
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

LEON EIFLER1 , AMBROS GLEIXNER2 , JONAD PULAJ
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Abstract

We establish a general computational framework for Chvátal’s conjecture based
on exact rational integer programming. As a result we prove Chvátal’s conjecture
holds for all downsets whose union of sets contains seven elements or less. The
computational proof relies on an exact branch-and-bound certificate that allows for
elementary verification and is independent of the integer programming solver used.

1 Introduction

Chvátal’s conjecture is a well-known open problem in extremal set theory from 1974,
later earning a spot among Erdős’ favorite combinatorial problems [Erd81]. Despite its
popularity, research efforts have yielded limited progress, mostly restricted to special cases
and related variants of the original conjecture. Before continuing in more detail we need
the following definitions.

Let [n] := {1, 2, . . . , n}. A family F is a set of subsets of [n]. Let U(F) denote the
union of all sets in F . A family F is a downset if and only if A ∈ F and B ⊆ A implies
B ∈ F . If F is a downset then F ∈ F is a base if and only if no strict supersets of F are
contained, i.e., F ⊆ D and D ∈ F implies F = D. A family F is called intersecting if
and only if the intersection of any pairwise sets in F is nonempty. A family F is a star if
and only there exists an element in U(F) contained in all sets of F . A family F has the
star property if and only if some maximum-sized intersecting family in F is a star. We
are ready to state Chvátal’s conjecture as follows:

Conjecture 1 (Chvátal [Chv74]). Every downset has the star property.

Schönheim [Sch75] showed that Chvátal’s conjecture holds for all downsets D whose
bases have a nonempty intersection. Stein [Ste83] proved the conjecture holds for all
downsets in which all but one of the bases is a simple star, i.e., a star in which the inter-
section of all of its sets is equal to the intersection of any of its two sets. Miklós [Mik84]
showed that Chvátal’s conjecture holds for any downset D that contains an intersection
family of size bD/2c. Sterboul [Ste74] proved that any downsets whose sets have three or
less elements always satisfy Conjecture 1. The last result was recently proven again in dif-
ferent ways by Czabarka, Hurlbert, Kamat [CHK17] and Olarte, Santos, Spreer [OSS18].

The work for this article has been partly conducted within the Research Campus MODAL funded by the
German Federal Ministry of Education and Research (BMBF grant number 05M14ZAM).
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Furthermore, Chvátal maintains a website1 dedicated to the conjecture with a substantial
list of publications on the topic.

Our main result on Chvátal’s conjecture is the following:

Theorem 1. Conjecture 1 holds for all downsets D such that |U(D)| ≤ 7.

Theorem 1 is proven via machine-assisted methods which will be described in detail in
this paper and whose implementations are freely available to the public.2 Furthermore it is
very likely that Chvátal’s conjecture holds for |U(D)| = 8, as we show in Section 4. To the
best of our knowledge there is no known computational methodology in the literature that
investigates Conjecture 1 even for small ground sets. The previously known best bound
on the cardinality of the ground set was |U(D)| = 4, which follows directly from [Ste74]
as we show in Proposition 4.

More generally, we establish a new safe computational framework for Chvátal’s con-
jecture based on integer programming (IP), which couples an exact rational solver and
verification procedures for the correctness of the input and the branch-and-bound tree
output. Notably, this framework features the combined use of an exact IP certificate,
VIPR [CGS17], and a formal proof assistant, Coq [Coq18], to ensure the correctness of
the certificate’s input data. To the best of our knowledge, this has not been explored in
the literature before.

Already Fishburn [Fis88] highlighted the connection between combinatorial optimiza-
tion and Chvátal’s conjecture and investigated related problems. Thus modeling the
conjecture as an IP and using solvers that safeguard against numerical issues is a natural
step to further investigate Conjecture 1. Furthermore, relying on an IP framework to
investigate Chvátal’s conjecture for small ground sets has other advantages. First, the
rich and well-developed theory of polyhedral combinatorics, that is inherent in an IP
approach, may lead to new insights on Conjecture 1. Second, as we see in Section 2.3
and Section 4, known partial results on Chvátal’s conjecture can be encoded as “cuts”
in our framework. This improves the performance of the exact rational solver and may
allow strengthening of Theorem 1 in the future. In contrast, our initial experiments with
propositional satisfiability (SAT) formulations that used MiniSat+ [ES06] to obtain a
SAT encoding for the IP formulation Pinf (n) in Section 2.1 failed to obtain competitive
results. Even when employing current SAT solvers such as Lingeling [Bie16], any instance
for |U(D)| > 5 failed to solve within a 24 hour time limit.

The rest of this paper is organized as follows. Section 2 describes the IP formulations
that we use to model Conjecture 1 together with valid inequalities for the underlying
polytopes and “cuts” from the literature that reduce the number of integral solutions to
the IP formulations. Section 3 focuses on exact rational integer programming together
with input/output verification as a recent methodology for machine-assisted theorem
proving. Section 4 contains a detailed description of our experimental results. Section 5
concludes with an outlook on future work.

2 A Polyhedral Approach to Chvátal’s Conjecture

In this section we present integer programming formulations for Chvátal’s conjecture
over fixed-size ground sets. The formulations are based on decision variables that index
members of the power set. Due to the exponential nature of power sets, the size of the
formulations is bound to grow quickly with the size of the ground set. However, even
for small ground sets little is known and the results in Section 4 show that we can make
significant progress beyond the current best bound of |U(F)| = 4.

1http://users.encs.concordia.ca/~chvatal/conjecture.html.
2https://github.com/leoneifler/chvatalip
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2.1 An Infeasibility-Based Formulation

The first IP model is formulated such that Chvátal’s conjecture holds for the considered
ground set if and only if the IP has no solution. In other words, a feasible solution to the
IP formulation for any fixed n would yield a counterexample to Chvátal’s conjecture. Let
2[n] denote the power set of [n], then we consider the integer program Pinf (n),

max
∑

S∈2[n]

xS (1a)

xT ≤ xS ∀T ∈ 2[n],∀S ∈ 2[n] : S ⊂ T , (1b)

yT + yS ≤ 1 ∀T ∈ 2[n] \ {∅},∀S ∈ 2[n] \ {∅} : T ∩ S = ∅, (1c)

yS ≤ xS ∀S ∈ 2[n], (1d)∑
S∈2[n]:i∈S

xS + 1 ≤
∑

S∈2[n]\{∅}

yS ∀i ∈ [n], (1e)

xS , yS ∈ {0, 1} ∀S ∈ 2[n].

Here, x encodes the set family S(x) := {S ⊆ [n] : xS = 1} and y encodes the sub
family S(y) := {S ⊆ [n] : yS = 1}. The first class of downset inequalities (1b) ensures
that S(x) is a downset. The second class of intersecting inequalities (1c) ensures that
S(y) \ {∅} is an intersecting family. The third class of containment inequalities (1d)
ensures that the intersecting family is contained in the chosen downset, S(y) ⊆ S(x).
Finally, the fourth class of star inequalities (1e) requires that the intersecting family has
greater cardinality than any star in the downset.

Theorem 2. Let n be a positive integer. All downsets F such that |U(F)| ≤ n satify
Chvátal’s conjecture if and only if Pinf (n) is infeasible.

Proof. Fix n. Suppose that Chvátal’s conjecture does not hold, i.e., there exists a downset
D and an intersecting family Y ⊆ D such that |Y| is larger than the size of every star in
D. W.l.o.g. assume D ⊆ 2[n]. Let x and y be their incidence vectors, i.e., D = S(x) and
Y = S(y). By construction, x and y satisfy constraints (1b–1d). Furthermore, for each
element i ∈ [n], |Y| is larger than the size of all stars that have i as common element,
hence (1e) is equally satisfied. In total, x and y constitute a feasible solution to Pinf (n).

Conversely, suppose all downsets D such that |U(D)| ≤ n satisfy Chvátal’s conjecture.
Suppose x and y are feasible solutions to Pinf (n). By (1b), S(x) forms a downset and
|U(S(x))| ≤ n. By (1c) and (1d), Y := S(y) \ {∅} forms an intersecting family contained
in S(x). Hence, |Y| can be at most the size of the largest star contained in S(x),

|Y| =
∑

S∈2[n]\{∅}

yS ≤ max
i∈[n]

∑
S∈2[n]:i∈S

xS . (2)

But then constraint (1e) is violated for i0 ∈ arg maxi∈[n]
∑

S∈2[n]:i∈S xS .

Note that the objective function of Pinf (n) is, in some sense, arbitrary since we only
need to decide whether the integer program has a feasible solution or not. The objective
function encodes the cardinality of S(x), hence solving Pinf (n) amounts to searching for
a largest counterexample to Conjecture 1. In the following we present a more advanced
formulation that uses the optimal value as an essential component.
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2.2 An Optimality-Based Formulation

As already noted in [OSS18] it is sufficient to only consider downsets generated by an
intersecting family. We use this insight in the following, advanced formulation Popt(n),

max
∑

S∈2[n]\{∅}

yS − z (3a)

yT + yS ≤ 1 ∀T ∈ 2[n] \ {∅},∀S ∈ 2[n] \ {∅} : T ∩ S = ∅, (3b)∑
S∈2[n]:i∈S

xS ≤ z ∀i ∈ [n], (3c)

yT ≤ xS ∀T ∈ 2[n],∀S ∈ 2[n] : S ⊆ T , (3d)

xS , yS ∈ {0, 1} ∀S ∈ 2[n],

z ∈ Z≥0.

The first class of intersecting inequalities (3b) is the same as (1c), whereas the second
class of star inequalities (3c) differs from (1e). It ensures that the largest star is bounded
above by the positive integer variable z. Finally, the third class of generation inequalities
(3d) ensures, as will be made clearer in the proof of Theorem 3, that an optimal solution
of Popt(n) considers only downsets generated by the intersecting family. We note that the
generation inequalities (3d) can also be included in Pinf (n) instead of (1b) and (1d) by
the same argument. Before we formally state and prove the correctness of Popt(n) with
regards to Conjecture 1, we need the following observation.

Observation 1. Let n be a positive integer. An optimal solution of Popt(n) satisfies at
least one star inequality (3c) with equality.

Observation 1 follows from the objective function of Popt(n). Variable z is restricted
only from below by its lower bound zero and the left-hand sides of constraints (3c). Since
Popt(n) is a maximization problem and the objective coefficient of z is negative, in an
optimal solution the variable z will be as small as possible. This implies that at least one
star inequality (3c) is tight.

Theorem 3. Let n be a positive integer. All downsets D such that |U(D)| ≤ n satisfy
Chvátal’s conjecture if and only if the objective function value of an optimal solution of
Popt(n) is zero.

Proof. Fix n ∈ N. First note that Popt(n) is feasible since any star is also an intersecting
family. Thus for any downset D ⊆ 2[n], choosing x as the indicator vector of D and
setting the y-variables such that they represent a maximum-cardinality star in D yields a
feasible solution. Choosing z to be the maximum star cardinality, i.e., the smallest value
such that constraints (3c) are satisfied, also proves a lower bound of zero on the objective
value.

Now suppose all downsets D such that |U(D)| ≤ n satisfy Chvátal’s conjecture and let
x, y, z be an optimal solution for Popt(n). Then it suffices to show that

∑
S∈2[n]\{∅} yS ≤ z.

Constraints (3b) ensure that Y := S(y) \ {∅} forms an intersecting family. Furthermore,
the x-variables do not appear in the objective function and are bounded below only
by constraints (3d). Hence, w.l.o.g we may assume that xS = maxT⊇S yT . Then, by
constraints (3d), D := S(x) is a downset and Y ⊆ D. Assuming Chvátal’s conjecture
ensures that |Y| =

∑
S∈2[n]\{∅} yS is at most the size of the largest star in D, which by

constraints (3c) is less than or equal to z.
Conversely, suppose there exists a counterexample to Chvátal’s conjecture, i.e., a

downset D, |U(D)| ≤ n, and an intersecting family Y ⊆ D such that |Y| is larger than
the size of any star in D. W.l.o.g. assume D ⊆ 2[n] and let x and y be the incidence
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vectors of D and Y, respectively, i.e., D = S(x) and Y = S(y). Let z be the size of the
largest star in D, i.e., z = max

∑
S∈2[n]:i∈S xS . Then by construction, x, y, z is a feasible

solution for Popt(n). Because we consider a counterexample, the objective function value
is at least one.

2.3 Valid Inequalities and Model Reductions

As mentioned in Section 1, one of the advantages of an IP approach is that Pinf (n) and
Popt(n) can be studied in greater depth through polyhedral combinatorial techniques.
Furthermore known results from the literature can be expressed as valid inequalities and
problem reductions for Pinf (n) and Popt(n), in the sense that Theorems 2 and 3 still hold
with these additional constraints, and the number of feasible solutions is less than or
equal to the number of current solutions. This is demonstrated in the following section
and may help to increase the size of n for which the models can be solved.

First, consider the intersecting inequalities of form (1c) and (3b). When T = [n] \ S,
these can be interpreted as a special case of the following partition inequalities.

Proposition 1. Let n be a positive integer and let P be a partition of [n]. Then the
inequality ∑

S∈P
yS ≤ 1 (4)

is a valid for Pinf (n) and Popt(n).

Proof. Suppose
∑

S∈P yS ≥ 2 for an integer feasible solution y, then there exist S, T ∈ P
with yS = yT = 1, violating (1c) and (3b).

As a consequence, intersection inequalities that do not cover the whole ground set can
be strengthened.

Proposition 2. Let n be a positive integer and S, T ∈ 2[n] \ {∅} such that T ∩ S = ∅.
Suppose S ∪ T 6= [n]. Then the intersecting inequality

yT + yS ≤ 1 (5)

is dominated by a partition inequality.

Proof. S, T can be completed to a partition by their complement [n] \ (S ∪ T ). In-
equality (5) is trivially dominated by the corresponding partition inequality yT + yS +
y[n]\(S∪T ) ≤ 1.

The large number of partitions prohibits the static addition of these inequalities to
the formulation. However, modern IP solvers automatically extract the conflicting y-
assignments from constraints (1c) and (3b) and add partition inequalities dynamically.
Next, consider the following central result.

Theorem 4 (Berge [Ber75]). If D is a downset then D is a disjoint union of pairs of
disjoint sets, together with ∅ if |D| is odd.

This yields the following result, that can easily be expressed as a valid inequality for
Pinf (n) and Popt(n), as in Corollary 2.

Corollary 1 (Anderson [And02] p.105). Let D be a downset and Y an intersecting family
such that Y ⊆ D. Then 2|Y| ≤ |D|.
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Corollary 2. Let n be any positive integer. Suppose the following inequality∑
S∈2[n]\{∅}

2yS ≤
∑

S∈2[n]

xS (6)

is added to Pinf (n) and Popt(n). Then Theorems 2 and 3 hold for the modified formula-
tions of Pinf (n) and Popt(n), respectively.

The following result is used in [OSS18] to give a simple proof that Chvátal’s conjecture
holds for all downsets whose sets have three elements or less.

Theorem 5 (Kleitman, Magnanti [KM72]). Any intersecting family that is contained in
the union of two stars generates a downset that satisfies Conjecture 1.

As a consequence, y-variables for sets with one or two elements can be fixed to zero
in Pinf (n) and Popt(n).

Corollary 3. Let n be any positive integer. For Pinf (n) and Popt(n) fix yS = 0 for all
S ∈ 2[n] such that 1 ≤ |S| ≤ 2. Then Theorems 2 and 3 hold for Pinf (n) and Popt(n),
respectively, with the given fixings.

Proof. Suppose y stems from a solution of Pinf (n) or Popt(n), then it encodes an intersect-
ing family Y := S(y) \ {∅}. If {i} ∈ Y, then Y is a star centered around i. If {i, j} ∈ Y,
then Y is the union of two stars centered around i and j, respectively. By Theorem 5,
these do not amount to counterexamples to Chvátal’s conjecture and can safely be ex-
cluded from the formulations without changing the feasibility status of Pinf (n) and the
optimal objective value of Popt(n), respectively.

Variable fixings are certainly the most effective improvements to the problem formu-
lation, since they directly reduce the problem size as opposed to general valid inequalities
that increase the number of constraints. If we know that Conjecture 1 holds for all
downsets D such that |U(D)| ≤ n for some fixed n, then we can use a simple variable
fixing scheme for the case when |U(D)| = n + 1, as follows.

Proposition 3. Let n be a fixed positive integer. Suppose Pinf (n) is infeasible and the
objective function value of an optimal solution of Popt(n) is zero for all positive integers
n0 < n. Fix xS = 1 for all S ∈ 2[n] such that |S| = 1. Then Theorems 2 and 3 hold for
Pinf (n) and Popt(n), respectively, with the given fixings.

Proof. Consider the x-vector from a solution of Pinf (n) or Popt(n) and suppose that
x{i} = 0 for some element i ∈ [n]. As in the proofs of Theorems 2 and 3, we may assume
that x encodes a downset D := S(x) and Y := S(y) ⊆ D is an intersecting family. By
the downset property, xS = 0 for all S 3 i. But then |U(D)| < n and by assumption
the solution is not a counterexample to Conjecture 1. Hence, we may fix xS = 1 for all
S ∈ 2[n] such that |S| = 1.

This can be exploited for n = 5 due to the following known fact.

Proposition 4. Conjecture 1 holds for all downsets D such that |U(D)| ≤ 4.

Proof. Consider a downset D such that |U(D)| ≤ 4, w.l.o.g. D ⊆ 2[4]. If [4] 6∈ D, then
Chvátal’s conjecture holds by [Ste74]. Otherwise, D = 2[4], and maximum-size stars
have cardinality 8. By Corollary 1 intersecting families cannot be larger, and Chvátal’s
conjecture holds.

For larger n, Proposition 3 can be used incrementally. Finally, we discuss how to
exploit the fundamental result of [Ste74] as an additional fixing scheme.
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Proposition 5. Let n ≥ 4 be a fixed integer. In Pinf (n) and Popt(n) fix xS = 1 for all
S ∈ 2[4]. Then Theorems 2 and 3 hold, respectively, with the given fixings.

Proof. According to [Ste74], counterexamples to Chvátal’s conjecture must feature a
downset that contains at least one set of size four. By permuting the elements in [n]
suitably, we can always ensure that this set is {1,2,3,4}.

To summarize, we arrive at the following improved formulation Pred(n),

max
∑

S∈2[n]\{∅}

yS − z (7a)

yT + yS ≤ 1 ∀T ∈ 2[n] \ {∅},∀S ∈ 2[n] \ {∅} : T ∩ S = ∅, (7b)∑
S∈2[n]:i∈S

xS ≤ z ∀i ∈ [n], (7c)

yT ≤ xS ∀T ∈ 2[n],∀S ∈ 2[n] : S ⊆ T , (7d)∑
S∈2[n]\{∅}

2yS ≤
∑

S∈2[n]

xS , (7e)

yS = 0 ∀S ∈ 2[n] : 1 ≤ |S| ≤ 2, (7f)

xS = 1 ∀S ∈ 2[n] : |S| = 1, (7g)

xS = 1 ∀S ⊆ [4], (7h)

xS , yS ∈ {0, 1} ∀S ∈ 2[n],

z ∈ Z≥0.

This formulation serves as the basis for our proof of Theorem 1 that uses the following
equivalence incrementally for n = 5, 6, and 7.

Theorem 6. Let n be a positive integer and suppose Chvátal’s conjecture holds for all
downsets D such that |U(D)| ≤ n− 1. Then all downsets D such that |U(D)| ≤ n satisfy
Chvátal’s conjecture if and only if the objective function value of an optimal solution of
Pred(n) is zero.

Proof. As follows from Corollary 2, constraint (7e) is a valid inequality for Popt(n). Corol-
lary 3 shows that constraints (7f) do not exclude any counterexamples that may have
objective function value greater than zero. According to Proposition 3, the same holds
for constraints (7g) under the assumption that Chvátal’s conjecture is correct for smaller
ground sets. According to Proposition 5, constraints (7h) may exclude counterexamples,
but only as long as at least one symmetric counterexample remains feasible.

Before detailing the computational results, we give a general description of how to
safely use computational integer programming to prove suitable statements of interests,
with an overview of the available tools used and developed in this paper.

3 Verifiable Proofs for Integer Programming Results

There are two main computational difficulties in using the solution of integer programs for
investigating mathematical conjectures. First, virtually all state-of-the-art IP solvers rely
on fast floating-point arithmetic, hence their results are compromised by roundoff errors.
Second, compact certificates for integer programming results are not available and most
solvers do not even provide output that would allow to check and verify the correctness
of their result. Thus in recent years researchers have been turning to SAT solvers to
investigate suitable questions of interest with considerable success, as the solution of the
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VIPR to verify
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Figure 1: General framework for modeling, solving, and verifying the results of integer
programs.

boolean Pythagorean triples problem [HKM16] demonstrates. However, recent progress
in the direction of exact rational IP has already enabled the use of computational IP
frameworks to settle several open questions related to Frankl’s conjecture [Pul17]. In the
following, we outline our computational methodology used to solve the integer programs
presented in Section 2 such that the results can be trusted and both input and output
can be verified independently of the IP solver used. Figure 1 illustrates this framework.

Modeling. As the first step, we use the modeling language ZIMPL [Koc04] to formulate
the integer program. ZIMPL employs exact rational arithmetic when instantiating the
model in order to ensure that no roundoff errors are introduced before passing the model
to a solver.

Solving. Next, we solve the IP using the exact rational variant of the MIP solver
SCIP [Coo+13]. Exact SCIP implements a hybrid branch-and-bound algorithm that
combines floating-point and exact rational arithmetic in a safe manner. Several meth-
ods are used in order to obtain safe dual bounds by correcting relaxation solutions
from fast floating-point linear programming (LP) solvers. An exact rational LP solver,
QSopt ex [App+07], is used as sparingly as possible. Although exact SCIP still lacks many
more sophisticated techniques implemented in state-of-the-art floating-point solvers such
as presolving reductions, cutting planes, or symmetry handling, its design helps to yield
superior performance compared to a näıve branch-and-bound method solely relying on
rational LP solves.

Output Verification. Although exact SCIP is designed to provide safe results, the cor-
rectness of the algorithm and implementation cannot easily be verified externally. To
address this issue, we use VIPR [CGS17], a recently developed certificate format that
consists of the problem definition followed by an encoding of the branch-and-bound proof
as a list of valid inequalities. It rests on three simple inference steps that allow for ele-
mentary, stepwise verification: aggregation of inequalities, rounding of right-hand sides,
and resolution of a binary disjunction. In this sense, a VIPR certificate can, in theory,
be checked by hand, although in practice this may be prohibitive for larger certificates.
Hence, the VIPR project comes with an automatic, standalone checker, but the simplicity
of the format allows for the implementation of alternative checkers.

Exact SCIP can be configured to generate VIPR certificates during the solving process
such that its result must not be trusted blindly. Its correctness can be verified completely
independently of the solving process.

Input Verification. VIPR verification only ensures the correctness of the branch-and-
bound certificate with respect to the integer program encoded in the problem section
of the certificate file. However, due to implementation errors, the problem section of
the certificate file may actually not match the integer program of interest. Therefore
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we implemented a safe input-checker that internally creates its own representation of the
constraint matrix for Problem Pred(n). It then reads the problem section of the certificate
file and checks if the two constraint matrices coincide. This input checker is written using
the Coq proof assistant [Coq18], a mathematical proof management system. The matrix
creation in this input checker is problem-specific, nevertheless it can easily be adapted to
formulations for similar problems.

All in all, we are confident that this framework ensures a high level of trust in the
computational proof of Theorem 1. All tools are made publicly available for review,
including the certificate files for the computational results presented in the next section.3

4 Computational Results

Using the safe computational framework outlined in Section 3, we could solve Popt(n) and
Pred(n) for n = 5, 6, and 7, producing a machine-assisted proof of Theorem 1. Further-
more, several floating-point MIP solvers could solve Pred(8) to optimality. Although this
does not constitute a safe proof, it makes it highly likely that Chvátal’s conjecture holds
for n = 8 and a search for counterexamples should focus on larger ground sets.

Beyond the plain question of solvability, in this section we provide details regarding
the following questions: What are the times spent for solving the integer programs and how
are they affected by the improvements in the formulations? How large are the resulting
certificates and how expensive is their verification? How does the performance of the exact
framework compare to the performance of standard floating-point MIP solvers?

The results for the optimality-based formulations are provided in Table 1. All tests
were run on a cluster of computing nodes with Intel Xeon Gold 5122 CPUs with 3.6 GHz
and 96 GB of main memory. The exact version of SCIP was built with CPLEX 12.6.3
as floating-point LP solver and QSopt ex 2.5.10 [App+07] for exact rational LP solves.
As floating-point MIP solver, we used SCIP 6.0.0 [Gle+18], built with CPLEX 12.8.0 as
the underlying LP solver. The time limit was set to 12 hours for all runs and on each
computing node only one job was executed at a time.

SCIP 6.0.0 SCIP exact VIPR

IP n #vars #ineqs time [s] time [s] size [MB] time [s]

Popt(n) 5 63 427 0.2 0.5 0.5 0.07
6 127 1336 2.3 22.6 73 4.6
7 255 4125 91.0 4024.2 21000 1258.3
8 511 12618 – – – –

Pred(n) 5 31 433 0.1 0.1 0.018 0.005
6 88 1317 0.1 0.2 0.25 0.2
7 208 4050 13.5 124.5 163 28.9
8 455 12424 7278.9 – – –

Table 1: Computational details for solving the Chvátal IPs for the two formulations
Popt(n) and Pred(n). The sizes reported for the VIPR certificates are for uncompressed
text files. The running time for input verification is negligible and always below 5 seconds.

First, we observe the effectiveness of the additional inequalities and fixings applied in
Pred(n). The running times of exact SCIP are significantly reduced, as are the sizes and
verification times for the VIPR certificates. Furthermore, only Pred(8) can be solved by
floating-point SCIP, while it times out for Popt(8). Second, note that the size of the IPs

3See https://github.com/leoneifler/chvatalip and links therein.
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is not large compared to what MIP solvers today can often handle easily in many indus-
trial applications. This underlines the difficulty of the underlying combinatorial question.
Third, the sizes and running times of checking the VIPR certificate are significant but
do not constitute a bottleneck for the current framework. Note that the times for in-
put verification in Coq are not reported, because they are negligible and always below
5 seconds.

5 Conclusion

In this paper we established a safe computational framework for Chvátal’s conjecture
based on exact rational integer programming. As a result, we proved that Chvátal’s
conjecture holds for all downsets whose union of sets contains seven elements or less.
One advantage of the approach is the flexibility of the IP formulations to include partial
results from the literature as valid inequalities and variable fixings. Thus they may be
strengthened further as new theoretical results become known.

One promising direction for future progress is to combine our method for exclud-
ing large finite sets of potential counterexamples with the proof techniques in [CHK17]
and [OSS18]. This could aim at a proof that Chvátal’s conjecture holds for downsets of
rank four or more. Furthermore, our IP models can be appropriately modified to investi-
gate variations on Chvátal’s conjecture such as proposed by Snevily4 or a generalization
of Chvátal’s conjecture proposed by Borg [Bor11].

Last, but not least, we hope that the generality of the computational framework de-
veloped makes it useful for the investigation of other open questions in extremal combina-
torics. The results certainly motivate sustained work on closing the current performance
gap between exact and inexact MIP solvers. As safe methods for applying presolving
reductions, cutting planes, and symmetry handling become available, this will likely lead
to a certificate that Chvátal’s conjecture holds for ground sets with eight elements.
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G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger,
B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert,
F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T.
Witt, and J. Witzig. The SCIP Optimization Suite 6.0. eng. Tech. rep. 18-26.
Takustr. 7, 14195 Berlin: ZIB, 2018.

[HKM16] M. J. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the
boolean pythagorean triples problem via cube-and-conquer. International Con-
ference on Theory and Applications of Satisfiability Testing. Springer. 2016,
pp. 228–245.

[KM72] D. J. Kleitman and T. L. Magnanti. On the Number of Latent Subsets of
Intersecting Collections. Operations Research Center Working Papers (Oct.
1972). url: http://hdl.handle.net/1721.1/5343.

[Koc04] T. Koch. Rapid Mathematical Prototyping. PhD thesis. Technische Univer-
sität Berlin, 2004.

[Mik84] D Miklós. Great intersecting families of edges in hereditary hypergraphs. Dis-
crete mathematics 48.1 (1984), pp. 95–99. doi: 10.1016/0012- 365X(84)

90135-3.

[OSS18] J. Olarte, F. Santos, and J. Spreer. Short proof of two cases of Chvátal’s
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