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ABSTRACT 

A new method for the numerical aproximation of an implicitly 
defined surface is presented. It is a generalization of the Euler-Gauss-
Newton method for implicitly denned (one-parameter) curves to the 
case of (two-parameter) surfaces. The basic task in the more general 
case is an efficient combination of modern CAGD techniques (such as 
triangular Bemstein-Bezier patches and the nine parameter Hermite 
interpolant) and the rank deficient Gauss-Newton method. 
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INTRODUCTION 

Consider a finite dimensional dynamical system x = / ( x , A) depending on 
k scalar parameters. Its steady state solutions form under suitable conditions 
a k dimensional smooth manifold M in some n-dimensional Euclidian space 
being the zero set of the underlying parameter-dependent vector field. Thus, 
the investigation of parameter-dependent systems leads to implicitly defined 
smooth manifolds, i.e. the zero sets of differtiable mappings from some open 
subset D C R n in Rm = Rn- fc having 0 as a regular value. 

In this paper we only treat the case k — 2, i.e. M is an implicitly defined 
surface in Rn . We are concerned with the numerical approximation of M or 
more precisely of the connected component of M containing a given initial 
solution y0 € M. In the one-dimensional case, where M is an implicitly 
defined curve, the problem is quite well understood and there are effective 
algorithms at hand. The numerical methods may be devided into two groups: 
continuation methods (also called homotopy or predictor-corrector methods) 
and piecewise linear (short PL-) methods. Of the first category are the 
methods by Rheinboldt [14], Deuflhard, Fiedler and Kunkel [12], Keller [11], 
Doedel [7] or Seydel [16], For an extensive survey, also of the second category, 
we refer to Allgower and Georg [1]. They are all restricted to the case k = 1 
of implicitly defined curves having no canonical generalization for manifolds 
of higher dimension. Rheinboldt [15] has shown that it is possible to save 
the continuation idea for k > 1 by "projecting" a fixed triangulation of 
the tangent space at a point onto the manifold, where "projecting" means 
a Gauss Newton process. Of course this can only be done locally, i.e., as 
long as a so-called moving frame exists and the triangulation of the tangent 
space is suitable for the manifold. In addition, it seems to be very difficult to 
achieve adaptivity comparable with the steplength control mechanisms being 
standard for continuation methods in one parameter. 

In contrast to continuation methods, the piecewise linear methods do not 
know the principal barrier k = 1. A first algorithm for the piecewise linear 
approximation of an implicitly defined manifold for arbitrary k was published 
by Allgower and Schmidt [4]. It was further developed by Gnutzmann [2] [3], 
who in paricular implemented the method for surfaces (k = 2) showing its 
reliability for small n. A similar method was developed by Bloomenthal [5] 
who is mainly interested in CAGD applications and therefore only considers 
surfaces in the three dimensional Euclidian space. 

These two methods show a principal disadvantage of PL methods. Using 
n-simplices which are successively refined to approximate the given manifold, 
the piecewise linear approach is rather complicated and extremely costly for 
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large dimensions n of the underlying space. Since we definitely aim at tack
ling problems in higher dimensional spaces, we are looking for a method that 
shares the advantages with the one-parameter continuation approach hke 
adaptivity and effectivity for large n but is not refined to the local approxi
mation of a given manifold. 

In this paper we show that it is in fact possible to approximate an implic
itly defined surface (k = 2) globally using a locally adaptive continuation 
process. We construct a triangulation and at the same time a continuous 
cubic approximation of the surface by successively computing new points on 
the surface and fitting the resulting triangles together. The main ingredients 
of the method are 

• a Gauss Newton method (with rank deficiency k) as corrector scheme 

• the nine parameter Hermite interpolant as a local approximation and 
predictor scheme 

• elementary geometrical considerations to connect the triangles. 

We begin in Section 1 with a rough description of the algorithm. In Sections 
2 to 4 we derive the necessary theoretical concepts. Section 5 is devoted 
to the realization of the method and in Section 6 we give some simple but 
instructive numerical examples. 
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1 A TWO-DIMENSIONAL CONTINUATION ALGORITHM 

In this section we sketch the main ideas of the two-dimensional continua
tion method leaving some notions and details for further explanation in the 
following sections. Let / : D C R n —> Rm , n = m + 2, be a twice differen
t i a t e mapping of some open subset D C R n in Rm such that 0 G R m ist a 
regular value of / , i.e. the Jacobian f'(y) has full rank at all solutions y G D 
of f(y) = 0- Under these conditions the solutions form a k dimensional 
submanifold 
(1.1) M:={yeD\ f(y) = 0} 

of R". Moreover, suppose that an initial approximate solution j/o G D of 
f(y) = 0 is given. 

To generate the connected component of M containing a solution y0 G M 
near j/o the first step is to compute an initial triangle on M. After a first 
single solution yo G M has been obtained by a rank deficient Gauss-Newton 
method applied to y0, we employ a tangent continuation method in two 
linear independent directions £,• on the tangent plane at y0 to get two further 
solutions 2/1,2/2 G M. We thus construct a triangle T = {j/o5 S/i5 2/2} C M on 
M which constitutes our initial triangulation T = {T}. 

For each free edge of the triangulation, i.e. belonging to a single triangle, 
we now construct an extrapolated (imaginary) triangle using the data of the 
corresponding triangle and the convergence properties of the Gauss-Newton 
process for its vertices. 

In a next step we try to realize these extrapolated triangle by either con
necting them directly to appropriate already existing triangles or by com
puting a new solution on M. In the latter case we create two new edges to 
continue the process with. 

Describing the algorithm in a more detailed fashion, we proceed as follows: 

ALGORITHM 1. 

• Compute a first solution t/o G M by means of an Gauss Newton itera-

tion j/o '—* yo with starting point y° = t/o (see section 2). 

• Compute two further solutions 2/1,2/2 £ -^ using a tangent continuation 
method 

J/o + stfi 1—> y{ for i = 1,2, 

where 2i,i2 G TyoM = kerDf(y0) are normed linear independent tan
gents at y0. Thus we get an initial triangle T = {y0,2/1,2/2}-
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• For each new edge e of a triangle T construct an imaginary triangle T 
in the following way: 

— Compute the nine parameter interpolant of M with respect to the 
triangle T (see section 3). 

— Compute a steplength s taking into account the convergence be
haviour of the Gauss Newton method for the points of the triangle 
T. 

— Consider the local parameter plane (T) spanned by T. Take the 
parameter on the outward normal on the midpoint of the edge e 
whose distance from e is equal to the stepsize s. 

— Compute the corresponding point y on the interpolating polyno
mial surface and take it as a guess for a new solution on M. 

• Try to realize each imaginary triangle T in one of the following ways: 

— If T "overlaps" with an already computed triangle T, connect the 
vertex y of T with the corresponding point of T (see section 4). 

— Else, try to compute a new solution y by a Gauss Newton iteration 
* GN 
y—>y-

• The algorithm stops if all imaginary triangles are realized (success) or 
some imaginary triangle cannot be realized (failure). 

We see that the algorithm not only provides a triangulation of the surface 
but at the same time an approximation by a continuous piecewise cubic 
interpolating surface consisting of the nine parameter interpolants. This 
interpolating surface may also be used for the visualization of the implicit 
surface. 

2 AFFINE INVARIANT GAUSS NEWTON TECHNIQUES 

If y° = y is some approximate solution of f(y) = 0, we use a Gauss Newton 
iteration (k = 0,1,. . .) 

(2.1) yk+1=yk + Ayk, where Df(yk)+Ayk = -f(yk) 

is the Gauss Newton correction as a corrector scheme to compute a solution 
y = limfc^oo yk on M. The local convergence is guaranteed by the following 
theorem due to Deufihard and Heindl [6]. 
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THEOREM 1. Let / : D C R" -» Rm , n > m, be a differentiable mapping 
of an open convex set D in Rm , such that all points y € D are regular. 
Assume the f satisfies for some u > 0 the affine invariant Lipschitz condition 

\\Df(w)+(Df(v)-Df(u))\\<u\\v-u\\ 

for u,v,w € D, v — u £ imDf(iti)+. Let y° £ D and suppose there is a 
constant a > 0 such that 

i) ||VII = \\Df(y°)+f(y°)\\ < «, 

( 2 2 ) ii) Br(y
Q) = {y\\\y-y0\\<r}cD, 

..., 1 
m) -ecu < 1. 

Then the Gauss Newton iterates yk defined by (2.1) remain in BT(y°) and 
converge to a solution y* = limfc—ooj/*1 of f(y) = 0. 

The convergence may be tested by the so-called natural monotonicity test 

<2-3' *' - -JAM ~ 2' 
where Ayk+1 is the so-called simplified Gauss Newton correction 

(2.4) Ayk+1 := -Df(yk)+f(yk+1). 

If a direct solver is used, this may be easily computed using the decomposition 
of the Jacobian Df(yk). 

The quotient 9k plays a central role in the affine invariant steplength con
trol mechanism used in the continuation codes ALCON [12] and SYMCON 
[10]. If we combine (for k = 1) the Gauss Newton method with the tangent 
continuation y = y + st(y), where t(y) is a normed tangent vector at a known 
solution y £ M, the factor y0/9k, 9 := 0.25, may be used to decrease the 
steplength s in case of a failure of the Gauss Newton iteration (steplenth 
corrector). On the other hand it also provides a steplenth predictor by possi
bly increasing the steplength if the Gauss Newton iteration converged., For 
details and a theoretical foundation based on the convergence theorem 1 see 
[12]. We will use this steplength control more or less heuristically in our 
two-dimensional continuation method. 
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3 B E R N S T E I N - B E Z I E R P A T C H E S A N D T H E N I N E P A R A M E 

T E R INTERPOLANT 

Consider again the implicitly defined surface M c R " and let yo,yi,V2 £ 
M be three affine independent points on M. We will call T = {j/0)2/i)2/2} a 
triangle on M. In this section we look for a suitable polynomial interpolant 
for the data given by the points y,- and the corresponding tangent spaces 
TyiM oi M at y,-. 

In order to define this bivariate Hermite interpolant, the so-called nine 
parameter interpolant (see e.g. Farin [8]) with a particular parametrization, 
we have to introduce some notions concerning triangular Bernstein-Bezier 
patches. We will use the affine plane (A) := (yo5yi)2/2) spanned by the 
points y,- as the local parameter plane corresponding to the given triangle T. 
To define a polynomial on (A), we could easily use a linear coordinate system 
on (A), i.e. consider the affine plane (A) as a vector space with origin, say, 
y0. For our purposes however, it is more convenient to use the barycentric 
coordinates A = (A0, Ai, A2) of a point y £ (A) with respect to T defined by 
y = ]Ci=o »̂y«) w n e r e !Ci=o A,- = 1. This is an affine isomorphism 

A 2 — > ( A ) , A . — £ A , - y , 
i=0 

of the standard affine plane A2 := {A € R 3 | £2
=0A,- = 1} onto (A). The 

convex hull of T, which we denote by [T] := co(yo, yi, 1J2), corresponds to the 
standard 2-simplex 

S 2 := {A € A2 I A,- > 0 for all i = 0,1,2} . 

Hence we will often identify (T) and [T] with the standard plane A 2 and 
the standard triangle S2 respectively. A polynomial of degree k on A2 (and 
thus on (A)) now is a homogeneous polynomial of degree k in the barycentric 
coordinates. 

A basis of the space Pk(A2, R) of polynomials of degree k on A2 is therefore 
given by the homogeneous monomials Aa, |o;| = k, where we use the standard 
multi index notation for a = (a0> <*i) a2) € N3 : 

Aa = A^°Af1A^, |a | = ao + «i + a3, a! = a 0 !a i !a 2 ! • 

For cubic polynomials, k = 3, we get for instance 

•\)> Aj) ^2) AQAI, A0A2, AQAJ, AJAJ, AQA2, AIA2, AQAIA2 . 
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An alternativ basis for P f c(A2 ,R) are the Bernstein polynomials B*, \ct\ = k, 
defined by 

BJ(A) := ^ A - . 
a! 

They share with the univariate Berstein polynomials B*-(n) = (. ;W(1 — 
/z)fc-t almost all properties which make them the basis of choice in CAGD 
applications. Since they are the terms of the trinomial expansion of 1 = 
(I3f=o^«')*> they form a partition of unity, i.e. £ | a | _ f c 5* = 1, and they are 
obviously non negativ on the simplex S2 or equivalently on the triangle [T]. 
The coefficients ba of a polynomial 

(3.1) P= £ baB
k
aePk(A\R) 

with respect to the Bernstein polynomials are called Bezier coefficients or 
Bezier points of p, a polynomial as in (3.1) is called triangular Bezier patch. 
The Bezier points have the nice geometric property that for A € E s the value 
p(X) lies in the convex hull co{6a} of the Bezier points, see figure 3. Of 

FlG. 1. A triangular Berstein-Bezier patch and its Bezier net 

course these considerations remain valid if we consider the space P f c(A2 ,Rn) 
of polynomials of degree k with coefficients in Rn , i.e. p = £|a|=ifc ^aB^ with 
ba € R n . 

As in the univariate case, Casteljau's algorithm may be employed as the 
basic tool for the evaluation of the polynomial and its derivatives as well as 
for the approximation of the surface by successive subdivision. 

We now first describe the standard nine parameter interpolant of a para
metric sufficiently smooth surface g : A2 —• R n , A v-* g(X). As usual let 
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e,- € A for i = 0 , . . . , 2 be the vertices of the standard triangle E . We con
struct a cubic polynomial p on A2 that interpolates g and its first derivatives 
in the vertices e,-. Thus p has to satisfy the following nine conditions 

ii) Dej-eig(ei) = Dej_eip(e.) for i, j = 0 , . . . , 2 and i ^ j . 

The Bezier points of p = £|a |=3 baB^ are given by (see Farin [8]) 

i) b3ei = g{ei) for i = 0 , . . . , 2, 

(3.3) ii) b2ei+ej = g{&i) + \Dei..eig{ei) for i,j = 0 , . . . , 2 and t ^ j , 

Üi) 61,1,1 = 4 £ # j &2e<+e> - e E i ^3et • 

The corresponding interpolation operator is of quadratic precision, i.e. quadratic 
surfaces g € P 2 (A 2 ,R n ) will be reproduced. 

Next we turn back to the implicitly defined surface M = {y \ f(y) = 0} 
and a triangle T = {2/0? J/i> J/2} on M. We assume that there is a local 
coordinate system for M around T. More precisely there is a parametrization 
g : U C (T) —* R n of M, where U C (T) is an open neighbourhood of the 
triangle [T] in (T), and an open neighbourhood V C R n of [T] in R n such 
that 

MC)V = {g{y)\y€U}. 

Since the parametrization g is not uniquely determined by M, we cannot 
apply (3.3) directly. In order to construct a more or less canonical inter
polating polynomial surface p 6 P f c ( ( r ) ,R n ) , we require the directional 
derivative Dyj-yig{yi) of g at the vertex ?/; to be some scalar multiple of 
the normed orthogonal projection itJ- of the edge yj — y,- on the tangent space 
TyiM = keTDf(yi) of M at y4, i.e. 

i) Dyj-yMVi) = kjUj, where/.j € R and 

ii) tij = orthogonal projection of yj — j/,- on kerD/(y,). 

A suitable heuristic choice for the scalar factors Uj is Uj '•— 1-2 • \\yj — y,||, see 
Farin [9], chapter 8. Using (3.3), we may now construct a cubic interpolating 
surface for M by 

i) b3ei = Vi for i = 0 , . . . , 2, 

(3.5) ii) b2ei+ej =yi + 0A\\yj-yi\\tij for i,j = 0, . . . ,2 and t ^ j , 

Üi) &1.1.1 = 4 T,ift hei+ej - äHihei-



4 OVERLAPS AND HOW TO AVOID THEM 

On of the main difficulties of the two-dimensional continuation algorithm 
is the detection of overlaps of the successively constructed triangles and the 
way how to deal with them. This problem already exists in the one parameter 
case but is of less importance there. Most pathfollowing programs will run 
into an endless loop if they have to compute a curve as simple as the circle 
5 1 = {y G R2 | \\y\\2 — 1 = 0}. We have to answer the following question: 

"Under which circumstances should an imaginary triangle be con
nected to an already computed point?" 

To answer this question, we think of the triangulation as a locally plane one, 
i.e. a triangulation of the Euclidian plane. Obviously we have to guarantee 
that this simple model is feasible. In order to achieve this, we restrict the 
angles -̂  (Uj,tji) between the normed orthogonal projections i,j of an edge 
yiyj onto the tangent spaces TyiM and TyjM, respectively. More precisely, 
we require these tangents to satisfy 

I V'ij) *•ji) I — ^min j 

or equivalently 
$ (tij,tji) < arccos(amin), 

where we choose a^n := 0.8, corresponding to an maximal angle of about 
arccos(amin) pa 36.8°. 

Now thinking of the triangulation of a plane, one criterion for the connec
tion of triangles is the avoidance of overlaps. As a first rule, an imaginary 
triangle must be connected to an already known vertex y if the imaginary 
triangle and a real triangle, having i / a s a vertex, overlap. Thereby we may 
restrict ourselves to the boundary vertices, i.e. the vertices which belong to 
other imaginary triangles. Hence, in what follows, only these vertices, which 
normally form a small subset of all vertices, are to be taken into account. 
We distinguish three different kinds of overlaps: 

• close overlaps: The imaginary triangle and a neighbouring real triangle 
overlap, see figure 2. 

• distant overlaps: The imaginary triangle and a far, i.e. not neighbour
ing, real triangle overlap, see figure 3. 

• imaginary overlaps: The imaginary triangle and another imaginary 
neighbouring triangle overlap, see figure 4. 
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FIG. 2. Close overlap 

FlG. 3. Distant overlap 

The easiest way to detect these situations is to use the geometrical prop
erties of the barycentric coordinates AT = (A^, A^,Aj) with respect to a 
triangle T = {yojj/ijjte} (see figure 5). A point y € (T) belongs to the trian
gle [T] if and only if all barycentric coordinates Xj(y) are non negativ, i.e. 
XT(y) > 0 componentwise. The straight line pq between two points p, q € (T) 
touches the triangle T if and only if one of the following conditions holds: 

a) XT{p) > 0 or XT(q) > 0, 

b) Xj (p) < 0 for some i € {0,1,2} and Af (q), X%(q) > 0, where {i,j, k} = 
{0,1,2} and T is the triangle T := {p, yj,yk}-

Since two triangles overlap if and only if an edge of one of the triangles 
touches the other triangle, all kinds of overlaps can be detected by these 
means. 

In view of our plane triangulation model we take for arbitrary points y 6 
R n , not necessarily on (T), the barycentric coordinates of the orthogonal 
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FIG. 4. Imaginary overlap 

projection of y onto the triangle plane (T). Of course we have to ensure that 
this projection does not forget the local character of our model. For overlaps 
of neighbouring triangles there is nothing to worry about. For far overlaps 
we have to restrict the distance of the two triangles under investigation. 

5 DETAILS OF IMPLEMENTATION 

In this Section we want to fill in some gaps left in the rough description of 
the algorithm in Section 1. 

Construction of imaginary triangles. To begin with, we will have a closer 
look onto the construction of an imaginary triangle T. Consider the situation 
depicted in figure 6. We have a triangle T on M and want to form a model 
T = {y^ykiV} for a new triangle that fits to the edge e = {yj,yk} of T. 
In Section 3 we constructed the nine parameter interpolant p : (T) —> R n 

corresponding to T, defined on the local parameter plane (T). Thus, to 
compute a guess y for the yet unknown third vertex, we have to choose a 
parameter y €. (T), then taking y — p(y) on the interpolating surface. Let 
t 6 (T) — y0 be the outward normal on the edge e in the parameter plane, 
(t, yk — yj) = 0 and ||t|| = 1, and y := (yj + t/fc)/2 the midpoint of e. We now 
choose the point 

y := y + st 

on the outward normal at y whose distance from y is the prescribed steplength 
s. To determine s we consider the vertices yj and yk which have been com
puted by a Gauss Newton process using the steplenths Sj and Sk. The Gauss 
Newton iterations provide us with the quotients 8j and 9k of the norms of 
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XV2 
Ai < 0 /' \ A0 < 0 

x'yo" -Xyi, 

A 2 <0 

FIG. 5. Geometrical properties of the barycentric coordinates 

the first simphfied and ordinary Gauss Newton corrections. Since the nine 
parameter interpolant preserves the tangent planes at the vertices of T, it 
is feasible to use the factors yfö/ij and y/Ü/fk, known for tangent continua
tion methods, to increase the steplengths Sj and s^. To further simplify the 
steplength strategy (predictor) we now take 

s := mm 
\ 

6 \ 6 

FIG. 6. Construction of an imaginary triangle. 

12 



as the new steplength. To compute the imaginary vertex y = p(y) we use 
Casteljau's algorithm which gives us the Bezier net corresponding to the 
imaginary T as additional information. More precisely, let y0 = y^ yx — yk 

and y2 = y be the vertices of T and let S be the cubic interpolating surface 
defined (explicitly) by p. Then we get the Bezier points {ba}, \a\ = 3, with 
respect to the vertices j / , . In particular, we are given the vertices bsei — y,-
and the tangent vectors b2ei+ej — &3ei € T^S. By i,j € T^S we denote the 
normed tangents 

f . . _ ^2ej+ei ~ ^ e -

In view of our bound for the angles £ (tij,tji) of a triangle on M, we also 
require the "imaginary tangents" t^ to satisfy 

l (*ii ,*j i) | > «min • 

If this condition is violated, we reduce the steplength s before any further 
calculations (e.g. Gauss Newton iterations) are carried out. 

In figure 7 we show the initial triangle and its three imaginary triangles. 
On the left hand side the cubic boundary curves given by the Bezier polygons 
along the edges are plotted. On the right hand side we see the corresponding 
Bezier nets which all describe the same surface S but with respect to the 
four different triangles. 

V- X^ 

F I G . 7. Boundary curves and Bezier nets of the initial triangle and its imaginary triangles 

Projections and barycentric coordinates. Next we describe how to com
pute the barycentric coordinates A,- with respect to a triangle T = {yQ, j/i, J/2}-
An orthonormal basis B = {e!, 62} of the vector space (T) — y0 is given by a 
single orthonormalization step 

Vi-Vo 
d := 

lll/i — S/oll' 
e2 := | y j , where u := j / 2 - y o - ( e i , y 2 - y o ) e i . 
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During these calculations we save the constants 

a := Ibi - 2/o||, ß := (ei,y2 - 2/o), and 7 := ||u||. 

They can be used to transform the cartesian coordinates x,- of a point y = 
yo + Y%=\ xiei iQto the barycentric coordinates Aj, where y — Y^=o ^iVi, and 
vice versa. Since X\ = a\i + ß\2 and x2 = 7A2, we have 

A2 = X2/7, Ai = (xi - ß\2)/ai and A0 = 1 - Ai - A2. 

In addition, we may employ the orthonormal basis B to compute the or
thogonal projection of a point y € R n on the triangle plane (T) by y •-*• 
2/o + I2i=i(y ~ J/0; et)e«j where Xj == (j/ — j/o>et) a r e the cartesian coordinates 
as above. 

Connection of triangles. In order to develop a robust continuation ar-
gorithm, the conditions for overlaps of triangles as outlined in Section 4 have 
to be softened. Therefore we substitute each inequality A,- < 0 for a barycen
tric coordinate A,- by A; < p and similarly A,- > 0 by A,- > —p, where p > 0 is 
some safety factor. In the present implementation we set p := 0.3. 

Now let us consider the following situation of two neighbouring triangles 
T and T' and an imaginary triangle T at the edge e of T (see figure 8). 
Obviously T should be connected to T" to avoid a "thin" triangle correspond-

FlG. 8. Connection of two neighbouring triangles 

ing to the points y0, y,-, y. Thus we have to define under which circumstances 
an imaginary triangle T is connectable to a triangle T' on M. This time we 
use the triangle plane (T) of the imaginary triangle and define a segment 
S C (T) such that T is connectable to T' if the projection of y onto (T) is 
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in S. For the segment S we choose 

S := y = E A^fc Ao > 0 and A,- > ß{\{ - 1) for {i,j} = {1,2} \ . 

where the constant ß determines the width of the sector. The boundary of 
S intersects the line through y0 and yx at A = (1 + ß, 0, —/?), see figure 9. In 
the present implementation we set ß := 1.5. 

FIG. 9. Connection of two neighbouring triangles 

6 NUMERICAL EXAMPLES 

In this section we give some examples showing the two dimensional con
tinuation method at work. Unfortunately we have to present our graphical 
results on a very low level since we had no advanced graphic package for 
three dimensional drawings at hand. So there are no rendered surfaces or 
even hidden lines removed. We hope the pictures are nevertheless able to 
visualize our results. 

EXAMPLE 1. Sphere. As a first and very simple example consider the 
two dimensional sphere 

S2 = {y e R 3 | |M| = 1} = {y e R 3 | f(y) = ||y||2 - 1 = 0 } . 

In this example the stepsize is mainly determined by the restriction of the, 
tangent angles because of the simplicity of the nonlinear equation. 
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FIG. 10. Triangulation of the sphere 

EXAMPLE 2. Equipotential surface. This is another example of a surface 
in three-dimensional space taken from Bloomenthal [5]. The defining function 
/ is given by 

where p, q G R 3 and rp,rq,c € R. Here we have chosen p = (0,0,0), q = 
(0,2,0), rp = rq = 1, c = 1.7 and y0 — (0,-0.8,0) as a first approximate 
solution. The stepsize reductions visible at the "saddle" of the surface are 
again forced by the geometrical difficulty. 

FlG. 11. Triangulation of the equipotential surface 
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EXAMPLE 3. Cusp. This surface, also known as the Whitney pleat, is 
defined by the cubic polynomial equation 

f{y) = f(x, A, p) = x3 - Ax - ft = 0 . 

This examples shows that the algorithm is very easily extended to compute 
the solution set inside a prescribed compact box. For the solution points 
on some face of the box we fix a coordinate and use the Gauss-Newton 
iteration for the mapping restricted to this face. To produce Figure 12 we 
took y0 = (0.1,0.1,0.1) (near the cusp point) as initial guess. 

FIG. 12. Triangulation of the Whitney pleat (cusp) 

EXAMPLE 4. Torus. Next we compute a triangulation for the torus define 
as an implicit surface by (see e.g. Allgower and Gnutzmann [2]) 

/(</) = (||y||2 + R2 - r-2)2 - 4i?2(j/2 + yl) = 0;, 

where R,r € R are the major and minor radii. In Figure 13 we chose R = l, 
r = 0.4 and y0 = (—0.4,1.0,0.1) as initial guess. 

EXAMPLE 5. Continuous stirred tank reactor (CSTR). To show that the 
algorithms is not confined to surfaces in three dimensional space, we consider 
the stationary solutions of a CSTR. According to [13] the steady states of a 
single first order reaction are given by 

• a:i = Da(l - xx )exp I 2 I 
V1 + S2/7/ 

(l + ß)x2 = J g D a ( l - g 1 ) e x p ( 1 *2 . ) + ßc, 
Vl + x2/7y 
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FIG. 13. Triangulation of the torus 

where Da is the Damköhler number, xi the rescaled concentration and x2, 
c, B, ß, 7 denote the dimensionless variables corresponding to temperature, 
cooling temperature, adiabatic temperature rise, heat transfer coefficient and 
activation energy, respectively. For simplicity we only consider the limit case 
7 —* oo and c = 0 (cf. [13]) leading to 

Xi = D a ( l — x ^ e x p ^ ) 

(l + /3)x2 = 5 D a ( l - X ! ) e x p ( x 2 ) . 

Moreover we let ß be constant and end up with a system of two nonlinear 
equations in the variables Xi, x2, Da and B. 

f1(xux2,Da,B) = - x a + D a ( l - x i ) e x p ( x 2 ) 

f2(xi,x2,Da,B) = - ( l + ^)x2 + -SDa( l -x i ) exp(x 2 ) . 

(Of course this system can easily be reduced to a single equation using the 
linear relationship x2 = Bx2/(l + ß), but we take it as it is.) The resulting 
surface is shown in Figure 14 where we chose ß = 0.5 and y0 = (0.1,0.1,0.1,5) 
as initial guess. 

Table I contains the numbers of vertices, edges and triangles computed by 
our method for the given examples. The interested reader may check the 
Euler characteristics to convince himself that there are no double coverings. 
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FIG. 14. Steady solutions of the CSTR, x\ versus B and Da 

example points edges triangles 
sphere 60 174 116 
blobby 153 453 302 
cusp 206 555 350 
torus 273 819 546 
cstr 166 447 282 

TABLE I. Performance of the algorithm 

CONCLUSION 

We have developed a two-dimensional adaptive continuation algorithm 
generalizing the well established ideas for implicitly defined curves to the 
two-dimensional case. We have shown its reliability by means of a few small 
but instructive examples that in particular include the main geometrical dif
ficulties. This is, of course, only a first step. Next we will have to apply 
the method to larger problems of real life applications that we are really 
interested in. 

In addition, there are several theoretical problems left for further inves
tigation. The approximation properties of the nine parameter interpolant 
in the non-parametrized case are not completely understood. In connection 
with the affine invariant convergence results for the Gauss-Newton method 
this will be the key for a less heuristical steplength control. We will cope 
with these questions in more detail in a forthcoming paper. 
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