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Spectral Clustering for Non-reversible Markov
Chains

Konstantin Fackeldey, Alexander Sikorski,
Marcus Weber

Abstract

Spectral clustering methods are based on solving eigenvalue problems
for the identification of clusters, e.g. the identification of metastable sub-
sets of a Markov chain. Usually, real-valued eigenvectors are mandatory
for this type of algorithms. The Perron Cluster Analysis (PCCA+) is
a well-known spectral clustering method of Markov chains. It is appli-
cable for reversible Markov chains, because reversibility implies a real-
valued spectrum. We also extend this spectral clustering method to non-
reversible Markov chains and give some illustrative examples. The main
idea is to replace the eigenvalue problem by a real-valued Schur decompo-
sition. By this extension non-reversible Markov chains can be analyzed.
Furthermore, the chains do not need to have a positive stationary distri-
bution. In addition to metastabilities, dominant cycles and sinks can also
be identified. This novel method is called GenPCCA (i.e. Generalized
PCCA), since it includes the case of non reversible processes. We also
apply the method to real world eye tracking data.

1 Introduction
The analysis of Markov chains is used to figure out the transition behavior
in many fields, ranging from the analysis of disease evolution in clinical data
to molecular simulation. In the context of Google’s page rank problem, for
instance, it is the invariant measure of a Markov chain that provides a ranking
of the relevant web pages [LM05, LM12]. These data can be interpreted as
elements of a typically large space. More precisely, {Xi, i ∈ N} is a sequence of
random variables with values xi in the finite state space Γ = {1, . . . , N}. A large
number N of states makes it difficult to reveal the general transition behavior
of the chain. Clustering aims to reduce the number of states n � N by still
describing the underlying stochastic process correctly. Under the assumption
that the stochastic process possesses metastable sets, which are subsets in the
state space where the system or stochastic process spends a long time span
before switching to a different metastability, the clustering is used to identify
the rapidly mixing parts and to separate them from each other. This coarse
graining of a Markov chain by partitioning the corresponding state spaces into
subsets has been introduced in the context of economic systems by [SA61] and
studied in [Cou75, HMN98].

Recent success with spectral clustering methods have been greatly celebrated
[MLKCW03, Shu03, WL07, VLKG03, LBDD01, DHFS00, DW05]. Markov
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State Models (e.g.[BPE14, SS12]) do not aim at a full eigen decomposition
of the problem. In fact only the eigenvectors of the eigenvalues close to 1 are
employed since these eigenvectors span an invariant subspace which can be used
to analyze the metastable states of the process. Many methods in the field of
Markov State Modeling assume that the eigenvalues and eigenvectors which are
used for this analysis are real. This can be assured, e.g. if the Markov process or
the Markov chain is reversible. This is the case if reversing the stochastic pro-
cess leads to the same transition behavior. This property allows for a clustering
in terms of metastable sets using the eigenvector data.

The authors of [FMSV07] proposed to replace the eigenvalue problem by a
singular value decomposition if the process is non-reversible. This was further
developed by [Tif11]. Moreover, in [Jac10] it is claimed that the singular vectors
do not have the relevant sign structure to identify the metastable states, and
thus it does not preserve the dynamical structure of the Markov chain. Nev-
ertheless this method has been applied in [TBHY13] though in the context of
identifying the collective variables.
In [Fil91] the eigenvalue bounds of the mixing rates for reversible Markov chains
have been extended to non-reversible chains by reversing the non-reversible ma-
trix. Based on this, clustering methods for non-reversible processes [RM07,
HMS04], as well as also other approaches [Jac10, SS14][Ste94, Ch 1.7], have
been developed.

In this article we introduce a novel clustering method (GenPCCA) aimed
at grouping states of a Markov chain according to their transition behavior by
replacing the eigenvalue decomposition with a Schur decomposition [FW17]. It
turns out that this novel method offers a powerful analysis of the Markov chain
which also includes the identification of coherent subsets (e.g. [FSM10]) and the
freedom of regarding an arbitrary initial distribution of states. Moreover our
method does not rely on the above mentioned invariant density of the Markov
chain. Only the initial density is needed. Thus this novel method covers a
broader class of applications by including non-reversible Markov chains. Since
this method is a generalization of PCCA+ towards non-reversible processes it
is named GenPCCA (Generalized-Perron Cluster Cluster Analysis).

2 Markov chains and clustering
A finite autonomous Markov chain is given by a sequence X0, X1, . . . of random
variables Xk, k = 0, 1, 2, .... Since the set of all states is finite, a transition
probability matrix (Pij)i,j=1,...,N can be given by

Pij = P(Xk+1 = j;Xk = i) i, j ∈ {1, . . . , N}, k ∈ N,

where P denotes the conditional probabilities for reaching state j in 1 step of
the Markov chain, if the process has started in i. Obviously this matrix is
non-negative and stochastic, i.e.

Pij ≥ 0 ∀i, j
N∑
j=1

Pij = 1 ∀i.

Let us furthermore denote the initial probabilities by ηi = P(X0 = i), such that
the vector η = (η1, ..., ηN ) is the initial distribution.
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The transition matrix P (k) of the kth step then meets the semi group prop-
erty given by

P (k) = (P (1))k = P k. (1)

Equation (1) is also named “Markovianity”1. For the Markov chain represented
by P , we aim at a clustering, i.e. to find a projection of a Markov chain from a
high number of states N to a small number of clusters n where n� N .

The Markov chain represented by an N × N -transition matrix P is thus
replaced by a n×n-matrix PC providing the transition behavior between the n
clusters.

A clustering can also be interpreted as a projection G(P ) of the matrix P
onto n clusters. However, in order to guarantee that this projection is suitable
(i.e. that the propagation commutes with the projection), it should also meet
(1) in the sense:

(G(P ))k = G(P k). (2)

In general, the projection of a Markov chain is not Markovian and thus the
stochastic process induced by the n× n transition matrix between the clusters
is in general not a Markov process. The projected process is Markovian if the
projection is based on an invariant subspace of the transition matrix of the
high-dimensional process. In detail, Markovianity of the projection G(P) can
be guaranteed, if the projection meets the

• invariant subspace condition: there exists a matrix X ∈ RN×n (for a
suitable choice of n) which meets

PX = XΛ (3)

for Λ ∈ Rn×n

• orthogonaility relation
XTDηX = In×n, (4)

where Dη := diag(η1, ..., ηN ) and Λ ∈ Rn×n, i.e. the X are spanning an n
dimensional invariant subspace of P .

In this context X is constructed to meet an orthogonality condition (4). X are
not necessarily eigenvectors of P . However, if the process is reversible, then
there is a way to meet conditions (3) and (4) for eigenvectors X of P with
the diagonal matrix Λ of eigenvalues. If the process is non-reversible, then
conditions (3) and (4) can be assured by using a suitable Schur decomposition
of P with a real Schur matrix Λ. It has been shown in [KW07] that conditions
(3) and (4) of a projection G are sufficient for Markovianity (2).

We remark that a singular value decomposition of P does not meet (3) and
consequently a Galerkin projection leads to a projection error [SS14, Chapter
5.2]. In the next section we show how the orthogonality relation and the invari-
ant subspace condition are realized for reversible Markov chains.

1This is a consequence of the Chapman Kolmogorov equation.
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2.1 Reversible Markov Chains
If we assume an irreducible and reversible Markov chain then it has a unique
vector π = (π1, ...., πN )T such that

πTP = πT and
N∑
i=1

πi = 1,

where π is an invariant distribution or equilibrium distribution. If one takes
π as the initial distribution, then the chain is stationary. We denote by Dπ ∈
RN×N the matrix with the invariant distribution on its diagonal. For stationary
Markov chains the detailed balance condition given by

πiPij = πjPji (5)

is a necessary and sufficient characterization of reversibility in terms of transi-
tion probabilities and equilibrium distribution. In this special case, (3) is the
eigenvalue equation of P , where Λ is the diagonal matrix of the real eigenval-
ues near the Perron root λ1 = 1 and X are the corresponding real eigenvec-
tors. Since the eigenvalues are real, they can be arranged in descending order,
i.e.1 = λ1 ≥ λ2 ≥ λ3 . . . . The orthogonality relation is only assured if the initial
distribution equals the equilibrium distribution, i.e. η = π in (4). The relation
between eigenvalues of P close to 1 and metastable sets of the Markov chain has
been used by several authors in the past [Sch99, DHFS00, DW05, Web06, SS14].

The projection problem (G(P ))k 6= G(P k) has been discussed for the case of
reversible Markov chains. In [Web06] this problem has been solved by looking
at the Markov chain as a sequence of distributions instead as of a sequence of
states [Web02, DW05, Web06]. The role of weighted inner products and the
analysis of projections on the basis of invariant subspaces is a widely used tool
in linear algebra and is also described in suitable text books. Schur decompo-
sitions have also been used previously in order to quantify projection errors or
condition numbers of eigenvector problems [Ste94]. If η ∈ Rn is a probability
distribution at a certain step of the chain, then η̂ = PT η denotes the proba-
bility distribution of states at the next step of the Markov chain. How does
projection and propagation of distributions commute? This problem is solved
by a subspace projection such that the projection error vanishes. The projection
from N states to n clusters can be expressed by a membership matrix C. The
non-negative entries Cij of this matrix denote how probable (or how intensive)
it is that the state i of the Markov chain belongs to the cluster j of the pro-
jection. The row-sum of this matrix is 1. One part of solving the projection
problem is: The membership matrix is constructed via PCCA+, i.e. C = XA
is a linear combination of the leading eigenvectors of P , where X ∈ RN×n is
the matrix of the n leading eigenvectors and A ∈ Rn×n is the non-singular
transformation matrix computed (as a solution of an optimization problem) by
PCCA+ [Web06, DW05], which will be explained in Section 2.3. PCCA+ is
a well-established method for clustering metastable, reversible Markov chains.
This method uses the dominant eigenvalues of the corresponding transition ma-
trix. These eigenvalues are real (because of the reversibility of P ) and they are
close to the Perron root λ = 1 . The Perron root is algebraically and geometri-
cally simple if the matrix is irreducible and the Markov chain is aperiodic. If η
is an initial distribution of states, then ηc = CT η ∈ Rn is its projection onto the
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clusters, and thus the projection matrix is Πf = CT = ATXT . In the reversible
case, the matrix is projected via the following equation:

Pc = (CTDπC)−1(CTDπPC). (6)

Note that in the case of a reversible Markov chain, the left eigenvectors of P
are then given by

Y = DπX,

such that the projection (6) clearly meets the orthogonality relation (4). Beyond
that, orthonormality holds via Y TX = XTDπX = I , where I ∈ Rn×n is
the unit matrix. We emphasize that, in this setting, the reversibility of the
Markov chain implies the orthogonality relation. By assuming that the starting
distribution is a linear combination of the left eigenvectors of P , i.e. η = Y α
, where α ∈ Rn is the vector of linear coefficients of this combination, the
projection also meets the invariance condition (3). By the previous equations
we get

ATα = ATXTDπXα = CTY α = CT η = ηc.

We can thus define Πb = DπXA−T as the back projection, such that η = Πbηc =
DπXA−T ηc and α = XT η. We are then in a position to prove the following:

Lemma 2.1 The propagation of the projected distributions commutes with the
projection of the propagated distributions, i.e.

Πb(PTc )kΠfη = (PT )kη.

Proof: Let the number of steps be given by k ∈ N , then

Πb(PTc )kΠfη = DπXA−T [(CTPTDπC)(CTDπC)−1]kATXT η

= DπXA−T [(ATXTPTDπXA)(ATXTDπXA)−1]kATXT η

= DπXA−T [ATΛA−T ]kATXT η

= DπXΛkXT η = DπXΛkα = (PT )kDπXα

= (PT )kη,

where in Λ ∈ Rn×n is the diagonal matrix of the the dominant real eigenvalues.
�
Lemma 2.1 shows that for the distributions propagated via PT , the projected
distributions are propagated via PTc (without error). Since the projection ηc =
CT η is a non-negative vector with entry sum 1, it can be interpreted as a
distribution on the n clusters. Calculations [SA61, HMN98, Web11] also show
that Pc has the row-sum 1 and, thus, can be understood as the transition matrix
of the corresponding projected Markov chain.

Summing up, Lemma 2.1 shows that the choice of a projection which meets
the invariance condition (3) and orthogonality relation (4) leads to a commuting
diagram. In this subspace projection, the initial distribution of the system is
given by a linear combination of the left eigenvectors of P . The projected
distribution ηc = CT η is propagated by a matrix PTc , which can be computed
according to (6). The diagram commutes if the membership matrix C = XA is
a linear combination of the right eigenvectors of P .
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2.2 Non-reversible Markov chains
In the foregoing section the orthogonality relation in the context of eigenvectors
was realized by assuming that the underlying process is reversible. In fact
Lemma 2.1 is only true if the underlying process is reversible. By resigning the
reversibility of the underlying Markov chain, an interpretation of a transition
matrix in terms of unconditional transition probabilities is not possible, since
then the eigenvectors do not meet the invariance condition (3) and the subspace
condition (4) in general.

Moreover for non-reversible processes, the spectrum of its corresponding
transition matrix is in general not real but complex.

We thus take advantage of a Schur decomposition. Therefore let, X̃ be n
Schur vectors of P̃ = D0.5

η PD−0.5η . Then we have

P̃ X̃ = X̃Λ

⇐⇒ D0.5
η PD−0.5η X̃ = X̃Λ

⇐⇒ PD−0.5η X̃ = D−0.5X̃Λ

⇐⇒ PX = XΛ, X = D−0.5η X̃.

We have thus shown that a Schur decomposition meets the invariant subspace
condition (3) and the orthogonality condition (4). As a consequence, the pro-
jection

G(P ) = (CTDηC)−1(CTDηPC)

with Schur vectors X meets (2). To show this, we have the following:

Theorem 2.1 Let G(P ) = (CTDηC)−1(CTDηPC), where X are the Schur
vectors according to (7) and C = XA and Dη are some initial distribution of
the Markov chain, then

(G(P ))k = G(P k).

Proof:

G(P ) = (CTDηC)−1(CTDηPC)
= (ATXTDηXA)−1(ATXTDηPXA)
= (ATXTDηXA)−1(ATXTDηXΛA)
= (ATA)−1(ATΛA)
= A−1ΛA,

such that G(P ) meets the desired criterion:

(G(P ))k = (A−1ΛA)k = A−1ΛkA = G(P k).

�

Remark 2.1 Note that in Theorem 2.1, the initial distribution η does not have
to be the stationary distribution. Theorem 2.1 may also be interpreted as com-
mutativity between propagation in time (k steps) and discretization G, which is
a desired property for long term predictions.
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In the real Schur decomposition, the matrix Λ is an upper triangle matrix with
possibly 2×2-blocks on its diagonal. Moreover, the Schur vectors are orthogonal
and define an insensitive invariant subspace (well conditioned) [KPC94][GvL85,
Ch. 7]. We remark, that computing n Schur values is challenging; efficient imple-
mentation by using the QR algorithm can be found in literature [GvL85, Vog04].
The remaining problem is that an arrangement of the Schur decomposition in
descending order (of eigenvalues) is no longer possible. In [Bra02] it has been
proposed to arrange the Schur-values according to an absolute distance to a
given target value z. For the reversible case z = 1 must be chosen to guarantee
that PC is close to the unit matrix allowing for a clustering into metastable
states (i.e. the eigenvalues of PC correspond to these selected values).

For the non-reversible case, however, we can apply another method by ar-
ranging the Schur-values according to a distance from the unit circle. In this
case PC has eigenvalues close to the unit circle and is thus similar to a permuta-
tion matrix, which can be seen as a clustering of states in the sense of coherent
sets [FPG14]. This feature of GenPCCA is shown in the section of illustrative
examples below.

2.3 GenPCCA
So far we have not yet explained how the matrix A is obtained. In the frame-
work of GenPCCA, this step is identical to PCCA+ [Web06, DW05]. The
problem of finding the matrix A can be converted to an optimization problem.
More precisely, GenPCCA finds a transformation matrix A mapping the col-
umn vectors of Schur vectors X, spanning the invariant subspace, to the basis
C = XA used for the projection G(P ). The aim of this algorithm is to find an
optimal n × n-basis transformation matrix A. In the following we will assume
that the dimension n of the projected process is given. However, the problem
of choosing an appropriate value of n is not trivial. There exist many suitable
algorithms which try to solve this problem from different perspectives. Methods
which search for a spectral gap are very helpful if P has a real-valued spectrum.
Conditions for the existence of a spectral gap with only a few discrete large
eigenvalues have been given by Huisinga [Hui01]. Methods which compute the
crispness of the resulting clustering are also suitable for the Schur decomposi-
tion [WRS06]. In principle, large numbers N make this identification problem
more complicated. The matrix X of the invariant subspace is needed as input.
The output of GenPCCA is the above mentioned matrix of membership vectors
C. The column vectors of both matrices, X and C, span the same subspace.
Thus, GenPCCA provides an invariant subspace projection of P , such that the
subspace spanning vectors C have an interpretation in terms of membership
vectors. To do so, the matrix C has to meet the following properties explaining
the simplex structure of C:

•
∑nC
J=1 CiJ = 1 (partition of unity)

• CiJ ≥ 0 ∀i ∈ {1, ..., n} (positivity)

• C = XA, A non-singular, (invariance).

These conditions imply the feasible set of transformations A. The selection of A
is realized by a convex maximization problem [DW05]. In PCCA+ the function
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f(A) = trace(diag(A(1, :))−1ATA) is maximized [Web06] aiming at increasing
the angle between the column vectors of C. Here, diag(A(1, :)) is the diagonal
matrix constructed from the first row of A. The procedure of GenPCCA is
depicted in Algorithm 1.

Algorithm 1 GenPCCA applied to a transition matrix P
1. Given an initial positive distribution η, compute the diagonal matrix D0.5

η .

2. Compute a real Schur decomposition of P̃ = D0.5
η PD−0.5η . From a spectral

gap analysis, determine the number n of clusters.

3. With the aid of the method SRSchur [Bra02], sort the Schur matrix in such a
way that the n Schur values close to the Perron root 1 are in the top left part of
the Schur matrix. Extract the leading Schur vectors X̃ from the Schur matrix.

4. Compute X = D−0.5η X̃.

5. Apply PCCA+ to the matrix X to yield C = XA.

3 Examples
In this section we investigate two types of examples. These examples will show
that GenPCCA is indeed a powerful generalization of PCCA+. Instead of com-
puting a projected Markov chain of a reversible metastable process, it can be
used to rigorously analyze non-reversible chains or in order to find transient
states which have a common target set of states. Recently the GenPCCA has
been applied to biomolecules with an electric field [RWF+18].

3.1 Example: Illustrative Metastability
In the first example, we analyze the following transition network in Figure 1.
The corresponding transition matrix has one real eigenvalue i.e. λ1 = 1 and
eight complex eigenvalues. Out of these, the two eigenvalues with the highest
real absolute value are λ2,3 = 0.9483±0.0279i. These values are close to λ1 = 1
and indicate in total three metastabilities. Analyzing this network via PCCA+
is impossible. If we make it reversible before applying PCCA+, we spoil the
directed structure of the network (Fig. 2).

In contrast to that, GenPCCA can directly be applied to the Schur vectors
of the system. We assume an equal initial distribution. The matrixΛ is then
given by

Λ =

1.0000 0 0
0 0.9483 0.0279
0 −0.0279 0.9483

 ,

which corresponds to the eigenvalue analysis. After taking a proper linear com-
bination of the leading Schur vectors, the result of GenPCCA clearly shows the
different grades of membership that reflect the directed structure of the network
(Fig. 3).
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Figure 1: Transition network with three metastable states, but with a directed,
non-reversible transition pattern.

3.2 Example: GenPCCA and Symmetrized PCCA+
In order to illustrate which kind of results are to be expected by GenPCCA, we
construct a random matrix. First, three 10-by-10 random matrices A1, A2, and
A3 are constructed using the Matlab-routine [MAT10] “rand(10,10)”. Another
10-by-10 zero matrix Z is constructed such that “C=[[Z, A1,Z];[Z,Z,A2];[A3,
Z,Z]];”. After adding a random matrix with entries between 0 and 0.1 to C, the
rows of this matrix are rescaled such that the resulting matrix P is stochastic. In
Fig. 4 this transition matrix is depicted with its clearly visible block structure.

According to theory, any positive initial distribution η > 0 is possible. We
will chose a random initial distribution. The rescaled matrix used for a Schur
decomposition is given by P̃ = D0.5

η PD−0.5η . This matrix has a partial real
Schur decomposition of the form P̃ X̃ = X̃Λ with a non-diagonal matrix Λ. In
our realization,

Λ =

1.0000 −0.0267 −0.0928
0 −0.3884 −0.6836
0 0.6426 −0.3884

 .

Besides the diagonal element “1” (Perron root) there is a 2-by-2-block on the
diagonal of Λ, which belongs to a complex eigenvalue pair −0.3884 ± 0.6628i
near the unit circle. The absolute values of these three eigenvalues are well
separated from the other absolute values. The matrix of rescaled Schur vectors
used for GenPCCA is constructed by X = D−0.5η X̃. Note that the first column
vector of X is constant, i.e. each element is “1”. This is a necessary condition for
the GenPCCA algorithm. Using this matrix for GenPCCA provides a 30-by-3-
membership matrix C = XA. The three columns of this matrix are plotted in
Figure 5. They correspond to the three different clusters of states which have a
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Figure 2: Applying PCCA+ to the network in Fig. 1 after making it reversible.
The figure shows the membership χ of the 9 states to the three clusters (colored
curves). One can see that state 3 belongs to the “green” and “red” cluster with
the same grade of membership, although, the directed graph has only direct
transitions from the “blue” to the “red” cluster.

similar transition pattern. This transition pattern is revealed by computing

PC =

 0.0417 0.8543 0.1041
0.0993 0.0591 0.8416
0.8416 0.0762 0.0823

 ,

where the highest entries are marked. This matrix can be interpreted as the
transition matrix between the three clusters of states. Note that this matrix is
not diagonal dominant.

3.3 Example: Eye Tracking Data
In this example the GenPCCA algorithm is applied to experimental eye tracking
data obtained by the Department of Psychology of the University of Potsdam
with the goal to detect objects as metastable clusters using just the dynamics of
the human eye, i.e. without any data of the image itself, thus providing a way of
interpreting humans’ object recognition expressed through eye movements (see
also [KLK15]).

A group of test persons was presented with different pictures for about ten
seconds, during which an eye tracker measured their fixations fi ∈ R2 and their
respective durations, ti ∈ R. For subsequent analysis it is necessary to group
different areas of the image into areas of interest (AOE), which correspond to
subjectively identified objects in the corresponding picture. To apply GenPCCA
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Figure 3: Applying GenPCCA directly to the network in Fig. 1. The figure
shows the membership χ of the 9 states to the three cluster. One can see that,
e.g., state 3 belongs to the “green” and “red” cluster with a different grade of
membership, as we expect it from the directed graph.

Figure 4: A realization of a 30-by-30-transition matrix. Gray scale of the entries
from white to black.

we need to turn this spatial time series into a Markov chain. We model each
fixation as a random choice on a spatial grid weighted by a Gaussian of the
distance to the grid points, and then we construct a Markov chain by count-
ing the induced transitions on the grid points. Assuming that humans, when
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Figure 5: GenPCCA on the basis of Schur vectors can reveal the block-structure
of the random matrix in Fig. 4. The three columns of the matrix C are indi-
cating the states which are assigned to each of the clusters. Note, that these
are not metastable cluster of states. The states assigned to one of the clusters
simply have a common transition pattern.

looking at the pictures, do not jump randomly between all recognized objects
but remain for some fixations inside one AOE, this behavior should recur as
high metastability of a clustering corresponding to the AOEs. As state space
we choose a spatial grid S := {si}, where a natural choice is using all fixation
coordinates as a grid, i.e. si = fi.

Introducing a parameter σ, we assign a membership of each fixation to each
grid point weighted by a Gaussian of the distance between them, i.e. for each
fixation fi and each state sj :

Mij :=
e−
|fi−sj |2

2σ2∑
j e
−|

fi−sj |2
2σ2

(7)

The mass matrixM assures that nearby fixations “overlap”, adopting the metric
information contained in the fixation data to the Markov process. Thus, the
parameter σ, scaling the distance between points, can be interpreted as a spatial
coupling constant.

We then choose a fixed time step ∆τ as grid size for the time discretization,
along which we count the transitions between the states weighted with the
corresponding fixation transitions, and row-normalize it to generate a transition
matrix. In detail, for the transitions from state i to j, we have

Pij =

∑
s=0Mfs,iMfs+1,j∑

s=0Mfs,i
,

where fs denotes the current fixation at time s∆τ . Obviously, this Markov
chain is in general not reversible, i.e. (5) does not hold. If and only if the matrix
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S = diag(π)P is symmetric, then the detailed balance condition (5) holds. As a
measure of non-reversibility, we therefore compute δ = ‖S − ST ‖/‖S‖ as being
the deviation from reversibility.

We then apply GenPCCA (with the objective function from [RW13], 4.3.1)
to obtain a fuzzy clustering. Afterwards each state si gets assigned the cluster
ci with the maximal share,

ci = argmaxjχij . (8)

Note, that by choosing this discretization of the fuzzy clustering, some clus-
ters may never be assigned when being dominated by other clusters on every
grid point. The desired number of clusters, n, was chosen near the number of
objects recognized by the experimenter. This, of course, is a subjective choice,
but the number of clusters in general depends on the desired resolution of the
clustering and thus on the future application. The time step size ∆τ should be
chosen as large as possible without skipping too many transitions. If it is chosen
too large some fixations will be skipped resulting in loss of information and thus
leading to a worse clustering. If, on the other hand, it is chosen too small we
count one fixation as multiple self-transitions, thus weakening the effect of the
real transitions and favoring the spatial over the dynamic information.

The parameter σ introduces the spatial information and can thus be con-
sidered as a weight between dynamic and spatial clustering and is therefore
inherently necessary. While small σ values favor the dynamic information, this
can lead to scattered clusters neglecting the spatial component. Large σ values
will lead to a more regular and convex clustering by enforcing a stronger spatial
coupling between nearby fixations. Each of the following clusterings was com-
puted based on about 2000 fixations, giving rise to the clustering problem on
N ≈ 2000 states. Each fixation is marked as a dot, with the color representing
the corresponding cluster.

The Sistine Madonna

Figure 6(a) depicts Raphael’s “Sistine Madonna” oil painting. In (b) we chose
a small σ value to emphasize the dynamic share of the clustering. As a conse-
quence Saint Sixtus and Saint Barbara are clustered into one cluster, indicating
back and forth movements of the observer, although they are separated by the
Madonna. This non-convex clustering is a feature specific to the analysis of the
dynamics which can not be reached by purely spatial clustering, e.g. k-means.
Additionally, PCCA+ is not useful in this situation because there exist eigen-
values of P which are complex valued. The matrix P is not reversible with
δ = 0.7 which indicates that the deviation from reversibility is about 7%. With
GenPCCA the clustering has been successful. The Madonna with her child and
the Papal tiara are separated. A higher σ value and the higher cluster number
in (c) allow a separation between the left and right saints. Further refinement
(d) leads to a seperation of Madonnas feet, her skirt and the left curtain, as well
as an artifact cluster consisting of a single point in the bottom right. In this
example the non-reversibility of P was about 10%. Leading eigenvalues were
clearly complex-valued thus "classical" spectral clustering methods based on
eigenvalues are not useful. GenPCCA provides a meaningful clustering. How-
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(a) Sistine Madonna (b) n = 5, ∆τ = 50, σ = 40

(c) n = 6, ∆τ = 50, σ = 50 (d) n = 10, ∆τ = 50, σ = 50

Figure 6: The Sistine Madonna (1512) by Raphael [wik18]

ever, even with Schur and GenPCCA we were not able to separate the Madonna
from her child.

The Great Wave of Kanagawa

In Figure 7 we compare different clustering approaches at the hands of Hokusai’s
“The Great Wave of Kanagawa”. Part (b) depicts the k-Means clustering applied
to the fixations. The purely spatial approach leads to a rather artificial seeming
linear edge between the green and yellow cluster. In (c) we can see the result of
applying PCCA+ to the symmetrized transition matrix leading to more natural
divisions but also a single cluster for the outliers in the top right. Finally (d)
shows the application of GenPCCA to the original transitions. Whilst the front
boats assignment is split between the left wave and rear boat clusters in the
symmetrized version, the non-symmetric approach assigns its own clusters to
each boat. Note furthermore the theoretical advantage that GenPCCA provides:
by circumventing the symmetrization of the transitions, the resulting clustering
still admits the coarse-grained dynamics of the underlying non-reversible Markov
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(a) The Great Wave of Kanagawa (b) k-Means

(c) PCCA+ with symmetrized data (d) GenPCCA

Figure 7: The Great Wave off Kanagawa (1831) by Katsushika Hokusai[wik18].
We used k = n = 5, ∆τ = 80, σ = 40 for the corresponding clusterings.

Chain in the form of its projected transition matrix (2), allowing for further
analysis of the non-reversibility.

4 Conclusions
The Galerkin projection of a Markov operator P onto a coarse grained matrix
PC has to be chosen with care, since in general the Markovianity, which is
necessary to map the correct dynamics, is not preserved, which is necessary to
map the correct dynamics. We showed, that each projection, which meets the
invariant subspace condition (3) and the orthogonality relation (4) preserves
Markovianity. The novel method GenPCCA is also capable of treating non-
reversible Markov chains by using a Schur decomposition.
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