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Abstract

The paper deals with three different Newton algorithms that have
recently been worked out in the general frame of affine invariance. Of
particular interest is their performance in the numerical solution of
discretized boundary value problems (BVPs) for nonlinear partial dif-
ferential equations (PDEs). Exact Newton methods, where the arising
linear systems are solved by direct elimination, and inexact Newton
methods, where an inner iteration is used instead, are synoptically
presented, both in affine invariant convergence theory and in numeri-
cal experiments. The three types of algorithms are: (a) affine covariant
(formerly just called affine invariant) Newton algorithms, oriented to-
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Introduction

The present paper deals with the numerical solution of boundary value prob-
lems (BVPs) for nonlinear partial differential equations (PDEs). Typically,
the situation in industrial technology is characterized by the fact that grid
generation is decoupled from the actual solution process. In this setting,
nonlinear PDEs arise as a discrete system of nonlinear equations with fixed
finite, but usually high dimension n and large sparse Jacobian (n, n)-matrix.

Among the possible numerical approaches to tackle such problems we
here focus on affine invariant adaptive Newton methods. The theoretical
convergence analysis of such methods is systematically elaborated in a forth-
coming monograph [10] – there for nonlinear problems from finite dimension
up to infinite dimension in function space. In the present paper we restrict
our attention to Newton methods for finite dimension, and deliberately omit
function space oriented Newton multigrid methods. We report about exact
as well as inexact Newton codes and their comparative performance in solv-
ing discretized nonlinear PDEs. For exact Newton methods, which require
the direct solution of arising linear subsystems, adaptivity shows up through
affine invariant trust region (or damping) strategies, which are descendants
of former adaptive damping strategies suggested in [6, 3] and realized in
the quite popular code family NLEQ [19]. For inexact Newton methods,
which are combined with some inner iterative solver, adaptivity additionally
includes an accuracy matching between inner and outer iteration; the subtle
convergence analysis presented in [10] leads to a family of new versions of the
former code GIANT [7, 18] whose name is an acronym of Global Inexact
Affine invariant Newton Techniques.

In Section 1, we characterize three affine invariance concepts and their
corresponding Newton codes. Affine covariance, which has hitherto simply
been called affine invariance (e.g., in [5, 6, 12]), leads to the error oriented ex-
act Newton code NLEQ–ERR as well as its inexact counterparts GIANT–
CGNE and GIANT–GBIT. Affine contravariance, a concept that has first
been suggested by Hohmann [17], leads to the residual based Newton codes
NLEQ–RES and GIANT–GMRES. Affine conjugacy, suggested quite re-
cently in [14, 15], applies to convex optimization problems; the corresponding
exact Newton code is NLEQ–OPT, its inexact variant is GIANT–PCG.
In Section 2, the performance of the latter codes is compared at a test set
of discretized elliptic PDEs. In Section 3, the performance of the residual
based codes NLEQ–RES and GIANT–GMRES versus the error oriented
codes NLEQ–ERR, GIANT–CGNE, and GIANT–GBIT is investigated
in detail at a common test set due to [18]. In each of the inexact Newton
codes left or right preconditioning is indicated by /L or /R, respectively.
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1 Affine Invariant Newton Algorithms

Consider a system of n nonlinear equations, say

F (x) = 0 .

Suppose we have a starting guess x0 of an unknown solution x∗ at hand.
Then successive linearization leads to the ordinary Newton method

F ′(xk)∆xk = −F (xk) , xk+1 = xk + ∆xk , k = 0, 1, . . . . (1)

In this paper we focus on the whole class of nonlinear systems

G(y) = AF (By) = 0 , y = B−1x ,

which is generated by pre– and postmultiplication with arbitrary nonsin-
gular (n, n)-matrices A and B. The ordinary Newton method applied to
G(y) = 0 would read

G′(yk)∆yk = −G(yk) , yk+1 = yk + ∆yk , k = 0, 1, . . . .

With the relation
G′(yk) = AF ′(xk)B

and a transformed starting guess y0 = B−1x0 we immediately obtain

yk = B−1xk , k = 0, 1, . . . .

It is only natural to require that affine invariance should be inherited to both
the Newton algorithms and their convergence analysis. The simultaneous
inheritance of the full invariance in terms of arbitrary A and B appears to
be impossible. However, depending on the problem context, four special
invariances may be preserved:

• The iterates are invariant under transformation (by A) of the image
space – a property called affine covariance (Section 1.1).

• The iterates transform (by B) just as the domain space as a whole –
a property called affine contravariance (Section 1.2).

• For discretized nonlinear elliptic PDEs, which may be viewed as convex
optimization problems, the connection A = BT is natural – a property
called affine conjugacy (Section 1.3).

• Affine similarity with A = B−1, a property that shows up in time
dependent problems, is not treated here; the interested reader may,
however, look up the recent report [9] on adaptive pseudo-transient
continuation methods.

Scaling invariance. The scaling or re–gauging of variables (say, from mm to
km) is a special affine transformation given into the hands of the user. In
actual computation, this issue deserves careful consideration.
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Exact Newton methods. For moderate size up to large systems, we
discuss global Newton methods in the form

F ′(xk)∆xk = −F (xk) , xk+1 = xk + λk∆xk , k = 0, 1, . . . , (2)

with damping factors in the range 0 < λk ≤ 1 and direct (sparse) elimination
of the arising linear systems. For the different affine invariance classes,
different damping strategies are suggested.

Inexact Newton methods. For very large systems, we discuss global
Newton methods characterized by

F ′(xk)δxk = −F (xk) + rk , xk+1 = xk + λkδx
k , k = 0, 1, . . . , (3)

where the linear systems are solved by some inner iteration, hence we should
more precisely write δxk

i and rk
i with some inner iteration index i. Again,

the damping factors vary in the range 0 < λk ≤ 1.

Matching strategies. As an additional adaptivity device, the inner and
outer iteration errors need to be controlled such that the deviation between
the exact and the inexact Newton method is ’sufficiently small’. Upon com-
bining (2) and (3) we obtain

F ′(xk)
(
δxk − ∆xk

)
= rk .

From this we see that we have several options to ’measure’ this deviation:
via some norm of the residuals rk or of the errors δxk − ∆xk – depending
on the affine invariance class. Throughout the paper ‖ · ‖ will mean the
Euclidean vector norm.

Preconditioning. In order to possibly speed up the inner iteration within
each outer Newton iteration step, preconditioning is often advisable. Such
a device will not only influence the convergence rate of the iterative linear
solver, but may also change the deviation measure. To fix the notation, we
here add the residual equation in the form

CLF ′(xk)CRC−1
R

(
δxk − ∆xk

)
= CLrk , (4)

where the nonsingular matrices CL and CR characterize the left and right
preconditioner. The issue of left versus right preconditioning will be dis-
cussed separately for each of the affine invariance classes.
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1.1 Affine covariant Newton algorithms

Affine covariance has originally been the only invariance systematically ex-
ploited for adaptive Newton algorithms – formerly called ’affine invariant
Newton methods’ [5, 6]. In this setting, we keep the domain space of F
fixed (B = I) and look at the problem class

G(x) = AF (x) = 0 .

As discussed above, the Newton iterates are the same for all A. However,
upon revisiting the standard local convergence theorems like the Newton–
Kantorovich or the Newton–Mysovskikh theorem, we stumble over assump-
tions of the kind

‖G′(x0)−1‖ ≤ β(A) , ‖G′(x) − G′(x̄)‖ ≤ γ(A)‖x − x̄‖ ,

which give rise to a local convergence ball with radius

ρ(A) ∼ 1
β(A)γ(A)

.

Assuming best possible theoretical estimates (hard to get anyway) we obtain

β(A) ≤ β(I)‖A−1‖ , γ(A) ≤ γ(I)‖A‖

and therefore, with cond(A) = ‖A‖ · ‖A−1‖, a possible worst case situation

ρ(A) ∼ ρ(I)
cond(A)

. (5)

Obviously, by a mean choice of A we may ’shrink the baby’ to arbitrarily
small size! Fortunately, careful examination of the classical theorems shows
that a telescoped Lipschitz condition such as

‖F ′(x0)−1
(
F ′(x) − F ′(x̄)

)
‖ ≤ ω‖x − x̄‖ , (6)

will do as well. Both this Lipschitz condition and the thus defined Lipschitz
constant ω are affine covariant, since

G′(x0)−1
(
G′(x) − G′(x̄)

)
=

(
AF ′(x0)

)−1
A

(
F ′(x) − F ′(x̄)

)
= F ′(x0)−1

(
F ′(x) − F ′(x̄)

)
,

(7)

so that both sides of (6) are independent of A.

This change of assumption allows a clean affine covariant convergence
theory which leads to results in terms of iterates {xk}, correction norms
‖∆xk‖ or error norms ‖xk − x∗‖ and eventually to adaptive error oriented
Newton algorithms [10].

4



Of course, the formal assumption B = I covers any fixed scaling trans-
formation of the type B = D. In fact, ’dimensionless’ variables

y = D−1x , D = diag(α1, . . . , αn) , αi > 0

are typically used inside our codes. Whenever the quantities αi are chosen
in some scaling dependent way, then the variable y is scaling invariant.

Exact Newton methods. In the affine covariant setting, a new iterate
xk+1 is accepted, if the (so–called natural) monotonicity test

Θk(λk) =
‖∆x

k+1‖
‖∆xk‖ ≤ 1 (8)

holds, where the simplified Newton corrections ∆x
k+1 are defined via

F ′(xk)∆x
k+1 = −F (xk + λk∆xk) . (9)

These additional linear systems are cheap to solve, since the matrix de-
compositions can be kept from the computation of the ordinary Newton
corrections ∆xk. Local convergence analysis [10] shows that

Θk(λ) ≤ 1 − λ +
1
2
λ2hk (10)

in terms of the affine covariant Kantorovich quantities

hk = ω‖∆xk‖ . (11)

From the local upper bound (10), the following damping factor would be
optimal

λopt = min
(

1,
1
hk

)
. (12)

The basic paradigm now is to replace the computationally unavailable the-
oretical Lipschitz constant ω by a computationally available local estimate
[ω] ≤ ω, both of them being affine covariant. This gives rise to computa-
tional Kantorovich quantities

[hk] = [ω]‖∆xk‖ ≤ hk (13)

and, in turn, to estimated locally optimal damping factors

[λopt] = min
(

1,
1

[hk]

)
≥ λopt . (14)

Computational a-priori estimates then lead to some prediction strategy for
λ0

k. If the monotonicity test (8) fails for a chosen damping factor, then
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new a–posteriori estimates lead to a correction strategy that involves the
theoretically backed selection of ’better’ damping factors λi

k , i = 1, .... The
precise formulas in [10] are omitted here, they are a slight modification of
the results published in [6] and [3]. If the computational estimates catch
at least one binary digit of the true theoretical values, then the following
restricted monotonicity test should hold:

Θk(λk) =
‖∆x

k+1‖
‖∆xk‖ ≤ 1 − 1

4
λk . (15)

This test is used in all our numerical experiments in Section 3.2. Experience
shows that the correction strategy is rarely activated; only when a critical
point with singular Jacobian is in the neighborhood of the Newton sequence,
then repeated reductions may occur, which we then terminate via some
threshold condition λk ≥ λmin. In our numerical experiments below, the
term ’λ-fail’ indicates a violation of this criterion.

The just described algorithmic structure is implemented in the affine co-
variant, error oriented Newton code NLEQ-ERR. Unlike in its quite pop-
ular predecessor NLEQ1, we do not apply any intermediate quasi–Newton
steps in the present problem setting of discrete PDEs.

Inexact Newton methods. In the affine covariant setting, the inexact
Newton method will naturally be combined with the iterative linear solver
CGNE, known to minimize ‖δxk

i − ∆xk
i ‖ over some Krylov space for suc-

cessive index i = 0, 1, ... – for details see, e.g., the textbook of Saad [21].
Therefore we naturally measure the residual error via the characterizing
quantity

δk =
‖δxk − ∆xk‖

‖δxk‖ , (16)

wherein we dropped the inner iteration index i in δxk
i for ease of writing.

Within CGNE, the value of ‖δxk
i ‖ will increase and the value of ‖δxk

i −∆xk‖
will decrease for increasing index i. Hence, we can asymptotically meet any
criterion δk ≤ δ in terms of a prescribed threshold value δ. A technique
for the computational estimation of the term ‖δxk

i − ∆xk‖ is given in [10],
similar to a suggestion for the PCG case given in [8].

On the basis of the detailed analysis given in [10] we will have to exchange
the monotonicity test (8) by the inexact monotonicity test

Θ̃k(λk) =
‖δ̃xk+1‖
‖δxk‖ ≤ 1 , (17)

where the inexact simplified Newton corrections δ̃x
k+1

are defined via

F ′(xk)δ̃x
k+1

=
(
−F (xk + λkδx

k) + rk
)

+ r̃k+1 (18)
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with r̃k+1 denoting the inner residual obtained in the course of the corre-
sponding CGNE iterations. From the convergence analysis in [10] we obtain
suggested initial values for the inner iterations as

δxk+1
0 = δ̃x

k+1
, δ̃x

k+1

0 = (1 − λk)δxk . (19)

This suggestion turned out to be important for the efficiency of the corre-
sponding codes.

As shown in [10], the above damping strategies can be modified such that,
for each inner iteration index i, we can obtain affine covariant computational
Lipschitz estimates

[hδ
k]i = ω‖δxk

i ‖ ,

where the accuracy matching is done via the saturation property

[hδ
k]i ≤ [hδ

k]i+1 ≤ hk .

As soon as the thus estimated Kantorovich quantities are ’accurate enough’,
the above prediction and correction strategies can be realized.

This combined adaptive matching/damping strategy is implemented in
the code GIANT–CGNE. In the ordinary Newton method the code realizes
two different local convergence modes (to be selected by the user): a linear
convergence mode, which aims at a convergence of the kind

Θ̃k ≤ Θ < 1 , (20)

and the standard quadratic convergence mode.

Preconditioning. If we apply preconditioning in the form (4), then any
choice of CL only influences the convergence speed of the inner iteration. The
choice of CR, however, affects all adaptivity devices for the outer (Newton)
iteration: wherever norms in domain space arise, for example ‖δxk −∆xk‖,
we have to insert preconditioned norms, for example ‖C−1

R

(
δxk − ∆xk

)
‖.

For this reason, we only realized left preconditioning indicated as GIANT–
CGNE/L – apart from scaling.

Remark. If we replace CGNE by some other iterative solver, known
to only reduce, but not minimize the residual error, then the above conver-
gence analysis needs to be slightly modified. In [7, 18], the solver GBIT [11],
a ’good Broyden’ update technique optimized for linear systems, has been
implemented in combination with the code GIANT. For reasons of compat-
ibilty, an update of that code is renamed here as GIANT–GBIT/L.
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1.2 Affine contravariant Newton algorithms

The door to affine contravariant Newton methods has been opened by
Hohmann in his dissertation [17], wherein he exploited it for the construc-
tion of an adaptive inexact Newton-GMRES method. The affine invariance
setting is dual to the preceding one: we keep the image space of F fixed
(A = I) and consider the problem class

G(y) = F (By) , y = B−1x .

Consequently, a common convergence theory for this class will not lead to
statements about the Newton iterates {xk}, but only about the image space
data F (xk), which are independent of B. Again, the classical assumptions
can be telescoped, this time in image space:∥∥(

F ′(x̄) − F ′(x)
)
(x̄ − x)

∥∥ ≤ ω‖F ′(x)(x̄ − x)‖2 . (21)

Observe that both sides above are independent of B. A local convergence
theorem on the basis of such an affine contravariant Lipschitz condition [10]
will lead to results in terms of residual norms ‖F (xk)‖.

As in the former case, scaling deserves careful consideration: here it
should be applied to the image space of F , i.e. to the image space compo-
nents

F → G = D−1F

with appropriately chosen diagonal matrices D. For ease of writing, we will
ignore these scaling matrices in the following.

Exact Newton methods. In the affine contravariant setting, a new iter-
ate xk+1 is accepted, if the residual monotonicity test (also called standard
convergence test)

Θk(λk) =
‖F (xk+1)‖
‖F (xk)‖ ≤ 1 (22)

holds. Local convergence analysis [10] here again shows that

Θk(λ) ≤ 1 − λ +
1
2
λ2hk (23)

in terms of the special Kantorovich quantities

hk = ω‖F (xk)‖ , (24)

which leads to the theoretically optimal damping factor

λopt = min
(

1,
1
hk

)
. (25)
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We again follow the basic paradigm and replace the computationally un-
available theoretical Lipschitz constant ω by a computationally available
local estimate [ω] ≤ ω, both being affine contravariant. This gives rise to
computational Kantorovich quantities

[hk] = [ω]‖F (xk)‖ ≤ hk , (26)

which, in turn, lead to estimated locally optimal damping factors

[λopt] = min
(

1,
1

[hk]

)
≥ λopt (27)

and eventually to some prediction strategy for λ0
k. If the residual mono-

tonicity test fails for an estimated damping factor, then new a–posteriori
estimates are available to compute ’better’ damping factors λi

k , i = 1, ...
in the frame of a correction strategy. The detailed formulas can be found
in [10]. If the computational estimates catch at least one binary digit of
the true theoretical values, then the following restricted monotonicity test
should hold:

Θk(λk) =
‖F (xk+1)‖
‖F (xk)‖ ≤ 1 − 1

4
λk . (28)

The latter test is rather similar to the well–known classical Armijo test [1],
only the theoretical considerations that led to it are different. This restricted
test is used throughout our numerical experiments in Section 3.2.

The just described algorithmic structure is implemented in the affine
contravariant, residual based Newton code NLEQ–RES.

Inexact Newton methods. In the affine contravariant setting, the in-
exact Newton method will naturally be combined with the iterative linear
solver GMRES, known to minimize the iterative residual norms ‖rk

i ‖, i =
0, 1, ... – for details see, e.g., the textbook [21]. We naturally measure the
deviation from the exact Newton method by quantities

ηk =
‖rk‖

‖F (xk)‖ , (29)

wherein we dropped the iteration index i in rk
i . For increasing i the value

of ηk will decrease so that we can asymptotically meet any prescribed error
criterion ηk ≤ η in term of a given threshold value η. For the thus defined
inexact Newton method we obtain the theoretical result [10]

Θk(λ) ≤ 1 − (1 − ηk)λ +
1
2
(1 − η2

k)λ
2hk , (30)

which gives rise to the optimal damping factor

λopt = min
(

1,
1

(1 + ηk)hk

)
, (31)
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and, in turn, to the computational estimates [hk], [λopt] as a basis of modified
prediction and correction strategies depending now on the relative residual
norms ηk to be controlled adaptively such that they are ’sufficiently small’.
As in all of our inexact Newton codes, a linear and a quadratic local conver-
gence mode can be chosen by the user.

The just described algorithm is implemented in the affine contravariant,
residual based Newton codes GIANT–GMRES. This code performs quite
differently from codes based on the suggestions in [4, 2] or their implemen-
tation in the code NITSOL [20].

Preconditioning. If we apply preconditioning in the form (4), then the
choice of CR only influences the convergence speed of the inner iteration.
The choice of CL, however, also affects the adaptive control of the outer
iteration: wherever norms in image space arise, for example‖rk‖ or ‖F (xk)‖,
we have to insert preconditioned norms, for example ‖CLrk‖ or ‖CLF (xk)‖.
Left and right preconditioning will be indicated as GIANT–GMRES/L,
and GIANT–GMRES/R.

1.3 Affine conjugate Newton algorithms

In [14, 15], the term ’affine conjugacy’ has been coined and exploited for
the construction of adaptive Newton multilevel finite element methods for
nonlinear elliptic PDEs. Such PDEs are connected with an underlying con-
vex functional to be minimized. After discretization we have to solve the
corresponding discrete convex minimization problem

f(x) = min , f : D ⊂ R
n → R ,

equivalent to solving the nonlinear equations

F (x) = gradf(x) = f ′(x)T = 0 , x ∈ D .

Obviously, the mapping F is a gradient mapping and its Jacobian F ′(x) =
f ′′(x) is symmetric and positive semi–definite. In what follows, we will
assume (and check within the algorithms to be constructed) that F ′(x) is
even strictly positive definite so that F ′(x)1/2 is well–defined – in which case
f is strictly convex. Upon transforming the minimization problem to

g(y) = f(By) = min , y = B−1x ,

we arrive at the transformed equations

G(y) = BT F (By) = 0 ,
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and the transformed Jacobian

G′(y) = BT F ′(x)B , x = By .

As can be seen, the Jacobian transformation is conjugate so that all G′ are
symmetric and strictly positive definite. Among possible affine conjugate
theoretical terms are certainly any functional values f(x). Moreover, since
the transformation

u, v, x → ū = Bu, v̄ = Bv, x = By ,

implies
uT G′(y)v = ūT F ′(x)v̄ ,

so–called energy products

(u, v) = uT F ′(x)v

are also seen to be affine conjugate. Such inner products induce (discrete)
energy norms like

‖F ′(x)1/2u‖2 = (u, u) = uT F ′(x)u , u, x ∈ D .

Telescoping the classical theoretical assumptions here leads to an affine con-
jugate Lipschitz condition

‖F ′(x)−1/2
(
F ′(x̄) − F ′(x)

)
(x̄ − x)‖ ≤ ω‖F ′(x)1/2(x̄ − x)‖2 . (32)

Any affine conjugate convergence theorems will therefore lead to results in
terms of functional values f(xk) and energy norms of corrections

εk = ‖F ′(xk)1/2∆xk‖2

or errors
‖F ′(xk)1/2(xk − x∗)‖ .

By construction, the affine conjugate energy products are scaling invari-
ant.

Exact Newton methods. In the affine conjugate setting, we assume
that the underlying convex functional f and its gradient mapping F can
both be evaluated. Then a new iterate xk+1 is accepted, if the functional
monotonicity test

f(xk+1) ≤ f(xk) (33)

holds. Local convergence analysis [10] here shows that

f(xk + λ∆xk) ≤ f(xk) −
(

λ − 1
2
λ2 − 1

6
λ3hk

)
εk , (34)
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in terms of the special Kantorovich quantities

hk = ω‖F ′(xk)1/2∆xk‖ . (35)

Here the theoretically optimal damping factor would be

λopt =
2

1 +
√

1 + 2hk
≤ 1 . (36)

We again apply the paradigm to replace the computationally unavailable
theoretical Lipschitz constant ω by a computationally available local esti-
mate [ω] ≤ ω, both being affine conjugate. This gives rise to computational
Kantorovich quantities

[hk] = [ω]‖F ′(xk)1/2∆xk‖ ≤ hk (37)

and, in turn, to estimated locally optimal damping factors

[λopt] =
2

1 +
√

1 + 2[hk]
≥ λopt , [λopt] ≤ 1 . (38)

In the same way as in the two other affine invariance concepts, a-priori and
a-posteriori computational Lipschitz estimates then lead to a prediction and
a correction strategy for the choice of the damping factors. The precise
formulas in [10] are omitted here.

This algorithmic structure is implemented in the affine conjugate Newton
code NLEQ-OPT for convex optimization problems.

Inexact Newton methods. In the affine conjugate setting, the inexact
Newton method will naturally be combined with any preconditioned conju-
gate gradient method, denoted by PCG, known to minimize the local energy
norms ‖F ′(xk)1/2

(
δxk

i − ∆xk
)
‖ for iteration index i = 0, 1, ... independent

of the selected preconditioner. Therefore we naturally measure the deviation
of exact and inexact Newton method via the characterizing quantities

δk =
‖F ′(xk)1/2

(
δxk − ∆xk

)
‖

‖F ′(xk)1/2δxk‖ , (39)

where again we have dropped the inner iteration index i. For increasing
index i the energy norm of the correction ‖F ′(xk)1/2δxk

i ‖ increases and the
energy norm of the deviation ‖F ′(xk)1/2

(
δxk

i − ∆xk
)
‖ decreases so that,

in total, the value of δk decreases. Hence, we can asymptotically meet a
prescribed threshold criterion such as δk ≤ δ. A rather simple computational
estimate of the terms ‖F ′(xk)1/2

(
δxk

i − ∆xk
)
‖ is suggested in the paper [8]

on the solution of linear elliptic PDEs.
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On the basis of the analysis in [14, 15, 10] we obtain modifications of the
functional behavior

f(xk + λδxk) ≤ f(xk) −
(

λ − 1
2
λ2 − 1

6
λ3hδ

k

)
εδ
k , (40)

wherein we used the notations

εδ
k = ‖F ′(xk)1/2δxk‖2 =

εk

1 + δ2
k

,

hδ
k = ω‖F ′(xk)1/2δxk‖ =

hk

(1 + δ2
k)

1/2
.

(41)

The theoretically optimal damping factors and all further computational
estimates are then essentially obtained replacing the hk by the hδ

k. We
will have to take care that the thus estimated local quantities are ’accurate
enough’, to be able to realize an efficient prediction and correction strategy
for the damping factors.

The just described combined adaptive matching/damping strategy is
implemented in the affine conjugate Newton code GIANT–PCG for convex
optimization problems. As the other inexact Newton codes, this code also
realizes either a linear or a quadratic local convergence mode – to be chosen
by the user.

Preconditioning. The analysis present above is independent of any choice
of preconditioner, as long as it does not change the general symmetric pos-
itive definite pattern.

2 Newton Codes for Convex Optimization

In this section we want to compare different options within our exact and
inexact affine conjugate Newton codes.

2.1 Test set

This test set consists of three discretized nonlinear elliptic PDE boundary
value problems in two space dimensions where the discretized functional
is also at hand. All discrete PDE problems are obtained by uniform dis-
cretization using simple finite difference schemes to obtain the corresponding
finite dimensional convex optimization problems. For selected moderate size
meshes, certain problem characteristics are arranged synoptically in Table 1.
In particular, the column with Mmax shows the maximal nonlinearity weight
factor, for which the uncontrolled ordinary Newton method converges.
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Name Grid Dim n Mmax

msc 32 × 32 1024 6.2
elas 32 × 32 2048 1.0
msnc 32 × 32 3072 1.9

Table 1: Test set characteristics for special 2D grid. Mmax is some nonlin-
earity weight factor.

Of course, below we will treat much finer meshes with much larger prob-
lem dimensions (up to n ≈ 200.000).

Example: Minimal surface problem over convex domain (msc).
Given the domain Ω =]0, 1[2, minimize the surface area∫

Ω
(1 + |∇u|2) 1

2 dx

subject to the Dirichlet boundary conditions

u(x1, x2) = M(x1 + (1 − 2x1)x2) on ∂Ω ,

The function u(x) ∈ R is the vertical position of the surface parameterized
over Ω. The scaling parameter M of the boundary conditions allows to
vary the ’nonlinearity’ of the problem. The initial value u0 is chosen as the
bilinear interpolation of the boundary conditions. Note that the simpler
choice of u0 = 0 is incompatible with the boundary conditions and, hence,
would introduce an artificial dependence of the initial value on the mesh
size.

This problem has a unique well-defined solution depicted in Fig. 1, left.

Example: Simple elastomechanics problem (elas). Given the do-
main Ω =]0, 1[2, minimize the total energy∫

Ω

(
‖F‖2 + (detF )−1 − M(1/2,−1)u

)
dx with F = I + ∇u ,

subject to the Dirichlet boundary conditions u = 0 on {0} × [0, 1]. On the
remaining boundary part, natural boundary conditions are imposed. The
function u(x) ∈ R

2 is the displacement of an elastic body. The deformation
energy is modeled by a particularly simple variant of an Ogden material.
The volume force (1/2,−1)T acting on the body is scaled by M , which can
be used to vary the ’nonlinearity’ of the problem. The undeformed state
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Figure 1: Left: solution of problems msc (h = 1/63, M = 10). Right:
solution of problem elas (h = 1/31, M = 2).

u0 = 0, compatible with the boundary conditions, is chosen as the initial
value.

In this problem, the total energy functional defined via the Ogden ma-
terial law is not convex on the whole domain of definition. Furtunately, it
is convex in a sufficiently large neighborhood of the solution. Therefore,
the Newton codes starting at u0 did not encounter any nonpositive second
derivatives.

The locally unique solution is depicted in Fig. 1, right.

Example: Minimal surface problem over nonconvex domain (msnc).
Given the domain Ω =]0, 2[2\]1, 2[2, minimize the surface area∫

Ω
(1 + |∇u|2) 1

2 dx

subject to the Dirichlet boundary conditions

u = 0 on [0, 2] × {0} ∪ {0} × [0, 2] , u = M on [1, 2] × {1} ∪ {1} × [1, 2] .

On the remaining boundary parts, [0, 1] × {2} ∪ {2} × [0, 1], homogeneous
Neumann boundary conditions ∂nu = 0 are imposed. The function u(x) ∈ R

is the vertical position of the surface parameterized over Ω. As in problem
msc, the scaling parameter M allows to vary the ’nonlinearity’ of the prob-
lem. The initial value u0 is chosen as the linear interpolation of the Dirichlet
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boundary conditions on [0, 1] × [1, 2] ∪ [1, 2] × [0, 1] and the bilinear inter-
polation of the thus defined boundary values on [0, 1]2. Again, the simpler
choice u0 = 0 would introduce an artificial dependence on the mesh size.

In contrast to msc and elas, this problem has been deliberately con-
structed such that the underlying PDE does not have a unique solution:
indeed, function space multilevel Newton methods are able to undoubtedly
detect the nonexistence of a continuous solution instead of incorrectly com-
puting a finite dimensional pseudosolution (cf. [15]).

Nevertheless, each discretization does have a unique solution – see Fig. 2
for M = 2 and different mesh sizes h. Of course, this feature of the continu-
ous problem appears in sufficiently fine discretizations. In fact, as shown in
[15], the local convergence domain of Newton’s method shrinks when h → 0.
Hence, we expect to see a clear dependence of the number of Newton itera-
tions on the mesh size. However, since the main effect is highly localized at
the corner (1, 1)T , this dependence is more clearly visible in the setting of
adaptive discretizations.
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Figure 2: Two different discrete pseudosolutions of problem msnc(M = 2)
for h = 2/7 (left) and h = 2/31 (right).

2.2 Numerical experiments

In this section the adaptive Newton methods for convex optimization as
sketched in Section 1.3 are compared at the test set described just above.
For the exact methods, the sparse solver provided by MATLAB is used.
For the inexact methods, a PCG method with energy oriented termination
criterion based on [8, 10] is used. As preconditioners we tested both the
Jacobi and the incomplete Cholesky preconditioner (ICC) as provided by
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MATLAB (with droptol=10−3). A relative energy norm tolerance of 10−8

is set for the Newton iteration. Fail exits in the numerical tests occurred as

• λ-fail: ’too small’ damping factor λk ≤ 10−4 suggested or ’too many’
damping factor reductions,

• itmax: more than 500 inner iterations in GIANT–PCG, and

• Θ-fail: insufficient contraction rate in linear convergence mode of
GIANT–PCG.

Local versus global Newton methods. In Table 2, the numerical so-
lution of problem msc is compared for different Newton algorithms and
varying weight factor M . Among the local Newton methods we included
the simplified Newton method, which keeps the initial Jacobian throughout
the iteration – the corresponding convergence analysis is given in [10]. The
inexact Newton codes use ICC within PCG and are run in the quadratic
convergence mode.

local global
M simplified exact inexact exact inexact

2 21 5 5 9 9
5 DIV 7 7 10 9

10 DIV DIV DIV 10 10

Table 2: Problems msc. Number of iterations versus nonlinearity weight
factor M for different Newton algorithms. DIV means divergence of local
Newton algorithms.

In this example, the local Newton methods are seen to converge only
for the mildly nonlinear case, among which the simplified Newton behaves
worst. We observe that exact and inexact Newton methods, both local and
global, realize nearly the same number of Newton iterations.

Mesh dependence of different global Newton algorithms. In this
experiment we test different Newton algorithms over the whole test set for
increasing mesh size. The results are arranged in Table 3.

Asymptotic mesh independence. This well–known feature (cf. [13]) is
clearly visible in problem msc, but less in problem elas, since there the sin-
gularity at the origin is not sufficiently well represented on the here selected
uniform grids. In problem msnc, the number of the Newton iterations in-
creases with decreasing mesh size or increasing dimension of the discrete
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problem – as expected from [15]. For very fine meshes, failures indicate the
underlying non-existence of a PDE solution.

Exact versus inexact Newton algorithms. As apparent from the miss-
ing entries in Table 3, inexact Newton codes relying on iterative solvers are
able to tackle much larger problems than exact codes that use direct sparse
solvers. Both time and, even more pronounced, memory requirements of the
direct solver are prohibitively large for the finest meshes. The inexact New-
ton method is run in the quadratic convergence mode with an incomplete
Cholesky preconditioner.

msc(M = 10) elas(M = 2) msnc(M = 2)
N exact inexact exact inexact exact inexact

4 9 8 10 9 9 8
8 10 9 10 10 9 9

16 10 9 10 10 10 10
32 10 10 10 10 10 11
64 10 10 11 13

128 10 λ-fail
256 10 itmax

Table 3: Iteration numbers of global Newton methods versus mesh size
h = 1/(N − 1) over test set. The dimension of each discrete problem is
given in Table 1.

Different preconditioners. For local Newton algorithms, two different
preconditioners are used in combination with either the linear or the quadratic
local convergence modes. For the linear mode, a reduction factor of Θ̄ = 0.5
is imposed, and, accordingly, the nonlinearity weight factor M is reduced
such that the exact Newton method reaches contraction factors well below
Θ̄ for most mesh sizes. The worst contraction factor encountered in the
exact Newton method is given in the last column of Table 4. Note that for
N = 4 both msc and elas lead to Θmax > Θ̄ in the exact Newton iteration,
so that the Θ-failures in the first rows are consistent with the convergence
theory of [10].

As expected, the Jacobi preconditioner is insufficient for very fine dis-
cretizations and, hence, leads to failures in the PCG convergence. The low
quality of the Jacobi preconditioner is also the reason for the Θ-failures for
N > 4: the PCG error estimator is severely impaired and tends to stop the
PCG iteration too early, thus delivering a Newton correction which is not
accurate enough to reduce the energy error.

18



The incomplete Cholesky preconditioner is more effective, at least for
small up to moderate size meshes. This is the reason why for such dis-
cretizations the linear convergence mode is as fast as the quadratic conver-
gence mode: the accuracy of the inexact Newton corrections is far better
than requested. For very small mesh sizes, the effectiveness of the incom-
plete Cholesky preconditioner decreases, and hence the number of Newton
iterations in linear convergence modes becomes significantly larger than in
quadratic convergence mode.

quadratic linear exact
N ICC Jac ICC Jac Θmax

msc(M=3.5) 4 7 7 Θ-fail Θ-fail 0.51
8 6 6 6 9 0.31

16 6 6 6 13 0.30
32 6 7 7 Θ-fail 0.30
64 6 itmax 8 Θ-fail

128 6 itmax 12 Θ-fail
256 6 itmax Θ-fail itmax

elas(M=0.2) 4 6 6 Θ-fail Θ-fail 0.61
8 5 6 6 Θ-fail 0.26

16 5 6 7 Θ-fail 0.18
32 5 itmax 8 Θ-fail 0.15

Table 4: Iteration numbers of local inexact Newton methods: quadratic
versus linear local convergence mode (Θ̄ = 0.5).

3 Residual Based versus Error Oriented Newton
Codes

There is clear evidence from the numerical solution of nonlinear BVPs for
ordinary differential equations (ODEs) that error oriented Newton tech-
niques are preferable over residual based Newton techniques, both in mul-
tiple shooting and in collocation methods. The question to be answered in
this section is whether this feature carries over to the PDE situation and
there, in particular, to inexact Newton methods.

3.1 Common test set

We consider a subset of the test problems presented in [18] and used there
for the test of the older code GIANT. All examples are discretized nonlinear
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PDE problems in only two space dimensions. This leads to system dimen-
sions n that still permit a direct solution of the arising linear equations – so
that exact and inexact Newton codes can be compared. For discretization
we used the usual second order, centered finite differences on tensor prod-
uct grids. Neumann boundary conditions are included by simple one-sided
differences, as usual.

Example: Artifical test problem (atp1). This problem comprises the
simple scalar PDE

∆u − (0.9 exp(−q) + 0.1u)(4x2 + 4y2 − 4) − g = 0 ,

where

g = exp(u) − exp(exp(−q)) and q = x2 + y2 ,

and boundary conditions u|∂Ω = 0 on the domain Ω = [−3, 3]2.

Its analytical solution is known to be u(x, y) = exp(−q).

Example: Driven cavity problems (dcp1000, dcp5000). This prob-
lem involves the steady stream-function/vorticity equations

∆ω + Re(ψxωy − ψyωx) = 0 , ∆ψ + ω = 0 ,

where ψ is the stream-function and ω the vorticity. For the domain Ω =
[0, 1]2 the following discrete boundary conditions are imposed

∂ψ
∂y (x, 1) = −16x2(1 − x)2 ,

ω(x, 0) = − 2
∆y2 ψ(x,∆y) ,

ω(x, 1) = − 2
∆y2 [ψ(x, 1 − ∆y) + ∆y ∂ψ

∂y (x, 1)] ,

ω(0, y) = − 2
∆x2 ψ(∆x, y) ,

ω(1, y) = − 2
∆x2 ψ(1 − ∆x, y) .

Problems dcp1000, dcp5000 correspond to Reynolds numbers Re = 1000
and Re = 5000. For both cases the default initial guess is ψ0 = ω0 = 0.

As it turned out, the purely residual based Newton strategy was not
able to solve these examples. For this reason, we additionally considered
problems dcp1000a and dcp5000a corresponding to the modified initial
guesses ω0 = y2 sin(πx), ψ0 = 0.1 sin(πx) sin(πy).
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Example: Supersonic transport problem (sst2). The four model
equations for the chemical species O, O3, NO, NO2 are

0 = D∆u1 + k1,1 − k1,2u1 + k1,3u2 + k1,4u4 − k1,5u1u2 − k1,6u1u4 ,

0 = D∆u2 + k2,1u1 − k2,2u2 + k2,3u1u2 − k2,4u2u3 ,

0 = D∆u3 − k3,1u3 + k3,2u4 + k3,3u1u4 − k3,4u2u3 + 800.0 + SST ,

0 = D∆u4 − k4,1u4 + k4,2u2u3 − k4,3u1u4 + 800.0 ,

where D = 0.5 ·10−9, k1,1, . . . , k1,6 = 4 ·105, 272.443800016, 10−4, 0.007, 3.67 ·
10−16, 4.13 ·10−12 , k2,1, . . . , k2,4 = 272.4438, 1.00016 ·10−4, 3.67 ·10−16, 3.57 ·
10−15, k3,1, . . . , k3,4 = 1.6·10−8, 0.007, 4.1283·10−12, 3.57·10−15, k4,1, . . . , k4,3 =
7.000016 · 10−3, 3.57 · 10−15, 4.1283 · 10−12, and

SST =
{

3250 if (x, y) ∈ [0.5, 0.6]2

360 otherwise.

The computational domain is the unit square, homogeneous Neumann bound-
ary conditions are imposed. Initial guess is

u0
1(x, y) = 109 , u0

2(x, y) = 109 , u0
3(x, y) = 1013 , u0

4(x, y) = 107 .

Again, we consider an alternative initial guess to allow for convergence in
the purely residual based Newton schemes:

u0
i → 100(sin(πx) sin(πy))2u0

i .

Characteristics of test set. An overview on size and difficulty of the
examples is given in Table 5. In order to characterize the difficulty of the
problems we have tried to solve them with an uncontrolled exact ordinary
Newton method. The results are given in the last column of Table 5. All
failures are due to reaching the prescribed maximum permitted number of
Newton (outer) iterations (indicated by outmax, here set to 75).

For the residual based methods, a termination criterion FTOL = 10−8 is
required – except for the badly scaled problems sst, where FTOL is relaxed
to 10−5. For the error oriented methods, a relative termination criterion
XTOL = 10−8 is set.

Our experimental Newton codes are written in standard FORTRAN77
and use the sparse linear algebra package SLAP due to [16, 22] in order
to perform the linear iterations (except GBIT). In particular, we use the
left or right preconditioned GMRES/L or GMRES/R and the left precon-
ditioned CGNE/L. As preconditioner we take the default incomplete LU
(ILU) decomposition from SLAP.
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Name Grid Dim n OrdNew

atp1 31 × 31 961 4
dcp1000 31 × 31 1922 outmax
dcp1000a 31 × 31 1922 9
dcp5000 63 × 63 7983 outmax
dcp5000a 63 × 63 7983 outmax
sst2 51 × 51 10404 outmax
sst2a 51 × 51 10404 outmax

Table 5: Characteristics of used test set

3.2 Comparative performance

We now compare the performance of exact and inexact Newton methods,
both residual based and error oriented, in the frame of our common disc-
tretized PDE test set. Failure exits are characterized throughout by

• outmax: the outer (Newton) iteration does not converge within 75
iterations,

• itmax: the inner iteration per Newton step does not converge within
2000 iterations,

• λ-fail: the damping strategy suggests some ’too small’ value λk < 10−4.

Residual based vs. error oriented exact Newton codes. In all exact
Newton codes, the arising linear systems were solved by band mode LU-
decomposition and forward/backward substitution. We implemented the
following versions:

• NLEQ–RES based on the standard nonlinear residual F ,

• NLEQ–RES/L based on the preconditioned residual CLF , and

• NLEQ–ERR oriented towards the local error.

In Table 6 we arrange the comparative results for our common test set of
discretized PDEs.

This comparison is really striking: obviously, for discrete PDEs, the er-
ror oriented adaptive Newton methods are clearly preferable to the residual
based ones. One reason for this occurrence might be that in PDE discretiza-
tions the arising discrete Jacobian matrices are bound to be ill–conditioned
due to the noncompact PDE operator behind the discretization. The effect
is the more significant, the finer the discretization is.
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Name RES RES/L ERR

atp1 4 (0) 4 (0) 4 (0)
dcp1000 outmax 10 (5) 8 (4)
dcp1000a 21 (17) 8 (2) 8 (2)
dcp5000 outmax outmax 11 (7)
dcp5000a 42 (39) λ-fail 8 (2)
sst2 λ-fail 12 (11) 13 (8)
sst2a 38 (33) 15 (13) 19 (14)

Table 6: Residual based vs. error oriented exact Newton codes. Comparison
in terms of Newton steps (in parentheses: damped Newton steps).

Exact vs. inexact residual based Newton codes. For the inner iter-
ation we chose GMRES (abbreviation for Generalized Minimal RESidual
method), the popular gold standard of linear iterative solvers (see, e.g.,
[21]). As corresponding inexact Newton codes we implemented GIANT–
GMRES/R and GIANT–GMRES/L, the first one with right ILU precon-
ditioning, the second one with left ILU preconditioning. The implemented
accuracy matching is not yet fully adaptive in the sense of Section 1.2.
Rather, in order to eliminate any side effects stemming from this adaptivity
device, we simply imposed a threshold criterion ηk ≤ 10−3 throughout. In
Table 7 we document the comparative performance.

Name EX-RES INX-RES/R EX-RES/L INX-RES/L

atp1 4 (0) 4 (0) 33 4 (0) 4 (0) 33
dcp1000 outmax outmax 10 (5) 10 (5) 376
dcp1000a 21 (17) 22 (17) 825 8 (2) 8 (1) 314
dcp5000 outmax outmax outmax outmax
dcp5000a 42 (39) 44 (39) 5056 λ-fail 22 (13) 1343
sst2 λ-fail 16 (10) 1227 12 (11) 15 (12) 259
sst2a 38 (33) λ-fail 15 (13) 19 (16) 519

Table 7: Exact vs. inexact residual based Newton codes. Comparison in
terms of Newton steps (in parentheses: damped steps) and inner iterations.

In terms of Newton iterations, the inexact residual based Newton codes
behave very much like their exact counterparts. Erratic discrepancies arise
in two cases where a divergent exact scheme becomes convergent (sst2 +
INX-RES/R, dcp5000a + INX-RES/L) and in one reverse case (sst2a +
INX-RES/R). These differences vanish, if extremely restrictive linear toler-
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ances for the inner iteration (ηk ≤ 10−7) are required. We also relaxed the
accuracy for the GMRES iteration to ηk ≤ 10−2: in this case, however, a
rather unsatisfactory performance of the outer Newton iteration arose.

Exact vs. inexact error oriented Newton codes. For the error ori-
ented inner iterative solvers we chose CGNE (abbreviation for Conjugate
Gradient method for Normal equations with Error minimization, see, e.g.,
[21]) and GBIT (abbreviation for Good Broyden ITerative solver, see [11]).
We implemented the inexact Newton codes GIANT–CGNE/L and GIANT–
GBIT/L, i.e. both with left ILU preconditioning. Again, as in the resid-
ual based case, we have not yet implemented the fully adaptive accuracy
matching strategy as presented in Section 1.1. Rather, we implemented the
(scaled) error criterion δk ≤ 10−3. The initial values for the inner itera-
tions were chosen according to the suggestion (19). The obtained results are
arranged in Table 8.

Name EX-ERR INX-CGNE/L INX-GBIT/L

atp1 4 (0) 4 (0) 331 4 (0) 106
dcp1000 8 (4) itmax 9 (4) 4071
dcp1000a 8 (2) itmax 8 (2) 3012
dcp5000 11 (7) itmax 11 (7) 5616
dcp5000a 8 (2) itmax 8 (1) 7586
sst2 13 (8) 13 (8) 28681 13 (8) 1436
sst2a 19 (14) 19 (14) 61380 19 (14) 2440

Table 8: Exact vs. inexact error oriented Newton codes. Comparison in
terms of Newton steps (in parentheses: damped steps) and inner iterations.

From these comparisons, we obtain the following two messages:

• The inner iterative linear solver CGNE is clearly less efficient than
GBIT.

• The code GIANT–GBIT/L nearly perfectly reproduces the outer iter-
ation pattern of the exact Newton code NLEQ–ERR.

Note that CGNE minimizes the inner iterative error over some Krylov
space associated with the normal equations, whereas GBIT only reduces
the inner iterative error – however, over some different Krylov space cor-
responding to the original equation. One reason for the bad behavior of
CGNE might be caused by the fact that preconditioning for the original
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linear system (as in GBIT) is more effective than for the normal equations
(as in CGNE).

Incidentally, we repeated the computations with GIANT–GBIT/L for a
relaxed threshold criterion δk ≤ 10−2. Once again, all test problems were
solved, but now with a saving of up to 50 % in the inner iteration and only
a slight deterioration in the outer iteration.

Conclusion

In elliptic discrete nonlinear PDE BVPs, both the exact and the inexact
affine conjugate Newton codes perform efficiently and reliably, in close con-
nection with the associated convergence theory. The inexact Newton code
GIANT–PCG with ICC preconditioning seems to be a real competitor to
so–called nonlinear PCG methods.

In general discrete nonlinear PDE BVPs, our tests give a clear picture
for the exact Newton codes: the affine covariant, error oriented adaptive
versions are preferable to the affine contravariant, residual based versions –
in agreement with expectations from the simpler case of ODE BVPs. For
the inexact Newton codes, however, the message is less clear. On one hand,
the (preconditioned) inner iterative solver GMRES turns out to be more
efficient than GBIT and much more efficient than CGNE, at least in our
problem class. On the other hand, only the error oriented inexact Newton
code GIANT–GBIT has been able to solve all test problems. Therefore,
knowing that the affine covariant concept is the right one, in principle, fur-
ther work needs to be done to improve error oriented linear iterative solvers
and preconditioners for the special setting of discretized PDE problems.
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