
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SVEN O. KRUMKE LUIGI LAURA MAARTEN LIPMANN

ALBERTO MARCHETTI-SPACCAMELA

WILLEM E. DE PAEPE DIANA POENSGEN LEEN STOUGIE

Non-Abusiveness Helps: An O(1)-Competitive
Algorithm for Minimizing the Maximum Flow Time in

the Online Traveling Salesman Problem

ZIB-Report 02-36 (October 2002)

Non-Abusiveness Helps: An O(1)-Competitive Algorithm for
Minimizing the Maximum Flow Time in the Online Traveling

Salesman Problem

Sven O. Krumke∗ Luigi Laura† Maarten Lipmann‡ Alberto Marchetti-Spaccamela†

Willem E. de Paepe¶ Diana Poensgen∗ Leen Stougie∗∗

22nd October 2002

Abstract

In the online traveling salesman problem (OLTSP) requests for
visits to cities arrive online while the salesman is traveling. We
study the Fmax-OLTSP where the objective is to minimize the
maximum flow time. This objective is particularly interesting
for applications. Unfortunately, there can be no competitive al-
gorithm, neither deterministic nor randomized. Hence, compet-
itive analysis fails to distinguish online algorithms. Not even
resource augmentation which is helpful in scheduling works as
a remedy. This unsatisfactory situation motivates the search for
alternative analysis methods.

We introduce a natural restriction on the adversary for the
Fmax-OLTSP on the real line. A non-abusive adversary may
only move in a direction if there are yet unserved requests on this
side. Our main result is an algorithm which achieves a constant
competitive ratio against the non-abusive adversary.

∗Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany.
Email: {krumke,poensgen}@zib.de

†Universita di Roma “La Sapienza”, Italy Email:
{alberto,laura}@dis.uniroma1.it

‡Technical University of Eindhoven, The Netherlands. Email:
m.lipmann@tue.nl

¶Technical University of Eindhoven, The Netherlands. Email:
w.e.d.paepe@tm.tue.nl

∗∗Technical University of Eindhoven, and Centre for Mathematics
and Computer Science (CWI), Amsterdam, The Netherlands. Email:
leen@win.tue.nl

1 Introduction

In the online traveling salesman problem (OLTSP) re-
quests for visits to cities arrive online while the sales-
man is traveling. An online algorithm learns from the
existence of a request only at its release time. The
OLTSP has been studied for the objectives of minimizing
the makespan [1, 2, 5], the weighted sum of completion
times [5, 9], and the maximum/average flow time [6]. In
view of applications, the maximum flow time is of par-
ticular interest. For instance, it can be identified with the
maximal dissatisfaction of customers. Alas, there can be
no competitive algorithm, neither deterministic nor ran-
domized [6]. Moreover, in contrast to scheduling [11] re-
source augmentation, e.g. providing the online algorithm
with a faster server, does not help, the crucial difference
being that servers move in space.

The only hope to overcome the weaknesses of standard
competitive analysis in the context of the Fmax-OLTSP is
to restrict the powers of the adversary. In this paper we
consider the Fmax-OLTSP on the real line and introduce
a natural restriction on the adversary: a non-abusive ad-
versary may move its server only in a direction, if yet un-
served requests are pending on that side. We construct an
algorithm, called DETOUR which achieves a competitive
ratio of eight against the non-abusive adversary.

Related Work. Koutsoupias and Papadimitriou intro-
duced the concept of comparative analysis for restricting
the adversary [8]. The fair adversary of Blom et al. [3]

1

implements this concept in the context of the OLTSP as
follows: a fair adversary may only move within the con-
vex hull of all requests released so far. While one can ob-
tain improved competitiveness results for the minimiza-
tion of the makespan against a fair adversary [3], still a
constant competitive ratio for the maximum flow time is
out of reach (see Theorem 2.1). The non-abusive adver-
sary presented in this paper can be viewed as a refinement
of the fair adversary.

In [7] it is shown that minimizing the average flow time
in scheduling is obnoxiously hard, both online and offline.

Paper Outline. In Section 2 we formally define the
Fmax-OLTSP and the non-abusive adversary. We also
show lower bound results for the competitive ratio against
a fair and non-abusive adversary, respectively. Section 3
presents our algorithm DETOUR, the proof of its perfor-
mance is sketched in Section 4.

2 Preliminaries

An instance of the Online Traveling Salesman Problem
(Fmax-OLTSP) consists of a metric space M = (X, d)
with a distinguished origin o ∈ X and a sequence σ =
r1, . . . , rm of requests. A server is located at the ori-
gin o at time 0 and can move at most at unit speed. In
this paper we are concerned with the special case that M
is R, the real line endowed with the Euclidean metric
d(x, y) = |x − y|; the origin o equals the point 0. Each
request is a pair ri = (ti, xi), where ti ∈ R is the time
at which request ri is released, and xi ∈ X is the point
in the metric space to be visited. We assume that the se-
quence σ = r1, . . . , rm of requests is given in order of
non-decreasing release times. For a real number t, we
denote by σ≤t (σ<t) the subsequence of requests in σ re-
leased up to time t (strictly before time t).

An online algorithm ALG gets to know request rj only
at its release time tj . In particular, ALG has neither infor-
mation about the release time of the last request nor about
the total number of requests. Hence, at any moment in
time t, ALG must make its decisions only knowing the re-
quests in σ≤t. An offline algorithm has complete knowl-
edge about the sequence σ already at time 0.

Given a sequence σ of requests, an algorithm ALG for
the Fmax-OLTSP must find a route for the server which

starts in the origin and visits each point in σ, but not ear-
lier than its release time. By CALG

j and F ALG
j = CALG

j − tj
we denote the completion time and flow time of request
rj , respectively, in the solution produced by ALG. The
goal in the Fmax-OLTSP is to minimize the maximum
flow time ALG(σ) := maxj F ALG

j .
Let OPT denote an optimal offline algorithm. A de-

terministic online algorithm ALG for the Fmax-OLTSP is
c-competitive, if there exists a constant c such that for any
request sequence σ, ALG(σ) ≤ c · OPT(σ). If ALG is
randomized, then ALG(σ) is replaced by the expected so-
lution value (this corresponds to the oblivious adversary,
see [4]). The competitive ratio of ALG is the infimum over
all c such that ALG is c-competitive.

The following lower bound result shows that the fair-
ness restriction on the adversary introduced in [3] is still
not strong enough to allow for competitive algorithms in
the Fmax-OLTSP.

Theorem 2.1 No randomized algorithm for the Fmax-
OLTSP on R can achieve a constant competitive ratio
against an oblivious adversary. This result still holds,
even if the adversary is fair, i.e., if at any moment in time t
the server operated by the adversary is within the convex
hull of the origin and the requested points from σ≤t.

Proof. Let ε > 0 and k ∈ N. We give two request
sequences σ1 = (ε, ε), (2ε, 2ε), . . . , (kε, kε), (T, 0) and
σ2 = (ε, ε), (2ε, 2ε), . . . , (kε, kε), (T, kε), each with
probability 1/2, where T = 4kε.

The expected cost of an optimal fair offline solution is
at most ε, while any deterministic online algorithm has
cost at least kε/2. The claim now follows by applying
Yao’s principle [4, 10]. 2

The fair adversary is still too powerful in the sense that
it can move to points where it knows that a request will
pop up without revealing any information to the online
server before reaching the point. A non-abusive adversary
is stripped of this power.

Definition 2.2 (Non-Abusive Adversary)
An adversary ADV for the OLTSP on R is non-abusive,
if the following holds: At any moment in time t, where
the adversary moves its server from its current posi-
tion pADV(t) to the right (left), there is a request from σ≤t

to the right (left) of pADV(t) which ADV has not served yet.

2

In the sequel we slightly abuse notation and denote by
OPT(σ) the maximal flow time in an optimal non-abusive
offline solution for the sequence σ.

The following result shows that the Fmax-OLTSP is still
non-trivial against a non-abusive adversary.

Theorem 2.3 No deterministic algorithm for the Fmax-
OLTSP on R can achieve a competitive ratio less than 2
against a non-abusive adversary.

Proof. Let ALG be any deterministic online algorithm.
The adversary first presents the following 2m requests:
(0,±1), (3,±2), . . . , (

∑m−1
k=1 (1+2k),±m). W.l.o.g., let

ALG serve the request in −m later than the on ein +m,
and let T be the time it reaches −m. Clearly, T ≥
∑m

k=1(1 + 2k). At time T , the adversary presents one
more request in +(3m+1) which results in a flow time of
at least 4m+1 for ALG. On the other hand, a non-abusive
offline algorithm can serve all of the first 2m requests with
maximum flow time 2m+1 by time

∑m

k=1(1+2k), end-
ing with the request at +m. From there it can easily reach
the last request with flow time 2m + 1. The theorem fol-
lows by letting m → ∞. 2

3 The Algorithm DETOUR

We denote by pDTO(t) the position of the server operated
by DETOUR (short DTO) at time t. The terms ahead of
and in the back of the server refer to positions on the axis
w.r.t. the direction the server currently moves: if it is mov-
ing from left to right on the R-axis, “ahead” means to the
right of the server’s current position, while a request “in
the back” of the server is to its left. The other case is
defined analogously.

Given a point p ∈ R, we call the pair (ti, xi) more
critical than the request rj = (tj , xj) w.r.t. p if both xi

and xj are on the same side of p, and d(p, xi) − ti >
d(p, xj)−tj . If at time t, request ri is more critical than rj

w.r.t. DTO’s position pDTO(t), this yields that DTO cannot
serve ri with the same (or a smaller) flow time than rj .
Moreover, ri remains more critical than rj after time t as
long as both requests are unserved. Conversely, we have
the following observation.

Observation 3.1 If, at time t, request ri is more critical
than rj w.r.t. pDTO(t), and DTO moves straight ahead to
the more distant request after having served the one closer
to pDTO(t), then DTO’s flow time for rj is at most the flow
time it achieves for ri. 2

The critical region ∨(rj , p,G) w.r.t. a request rj , a
point p ∈ R and a bound G for the allowed maximal flow
time contains all those pairs (t, x) ∈ R+ × R with the
property that (i) (t, x) is more critical than rj w.r.t. p, and
(ii) t + d(x, xj) − tj ≤ G.

In the setting of DTO, p will be the position of the online
server at a certain time t′. Condition (ii) has the meaning
that a request in (t, x) could be served before rj in an
offline tour serving both rj and (t, x) with maximal flow
time at most G.

DTO’s decisions at time t are based on an approxima-
tion, called the guess G(t), of OPT(σ≤t). DTO’s rough
strategy is to serve all requests in a first-come-first-serve
(FCFS) manner. However, blindly following an FCFS-
scheme makes it easy for the adversary to fool the algo-
rithm. DTO enforces the offline cost in a malicious se-
quence to increase by making a detour on its way to the
next target: it first moves its server in the “wrong direc-
tion” as long as it can serve the target with flow time thrice
the guess. If the guess changes, the detour, and possibly
the target, are adjusted accordingly (this requires some
technicalities in the description of the algorithm).

Our algorithm DTO can assume three modes:

idle In this mode, DTO’s server has served all unserved
requests, and is waiting for new requests at the point
at which it served the last request.

focus Here, the server is moving in one direction serving
requests until a request in its back becomes the oldest
unserved one or all requests have been served.

detour In this case, the server is moving away from its
current target (possibly serving requests on the way),
thus making a “detour”.

At any time, at most one unserved request is marked
as a target by DTO. Moreover, there it keeps at most one
critical region, denoted by ∨. Before we formalize the
behavior of DTO we specify important building blocks for
the algorithm.

3

- Guess Update: Replace the current guess value G
by G′, defined as follows: If G = 0, then G′ :=
OPT(σ≤t). If G > 0, then G′ := 2aG, where a is
the smallest integer k such that OPT(σ≤t) ≤ 2kG.

- Target Selection: Given a candidate set C and the
current time t, let s0 = (t0, x0) be the most critical
request from C w.r.t. pDTO(t) with the property that
s0 is feasible in the following sense:

Let X0 be the point ahead of the server such that
t+d(pDTO(t), X0)+d(X0, x0) = t0 +3G, provided
such a point exists, otherwise let X0 := pDTO(t).
Define the turning point TP0 = (T0, X0), where
T0 := t + d(pDTO(t), X0). There is no unserved re-
quest ahead of the server further away from pDTO(t)
than TP0 and older than s0.

If necessary, unmark the current target and turning
point. Mark s0 as a target and set TP0 to be the cur-
rent turning point.

- Mode Selection: If TP0 6= pDTO(t), then set ∨ :=
∨(s0, p

DTO(t), G) and enter the detour mode. Other-
wise, set ∨ := ∅ and unmark s0 as a target. Change
the direction and enter the focus mode.

We now specify for each of the three states how DTO

reacts to possible events. All events not mentioned are
ignored. In the beginning, the guess value is set to G := 0,
∨ := ∅ and the algorithm is in the idle mode.

Idle Mode In the idle mode DTO waits for the next re-
quest to occur.

• A new request is released at time t.

The pair (t, pDTO(t)) is called a selection point. DTO

performs a guess update. The direction of the server
is defined to be such that the oldest unserved request
is in its back. In case that there is one oldest request
on both sides of the server chooses to have the most
critical one in the server’s back.

DTO defines C to be the set of unserved requests in
the back of the server and performs a target selection,
followed by a mode selection.

Detour Mode In this mode, DTO has a current tar-
get sm = (tm, xm), a critical region ∨ 6= ∅ and a turn-
ing point TP. Let T be the time DTO entered the detour
mode and s0 the then chosen target. The server moves
towards TP until one of following two events happens,
where the first one has a higher priority than the second
one (i.e., the first event is always checked for first).

• A new request is released at time t or an already ex-
isting request has just been served.

DTO performs a guess update. Then it enlarges the
critical region to ∨ := ∨(s0, p

DTO(T), G) where G
is the updated guess value. Replace the old turn-
ing point by a new point TP which satisfies t +
d(pDTO(t), TP) + d(TP, xm) = tm + 3G for the up-
dated guess value G.

DTO defines C to be the set of unserved requests
which are in ∨ and more critical than the current tar-
get sm. If C 6= ∅, it executes the target selection and
the mode selection. If C = ∅, DTO remains in the
detour mode.

• The turning point TP is reached at time t.

DTO unmarks the current target, sets ∨ := ∅ and
clears the turning point. The server reverses direc-
tion and enters the focus mode.

Focus Mode When entering the focus mode, DTO’s
server has a direction. It moves in this direction, react-
ing to the following events:

• A new request is released at time t.

A guess update is performed, and the server remains
in the focus mode.

• The last unserved request has been served.

The server stops, forgets its direction and enters the
idle mode.

• A request in the back of the server becomes the old-
est unserved request.

If this happens at time t, the pair (t, pDTO(t)) is also
called a selection point.

DTO defines C to be the set of unserved requests in
the back of the server and performs a target selection,
followed by a mode selection (exactly as in the idle
mode).

4

4 Analysis of DETOUR

For the analysis of DTO it is convenient to compare inter-
mediate solutions DTO(σ≤t) not only to the optimal non-
abusive solution on σ≤t, but to a whole class of offline
solutions ADV(t) which depend on the guess value G(t)
maintained by DTO. Notice that for any time t we have
OPT(σ≤t) ≤ G(t) ≤ 2OPT(σ≤t).

Definition 4.1 By ADV(t), we denote the set of all non-
abusive offline solutions for the sequence σ≤t with the
property that the maximum flow time of any request in σ≤t

is bounded from above by G(t).
Let ri ∈ σ≤t . The smallest achievable flow time αi(t)

is defined to be minimum flow time of ri taken over all
solutions in ADV(t).

Note that, by definition, αi(t) ≤ G(t). In general,
αi(t) ≥ αi(t

′) for t′ > t, as an increase in the allowed
flow time can help an adversary to serve a request ri ear-
lier. On the other hand, we have the following property.

Observation 4.2 If t ≤ t′ and G(t) = G(t′), then
αi(t) ≤ αi(t

′) for any request ri = (ti, xi) with ti ≤ t.

To derive bounds on the flow times for DTO we would
like to conclude as follows: if request ri is served by DTO

“in time” and rj is served directly after ri (i.e., without
any detour in between), then rj is also served “in time”.

Definition 4.3 (Served in time)
Given ri = (ti, xi), we define τi := max{ti, T}, where
T is the last time DTO reverses direction before serving
ri. Furthermore, we say that ri is served in time by DTO,
if CDTO

i ≤ ti + 3G(τi) + αi(τi).

Notice that any request ri served in time is served
with a flow time of at most 4G(τi) ≤ 4G(CDTO

i) since
αi(τi) ≤ G(τi) by definition.

Lemma 4.4 Let ri = (ti, xi) and rj = (tj , xj) be two
requests such that:

(i) ri is served in time by DTO,
(ii) CDTO

j ≤ CDTO
i + d(xi, xj),

(iii) τi ≤ τj ,
(iv) rj is served after ri by all ADV ∈ ADV(τj).

Then, DTO serves rj in time.

Proof. From (iv) we have

tj + αj(τj) ≥ ti + αi(τj) + d(xi, xj). (1)

In particular, this means that

ti + d(xi, xj) ≤ tj + G(τj). (2)

By (i), (ii), and the definition of in time, we get:

CDTO
j ≤ ti + αi(τi) + 3G(τi) + d(xi, xj). (3)

If G(τi) = G(τj), we have that αi(τi) ≤ αi(τj) by
Observation 4.2. In this case, inequality (3) yields that

CDTO
j ≤ ti + αi(τj) + 3G(τj) + d(xi, xj)

≤ tj + αj(τj) + 3G(τj) by (1).

If G(τi) < G(τj), it must hold that 2G(τi) ≤ G(τj),
and inequality (3) yields

CDTO
j ≤ ti + 4G(τi) + d(xi, xj)

≤ tj + G(τj) + 4G(τi) by (2)

≤ tj + 3G(τj).

2

An easy but helpful condition which ensures that as-
sumption (iv) of Lemma 4.4 holds, is that tj +d(xj , xi) >
ti + G(t). This yields the following observation which
will be used frequently in order to apply Lemma 4.4:

Observation 4.5 (i) If d(xi, xj) > G(t) and ti ≤ tj ≤
t, then ri, the older request, must be served before rj

in any offline solution in ADV(t).
(ii) If a request rj is outside the critical region

∨(ri, p,G(t)) valid at time t, request rj is served
after ri in any offline solution in ADV(t).

We define a busy period to be the time between the mo-
ment in time when DTO leaves the idle mode and the next
time the idle mode is entered again.

Lemma 4.6 Suppose that at the beginning of a busy pe-
riod at time t each request rj served in one of the pre-
ceeding busy periods was served by DTO with a flow time
at most 4G(CDTO

j). Then, d(pDTO(t), pADV(t)) ≤ 5/2G(t)
for any ADV ∈ ADV(t).

5

Proof. The claim of the lemma is trivially true for the
first busy period, since a non-abusive adversary must keep
its server in the origin until the first request is released.
Hence, it suffices to consider the later busy periods.

Let rl be last request served by DTO in the preceeding
busy period, so DTO enters the idle mode at time CDTO

l

again. Consider that ADV ∈ ADV(t) in which the adver-
sary’s server is furthest away from pDTO(t) = xl.
Case 1: At time t, ADV has served all requests in σ<t.

In this case, since ADV is non-abusive, its server satis-
fies pADV(t) = xk for the request rk it served last. DTO

must have served rk in the preceeding busy period, hence
no later than rl. This gives CDTO

k ≤ CDTO
l − d(xk, xl) and

we obtain that

tk ≤ CDTO
l − d(xk, xl) ≤ tl + 4G(CDTO

l) − d(xk, xl),

because rl was served with a flow time of at most
4G(CDTO

l) according to the assumption of the lemma. On
the other hand, ADV serves rl no later than rk, which im-
plies that tl + d(xk, xl) ≤ tk + G(CDTO

l). The two in-
equalities together yield

d(xk, xl) ≤ tk − tl +G(CDTO
l) ≤ 5G(CDTO

l)− d(xk, xl).

hence the claim, since d(pDTO(t), pADV(t)) = d(xk, xl).

Case 2: At time t, there is a request from σ<t which has
not been served yet by ADV.

If rl has not been served by ADV at time t, then the
distance d(pADV(t), xl) = d(pADV(t), pDTO(t)) is at most
G(t), because otherwise the adversary’s flow time for rl

would be greater than G(t).
Otherwise, rl has been served, but another request

in σ<t is yet unserved by ADV. Let rk be the request
in σ<t which is furthest away from rl and yet unserved
by ADV. The same reasoning as in Case 1 shows that
d(xk, xl) ≤ 5

2G(CDTO
l). So, if the adversary’s server is

between rk and rl, the claim holds true. Assume that the
adversary’s server is further away from rl than rk. Since
the adversary is non-abusive, there must be a request rj

even further away from rl than pADV(t), which ADV served
last before (or at) time t. In particular, ADV served rl be-
fore rj . Thus, the same arguments as in Case 1 apply to
rj in place of rk, showing that d(xj , xl) ≤

5
2G(CDTO

l). 2

We further subdivide each busy period into phases,
where a phase is defined to be the time between two sub-
sequent selection points of DTO. Remember that DTO

reaches a selection point whenever it leaves the idle mode,
and each time at which a request in the server’s back be-
comes the oldest unserved one. The following statement
is the key theorem of our analysis.

Theorem 4.7 The following is true for any phase ρ ≥ 1:

(a) At any time t in phase ρ at which DTO is in the detour
mode, it holds that d(Xi, xi) ≥ G(t) for the turning
point TPi = (Xi, Ti) valid at that time and its cor-
responding target ri = (ti, xi). Moreover, if at some
time t during phase ρ, a request ri failed to become a
new target only because it was infeasible, the above
inequality holds as well for ri and its hypothetical
turning point TPi.

(b) Any request rj served in phase ρ is served with a flow
time of at most 4G(CDTO

j).
(c) The last request served in phase ρ is served in time.

Proof. We prove the statement by induction on the total
number of phases. In the inductive step we distinguish
whether phase ρ is the first phase of a busy period or not.
The former case includes the induction base (ρ = 1), i.e.,
the first phase of the first busy period, as a special case.

Let ρ ≥ 1 be the number of the phase under consider-
ation and assume that the three statements of the theorem
all hold true for each phase ρ′ < ρ, provided such a phase
exists. Note that in the case that phase ρ is the first phase
of a busy period, Lemma 4.6 can be applied.

At the beginning of phase ρ, DTO determines a turning
point which might be replaced later on in the phase. We
call the turning point TPρ = (T ρ, Xρ) at which the server
actually reverses direction the realized turning point of
the phase ρ. Each turning point ever considered has a
corresponding target. Note that both the realized turning
point TPρ and its corresponding target sρ = (tρ, xρ) are
reached by DTO in the same phase. Moreover, at any time
when DTO is in the detour mode, the algorithm has a valid
turning point and a corresponding target.

Throughout the whole proof we assume without loss of
generality that the realized turning point is to the right of
the final target, that is, in phase ρ, DTO moves to the right
while in the detour mode and to the left after entering the
focus mode. We may also assume without loss of general-
ity that at time 0 a request appears in the origin since this
request does not increase the offline cost.

6

Proof of Statement (a):

Let TP0 = (T0, X0) be the first turning point chosen in
phase ρ, TP1 the next one, etc. until TPρ, the realized
turning point of the phase. Let si = (ti, xi) be the tar-
get corresponding to TPi (si is released at time ti). Part
(a) is proven by induction on the number of turning points
in the considered phase ρ.

1. Phase ρ is the first phase of a busy period.
The first target s0 = (t0, x0) must be among the re-

quests whose release initiates the start of the busy pe-
riod at time t0, and TP0 = (T0, X0) is chosen such
that t0 + d(pDTO(t0), X0) + d(x0, X0) ≥ t0 + 3G(t0).
Since d(pDTO(t0), X0) < d(x0, X0), it readily follows
that d(X0, x0) > 3

2 G(t0).
Assume that (a) holds for the turning

points TP0, . . . , TPi−1 of phase ρ. We prove (a) for
the next turning point TPi = (Ti, Xi). Assume that TPi

replaces TPi−1 at time t of phase 1, and let si = (ti, xi)
be TPi’s corresponding target.

If si was released at time t0, then the turning point TPi

planned by DTO at time t is exactly the same as if the
guess value at time t0 had already been G(t) and si had
been selected as a target at time t0. Exactly as before we
can conclude that d(Xi, xi) ≥

3
2 G(t).

If si was released later than t0, the detour taken by DTO

is only longer as the one chosen if si had been released
already at time t0. Hence, the arguments of above apply
again and d(Xi, xi) ≥

3
2 G(t).

2. Phase ρ is not the first phase of a busy period.
Again, we first consider TP0 = (T0, X0), the turning

point planned first in phase ρ. Both s0 and T0 are deter-
mined in the selection point SP which marks the end of
phase ρ − 1 and the start of phase ρ. It must hold that
SP = (CDTO

l , xl) for some request rl. When DTO serves
request rl, the oldest unserved request, call it rz , is in its
back. Observe that SP cannot be reached before the final
target sρ−1 of phase ρ − 1 is served: If that was the case,
there would be an unserved request in the back of DTO’s
server before sρ−1 is reached which is older than sρ−1.
But in that case, sρ−1 would have been infeasible at the
time it became a target, which is a contradiction.

Assume first that s0 is located between Xρ−1 and xl.
Then, the release time of s0 satisfies

t0 ≥ CDTO
l − d(x0, xl), (4)

because otherwise s0 would have been served on the way
to rl. Since TP0 is chosen at time CDTO

l in such a way that
s0 is served not earlier than time t0 +3G(CDTO

l), we have

CDTO
l + d(xl, X0) + d(X0, x0) ≥ t0 + 3G(CDTO

l).

It follows that

d(X0, x0) ≥ t0 + 3G(CDTO
l) − CDTO

l − d(xl, X0)

≥ 3G(CDTO
l) − d(x0, xl) − d(xl, X0) by (4)

= 3G(CDTO
l) − d(x0, X0).

Hence d(x0, X0) ≥
3
2 G(CDTO

l).
We now have to cover the case that s0 is further away

from rl than TPρ−1, that is, d(x0, xl) > d(Xρ−1, xl).
Notice that rl must be older than s0: If s0 was older,
the oldest unserved request would have been in DTO’s
back before reaching rl, and (CDTO

l , xl) would not have
been the selection point. Observe also that d(Xρ−1, xl)
is at least the distance between the realized turning
point TPρ−1 and the corresponding target, as the final tar-
get of a phase is always served within that phase, as shown
above. From the inductive hypothesis for phase ρ − 1,
Statement (a), we obtain that

d(xl, x0) > G(T ρ−1). (5)

As d(X0, x0) ≥ d(xl, x0), the only interesting case
to consider is that G(T ρ−1) < G(CDTO

l). So let
2aG(T ρ−1) = G(CDTO

l) for some integer a ≥ 1. We
need to distinguish two cases.
Case 1: t0 ≥ T ρ−1. In this case we have

T ρ−1 + d(Xρ−1, X0) + d(X0, x0) ≥ t0 + 3G(CDTO
l),

as DTO’s server started from Xρ−1 at time T ρ−1 and
chooses the turning point TP0 at time CDTO

l in such that
the corresponding target s0 is not served with a smaller
flow time than 3G(CDTO

l). But since we consider the case
in which d(x0, X0) ≥ d(Xρ−1, X0), this yields

2d(x0, X0) ≥ t0 − T ρ−1 + 3G(CDTO
l) ≥ 3G(CDTO

l),

as t0 ≥ T ρ−1. This implies the claim.
Case 2: t0 < T ρ−1. Here we get tl ≤ t0 < T ρ−1 since
rl is older than s0, as reasoned above. By (5) and Ob-
servation 4.5 (i), request s0 is served after rl by every
ADV ∈ ADV(T ρ−1). Hence,

t0 + α0(T
ρ−1) ≥ tl + αl(T

ρ−1) + d(x0, xl). (6)

7

From the assumption that Statement (c) holds true for
phase ρ − 1, we know that rl is served in time, i.e.,

CDTO
l ≤ tl + αl(T

ρ−1) + 3G(T ρ−1), (7)

because T ρ−1 was the last time DTO turned around be-
fore it served rl, and because of tl ≤ T ρ−1. Hence, if
DTO’s server turned around immediately after serving rl,
it would hold that

CDTO
0 = CDTO

l + d(x0, xl)

≤ tl + αl(T
ρ−1) + 3G(T ρ−1) + d(x0, xl) by (7)

≤ t0 + α0(T
ρ−1) + 3G(T ρ−1) by (6)

≤ t0 + 4G(T ρ−1) ≤ t0 + 2−a+2G(CDTO
l).

Thus, s0 would be served with a flow time of at most
2G(CDTO

l), because a ≥ 1. Since DTO never plans its
turning point in such a way that the target is reached with a
flow time of less than three times the current guess value,
we can deduce that the server does in fact not turn around,
but has time of at least (3−2−a+2)G(CDTO

l) > 0 to spend
on a detour, starting at time CDTO

l . Thus, the distance be-
tween xl and the turning point TP0 planned at time CDTO

l

is at least 1
2 (3 − 2−a+2)G(CDTO

l), and we conclude that

d(X0, x0) = d(X0, xl) + d(xl, x0)

≥
1

2

(

3 − 2−a+2
)

G(CDTO
l) + d(xl, x0)

≥
(

1 − 2−a
)

G(CDTO
l) + G(T ρ−1) by (5)

=
(

1 − 2−a
)

G(CDTO
l) + 2−aG(CDTO

l)

≥ G(CDTO
l),

which was our claim for TP0.
Assume now that (a) holds for the turning

points TP0, . . . , TPi−1 of the considered phase ρ.
We have to prove (a) for the next turning point
TPi = (Ti, Xi). Assume that TPi replaces TPi−1

at time t of phase ρ, and let t′ < t be the time when
TPi−1 was valid for the first time. Denote by si = (ti, xi)
the target corresponding to TPi. Recall that we assumed
w.l.o.g. that TPi is to the right of si.

In the case that si = s0, we can deduce that G(t) ≥
2G(t′) because the turning point changes but the target
does not. That is, in order to serve the target with a flow
time of 3G(t) instead of 3G(t′), DTO has now at least

3(G(t)−G(t′)) additional time units to spend on the way
to the target. Hence, it can enlarge its detour by

d(Xi, Xi−1) ≥
3

2
(G(t) − G(t′)) ≥ G(t) − G(t′).

By the inductive assumption, d(Xi−1, x0) ≥ G(t′). Con-
sequently,

d(Xi, x0) = d(Xi, Xi−1) + d(Xi−1, x0)

≥ G(t) − G(t′) + G(t′) = G(t).

If si 6= s0 and the new target si was released later than
time T ρ−1, then independent of whether si is between
T ρ−1 and rl or further away from rl, we can conclude
as in the proof for TP0, that d(Xi, xi) ≥

3
2G(t).

If si 6= s0 and si had already been released at
time T ρ−1, it follows that si must have been infeasible
at time CDTO

l when the initial target was chosen, as si was
more critical than s0 at that time: otherwise it could not
have become a target later on. Hence, there exists a re-
quest rj older than si and to the right of si’s hypothetical
turning point TP′

i = (T ′
i , X

′
i) considered at time CDTO

l .
By exactly the same arguments used for TP0 above, we

can deduce for the hypothetical turning point TP′
i consid-

ered at time CDTO
l that

d(X ′
i, xi) ≥ G(CDTO

l). (8)

If G(CDTO
l) = G(t), we obtain that

d(Xi, xi) > d(X ′
i, xi) ≥ G(CDTO

l) = G(t).

On the other hand, if G(t) ≥ 2G(CDTO
l), DTO has at least

3(G(t)−G(CDTO
l)) time units more to spend on its detour

to xi than it would have had if si had become the target at
time CDTO

l . Hence, the distance of the hypothetical turning
point TP′

i considered at time CDTO
l and the one chosen at

time t, namely TPi, is at least half of that additional time.
More precisely, we have that

d(X ′
i, Xi) ≥

3

2
(G(t) − G(CDTO

l)) ≥ G(t) − G(CDTO
l).

Together with (8), we obtain that

d(Xi, xi) = d(Xi, X
′
i) + d(X ′

i, xi)

≥ G(t) − G(CDTO
l) + G(CDTO

l) = G(t),

8

which proves the inductive step.
Notice that exactly the same arguments apply whenever

a request is not made a target because it is not feasible: its
hypothetical turning point considered at that time t must
be at least at distance G(t) to the corresponding target.

Proof of Statements (b) and (c):

Let SP denote the selection point which defines the end of
the previous phase. If no previous phase exists, we define
SP = (0, 0). By definition, SP = (CDTO

l , xl) for some re-
quest rl. We distinguish two cases: in Case I we consider
the situation that DTO’s server immediately turns around
in the selection point, thus not entering the detour mode,
in Case II, we assume that it enters the detour mode at the
selection point. Furthermore, we partition the set of re-
quests served in phase ρ into three classes, depending on
which part of DTO’s route they are served in: Class 1 con-
tains all requests served between the realized turning point
and its corresponding target. Class 2 consists of those re-
quests served in phase ρ after the target; whereas all re-
quests served between the selection point and the realized
turning point belong to Class 3 (see Figure 1).

xl

CD
l

time

sl

next SP

SP
sρ 3

2

1

TP(ρ) = (T ρ, Xρ)

Figure 1: Classification of the requests served in phase ρ.

Let rz be the oldest unserved request at time CDTO
l . De-

note by TP0 = (T0, X0) be the turning point chosen at
time CDTO

l , and by s0 = (t0, x0) its corresponding target.

Case I: DTO turns around in the selection point.

1. Phase ρ is the first phase of a busy period.
Hence, all requests served in that phase are released

at time t0 or later, and since DTO immediately enters
the focus mode at the beginning of the phase, they are
all served without any detour. By 4.6, we know that
d(pDTO(t0), p

ADV(t0)) ≤
5
2G(t0). Therefore, DTO reaches

all requests served in phase 1 at most 5
2G(t0) time units

later than the adversary, so all requests are served in time.

2. Phase ρ is not the first phase of a busy period.
We have TP0 = SP = (CDTO

l , xl), because the server
turns around immediately as it cannot serve s0 with a flow
time of 3G(CDTO

l) or less. Thus, TP0 equals the realized
turning point TPρ = (T ρ, Xρ), request s0 is the final tar-
get and CDTO

0 = CDTO
l + d(x0, xl). Note that Class 3 is

empty in this case. First of all, we know that s0 cannot be
older than rl: If s0 was older, DTO would not have served
rl anymore, as it only remains in the focus mode until the
oldest unserved request is in its back. Furthermore, by
part (a) it holds that d(xl, x0) = d(Xρ, x0) ≥ G(T ρ) =
G(CDTO

l).
Therefore, by Observation 4.5 (i), in all offline solu-

tions in ADV(T ρ), request rl must be served before s0.
It is easy to see that τl ≤ τ0 = T ρ, and since Statement (c)
for phase ρ − 1 tells us that rl is served in time, we can
apply Lemma 4.4 and conclude that s0 is also served in
time. Notice that exactly the same arguments apply to all
requests in Class 2. This ensures Statement (c).

It remains to consider all other requests of Class 1. To
this end, let rj be a request served between rl and s0 by
DTO. If rj was more critical than s0, it must be at least as
old as s0, because it is to the right of s0. Since rj was not
chosen as target at time CDTO

l , it must have been infeasi-
ble, that is, there is a request rb older than rj and to the
right of rj’s hypothetical turning point TP′

j . But as rj is
more critical than s0, and DTO turns around immediately
for s0, we have that TP′

j = TPρ, which implies that also
s0 cannot have been feasible at time CDTO

l , a contradic-
tion. Thus, rj must be less critical than s0. This means
that it is served with the same or a smaller flow time than
s0, hence with flow time of at most 4G(T ρ) ≤ 4G(CDTO

j).
This proves Case I.

Case II: DTO enters the detour mode at the selection
point.

The proof of this case is omitted due to lack of space
and can be found in the appendix. The key arguments

9

used are similar to the ones in Case I, but more involved:
We first show that all requests ever marked as a target, ex-
cluding the final target (set S), are served with a flow time
at most 3G(T ρ). This lets us conclude that requests which
are less critical than those in S are served with smaller
flow times. In order to show that other requests rj are
served with the desired flow time, we apply Lemma 4.4
with a careful choice of the request ri which is served
before rj by ADV. Observation 4.5 will be used to de-
termine a suitable ri. Another helpful ingredient is the
following: if d(pDTO(T ρ), pADV(T ρ)) ≤ 3G(T ρ), then all
requests served by both servers after time T ρ are served
in time (ADV ∈ ADV(T ρ)). 2

Theorem 4.8 DTO is 8-competitive against a non-
abusive adversary for the Fmax-OLTSP.

Proof. By Theorem 4.7 we have that any request ri is
served with flow time at most 4G(CDTO

i). If CDTO
last is

the time at which the last request is served by DTO, all
requests are served with flow time at most 4G(CDTO

last),
which, by construction, is bounded by 2OPT(σ), thence
the claim. 2

References

[1] N. ASCHEUER, S. O. KRUMKE, AND J. RAM-
BAU, Online dial-a-ride problems: Minimizing the
completion time, in Proceedings of the 17th Interna-
tional Symposium on Theoretical Aspects of Com-
puter Science, vol. 1770 of Lecture Notes in Com-
puter Science, Springer, 2000, pp. 639–650.

[2] G. AUSIELLO, E. FEUERSTEIN, S. LEONARDI,
L. STOUGIE, AND M. TALAMO, Algorithms for
the on-line traveling salesman, Algorithmica, 29
(2001), pp. 560–581.

[3] M. BLOM, S. O. KRUMKE, W. E. DE PAEPE, AND

L. STOUGIE, The online-TSP against fair adver-
saries, Informs Journal on Computing, 13 (2001),
pp. 138–148. A preliminary version appeared in the
Proceedings of the 4th Italian Conference on Algo-
rithms and Complexity, 2000, vol. 1767 of Lecture
Notes in Computer Science.

[4] A. BORODIN AND R. EL-YANIV, Online Computa-
tion and Competitive Analysis, Cambridge Univer-
sity Press, 1998.

[5] E. FEUERSTEIN AND L. STOUGIE, On-line single
server dial-a-ride problems, Theoretical Computer
Science, (2001). To appear.

[6] D. HAUPTMEIER, S. O. KRUMKE, AND J. RAM-
BAU, The online dial-a-ride problem under reason-
able load, Theoretical Computer Science, (2001). A
preliminary version appeared in the Proceedings of
the 4th Italian Conference on Algorithms and Com-
plexity, 2000, vol. 1767 of Lecture Notes in Com-
puter Science.

[7] H. KELLERER, T. TAUTENHAHN, AND G. J.
WOEGINGER, Approximability and nonapproxima-
bility results for minimizing total flow time on a
single machine, in Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing,
1996, pp. 418–426.

[8] E. KOUTSOUPIAS AND C. PAPADIMITRIOU, Be-
yond competitive analysis, in Proceedings of the
35th Annual IEEE Symposium on the Foundations
of Computer Science, 1994, pp. 394–400.

[9] S. O. KRUMKE, W. E. DE PAEPE, D. POENSGEN,
AND L. STOUGIE, News from the online traveling
repairman, in Proceedings of the 26th International
Symposium on Mathematical Foundations of Com-
puter Science, vol. 2136 of Lecture Notes in Com-
puter Science, 2001, pp. 487–499.

[10] R. MOTWANI AND P. RAGHAVAN, Randomized Al-
gorithms, Cambridge University Press, 1995.

[11] K. PRUHS AND B. KALYANASUNDARAM, Speed is
as powerful as clairvoyance, in Proceedings of the
36th Annual IEEE Symposium on the Foundations
of Computer Science, 1995, pp. 214–221.

10

A Proof of Theorem 4.7 (b) and (c),
Case II

Case II: DTO enters the detour mode at the selection
point.

Since in this case, the proof is in large parts the same
for whether phase ρ is the first phase of a busy period or
not, we only make the distinction when needed.

We start with the requests in Class 1. Let us first con-
sider an arbitrary request si which was ever marked as tar-
get during the current phase ρ but did not become the final
target. We prove the stronger statement that si is served
with a flow time of at most 3G(T ρ). Consider the time
T ρ at which DTO reverses direction. If si was still the tar-
get at T ρ, and TPi = (Ti, Xi) the corresponding turning
point valid at that time, si would be served with a flow
time of 3G(T ρ). As si was not the target at time T ρ any-
more, the then valid target sρ must be more critical than
si. Hence, the realized turning point TPρ = (T ρ, Xρ)
must be closer to the selection point SP = (CDTO

l , xl) than
the point TPi = (Ti, Xi) defined above, as DTO must turn
around earlier for the more critical request sρ. Conse-
quently, si is reached even earlier than in the case that it
was not replaced. We can conclude that in both cases, si

is served with a flow time of at most 3G(T ρ).

Conclusion 1 Let S be the set of all requests which were
ever marked as target during the current phase except for
the final target. All requests in S are served with a flow
time at most 3G(T ρ). 2

From this we can conclude that the oldest request rz is
also served with a flow time of at most 3G(T ρ), since it is
less critical than the initial target s0 of this phase: if it was
more critical, it would have been selected as target at time
CDTO

l instead of s0 (as the oldest unserved request overall
rz cannot be infeasible).

Conclusion 2 The oldest unserved request rz is served
with a flow time at most 3G(T ρ). 2

Before we consider the final target and requests from
Class 1 which are less critical than the final target, let us
show that any request ri = (ti, xi) in Class 1 which is
more critical than the final target is served in time. As
a member of Class 1, request ri must lie between the

turning point and the final target. Since it is also more
critical than sρ, it must be older than sρ. Consider the
time t ≤ T ρ at which the candidate setup was performed
last during phase ρ. By definition, sρ was either made
a target at time t or it remained the target valid at that
time. Hence, sρ ∈ ∨(s0, p

DTO(CDTO
l), G(t)), the critical

region valid at time t. Since ri is more critical than sρ and
also closer to the selection point, it must also be inside
∨(s0, p

DTO(CDTO
l), G(t)). Hence, the only reason why ri

was not made a target at time t is that it was infeasible.
Notice that this also holds true if t = CDTO

l and no criti-
cal region had yet been defined when sρ was marked as a
target.

As no further candidate setup takes place, the guess
value does not change anymore after time t, so ri is still
infeasible at time T ρ. This means that there exists a re-
quest rb = (tb, xb) between the hypothetical turning point
TP′

i = (T ′
i , X

′
i) corresponding to ri and the actually cho-

sen turning point TPρ, which is older than ri. By Part
(a), this implies that d(X ′

i, xi) ≥ G(T ρ). Hence, as rb

is even further away from x′
i than X ′

i , we deduce that
d(xb, xi) ≥ G(T ρ), which by Observation 4.5 (i) implies
that rb must be served before ri in any offline solution
in ADV(T ρ). Observe that the oldest request rz must
lie between rb and ri as ri is more critical and younger
than rz . Hence, ri is served after rz in any such of-
fline solution. Clearly, CDTO

i = CDTO
z + d(xz, xi), and

as ti ≤ T ρ, we have that τi = τz = T ρ. Hence, we can
apply Lemma 4.4 to deduce from Conclusion 2 that also
ri is served in time.

Conclusion 3 All requests ri of Class 1 which are more
critical than the final target are served in time.

Before continuing the proof for Class 1, let us briefly
consider a subclass of Class 2. To this end, let rj be
a request of Class 2 which is released by time T ρ and
more critical than the final target sρ. Again, consider the
last time t ≤ T ρ at which a candidate setup was per-
formed. As above, we need to investigate why rj was not
made a target at time t. In this case, it was either infeasi-
ble or outside the critical region ∨(s0, p

DTO(CDTO
l), G(t))

valid at time t. If it was infeasible, the same argument
as above proves that rj is served in time (note that again,
τj = τz = T ρ). It remains to consider the case that rj

is outside ∨(s0, p
DTO(CDTO

l), G(t)). By definition of t,

11

we have that ∨(s0, p
DTO(CDTO

l), G(t)) is still valid at time
T ρ, so by Observation 4.5 (ii), rj must be served after s0

in all offline solutions in ADV(T ρ). Since DTO serves
rj immediately after s0, Conclusion 1 and the fact that
τ0 = τj = T ρ allow us to apply Lemma 4.4 and deduce
that rj is served in time.

Conclusion 4 All requests rj of class 2 which are more
critical than the final target and released no later than T ρ

are served in time.

Now consider the final target sρ of the phase. Clearly,
if DTO does not turn around immediately when marking
sρ as a target and switch to the focus mode, sρ is served
with flow time 3G(T ρ).

So assume that DTO enters the focus mode at the time it
marks sρ as target. We need to distinguish two subcases:
(i) tρ < T ρ, and (ii) tρ = T ρ.

Consider first case (i). Let t′ < T ρ be the last time be-
fore T ρ at which a candidate setup was performed. Hence,
tρ ≤ t′. Let TP′ = (T ′, X ′) be the turning point chosen
at time t′. Since sρ was not made a target at time t′, it
was either infeasible at time t′ or feasible but outside the
critical region valid at time t′.

If it was infeasible, there must be a request rb =
(tb, xb) older than sρ yet unserved at time t′ and which
lies to the right of sρ’s hypothetical turning point consid-
ered at time t′. Since a target candidate setup is also per-
formed whenever DTO serves a request while in the detour
mode, form the definition of t′ and by the assumption that
rb is yet unserved at time t′, it follows that CDTO

b ≥ T ρ.
On the other hand, we assumed that the time T ρ at which
DTO turns around is the time at which it marks sρ as a tar-
get. Since sρ must be feasible at that time, request rb must
have been served by then, which means that CDTO

b ≤ T ρ.
Hence, we obtain that (CDTO

b , xb) = (T ρ, Xρ). From
part (a) it follows that d(xb, x

ρ) ≥ G(T ρ), so by Ob-
servation 4.5 (i), we have that sρ is served after rb in
all offline solutions in ADV(T ρ). But then, sρ must be
served after rz in all such offline solutions as well, since
rz lies between rb and sρ and is older than both. Since
τρ = τz = T ρ, Conclusion 2 and Lemma 4.4 let us de-
duce that sρ is served in time in that case.

We now consider the case that sρ was feasible but out-
side the critical region at time t′. Since sρ was marked as
target at time T ρ, it was inside the critical region valid at

time T ρ, and we can deduce that 2G(t′) ≤ G(T ρ). Now
since sρ was feasible at time t′, it would have satisfied the
preconditions of Conclusion 3 or 4 if the sequence had
ended at time t′. Consequently, the turning point TP′ cho-
sen at time t′ was chosen in such way that sρ would be
served with a flow time of at most 4G(t′).

Thus, it holds for all times t ∈ [t′, T ρ) that

t + d(pDTO(t), X ′) + d(X ′, xρ) ≤ tρ + 4G(t′).

This implies that

T ρ + d(pDTO(T ρ), xρ) ≤ tρ + 4G(t′) ≤ tρ + 2G(T ρ),

contradicting the assumption that DTO had to turn around
immediately at time tρ. Notice that we showed that in
the case that tρ < T ρ, the final target sρ must have been
infeasible at the last time t′ < T ρ at which a target candi-
date setup was performed.

It remains to consider case (ii), where sρ is made a tar-
get as soon as it is released: tρ = T ρ.

Let us first investigate the length of the detour made by
DTO. I.e., we first prove a bound on d(xl, X

ρ) = T ρ −
CDTO

l = tρ − CDTO
l . To this end, we make use of the

assumption that DTO can not serve sρ with a flow time
of 3G(T ρ). Hence, d(Xρ, xρ) > 3G(T ρ). On the other
hand, d(xρ, x0) ≤ G(T ρ) − (tρ − t0) since sρ is inside
the critical region valid at time T ρ and younger than s0.
Putting the two inequalities together, we obtain

d(x0, X
ρ) = d(xρ, Xρ)−d(xρ, x0) > 2G(T ρ)+ tρ− t0.

(9)
Making use of the fact that DTO serves s0 with a flow time
of at most 3G(T ρ) (Conclusion 1), we have

CDTO
l + d(xl, X

ρ) + d(Xρ, x0) ≤ t0 + 3G(T ρ).

Therefore,

d(xl, X
ρ) ≤ t0 + 3G(T ρ) − CDTO

l

− d(Xρ, x0)

< t0 + 3G(T ρ) − CDTO
l

− 2G(T ρ) − tρ + t0 by (9)

= G(T ρ) + (t0 − CDTO
l) − tρ + t0

≤ G(T ρ) − tρ + CDTO
l as t0 ≤ CDTO

l

= G(T ρ) − d(xl, X
ρ).

12

We thus obtain that

d(xl, X
ρ) = T ρ − CDTO

l ≤
1

2
G(T ρ). (10)

Recall that S is the set of requests which contains all
requests in Class 1 that were ever marked as target, ex-
cept for sρ itself. We showed before that each request
in S ∪ {rz} is served with a flow time of at most 3G(T ρ)
(Conclusions 1 and 2), in particular in time. Further-
more, each such request has been released before time
T ρ, which is the last time DTO reverses direction before
serving that request. Hence, if for every offline solution
in ADV(T ρ) there exists a request from S∪{rz} which is
served before sρ, then Lemma 4.4 yields that sρ is served
in time.

Now consider an arbitrary, but fixed ADV ∈ ADV(T ρ)
in which sρ is served before all requests in S ∪ {rz}.
Recall that we assumed that the turning point’s position
Xρ is to the right of xρ. At time T ρ, ADV’s server must
be located left of all requests in S ∪{rz}, and all requests
in S ∪ {rz} are yet unserved by ADV. Our aim is to show
for the respective completions times of sρ that

CDTO
ρ ≤ CADV

ρ + 3G(T ρ) (11)

holds. Alas, in one subcase we will only prove the weaker
claim CDTO

ρ ≤ tρ + 4G(T ρ). However, we will deduce in
that subcase that there is a request in Class 2 which is
served in time by DTO. In all other cases, (11) holds, i.e.,
the final target is reached by DTO no later than 3G(T ρ)
time units after the adversary reaches it in the considered
offline solution, and as we considered an arbitrary ADV ∈
ADV(T ρ), we can deduce that DTO serves sρ in time.
Hence if Class 2 is empty, (11) yields statement (c).

Consider pADV(T ρ), which by our assumption is further
to the left than any point in S ∪ {rz}. Since the adversary
is non-abusive, there must be a request rk left of its posi-
tion at time T ρ which it just served or which it is heading
to. This request rk must have been released strictly be-
fore time T ρ, i.e., tk < T ρ. Another case distinction is
needed.

• rk was already served by DTO by time T ρ.

Notice that this situation can not occur if we are in
the first phase of the first busy period. Hence we may
assume that ρ ≥ 2.

We show that in this case,

d(pADV(T ρ), xl) ≤
5

2
G(T ρ). (12)

This, together with (10) then yields
d(pDTO(T ρ), pADV(T ρ)) ≤ 3G(T ρ), from which
(11) easily follows, as DTO immediately heads to
serve sρ at time T ρ, while ADV cannot proceed to
serve sρ = (tρ, xρ) before tρ = T ρ.

By assumption, rk is served before rl by DTO, and
by Statement (b) for phase ρ − 1 applied to rl we
have the inequality

tk + d(xk, xl) ≤ tl + 4G(CDTO
l) ≤ tl + 4G(T ρ).

(13)
If the adversary serves rk after rl, then

tl + d(xk, xl) ≤ tk + G(T ρ),

and together with (13), we obtain

d(xk, xl) ≤ tk + G(T ρ) − tl

≤ tl + 4G(T ρ) − d(xk, xl) + G(T ρ) − tl

= 5G(T ρ) − d(xk, xl).

This yields (12).

Now consider the case that ADV serves rk before rl.
Since the adversary is heading to or just coming from
rk at time T ρ and is still on the left of the set S,
this means that it hasn’t served rl yet at time T ρ ≥
CDTO

l ≥ tl. Hence, at time T ρ, its server must be
within range G(T ρ) from xl, so in particular (12)
holds.

Notice that, in the previous line of reasoning, we did
neither make use of the assumption that DTO serves
the final target with flow time more than 3G(T ρ), nor
that tρ = T ρ.

• rk has not been served yet by DTO at time T ρ.

Recall that we are in the situation that the final
target sρ was made a target by DTO at its release
time tρ = T ρ, and that the server turns around im-
mediately at that time. Let t′ < T ρ be the last time
before time T ρ at which a target candidate setup is
performed by DTO. As tk < T ρ, and since a target

13

candidate setup is performed whenever a new request
is released, we have that tk ≤ t′. Note that request
rk must be served by DTO in the current phase ρ. If
it wasn’t served in phase ρ, there would be an older
request which remains unserved at least until time
T ρ and which is in the server’s back after it turned
in TPρ. But then, this request must be older than sρ

and would have caused sρ to be infeasible.

Let sm be the target valid at time t′ (after the target
selection), and TPm the corresponding turning point.
In the proof for Conclusions 1 and 2 we showed that
the oldest unserved request rz , and all requests in S
are served with a flow time of at most 3G(t′) if TPm

is also the realized turning point. We are in the situa-
tion that TPm is replaced at time T ρ by TPρ. But
as DTO turns around immediately when replacing
TPm, it turns earlier than planned and hence serves
the requests in S ∪ {rz} are even served earlier, in
particular with a flow time of at most 3G(t′).

Now consider request rk. There are three possible
reasons why rk is not selected as target at time t′: (i)
it is less critical than sm, (ii) rk is more critical than
sm but infeasible at time t′, or (iii) it is more critical
than sm but outside the critical region valid at that
time.

In case (i), i.e. if rk is less critical than sm, it is also
served with a flow time of at most 3G(t′) ≤ 3G(T ρ),
which yields in particular CDTO

k ≤ CADV
k + 3G(T ρ)

for the considered ADV ∈ ADV(T ρ). Furthermore,
sρ is more critical than rk and younger. Therefore,
it must be to the left of rk, which in turn was left of
pADV(T ρ). Therefore, sρ is served after rk by ADV,
and we conclude

CDTO
ρ = CDTO

k + d(xρ, xk)

≤ CADV
k + 3G(T ρ) + d(xk, xρ)

≤ CADV
ρ + 3G(T ρ),

which was our claim (11).

Now let us investigate case (ii), in which rk is in-
feasible at time t′. That means that there exists a
request rb = (tb, xb) older than rk and to the right
of the hypothetical turning point corresponding to
rk at time t′. If ADV served rb before time T ρ, it

must have served rz on its way from rb to its cur-
rent position, as rz is older than rb and located be-
tween rb and pADV(T ρ). This contradicts our as-
sumption that ADV has not served any of the requests
in S ∪ {rz} by time T ρ. Consequently, rb must
be yet unserved by ADV at time T ρ, which yields
d(pADV(T ρ), xb) ≤ G(T ρ). Since rb must be to the
right of the selection point (CDTO

l , xl), we obtain in
particular that d(pADV(T ρ), xl) ≤ G(T ρ), which to-
gether with (10) implies

d(pADV(T ρ), pDTO(T ρ)) ≤
3

2
G(T ρ).

Hence, DTO reaches sρ no more 3
2G(T ρ) time units

later than ADV, which means that sρ is served in time.

Finally, consider Case (iii): request rk is outside the
critical region valid at time t′. Consequently, rk is
served after s0 in all offline solutions in ADV(t′).
Recall that we showed before that in the current case,
all requests in S ∪ {rz} are served with a flow time
of at most 3G(t′). Hence, we obtain that

T ρ + d(pDTO(T ρ), xk) = CDTO
k = CDTO

0 + d(x0, xk)

≤ t0 + 3G(t′) + d(x0, xk)

≤ tk + αk(t′) + 3G(t′).

If 2G(t′) ≤ G(T ρ), we obtain together with tk <
T ρ that

d(pDTO(T ρ), xk) ≤ 4G(t′) ≤ 2G(T ρ),

which lets us conclude that
d(pDTO(T ρ), pADV(T ρ)) ≤ 2G(T ρ). Thus, DTO

serves sρ at most 2G(T ρ) time units later than ADV.

If G(t′) = G(T ρ), we obtain by Property 4.2 that

αk(t′) ≤ αk(T ρ).

Thus, we have that rk is served in time, since τk =
T ρ. If sρ is served after rk by ADV, we conclude
with Lemma 4.4 that (11) holds. Otherwise, sρ must
be to the right of rk, is therefore, as the younger one,
less critical than rk and served with a flow time of at
most 4G(T ρ) by DTO.

Note that we proved the stronger statement that sρ is
served in time for all cases except for the case that
all of the following statements hold simultaneously
true:

14

- tρ = T ρ and DTO turns around immediately
upon sρ’s release,

- there exists ADV ∈ ADV(T ρ) in which sρ is
served before all requests in S ∪ {rz},

- there is a request rk to the left of pADV(T ρ) with
tk < T ρ which is outside the critical region at
the last time t′ < T ρ at which a candidate setup
was performed by DTO,

- rk is served after sρ by ADV.

In that special case, sρ is shown to be served with
flow time 4G(T ρ), and rk is shown to be served in
time by DTO.

Conclusion 5 The final target sρ is served either in time,
or it is served with a flow time of at most 4G(T ρ) and
there exists a request rk in Class 2 which is released be-
fore T ρ and which is served in time by DTO.

Note that this implies Statement (c) for the case that Class
2 is empty.

Finally, let ri = (ti, xi) be an arbitrary request of
Class 1 which was never marked as target and which is
less critical than the final target sρ. As it is less critical,
it is served with the same or a smaller flow time than sρ,
which is at most 4G(T ρ) ≤ 4G(CDTO

i), which was our
claim.

Conclusion 6 Any request ri in Class 1 which does not
belong to any of the sets of requests covered by Conclu-
sions 1–3 or by Conclusion 5 is served with flow time at
most 4G(T ρ).

We now consider Class 2. To this end, let rj = (tj , xj)
be a request served in phase ρ after sρ by DTO. First con-
sider the case that rj is released no later than time T ρ,
that is, tj ≤ T ρ. We proved already that rj is served in
time if it is more critical than the final target sρ (Conclu-
sion 4). Consider the case that rj is less critical than sρ.
If sρ was served with a flow time of 3G(T ρ), then also rj

is served with that flow time, hence in time. So assume
that sρ is served with a bigger flow time. Since rj is less
critical and to the left of sρ, it must be strictly younger.
Consequently, tρ < tj ≤ T ρ. We showed before that in
this case, sρ must have been infeasible at time t′, the last
time before T ρ at which a candidate setup was performed,

and that there exists a request rb older than sρ for which
(CDTO

b , xb) = (T ρ, Xρ). By part (a), we deduce that

d(xb, xj) ≥ d(xb, x
ρ) = d(Xρ, xρ) ≥ G(T ρ).

As rb is older than rj , Observation 4.5 (i) implies
that it must be served before rj in all offline solutions
in ADV(T ρ). As reasoned before, then also rz must be
served before rj in all such offline solutions. Since DTO

serves rj immediately after rz and as τz = τj = T ρ, we
can apply Lemma 4.4 to conclude that rj is served in time.

It remains to consider those requests rj ∈ Class 2 for
which tj > T ρ. Note that τj = tj > T ρ in this case. Let

A := {rz} ∪ S ∪ {ri ∈ Class 2 : ti ≤ T ρ}.

It is easy to see that each request ra ∈ A is released by
time T ρ, so we have that τa = T ρ < τj . Furthermore,
we showed before that all requests in A are served in time
by DTO. Consider an arbitrary ADV ∈ ADV(τj). Assume
that there exists a request ra ∈ A which is served by ADV

before rj . No matter whether xj is left of xa or not, we
have that CDTO

j ≤ CDTO
a +d(xj , xa). Hence, we can apply

Lemma 4.4 in that case and deduce that rj is served in
time.

Therefore, we can restrict our attention to the case that
ADV serves all requests in A after rj . In particular, this
means that is has not served any of the requests in A at at
time T ρ yet. We distinguish two subcases: (i) there is a
request ra ∈ A which is left of pADV(T ρ), and (ii) ADV’s
position at time T ρ is to the left of all requests in A.

In case (i), rj cannot be to the left of ra, since otherwise
it would be served after ra by ADV, contradicting our as-
sumption in this case. Hence, it suffices to show that rj is
served with flow time at most 4G(CDTO

j), because it can-
not be the last request served by DTO in the current phase.
As an element of the set A, request ra is served latest at
time ta + 4G(T ρ). Since ra was released before T ρ, we
know that ta < tj , and because DTO serves rj on the way
to ra, we have that

CDTO
j ≤ CDTO

a ≤ ta + 4G(T ρ)

≤ tj + 4G(T ρ) ≤ tj + 4G(CDTO
j),

which was our claim.
Now consider case (ii): ADV’s position at time T ρ is to

the left of all requests in A. Since the adversary is non-
abusive, there must be a request rk to its left which it just

15

served or where it is heading to at time T ρ. In particular,
it holds that tk < T ρ, from which we can deduce that
rk must have been served already by DTO at time T ρ: If
it was served after T ρ in phase ρ, it would belong to the
set A, contradicting that it is left of ADV which in turn is
left of all requests in A. Furthermore, rk cannot be served
by DTO in a later phase: if it was, there would be an older
request in the server’s back, and DTO would have to turn
around before reaching rj , thus serving rj also in a later
phase, contradicting the assumption that rj is served in
the current phase.

Exactly as in the proof of inequality (12) (used for the
final target), we can in this case deduce for the distance
of ADV’s position at time T ρ to the selection point SP =
(CDTO

l , xl) that

d(pADV(T ρ), xl) ≤
5

2
G(T ρ). (14)

Let L := d(Xρ, xl) = T ρ − CDTO
l be the length of the

detour made by DTO at the beginning of the current phase.
If L ≤ G(T ρ)/2, we obtain from (14) that

d(pADV(T ρ), pDTO(T ρ)) ≤ 3G(T ρ),

which implies that rj is served in time as ADV cannot
serve rj before time tj > T ρ, and since DTO proceeds
towards rj without any detour after time T ρ.

So assume that L = T ρ − CDTO
l > G(T ρ)/2. Since

DTO serves rz with a flow time of at most 3G(T ρ), we
have that

CDTO
l + L + d(Xρ, xz) ≤ tz + 3G(T ρ),

which implies

d(Xρ, xz) ≤ tz + 3G(T ρ) − L − CDTO
l . (15)

Furthermore, by assumption, ADV serves rz ∈ A after rj ,
and we have that

T ρ + d(pADV(T ρ), xj) + d(xj , xz) ≤ tz + G(T ρ),

so in particular,

T ρ + d(xj , xz) ≤ tz + G(T ρ). (16)

Note that tz ≤ CDTO
l ≤ T ρ < tj . We obtain the follow-

ing estimate on DTO’s completion time for rj .

CDTO
j = T ρ + d(Xρ, xz) + d(xz, xj)

≤ tz + 3G(T ρ) − L − CDTO
l + tz + G(T ρ)

by (15) and (16)

= tj + 3G(T ρ) + [G(T ρ) + 2tz − CDTO
l − tj − L]

≤ tj + 3G(T ρ) + [G(T ρ) + CDTO
l − T ρ − L]

as tz ≤ CDTO
l and tj ≥ T ρ

= tj + 3G(T ρ) + [G(T ρ) − 2L]

as L = T ρ − CDTO
l

< tj + 3G(T ρ)

by the assumption that L > G(T ρ)/2.

Hence, in this case, rj is even served with a flow time
of at most 3G(T ρ), in particular in time.

Conclusion 7 Each request rj in Class 2 is either served
in time, or there exists a request rk served later in the
phase which is served in time, while rj is served with a
flow time of 4G(CDTO

j).

Note that this implies Statement (c) for Case II if Class 2
is non-empty.

Finally, we consider the requests in Class 3: Let rk

be served between SP and TPρ. Since the oldest request
rz lies in the server’s back at time CDTO

l , request rk is
younger than rz . At the time CDTO

k at which rk is served,
DTO is either in the detour mode and has a valid turning
point TPm, or it has already turned in TPρ. In the first
case, rz would be served latest at time tz + 3G(CDTO

k) if
TPm wasn’t replaced, as shown before. Therefore, it must
hold that

CDTO
k + d(xk, TPm) + d(TPm, xz) ≤ tz + 3G(CDTO

k)

≤ tk + 3G(CDTO
k).

In the second case, CDTO
k ≥ T ρ, and as rz is served

with flow time at most 3G(T ρ), we conclude that CDTO
k +

d(xk, xz) ≤ tz + 3G(T ρ) ≤ tk + 3G(CDTO
k).

Conclusion 8 Each request rk in Class 3 is served with
flow time at most 3G(CDTO

k).

This completes the proof of Theorem 4.7. 2

16

