̄, 1

cγF

)
. Then, if ‖y‖ ≤ R

2c , the map T maps B(x∗, R) into itself. By Brouwer’s
fixed-point theorem, T has a fixed point in B(x∗, R), that is, F (x) = y. Re-evaluating (13) and
using cγFR ≤ 1, for the latter solution we get

2R‖x− x∗‖ ≤ ‖x− x∗‖2 + 2Rc‖y‖ ≤ R‖x− x∗‖+ 2Rc‖y‖ =⇒ ‖x− x∗‖ ≤ 2c‖y‖ . (15)

Re-inserting into (15) the tighter bound

‖x− x∗‖ ≤ c‖y‖
1− c

R‖y‖

we obtain B(0, δ2c ) ⊆ B(x∗, δ) for all sufficiently small δ.

3.3 Counterexample

For 0 < x < y2 the following example function has a singular Jacobian. In this case LSSN steps
are not defined because this especially means that in some neighborhood of the (unique) root no
generalized Jacobian contains a nonsingular element.

solve :
(x,y)∈R2

[
0
0

]
!
= f(x, y) =

[
x+ (y2 − x+)+

y

]
=


(x+ y2, y)> if x ≤ 0

(y2, y)> if 0 < x ≤ y2

(x, y)> else
(16)

∂f(x, y) =



[
1 2y

0 1

]
if x < 0[

0 2y

0 1

]
if 0 < x < y2

I2×2 if y2 < x

(17)
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However, one can easily check that the tangent mode piecewise linearization at the origin, which
is also the root, is simply the identity. This is a surprising fact, given that singular matrices are
contained within the set of all limiting Jacobians of (17) and that the set of all limiting Jacobians
of its piecewise linearization at the root is a subset of the former. The reason is that all kinks
in this example are linearized during the piecewise linearization process. The linerization of the
parabola {(x, x2) | x ∈ R} at the origin (0, 0) equals the other kink {(x, 0) | x ∈ R} which itself
is kept invariant. Thus the union of the nonlinear sets {(x, y) | 0 < x < y2} for y < 0 and
y > 0, on which the limiting Jacobians are singular, is mapped onto empty polyhedra. This
removes the singular matrices from the set of all limiting Jacobians of the piecewise linearization
at the root, which is then trivially coherently oriented and so both generalized Newton’s methods
converge.
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Figure 2: Kink-Structure of LSSN Counterexample and its PL approximation

4 Unambiguous Computation

While the the local degree about a regular value y of a continuous function f : Rn → Rn is
constant under small perturbations of f , the number of solutions to the equation f(x) = y may
increase by any even number; cf Figure 3 and Remarks 3.4 and 3.11. In our context this means
that during every Newton step one possibly faces the challenge of solving a piecewise linear
system with exponentially many roots in a small ball about the last development point.

However, we settled on a specific representation of our piecewise linearizations, the ANF. The
dimensions of the ANF are predetermined by the structure of the evaluation graph of the under-
lying PCS function; cf. Remark 2.2. But while any PL function F : Rm → Rn can be represented
by an ANF, perturbations of the latter’s entries – while keeping its dimensions fixed – cannot gen-
erate arbitrary perturbations of F . For example, we can represent the scalar function F (x) = x,
which is trivially PL, by an ANF where J = 1 and all other blocks have dimension zero. Now
F , as well as any function resulting from a slight perturbation of the entries of its ANF, i.e., of
J , is a bijection. But not every PL perturbation of F is bijective; again cf. Figure 3. This lends
a certain robustness to our Newton methods which we will now investigate further.

13



Figure 3: Solution increase by perturbation

4.1 Abs-Normal Form and Absolute Value Equation

In [GBRS15] it was shown that J , the smooth part of the abs-normal form, can be assumed,
without loss of generality, to be nonsingular. Moreover, by fixing y and subsuming it into b, for
regular J the transformation

z − L|z|+ ZJ−1Y |z| ≡ z − S|z| = ĉ ≡ c− ZJ−1b (18)

of the abs-normal form into a so-called absolute value equation (AVE) was derived and the 1-
1-solution correspondence of both systems proved. Denote by S the set of (s × s)- signature
matrices, that is, diagonal matrices with entries in {−1, 1}. Then the limiting Jacobians of the
piecewise linear function

FS : Rs → Rs , z 7→ z − S|z|,
whose facets are the orthants of Rs, are the matrices I − SΣ, where Σ ∈ S. It is well known
that FS is bijective if and only if all its limiting Jacobians have a positive determinant sign,
cf. [Rum97]. Due to the continuity of the determinant, F is bijective if and only if it is stably
bijective in the sense that it is bijective under sufficiently small perturbations of I and S. We
remark that the determinants of the (I −SΣ) cannot all be negative, because by the linearity of
the determinant with respect to rank-1 updates all matrices within their convex hull would then
have a negative determinant – including the identity.

Let F : Rn → Rm be the piecewise linear function in ANF from which FS was derived. For
x ∈ Rn and the associated vector of intermediates z(x) we define Σ(x), the signature at x, as
the signature matrix in S which satisfies z(x)Σ(x) = |z(x)|. It was shown in [Gri13] that the
sets PΣ ≡ {x ∈ Rn : Σ(x) = Σ} are relatively open disjoint polyhedra. Moreover, the limiting
Jacobians of F are the linear parts of the selection functions which are active on some PΣ which
justifies denoting them by JΣ. By [GBRS15, Lem. 6.1], we have

det(JΣ) = det(J) · det(I − SΣ) . (19)

However, while FS always has 2s limiting Jacobians I − SΣ, each one corresponding to the
interior of an orthant of Rs, some PΣ may be empty. In this case F does not have a limiting
Jacobian JΣ. The case that F has 2s limiting Jacobians JΣ is called totally switched. It occurs
if and only if Z is surjective. This requires s ≤ n, cf. [GBRS15]. Now, if a PL function in ANF
is coherently oriented and totally switched, equality (19) implies that all matrices of the form
I − SΣ, where Σ ∈ S, have the same nonzero determinant sign which then has to be positive.
Due to the 1-1-correspondence of ANF and associated AVE solutions, this proves
Lemma 4.1. Let F : Rn → Rn be a PL function in ANF which is coherently oriented and totally
switched. Then F is bijective.
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4.2 Stable Coherent Orientation

Recall that a PL function is called coherently oriented if the linear parts of its selection functions
all have the same nonzero determinant sign [Sch12]. Piecewise linear functions are surjective if
they are coherently oriented and open if and only if they are coherently oriented. Due to the
nearness property of the mapping degree we have deg(f,Ω, y) = deg(f,Ω, y′) for any two regular
values of a surjective continuous function f : Rn → Rn, where Ω is an open region that contains
the preimages of both y and y′. It is then justified to speak of the degree of f .

Since the determinant signs of the differentials of its selection functions are either all positive
or all negative, a coherently oriented piecewise linear function F : Rn → Rn has nonzero degree
and all regular values have the same number of preimages, which equals the degree of F . For
degree > 1 or < −1 this implies that F is a branched covering. For degree ±1 we have the
following
Lemma 4.2. A piecewise linear function F : Rn → Rn is a homeomorphism if and only if it is
coherently oriented of degree ±1.

Proof. If F is homeomorphic and thus bijective, it has a globally defined degree which has to be
±1 since each of its regular values has precisely one preimage. But then the differentials of the
selection functions of F either all have determinant sign +1 or all have determinant sign −1.

Now assume F is coherently oriented of degree ±1. Then every regular value has exactly one
preimage. All critical values have at least one preimage due to the surjectivity of F which
is implied by its coherent orientation. No critical value of F can have an infinite number of
preimages since all selection functions of F are regular. Now assume there exists a critical
value y with a finite number of preimages, say F−1(y) = {x1, x2, . . . , xk}, where k > 1. Let
U1, U2, . . . , Uk be open neighborhoods of x1, x2, . . . , xk. Then ∩i∈[k]F (Ui) is a nonempty open
set due to the openness of F and thus contains a regular value, which then has k preimages by
construction. But this contradicts the hypothesis and proves bijectivity of F . By its openness it
follows that F is a homeomorphism.

We call a PL function in ANF stably coherently oriented if all modifications generated by small
perturbations of Z are also coherently oriented. We define stable bijectivity analogously.
Theorem 4.3. Let F : Rn → Rn be a piecewise linear function in ANF representation with
nonsingular block J and s ≤ n. Then the following are equivalent:

1. F is stably coherently oriented,

2. F is stably bijective,

3. F is coherently oriented under small perturbations of Z,L, J, Y, c, b,

4. F is bijective under small perturbations of Z,L, J, Y, c, b,

5. the AVE associated to F is uniquely solvable.

Proof. The entries of S depend continuously on the entries of the ANF. Hence, the implications
"5. ⇒ 1., 2., 3., 4." are proved by the aforementioned 1-1-correspondence between solutions of
ANF and associated AVE. Moreover, 2., 3., 4. imply 1. since a bijective PL function is coherently
oriented, cf. [Sch12]. Thus showing "1.⇒ 5." completes the proof.

Let U be a neighborhood of Z in Rs×n such that for all Z̃ ∈ U the corresponding perturbation
F̃ of F is coherently oriented. Further, let B ⊆ U be an open ball about Z. Then there exists
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some full rank Z̃ ∈ B and the corresponding perturbation F̃ is totally switched. By Lemma
4.1 F̃ is bijective. Now all matrices Zt := tZ̃ + (1 − t)Z, where t ∈ [0, 1], lie in B, so that
the corresponding perturbations Ft of F are coherently oriented. Since the critical values of F
and F̃ are restricted to the images of the (n − 1)-skeleta of their respective polyhedral domain
decompositions, which have measure zero in the range, we can find a y ∈ Rn which is regular for
both F and F̃ . Since the selection functions of all Ft are affine isomorphisms, F−1

t (y) is compact
for all t ∈ [0, 1]. Hence, there exist some bounded region Ω ⊆ Rn such that F−1

[0,1](y) ⊆ Ω× [0, 1].
But this implies deg(F,Ω, y) = deg(F̃,Ω, y). Now consider Lemma 4.2.

Using Theorem 4.3, we get from Proposition 2.1.2:
Theorem 4.4. Let F ∈ span(Φabs), x

∗ a root of F , and assume ♦x∗F satisfies any of the
equivalent conditions in Theorem 4.3. Then there exists a ball B(x∗, ρ) such that all tangent and
secant linearizations with development points in B(x∗, ρ) are bijective and both the tangent and
secant mode piecewise differentiable Newton’s methods converge from all starting points that lie
in BR[x∗], where

R :=
1

3
min

(
ρ,

1

2cγF

)
.

Moreover, for both methods the Newton path is uniquely determined by the respective starting
point of the iteration.

In the situation of Theorem 4.4 the Newton steps can be calculated in (weakly) polynomial time
via interior point methods for LCPs [Pot07], using the equivalence of AVE and LCP. Algorithms
which are more efficient for special system structures can be found, e.g., in [BC09], [GBRS15],
[Rad16].

4.3 Unstable Bijectivity

For every c ≥ 0 the following ANF is equivalent to the identity of x, but it is not injective
otherwise: z0

z1

y

 =

−c0
0

+

 1 0 0
1 1 0
1
2 − 1

2
1
2

 ·
 x
|z0|
|z1|


We have

S = L− ZJ−1Y =

[
0 0
1 0

]
−
[
−1 1
−1 1

]
=

[
1 −1
2 −1

]
.

One can easily check that the matrices I − SΣ are not coherently oriented, which implies that
the corresponding PL function, say FS , is not bijective. This is not a contradiction to the
aforementioned 1-1-solution correspondence between ANF and AVE. Since s > n, the ANF
solutions map into some lower dimensional set U ⊆ Rs, which translates to local bijectivity of
FS on U .

5 Cardiovascular System

In this section we want to demonstrate the tangent mode generalized Newton method applied to
a series of nonlinear and nonsmooth systems of equations as they arise from solving differential
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algebraic equations (DAE) numerically. The numerical instance in this experiment is a modifi-
cation of a so-called lumped parameter model of the human cardiovascular system introduced in
[OOL04]. From a modeling point of view such systems are segmented into compartments, which
in general wrap different parts of the circulatory system. In our case there are 14 of them. 4
compartments represent all the heart chambers. These are the left and right atrium (la and ra) or
pre-chamber as well as the left and right ventricle (lv and rv) also referred to as main chambers.
Finally, each of the systemic and pulmonary circulations are represented by 5 compartments,
whose blood vessels can be subdivided into 5 different categories:

arterial system larger arteries (sa1 resp. pa1), arteries and arterioles (sa2 resp. pa2)

capillaries arterioles and capillaries (sa3 resp. pa3)

vein system veins and venules (sv2 resp. pv2), larger veins (sv1 resp. pv1)

la

lv

sa1 sa2 sa3 sv2 sv1 ra

rv

pa1pa2pa3pv2pv1

MV

AV TV

PV

left chambers

right chamberssystemic cycle

pulmonary cycle

Figure 4: Schematic overview of all 14 compartments and their relations.

The diodes in figure 4 (MV - Mitral valve, AV - Aortic valve, TV - Tricuspid valve and PV
- Pulmonary valve) indicate positions of the 4 heart valves, which allow a one-way low drag
directional flow. In contrast to the original source we replace the discontinuous or binary behavior
of the valves by a piecewise linear model resembling the anatomic process slightly more accurately.
Finally for the modified system we introduce the following equations for its compartments:

Large Vessels k ∈

{
sa1, sv1,

pa1,pv1

}
smaller vessels k ∈

{
sa2, sa3, sv2,

pa2,pa3,pv2

}

L · q̇k = pk − psucc −Rk · qk,
v̇k = qprec − qk,

Ck · pk = vk − Vk,

Rk · qk = pk − psucc,

v̇k = qprec − qk,
Ck · pk = vk − Vk,

where psucc means the pressure within the succeeding compartment and qprec means the blood
flow through the preceding compartment, in the sense of figure 4. In advance Lk, Rk, Ck, Vk are
compartment-specific, positive constants. The heart chambers are modeled as follows:
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Atria k ∈ {la, ra} Ventricles k ∈ {lv, rv}

θk = 1
2 (|pk − psucc|
− |pk − psucc − 1|+ 1),

(1− θk)qk = θk(pk − psucc −Rkqk − Lkq̇k),

v̇k = qprec − qk,
pk = Ek · (vk − Vk),

θk − 1
2 = 1

2 (|pk − psucc −Rkqk|
− |pk − psucc −Rkqk − 1|),

(1− θk)qk = θk(pk − psucc −Rkqk − Lkq̇k),

v̇k = qprec − qk,
pk = Ek(t) · (vk − Vk),

where Ela, Era are more positive constants for the atria, whereas Ek(t) are so called elastance
functions for the ventricles k ∈ {lv, rv} and defined by:

Ek(t) = Emin , k(1− φ(t)) + Emax , kφ(t)

where φ(t) = max (0, α sin (t̄)− β sin (2t̄)) and t̄ = π
t mod th
κ0 + κ1th

,

with Emin , k, Emax , k, as well as α, β, th, κi, our last positive constants. Representative values
for all constants can be found in the aforementioned reference [OOL04]. Note that we made use
of the following identity for the cut-off function in our modeling:

θk ≡ max(0,min(1, x)) = 1
2 (|x| − |x− 1|+ 1).

Now we focus on solving the iterative sequence of nonsmooth and nonlinear systems of equa-
tions:

∀i ∈ {0, 1, . . . , N} : solve
xi

0 = Fi(xi) ≡ f
(
αi

h D · xi + 1
hD · xi−1, xi, t0 + i · h

)
. (20)

which arise from time discretization, by the implicit Euler method, applied to the differential
algebraic description of the human cardiovascular system:

0 = f
(

d
dt

[
D · x(t)

]
, x(t), t

)
, with D = diag(δv, δq, δp), (21)

where x = (v,q,p) is a vector composed of all intrinsic variables, with v = (vk)k∈C the blood
volumes in each compartment k ∈ C, q = (qk)k∈C the blood flows through all compartments and
p = (pk)k∈C the blood pressures within all compartments. Furthermore, we have δv = (1, . . . , 1),
δp = (0, . . . , 0) and

δq,k =

{
0 if k is a smaller vessel
1 else

.

Thus C = {la, lv, sa1, sa2, sa3, sv2, sv1, ra, rv,pa1,pa2,pa3,pv2,pv1} make up the set of all com-
partments of our system. The units of the 3 intrinsic variables are mmHg or millimeter of mercury
for pressures, ml/s or milliliters per second for flows and ml or milliliters for volumes.

We have solved the sequence of nonlinear equation systems (20) for different time step values
h = 1e−3, 1e−4, 1e−5. Whenever each of the valves is either closed tightly or opened fully, the
system is piecewise linear. Thus exactly one Newton step will already solve it. Whereas during
the transition of at least one of the valves, the system to solve becomes quadratic in 1 up to 4
of its components. Here a minimal step size of at least h ≤ 1e−3 is required because a sufficient
number of evaluation points during the transition of all valves is necessary to avoid strange
backflow behavior. This is a consequence of using a non-generalized integrator for nonsmooth
differential equations (for further details on generalized integrators see [GHR+17]).
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Figure 5: Numerical Wigger’s diagram for left heart chambers. Blue background bars define
intervals of length h, where kinks were crossed to solve the piecewise linearizations.
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Figure 6: Numerical Wigger’s diagram for right heart chambers. Blue background bars define
intervals of length h, where kinks were crossed to solve the piecewise linearizations.
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Figure 7: State of all 4 valves. Blue background bars define intervals of length h, where kinks
were crossed to solve the piecewise linearizations. Black bullets are points of evaluation during
the transition of the corresponding valve.

Certain components of the numerical solution for h = 1e−4 are depicted in Figures 5 and 6.
These two figures resemble the so-called Wigger’s diagram, as it can be found in many medical
textbooks. The original diagram shows idealized curves of blood pressures in the pre-chamber
or atrium, main chamber or ventricle and leaving blood vessels from the heart during one or two
heart periods. It also displays the blood volume in the main chamber and other quantities which
are not considered in our modeling. We have included blood flows from the pre- into the main
chamber and from the main chamber into leaving blood vessels, since they are affected directly
by valve actions. The blue bars in the background of both figures define intervals of length
h where solving the piecewise linearization resulted in a change of the signature of switching
variables or, in other words, where kinks have been crossed. In any case we have experienced
one kink-crossing at most. Further, the tangent mode generalized Newton method solves almost
all instances of (20) in exactly one step regardless of the states of the valves (see Table 1). The

h 1 Newton step 2 Newton steps
1e−3 1580 0
1e−4 15799 1
1e−5 158000 0

Table 1: Number of equation solvings and Newton steps per stepsize.

solutions of all piecewise linearizations are contained in the interior of some polyhedron from
its polyhedral decomposition. The linear operator of the corresponding linear selection function
which is active on the same polyhedron proved to be nonsingular. Thus local convergence for
the generalized Newton method is guaranteed in the sense of this paper. Moreover, the local
coherent orientation throughout all iterations guarantees unambiguously trackable roots in the
sense of Remark 3.11.
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A PL solver suitable to the purpose of solution tracking on successive perturbations of a PL
system, which stay locally coherently oriented about their respective reference points throughout,
is the PL Newton method described in [Gri13]. It was started with the signature of the reference
point of the current piecewise linearization and never needed more than one iteration, which
corresponds to the fact that the development points for the tangent mode piecewise linearizations
never crossed more than one kink.

6 Conclusion and Final Remarks

The focus of this work has been the analysis of the Newton type algorithms developed in
[GSL+17]. Two types of local PL approximations, tangent and secant mode, were plugged
into the general algorithmic scheme of semismooth Newton. Mapping degree theory was used to
show: if the tangent mode piecewise linearization at an isolated root of a PCS function is locally
coherently oriented, then the image of small perturbations of this local model still contains a ball
about the origin, yielding convergence of our methods under this condition.

A key feature of the tangent mode piecewise linearizations is that the limiting Jacobians at their
reference point x̊ coincide with a subset of the – but not necessarily all – limiting Jacobians of the
underlying PCS function at x̊. This leads to a certain robustness of our method in that we may
still have guaranteed convergence even if there exists no neighborhood of the root throughout
which classical (semismooth) Newton steps are defined.

The gain in robustness comes at the cost of limiting our applications to PCS functions. However,
in the context of actual implementations of functions, the condition of finite evaluation procedures
does not seem like a severe limitation. The numerical example in Section 5 shows a real world
example that falls into this class.

Another aspect that necessitates careful consideration is the fact that solving piecewise linear
system is a potentially hard problem. However, the phenomenological observation is that the
requirement of local openness of the PCS function enforces enough "good" structure on the
piecewise linear model so that the Newton iterates can usually be computed at essentially the cost
of the solution of a linear system. In the case that the local model is stably coherently oriented
at the root, a (weakly) polynomial cost is guaranteed in a sufficiently small neighborhood.

In the present article we proved a number of statements which could be qualified as "exact". For
future endeavors our interest lies in matters concerning perturbations. For example, one might
consider ill-posed problems, where the existence of a root is not perturbation-stable. Another
line of inquiry is the investigation of conditions under which a nonzero local degree of the PL
model at a root is sufficient for convergence. Here one might ask whether it is enough to ask
that a locally open PL model can be obtained by perturbation of the reference point, or that a
locally open model can be obtained by perturbation of the ANF corresponding to the piecewise
linearization at the root (these two criteria are not equivalent).

Finally, we would like to learn more about the structure correspondences of PCS function and
PL model. The open problem stated in Remark 3.11 is one example question. Another one
concerns a key result of this paper: Can one describe a principle after which (singular) limiting
Jacobians at a reference point x̊ are ignored by the tangent mode piecewise linearization ♦x̊F .
And, in consequence: Is it possible to classify the type of singular situations that our generalized
Newton’s methods can deal with.
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