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Overview

During the past years hospitals saw themselves confronted with increasing economical
pressure (WB06, p. V). Therefore, optimizing the general operational procedures has
gained in importance. The revenue of a hospital depends on the kinds and quantity
of treatments performed and on the e�cient use and utilization of the corresponding
resources. About 25− 50% of the treatment costs of a patient needing surgery incurs in
the operating rooms (WB06, p. 58). Hence skillful management of the operating rooms
can have a large impact on the overall revenue of a hospital. Beliën and Demeulemeester
(BD07) describe the planning of operating room (OR) schedules as a multi-stage process.
In the �rst stage OR time is allocated to the hospitals specialties and capacities and
resources are adjusted. In the second stage a master surgery schedule (MSS) is developed,
that is a timetable for D days that speci�es the amount of OR time assigned to the
specialties on every individual day. After D days this schedule will be repeated without
any changes. Hence, developing an MSS is a long-term problem. Finally, specialties will
schedule speci�c surgeries within their assigned OR time. In this work we will focus on
the development of the MSS that maximizes the revenue of the hospital. Our main focus
will be to ensure that the capacities of the downstream resources, i.e. the bed capacities
in the ICU and ward, will not be exceeded. Additionally, we hope that our formulation
of the problem will lead to a leveled bed demand without signi�cant peaks. We will
incorporate the uncertainty of patient demand and case mix in our model. There have
been several approaches on this subject, for example in (Fü15) and (BD07) and this
work is in part in�uenced by these advances.
In Chapter 1 we start by establishing a model of the processes in a hospital that are

of interest to our problem. This involves de�ning an objective and several constraints.
Then we will �nd linear approximations for some of the constraints, such that we can
�nd a close to optimal solution to our problem by solving two linear programs.
In Chapter 2 we �nd an alternative formulation of the problem as second order cone

program, that can be solved without the need of any approximations.
In Chapter 3 we will test our model with real world data and describe how we han-

dled issues arising from missing data. Then we present the results and simulate the
performance of a hospital using the found MSS.
Finally, in Chapter 4 we evaluate our approach and identify advantages and limita-

tions.
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Notation

Index ∈ Set Description
s ∈ {1, . . . , S} Surgery specialties
d ∈ {1, · · · , D} Days in the MSS cycle

t ∈ {1, . . . , LOSIC/Wmax } Days after surgery that a patient is still in the ICU/ward
l ∈ L = {l1, . . . , lL} Possible lengths of operating hours in the ORs

Parameters Description
rs,l Revenue for assigning OR time of length l to specialty s
cs Capacity of OR sta� of specialty s
CIC/W Bed capacity of the ICU/ ward
NOR Number of operating rooms

LOS
IC/W
max Maximal LOS in the ICU/ward

Random variables Description
Us,l ∈ N Number of patients operated by specialty s during OR

time of length l
Xd,s ∈ N Number of patients operated by specialty s on day d of

the MSS cycle

Y
ICU/W
d,s,t ∈ N Number of patients operated by specialty s on day d

who are still in the ICU/ward t days later

Z
ICU/W
d ∈ N Number of patients in ICU/ward on day d of the MSS

cycle
E[X] Expected value of a random variable X
V[X] Variance of a random variable X

Probabilities Description
P[A] Probability of an event A

p
IC/W
s,t Probability that a patient operated by specialty s is in

the ICU/ward t days after surgery
Φ Cumulative distribution function of the standard normal

distribution

Decision variables etc. Description
yd,s,l ∈ N Number of OR blocks of length l assigned to specialty s

on day d of the MSS cycle
F(P ) Feasible region of the optimization problem (P )
p∗(P ) Optimal value of the optimization problem (P )
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1. Problem Statement

In this thesis we address the problem of �nding a cyclic master surgery schedule (MSS)
ensuring that the bed capacities of the hospital are not exceeded. To do so we link the
assignment of operating room (OR) time to the individual specialties to the number of
patients in the intensive care unit (ICU) and the ward.
To obtain a manageable model of a real world hospital we have to simplify reality as

follows. We model a hospital with S specialties that perform surgeries in NOR operating
rooms. We assume that all surgeries can be performed in any OR. Moreover, we assume
that all specialties share the same ICU and ward. This is reasonable since it is common
practice to compensate bed shortage in one ward by using free resources in the remaining
wards. After surgery all patients in our model �rst pass through the ICU and the ward
before being discharged. This way we can model patients going directly to the ward
after surgery by denoting their length of stay (LOS) in the ICU to 0 days as well as
ambulant patients by denoting their LOS in the ICU and the ward to 0. However, we
neglect the case where a patient is transferred from the ward to the ICU.
We only incorporate planned surgeries in our model and exclude any emergency pa-

tients. On the one hand the hospital cannot in�uence emergencies making these cases
irrelevant for long term planning, apart from determining the amount of OR time and
bed capacity reserved for emergencies. On the other hand (ABD+08) remarks that
uncertainty in patient arrivals leads to less variability in bed demand then the actual
scheduling.
In the model we assign each OR to at most one specialty per day and allow for a �nite

set of di�erent opening hours L. For this we introduce variables yd,s,l ∈ N denoting the
number of ORs open for l hours, that are assigned to specialty s on day d of the MSS.
Throughout the following sections it will be convenient to consider the yd,s,l as a vector
of decision variables and hence we de�ne y ∈ RN with N = DSL:

y :=
(
y1,1,l1 . . . y1,1,lL y1,2,l1 . . . y1,S,lL y2,1,l1 . . . yD,S,lL

)T
. (1.1)

Since hospitals compete economically, MSSs that lead to large revenue for the hospital
are to be preferred. Hence, we will associate a block of theater time assigned to some
specialty with the expected revenue generated during that block and �nally maximize
the overall revenue of the MSS.
Note that the revenue per operating hour in the OR depends on a variety of parame-

ters. On the one hand the revenue is determined by the number of performed surgeries
and the amount of payment per surgery. On the other hand there are more complex pro-
cesses in�uencing the revenue, e.g. if OR time and sta� shifts are not synchronized, this
can lead to high personnel costs. Let rs,l be the revenue to be expected when assigning
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1.1. Constraints on Opening Hours

a OR for l hours to specialty s. For our model we assume that rs,l can be retrieved from
the available data.
Then the objective of our problem is

max
yd,s,l∈N

D∑
d=1

S∑
s=1

∑
l∈L

rs,lyd,s,l.

With our notation from 1.1 and appropriately chosen r ∈ RN this reformulates to

max
y∈NN

rTy. (1.2)

Of course there are restrictions on the MSS and therefore on the yd,s,l. In the following
we will formulate constraints that aim to produce a MSS feasible in a real world setting.

1.1. Constraints on Opening Hours

Without any rules on the assignment of time in the operating rooms to the individual
specialties, the optimal solution with respect to maximizing revenue of the hospital
would be to open all operating rooms as long as possible and only assigning OR time to
the specialty with the highest expected revenue. Of course this solution is not feasible
in reality. On the one hand a hospital cannot select its patients without restriction,
on the other hand OP sta� is limited and can only handle a certain amount of OR
time. Therefore, we need to establish some basic rules on the assignment of OR time to
the specialties to ensure that any specialty can satisfy the demand of patients needing
treatment while keeping overall OR time within bounds that are manageable for the OP
sta�.

1.1.1. Lower Bounds

To ensure that any specialty is assigned a minimum amount of time in the operating
rooms, we model the demand of patients needing surgery by specialty s as a queuing
system where patients arrive with some rate λs and are treated with mean service time
τs. To avoid that the number of patients waiting for treatment by any specialty s grows
to in�nity (GSTH11, p. 9), we require that

λsτs < 1 for all s ∈ {1, . . . , S}. (1.3)

We assume that λs can be obtained from the given data. The mean service time τs
however depends on the number of surgeries performed by specialty s and therefore on
the amount of OR time assigned to this specialty.
Let Xd,s be the number of patients operated by specialty s on day d of the MSS. To

link Xd,s and yd,s,l we let Us,l denote the number of surgeries performed by specialty s
during OR time of length l and obtain

Xd,s =
∑
l∈L

Us,lyd,s,l. (1.4)

9



1. Problem Statement

The value of Us,l depends on the lengths of the particular surgeries scheduled during the
corresponding OR block. The scheduling of speci�c surgeries is a short-term problem
depending on the current demand and not part of the MSS. Therefore, we model Us,l and
Xd,s as random variables and assume that the probability distribution of Us,l is given.
With this we obtain:

1

τs
=

1

D

D∑
d=1

E [Xd,s]

=
1

D

D∑
d=1

∑
l∈L

E [Us,l] yd,s,l

and we can reformulate 1.3 as follows:

λsτs < 1 for all s ∈ {1, . . . , S}

⇔ λs <
1

D

D∑
d=1

∑
l∈L

E [Us,l] yd,s,l for all s ∈ {1, . . . , S}

⇔ ALBy ≤ bLB (LB)

for appropriately chosen ALB ∈ RS×N and bLB ∈ RS. Hence, we obtain one linear
constraint per specialty for the decision variable y.

1.1.2. Upper Bounds

Another naturally occurring constraint concerns the number of available operating rooms.
Of course any operating room cannot be assigned to more than one specialty simulta-
neously. Since we only allow the assignment of ORs for whole days this constraint can
be formulated as ∑

s,l

yd,s,l ≤ NOR for all d ∈ {1, . . . , D}.

Again we can simplify this constraint to

AUBy ≤ bUB (UB)

by choosing appropriate AUB ∈ RD×N and bUB ∈ RD.
For now we will not consider any constraints regarding the OR sta� of the individual

specialty and hence assume that every specialty has enough sta� to satisfy the demand
induced by the �nal MSS or that if necessary, additional sta� can by hired in advance.
However, one could alter the model by additionally requiring that∑

d,l

lyd,s,l ≤ cs for all s ∈ {1, . . . , S}. (1.5)

to ensure that the weekly work load of the OP sta� of specialty s does not exceed its
capacity cs ∈ R>0.
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1.2. Constraint for Bed Capacity

1.1.3. Weekends

Usually hospitals will avoid to schedule surgeries on weekends and only perform urgent
procedures to keep the work load small on weekends.
Therefore, we consider D ⊂ {1, . . . , D} to be days of the weekends and require

yd,s,l = 0 for all d ∈ D, s ∈ {1, . . . , S}, l ∈ L. (WE)

This constraint leads to irregularities in the amount of patients arriving in ICU and
ward. Since we hope to �nd a MSS that avoids large peaks in bed demand in the ICU
and the ward, it will be interesting to investigate the impact of this constraint on the
number of patients.

1.2. Constraint for Bed Capacity

Apart from maximizing the hospital's revenue, another main focus of this work is to
ensure that the MSS we �nd will not lead to bed shortage in the ICU or the ward.
For this we will now formulate a constraint that only allows for surgery schedules with
a small probability of patient over�ow. We will assume that the number of patients
in the ICU is independent of the number of patients in the ward which simpli�es our
considerations and allows for independent constraints for ICU and ward. From now on
all considerations concentrate on the ICU and work analogously for the ward.
Let ZIC

d be the demand of beds in the ICU on day d of the surgery schedule. Ulti-
mately, we want to obtain a constraint that gives an upper bound for the probability of
ZIC
d exceeding the number of available beds in the ICU. For this we will link the value

of ZIC
d to the yd,s,l.

Recall from Section 1.1.1 the random variable Us,l for the number of surgeries per-
formed by specialty s during OR time of length l and the random variable Xd,s for the
number of patients operated by specialty s on day d of the MSS. By 1.4 and since the
number of surgeries during di�erent OR sessions are independent, the expected value
and variance of Xd,s can be calculated as follows:

E [Xd,s] =
∑
l∈L

E [Us,l] yd,s,l, (1.6)

V [Xd,s] =
∑
l∈L

V [Us,l] yd,s,l. (1.7)

Let Y IC
d,s,t be the number of patients operated on day d by specialty s, who are still in

the ICU t days later and let pICs,t be the probability that a patient operated by specialty
s is still in the ICU t days after surgery. More precisely, t = 0 denotes the day of surgery
and ps,0 is the probability that a patient has to go to the ICU after surgery. We assume
that pICs,t can be obtained from given data. Then the random variable Y IC

d,s,t follows the

binomial distribution Bin
(
Xd,s, p

IC
s,t

)
or expressed di�erently:

Y IC
d,s,t| (Xd,s = n) ∼ Bin

(
n, pICs,t

)
. (1.8)
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1. Problem Statement

By the law of total expectation we obtain

E[Y IC
d,s,t] = E[E[Y IC

d,s,t|Xd,s]]

= E[Xd,sp
IC
s,t ]

= pICs,tE[Xd,s]

=
∑
l∈L

pICs,tE[Us,l]yd,s,l

and the law of total variance implies

V[Y IC
d,s,t] = E[V[Y IC

d,s,t|Xd,s]] + V[E[Y IC
d,s,t|Xd,s]]

= E[Xd,sp
IC
s,t (1− pICs,t )] + V[Xd,sp

IC
s,t ]

= pICs,t (1− pICs,t )E[Xd,s] + pICs,tV[Xd,s]

=
∑
l∈L

(
pICs,t (1− pICs,t )E[Us,l] + pICs,tV[Us,l]

)
yd,s,l.

Now we can calculate the number of patients who are in the ICU on day d of the MSS.
Let LOSICmax denote the maximal length of stay in the ICU. We add up all patients who
have had surgery at most LOSICmax days prior to day d and are still in the ICU, starting
with patients that have had surgery on day d and stay at least one day in the ICU:

ZIC
d =

LOSICmax∑
t=0

S∑
s=1

Y IC
((d−t) (mod D)),s,t. (1.9)

Again the numbers of patients from di�erent blocks left on day d are independent,
hence

E[ZIC
d ] =

LOSICmax∑
t=0

S∑
s=1

E[Y IC
((d−t) (mod D)),s,t]

=

LOSICmax∑
t=0

S∑
s=1

∑
l∈L

pICs,tE[Us,l]y((d−t) (mod D)),s,l. (1.10)

With

T ICd,k := {t ∈ {0, . . . , LOSICmax}|(d− t) (mod D) = k},

m̃IC
d,s,k,l :=

∑
t∈T ICd,k

pICs,tE[Us,l]

we can see that the expected value of ZIC
d is a linear combination of the yd,s,l:

E[ZIC
d ] =

D∑
k=0

S∑
s=1

∑
l∈L

m̃IC
d,s,k,lyd,s,l

= yTmIC
d (1.11)
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1.2. Constraint for Bed Capacity

for appropriately chosen mIC
d ∈ RN .

Additionally, we de�ne

ṽICd,s,k,l :=
∑
t∈T ICd,k

pICs,t (1− pICs,t )E[Us,l] + pICs,tV[Us,l]

and obtain the variance of ZIC
d :

V[ZIC
d ] =

LOSICmax∑
t=0

S∑
s=1

V[Y IC
((d−t) (mod D)),st]

=

LOSICmax∑
t=0

S∑
s=1

∑
l∈L

(
pICs,t (1− pICs,t )E[Us,l] + pICs,tV[Us,l]

)
y((d−t) (mod D)),s,l

=
D∑
k=0

S∑
s=1

∑
l∈L

ṽICd,s,k,lyd,s,l

= yTvICd ,

again for appropriately chosen vICd ∈ RN . Note that it is reasonable to assumemIC
d , vICd >

0, because E[Us,l] ≥ 1 and usually pICs,t > 0 for all t ≤ D.
The Berry�Esseen theorem states that we can approximate the distribution of ZIC

d by
a normal distribution with the same mean and variance (Fel71, p.544):

ZIC
d ∼ N

(
yTmIC

d , yTvICd
)
. (1.12)

To ensure that the number of patients in the ICU on day d will not exceed the number
of available beds CIC we formulate the following chance constraint:

P[ZIC
d ≤ CIC ] ≥ 1− αIC (1.13)

for some 0 < αIC � 1. Let Φ denote the cumulative distribution function of the standard
normal distribution. Note that Φ is monotone, hence 1.13 is equivalent to

Φ

(
CIC − yTmIC

d√
yTvICd

)
≥ 1− αIC

⇔ CIC − yTmIC
d√

yTvICd
≥ Φ−1(1− αIC)︸ ︷︷ ︸

=:φ
αIC

⇔ CIC − yTmIC
d ≥ φαIC

√
yTvICd . (1.14)

Since φαIC
√
yTvICd ≥ 0, it follows that CIC − yTmIC

d ≥ 0 and therefore 1.14 is equiv-
alent to (

CIC − yTmIC
d

)2 ≥ φ2
αICy

TvICd and CIC − yTmIC
d ≥ 0. (1.15)
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1. Problem Statement

Analogously, we obtain constraints for the ward and �nally have the following opti-
mization problem:

(P ) max
y∈NN

rTy

subject to ALBy ≤ bLB

AUBy ≤ bUB(
Ci − yTmj

d

)2 ≥ φ2
αjy

Tvjd for d ∈ {1, . . . , D}, j ∈ {IC,W}
Cj − yTmj

d ≥ 0 for d ∈ {1, . . . , D}, j ∈ {IC,W}
yd,s,l = 0 for d ∈ D, s ∈ {1, . . . , S}, l ∈ L

The quadratic constraints are not convex but a simulation suggests that they are
close to linear on the positive quadrant. Thus, our next step is the linearization of these
constraints to obtain a linear approximation of the problem (P ).

1.2.1. Linearization of the Chance Constraint

In Section 1.2 we found a quadratic formulation for the bed capacity constraints. Now
we want to approximate each of the quadratic constraints by two linear constraints, one
that extends the feasible region of (P ) and hence possibly allows for solutions that are
not feasible for (P ) and one that truncates the feasible region, hence possibly missing
the optimal solution of (P ). In this way we obtain a lower and upper bound on the
optimal value of (P ).
Since all considerations apply equally to all days and to the ICU as well as the ward,

the superscripts �IC� and �W� and all subscripts will be dropped in this section. This
simpli�es the notation of the chance constraint 1.15 to(

C − yTm
)2 ≥ φ2yTv and C − yTm ≥ 0. (1.16)

and we consider the following relaxation of (P ):

(Q) max
y∈RN≥0

rTy

subject to
(
C − yTm

)2 ≥ φ2yTv

C − yTm ≥ 0.

To learn more about the feasible region of (Q) we start by reformulating the quadratic
constraint of 1.16: (

C − yTm
)2 ≥ φ2yTv

⇔ C2 − 2CmTy + (mTy)2 ≥ φ2yTv

⇔ yTmmTy −
(
2CmT + φ2vT

)
y ≥ −C2. (1.17)
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1.2. Constraint for Bed Capacity

The matrix mmT is symmetric positive semide�nite implying that

K := {y |
(
C − yTm

)2 ≤ φ2yTv}

is the sublevel set of a convex function and therefore convex (BV04, p.71, p.75). Now we
check whether ∂K has any intersections with the coordinate axes. To �nd intersections
with the i-th axis we set yj = 0 for all j 6= i. As mentioned before it is reasonable to
assume m > 0, thus for y ∈ ∂K the following must hold:

(C − yimi)
2 = φ2yivi

⇔ y2
i + (−2Cmi − φ2vi)

1

m2
i

yi +
C2

m2
i

= 0

⇔ yi =
C

mi

+
φ2vi
2m2

i

±

√(
C

mi

+
φ2vi
2m2

i

)2

− C2

m2
i

(1.18)

⇔ yi =
C

mi

+
φ2vi
2m2

i︸ ︷︷ ︸
>0

±

√(
2C

mi

+
φ2vi
2m2

i

)
φ2vi
2m2

i︸ ︷︷ ︸
>0

. (1.19)

Since the radicand of the root is strictly positive, ∂K has two intersections with any
axis and we de�ne

y−i
1.19
:=

C

mi

+
φ2vi
2m2

i

−

√(
2C

mi

+
φ2vi
2m2

i

)
φ2vi
2m2

i

y+
i

1.18
:=

C

mi

+
φ2vi
2m2

i

+

√(
C

mi

+
φ2vi
2m2

i

)2

− C2

m2
i

.

It is straightforward that the intersection of the linear constraint from 1.16 with the i-th
coordinate axis C

mi
lies in between y−i and y+

i :

y+
i >

C

mi

=
C

mi

+
φ2vi
2m2

i

−

√(
φ2vi
2m2

i

)2

> y−i for all i. (1.20)

Furthermore, we note the following:

y−i > 0 ⇔ C

mi

+
φ2vi
2m2

i

>

√(
2C

mi

+
φ2vi
2m2

i

)
φ2vi
2m2

i

⇔
(
C

mi

+
φ2vi
2m2

i

)2

>

(
2C

mi

+
φ2vi
2m2

i

)
φ2vi
2m2

i

⇔
(

2C

mi

+
φ2vi
2m2

i

)
φ2vi
2m2

i

+
C2

m2
i

>

(
2C

mi

+
φ2vi
2m2

i

)
φ2vi
2m2

i

⇔ C2

m2
i

> 0.
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1. Problem Statement

Since we assume C,mi > 0, we have y−i > 0 for all i, therefore the chance constraint will
look somewhat like Figure 1.1 where the feasible region is outside of K and below the
linear constraint.

Figure 1.1.: Sketch of the chance constraint

Note that Figure 1.1 is merely a sketch and can be misleading since the matrix mmT

in 1.17 has rank 1 implying that K is unbounded. However, unboundedness of K is of
no concern for the following considerations.

Optimistic Linearization

First we aim to replace the quadratic constraints in (Q) by a linear one such that the
feasible region is extended. More precisely, we consider

(Q+) max
y∈RN≥0

rTy

subject to aT+y ≤ 1

C − yTm ≥ 0 (LC)

and search for a+ ∈ RN such that F(Q) ⊆ F(Q+), where F(Q) and F(Q+) denote the feasible
region of optimization problems (Q) and (Q+) respectively.
The idea is to use the smaller intersections y−i of ∂K with the axes to span a hyper-

plane. Since K is convex, this hyperplane will truncate K, while ensuring all points
feasible for (Q) will still be feasible for (Q+) (see �gure 1.2).

16



1.2. Constraint for Bed Capacity

Figure 1.2.: Sketch of the optimistic approximation of the chance constraint

Now we de�ne the hyperplane that contains all y−i as:

H+ := {y | aT+y = 1},

where (a+)i = 1
y−i

> 0. Then by convexity of K we have H+ ∩ R≥0 = conv{y−i } ⊆ K

and F(Q) ⊆ F(Q+). Hence, if p
∗
(Q) is the optimal value of the optimization problem (Q),

it holds that p∗(Q) ≤ p∗(Q+). Also note that by 1.20 y−i is smaller than the intersection

of the linear constraint (LC) of (Q) with the i-th axis implying that (LC) is redundant.
Therefore, we de�ne a new linear integer program by omitting the linear parts of the
chance constraints and replacing each of the quadratic constraints in (P ) by a linear
approximation as described above:

(P+) max
y∈NN

rTy

subject to ALBy ≤ bLB

AUBy ≤ bUB(
aj+,d

)T
y ≤ 1 for d ∈ {1, . . . , D}, j ∈ {IC,W}

yd,s,l = 0 for d ∈ D, s ∈ {1, . . . , S}, l ∈ L.

Conservative Linearization

Now we want to �nd another linear approximation of the quadratic constraint such that
the feasible region of (Q) is truncated.

17



1. Problem Statement

For this we can use any supporting hyperplane for K in any point in ∂K ∩ F(Q). We
choose the supporting hyperplane in a point of the form(

x, . . . , x
)T ∈ ∂K. (1.21)

To �nd the corresponding x ∈ R>0 we calculate the following:(
x, . . . , x

)T ∈ ∂K
⇔

(
C − x

∑
i

mi︸ ︷︷ ︸
=:M

)2

= φ2x
∑
i

vi︸ ︷︷ ︸
=:V

⇔ x2 − x
(
2CM + φ2V

) 1

M2
+
C2

M2
= 0

⇔ x =
2CM + φ2V

2M2
±

√
(2CM + φ2V )2

4M4
− C2

M2
(1.22)

⇔ x =
2CM + φ2V

2M2
± φ

2M2

√
4CMV + φ2V 2 (1.23)

⇔ x =
C

M
+
φ2V

2M2
± φ

2M2

√
4CMV + φ2V 2︸ ︷︷ ︸

≥0

.

We are interested in the solution that is closest to the origin since we want to exclude
all of K from the feasible region, hence we de�ne

ŷ :=
(
x−, . . . , x−

)T
with x−

1.23
:=

2CM + φ2V

2M2
− φ

2M2

√
4CMV + φ2V 2

to be the point for which we seek a supporting hyperplane H− (see Figure 1.3). Note
that by 1.22 we have

x− =
2CM + φ2V

2M2
−

√
(2CM + φ2V )2

4M4
− C2

M2

>
2CM + φ2V

2M2
−

√
(2CM + φ2V )2

4M4

= 0

If ∂K ∩ RDSL
≥0 is the graph of a di�erentiable convex function, the tangent space of ∂K

in ŷ is a supporting hyperplane for K. We will now look for a function

f : RDSL−1
≥0 → R (1.24)

ȳ 7→ f (ȳ) s.t.

(
f (ȳ)
ȳ

)
∈ ∂K. (1.25)

Let mi and vi be the i-th entry of m and v respectively. To simplify the notation for

the following calculations we de�ne m̄ :=
(
m2, . . . ,mN

)T
and v̄ :=

(
v2, . . . , vN

)T
.
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1.2. Constraint for Bed Capacity

Figure 1.3.: Sketch of the conservative approximation of the chance constraint

(
y1

ȳ

)
∈ ∂K

⇔
(
C −

(
m1y1 + m̄T ȳ

))2
= φ2

(
v1y1 + v̄T ȳ

)
⇔ m2

1y
2
1 −

(
2m1

(
C − m̄T ȳ

)
+ φ2v1

)
y1 +

(
C − m̄T ȳ

)2 − φ2v̄T ȳ = 0

⇔ y1 =
2m1

(
C − m̄T ȳ

)
+ φ2v1

2m2
1

±

√(
2m1 (C − m̄T ȳ) + φ2v1

2m2
1

)2

− (C − m̄T ȳ)2 − φ2v̄T ȳ

m2
1

⇔ y1 =
2m1

(
C − m̄T ȳ

)
+ φ2v1

2m2
1

± φ

m1

√(
C − m̄T ȳ

)
v1

m1

+
φ2v2

1

4m2
1

+ v̄T ȳ︸ ︷︷ ︸
=:g(ȳ)

(1.26)

We are only interested in the behavior of f on the set

dom(f) := {ȳ ∈ RN−1
>0 |(f(ȳ)T , ȳ)) is feasible for (Q)}.

To ensure that the expression in 1.26 is de�ned it is su�cient to verify that C−m̄T ȳ ≥ 0
for ȳ ∈ dom(f). Remember that mTy is the expected bed demand (see 1.11) and note
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1. Problem Statement

that m̄T ȳ < mTy for y ∈ RN
>0. As long as we choose α < 0.5, any y with C −mTy < 0

must be infeasible for our problem (Q) (see 1.13). Hence, 1.26 is de�ned and since we
aim to �nd a linear constraint that excludes all of K from the feasible region, we choose

f : dom(f)→ R with

f(ȳ) :=
2m1

(
C − m̄T ȳ

)
+ φ2v1

2m2
1

− φ

m1

√
(C − m̄T ȳ) v1

m1

+
φ2v2

1

4m2
1

+ v̄T ȳ. (1.27)

to parametrize ∂K. Then f is a convex function and di�erentiable in the interior of
dom(f). Note that by de�nition ŷ ∈ ∂K and with ŷ > 0 we have that (f(ŷ), ŷ)T is in
the interior of dom(f). To determine the tangent space of f at ŷ we consider

γi : (−ε, ε)→ ∂K

t 7→
(
f (zi(t))
zi(t)

)
,

with zi(t) = (x−, . . . , x−)T + tei ∈ RN−1
≥0 , i = 1, . . . , N − 1 where ei denotes the i-th unit

vector and ε > 0 is small enough such that zi(±ε) is in the domain of f . Then γi(0) = ŷ
for all i and therefore

wi =
dγi
dt

(0) (1.28)

=

(
d
dt

(f ◦ zi)(0)
z
′
i(0)

)
(1.29)

=

(
∇f(zi(0))T z

′
i(0)

z
′
i(0)

)
(1.30)

=

( ∂f
∂yi

(
(x−, . . . , x−)T

)
ei

)
(1.31)

is a tangent vector at ŷ. The normal vector a− of the desired hyperplane needs to be
perpendicular to all tangent vectors:

(a−)T wi = 0 for all i = 1, . . . , N − 1

⇔ (a−)i
∂f

∂yi

(
(x−, . . . , x−)T

)
+ (a−)i = 0 for all i = 1, . . . , N − 1. (1.32)

If we choose (a−)i = 1, then from 1.32 it follows that

(a−)i = − ∂f
∂yi

(
(x−, . . . , x−)T

)
and hence

a− =

(
1

−∇f
(
(x−, . . . , x−)T

)) .
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1.2. Constraint for Bed Capacity

Finally, we calculate the gradient of f from 1.27:

∇f(ȳ) = − 1

m1

m̄−
(
v̄ − v1

m1

m̄

)
φ

2m1

√
(C−m̄T ȳ)v1

m1
+

φ2v21
4m2

1
+ v̄T ȳ

. (1.33)

The hyperplane H− := {y | aT−y = b−} is supposed to be supporting for K, therefore we
choose b− such that

b− := (a−)T ŷ. (1.34)

By (BV04, p.77) a− is an inward pointing normal on the epigraph of f . By de�nition
of f it holds that K∩RN

>0 is a subset of the epigraph of f . Since no point of K is allowed
to be feasible for our conservative linearization of (Q) and a− is inward pointing for K,
the linear approximation of the quadratic constraint must be

aT−y ≤ b−. (1.35)

Hence, we replace every quadratic constraint of (P ) by one constraint of the form 1.35.
Again, this causes the linear part of the chance constraint to be redundant since the
intersections of H− with the coordinate axes are even smaller then the ones of H+ and
we obtain the conservative linear problem

(P−) max
y∈NN

rTy

subject to ALBy ≤ bLB

AUBy ≤ bUB(
aj−,d

)T
y ≤ bj−,d for d ∈ {1, . . . , D}, j ∈ {IC,W}

yd,s,l = 0 for d ∈ D, s ∈ {1, . . . , S}, l ∈ L.

and we have p∗(P ) ≥ p∗(P−).

To �nd a close to optimal solution for (P ) only using linear programs, we can now
solve the LPs (P+) and (P−). The solution y∗ of (P−) will also be feasible for (P ) and
with the optimal value of (P+) we can evaluate the quality of y∗ as solution for (P ).
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2. Formulation as an Second-Order

Cone Program

Another possibility to model our problem is to use binary decision variables. As we
will see, this makes it possible to formulate the chance constraints as second-order cone
(SOC) constraints without any need to linearize the chance constraints.

De�nition 2.1 (Second-order cone constraint). (BV04, p. 156)
Let y ∈ Rn be an optimization variable, A ∈ Rk×n, b, c ∈ Rn and d ∈ R. A constraint of
the form

‖Ay + b‖2 ≤ cTy + d

is called second-order cone constraint.

To formulate the chance constraint 1.14 in this way we use the same notation as before
and introduce new variables ud,s,l,i ∈ {0, 1} such that:

yd,s,l =
∞∑
i=1

2i−1ud,s,l,i. (2.1)

Recall that NOR is the number of available operating rooms and hence for every feasible
solution y we have yd,s,l ≤ NOR = 2log2(NOR) < 2blog2(NOR)c+1. With k := blog2(NOR)c we
can thus simplify 2.1 to

yd,s,l =
k+1∑
i=1

2i−1ud,s,l,i

or equivalently

y = Bu,

where

B =


20 . . . 2k 0 . . . 0 0 . . . . . . 0
0 . . . 0 20 . . . 2k 0 . . . . . . 0
...

. . .
...

0 . . . . . . 20 . . . 2k

 ∈ RN×N(k+1)

and

u =
(
u1,1,l1,1 . . . u1,1,l1,k+1 u1,1,l2,1 . . . u1,1,lL,k+1 u1,2,l1,1 . . . uD,S,lL,k+1

)T
.
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Then 1.14 with the simpli�ed notation as before reformulates to

C − (Bu)Tm ≥ φ
√

(Bu)Tv

⇔ C − uT
(
BTm︸ ︷︷ ︸

=:m̂

)
≥ φ

√
uT
(
BTv︸︷︷︸
=:v̂

)
.

Now note that with σi :=
√
v̂i and since u is binary the following holds:

uT v̂ =
k+1∑
i=1

uiv̂i =
k+1∑
i=1

u2
iσ

2
i =

∥∥∥∥∥∥∥
 u1σ1

...
uN(k+1)σN(k+1)


∥∥∥∥∥∥∥

2

2

and we obtain the constraint∥∥∥∥∥∥∥
 u1σ1

...
uN(k+1)σN(k+1)


∥∥∥∥∥∥∥

2

≤ C − uT m̂
φ

. (2.2)

If we de�ne

ASOC :=

σ1

. . .

σN(k+1)


we can reformulate 2.2 to the SOC constraint

‖ASOCu‖2 ≤
C − uT m̂

φ
. (2.3)

Finally, we formulate our original problem by replacing every chance constraint of (P )
by a constraint of the form 2.3:

(SOCP ) max
u∈{0,1}N(k+1)

(
BT r

)T
u

subject to ALBBu ≤ bLB

AUBBu ≤ bUB∥∥AjSOC,du∥∥2
≤ Cj − uT m̂j

d

φαj
for d ∈ {1, . . . , D}, j ∈ {IC,W}

ud,s,l,i = 0 for d ∈ D, s ∈ {1, . . . , S}, l ∈ L,
i ∈ {1, . . . , k + 1}.
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3. Case Study

In this chapter we will apply the model described in Chapter 1 to a real world setting.
More precisely, we will use data collected in a real hospital to determine all parameters
needed to formulate our model and then use the linear programs (P+) and (P−) as well
the exact formulation (SOCP ) from Chapter 2 to �nd the optimal MSS for this hospital.
We hope to �nd an MSS with a cycle length of seven days that ensures a certain

amount of surgeries can be performed, the speci�ed bed capacities are not exceeded and
at the same time leads to a more leveled utilization in the ICU and the ward than the
MSS used by the hospital.

3.1. Data

The data used originates from a data collection over 2192 days at Charité Campus
Virchow-Klinikum in Berlin. At this hospital there are eight specialties performing
surgeries.
For each patient receiving surgery during the period of data collection the dates of

admission and release as well as the responsible specialty are known. From this we
calculated distributions for the total length of stay of the patients of each specialty (see
Figure 3.1).

Figure 3.1.: Distribution of the total LOS for two specialties

We did not have any information about whether the patients had to go to the ICU
and how long they stayed there. For our model we distinguished between the ICU and
the ward, hence it is essential to have separate distributions for the two locations. In
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3.1. Data

Appendix A we describe our approach to generating separate distributions for the ICU
and the ward from the distribution of the total LOS.
At the Virchow hospital the surgeons predict the duration of every surgery they plan

to perform. The data included one distribution per specialty showing how often surgeries
of a speci�c length where planned .

Figure 3.2.: Distribution of the planned surgery durations for two specialties

Despite the data lacking information about the number of surgeries performed during
OR time of speci�c lengths we are able to estimate the needed data based on the planned
durations (see Appendix B). This gives us reasonable values for E[Us,l] required for the
constraint (LB) for the lower bound on the OP hours. For the same constraint we need
a value for λs, the mean arrival rate of the patients of each specialty s. This can be
calculated by

λs =
Number of patients of specialty s

Length of period of data collection
.

The number of patients who received treatment by specialty s is easily recovered from
the given data.
After gathering all parameters for (LB) we realized that for the problem (P ) to be

feasible the hospital would need an unrealistically large number of operating rooms NOR.
Therefore, we decided to set

λs =
3

4
· Number of patients of specialty s
Length of period of data collection

.

As described in the beginning of Chapter 1 we will exclude emergency surgeries from
our model, hence setting λs like this might even be more accurate and together with
NOR = 20 the constraints (LB) and (UB) allow for a non-empty feasible region.

To obtain the vectors m
IC/W
d and v

IC/W
d for the chance constraint 1.14 we use the

probabilities p
IC/W
s,t as generated in Appendix A and E[Us,l] and V[Us,l] estimated as in

Appendix B. Additionally, we have to choose αIC/W , the probability of exceeding the
bed capacity in the ICU/ward. We assume that bed shortage in the ICU is worse than
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3. Case Study

in the ward and set αIC = 1% and αW = 2%. We have no information about the bed
capacity of Virchow hospital, hence our approach on �nding reasonable CIC/W was to
choose values such that neither the chance constraints nor (UB) are redundant. We
found that CIC = 420 and CW = 250 do as desired. In Figure 3.3 we see the �rst two
dimensions of the constraints resulting from the chosen parameters.

Figure 3.3.: Plot of dimension 1 and 2 of the constraints

As one can see, the chance constraints cannot be distinguished from the corresponding
linearizations, suggesting errors induced by the linearization will be minor. If we zoom
in on a small section of Figure 3.3 we can at least di�erentiate between the chance
constraint and its conservative linearization (see Figure 3.4).

Figure 3.4.: Close up of one chance constraint and its linearizations

The feasible region in Figure 3.3 is between the lower and the upper bound for the
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3.1. Data

(a) Dimensions 11 and 155 (b) Dimensions 8 and 164

Figure 3.5.: Di�erent dimensions of the constraints

opening hours, while the chance constraints seem to be redundant. Figure 3.5 however
suggests that the chance constraints are indeed not redundant.

Finally, we have to decide on the allowed opening hours L and the revenues rs,l. We
choose L = {8, 12, 20} and assume that the specialties generate the same revenue during
OR time of the same length since there is no corresponding data available. Then we
set rs,8 = 0.75, rs,12 = 1 and rs,20 = 1.4. Hence the decision variable y of the problems
(P+) and (P−) has 7 · 8 · 3 = 168 dimensions and both problems have a total number
of 29 linear inequality constraints for the bound on the OP hours and the linearized
chance constraints and 48 linear equality constraints for the weekends. Table 3.1 gives
an overview of our chosen parameters.

Parameter Description Value

S Number of specialties 8
D Number of days in the cycle 7
NOR Number of operating rooms 20
L = {l1, l2, l3} OR block lengths in hours {8, 12,20}
CIC/W Bed capacity in ICU/ward 420/250
rs,l Revenue per OR block of length 8 hours 0.75

12 hours 1.00
20 hours 1.40

αIC/W Allowed probability of overshooting the
bed demand in the ICU/ward 1%/2%

Table 3.1.: Overview of chosen parameters
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3. Case Study

3.2. Results

We solved the linear programs (P+) and (P−) with Gurobi 7.5.2 and CVXPY 0.4.11 on
Python 2.7.14 using the data and parameters described above and obtained two MSSs
visualized in table 3.6. The entries of the table represent the number of operating rooms
assigned to the specialties for the speci�ed length. Note that the MSSs are relatively
sparse, giving a large amount of operating rooms to one specialty on the same day.
Moreover, the two MSSs di�er only marginally and with respect to the objective value
they also perform similarly. The optimistic solution has objective value p∗(P+) = 98.45
while the conservative solution has objective value p∗(P−) = 98.35.

Optimal MSS for (P+)

Monday Tuesday Wednesday Thursday Friday
l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3

s1 3
s2 2 1 9 10
s3 2 5 6 1
s4 6 10 1
s5 3 3 2 5 4
s6 2 4 2
s7 6 1 4 6
s8 1 10

Optimal MSS for (P−)

Monday Tuesday Wednesday Thursday Friday
l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3

s1 3
s2 1 12
s3 3 1 4 7 1
s4 1 6 9 1
s5 3 2 3 1 6 5
s6 5 1 1
s7 6 1 4 6
s8 1 10

Figure 3.6.: Solutions of the linearized problems

Due to the long running time of Gurobi's SOCP solver we were not able to solve the
exact problem (SOCP ). But note that the gap between the objective values of the two
linearizations is small:

p∗(P+) − p∗(P−)

p∗(P−)

≈ 0.1017%
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3.2. Results

and hence the optimal solution of (P+) gives a satisfying solution for (P ) as well and it
is not absolutely necessary to solve (SOCP ).
To evaluate the performance of the found solutions we simulate the processes in a

hospital using the corresponding MSSs to assign OR time to their specialties. For this
we use the distributions obtained in appendix B to determine the number of surgeries
any specialty will perform on a given day. Then for every patient undergoing surgery the
LOS in the ICU and the ward are randomly drawn from the distributions generated in
appendix A. We monitor the number of surgeries performed and the number of patients
in the ICU and the ward over a time span of 2192 days (corresponding to the length of
data collection at Virchow hospital) and obtain the following parameters:

optimistic conservative
revenue 98.45 98.35
mean bed demand ICU 363.30 358.42
variance bed demand ICU 662.74 632.60
mean bed demand ward 203.21 203.88
variance bed demand ward 1090.48 1054.45
mean bed demand total 565.44 562.15
variance bed demand total 2568.15 2429.85
number of patients treated 178127 178301
probability of overshooting capacity ICU 0.5018% 0.0456%
probability of overshooting capacity ward 1.0949% 0.8211%

Surprisingly the number of treated patients for the optimistic MSS is smaller than for
the conservative one. We believe this is caused by our choice of the objective vector r.
Since r just consists of three di�erent values the probability of having multiple optimal
solutions is high. The number of treated patients is not part of the objective and
hence there might be optimal solutions for (P+) that would lead to a larger amount of
performed surgeries. This particular solution for (P+) seems to favor a specialty that
performs surgeries with long durations and long length of stay in the ICU resulting in
fewer procedures overall but a higher mean bed demand in the ICU. One also notes
that for the optimistic solution the variances of the bed demand are higher than for
the conservative solution. This could again result from the fact, that there are multiple
optimal solutions and the variance in bed demand are not considered in the objective
function. Another possible explanation is, that the optimistic linearization of the chance
constraint allows for more freedom in the induced bed demand. Therefore it is not
necessary to use the full capacities at all times to meet the goal of performing su�ciently
many surgeries leading to more variance.
Most importantly, for both MSSs the probabilities of overshooting the bed capacities

in the ICU and the ward are even smaller than anticipated and therefore both give
satisfying solutions to our problem. Then again, this leaves room for improvement.
In �gure 3.7 one can see the bed demand induced by the found MSS. We observe

that the bed demand in the ICU is larger than in the ward. This does not seem to be
realistic and is induced by our approach on �nding separate distributions for the LOS in
the ICU and the ward in appendix A that yields large mean LOSs in the ICU for most
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(a) Bed demand for the optimistic solution (b) Bed demand for the conservative solution

(c) Total bed demand for the optimistic solution (d) Total bed demand for the conservative solution

Figure 3.7.: Simulation of the bed demand induced by our solutions

of the specialties. Note that the simulation starts with empty ICU and ward and builds
up bed demand as more and more patients receive treatment. Hence the �rst days of
the simulated bed demand are biased and were therefore ignored when calculating the
histograms and the moments of the corresponding distributions. Figure 3.8 shows the
bed demand in Virchow hospital maintained from the data. The only available data with
respect to bed demand consisted of the dates of admission and discharge for patients
that arrived and left during the period of data collection but information about patients
who already were in the hospital at the beginning or who had not been discharged
before the end of data collection was missing. This explains the bias in bed demand in
the beginning and end of the plot in �gure 3.8. Again these days were ignored when
calculating histogram and the moments of the distribution.

Comparing �gure 3.7 to the bed demand maintained from the data (�gure 3.8) we see
that overall the bed demand in the simulations is smaller than in reality. This is due
to our choice of the constraint (LB) where we only require our MSS to perform 3

4
of
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3.2. Results

(a) Bed demand (b) Histogram for bed demand

Figure 3.8.: Bed demand in Virchow hospital during the period of data collection

the surgeries that where performed in Virchow hospital. Furthermore the bed demands
induced by our MSSs are very leveled compared to �gure 3.8. Hence our solutions meet
the goal of avoiding peaks in bed demand. To deterministically evaluate the leveling
property of our solutions we consider:

optimistic conservative data
mean bed demand total 565.44 562.15 681.40
variance bed demand total 2568.15 2429.85 9753.62
number of treated patients 178127 178301 220540

Both the optimistic as well as the conservative solution perform more than 80% of the
number of surgeries in the data but the variance in the bed demand in the data is 3.7
times larger than the variance for the optimistic solution and even 4 times larger than
the variance for the conservative solution. Hence compared to the data, our solutions
perform very well in terms of leveling the bed demand.

In subsection 1.1.3 we formulated a constraint prohibiting the assignment of OR time
on the weekends. This way we induced irregularities in the processes of the operating
department. We are interested in the impacts of this constraints on the bed demand.
Figure 3.9 shows the bed demand induced by the conservative solution for a period of
�ve weeks. The minimal bed demands occur on Sundays. After that the bed demand
increases rapidly in the beginning of the new week and slowly during the last weekdays
until it starts decreasing during the weekend. This decrease is of course due to constraint
(WE) and inevitable if no scheduled surgeries are performed during weekends. To explain
the variation in increase during the week we consider the visualization of our solutions in
�gure 3.6 again. The longest OR blocks are only assigned on Mondays and throughout
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Figure 3.9.: Short period of bed demand for the conservative solution

the week the portion of short OR blocks becomes larger. This way the bed demand is
quite leveled during most of the week despite the irregularities in patient arrivals.

3.2.1. Solving the SOCP in Lower Dimensions

We were not able to solve the SOCP formulation of the full problem due to running
time issues. However, we reduced the dimension of the problem by only considering
two of the eight specialties in this case paediatric surgery and neurosurgery. We chose
the same parameters as for the complete problem but reduced the number of operating
rooms to 8 and the number of beds in the ICU and the ward to 90 and 70. Moreover, we
introduced some normally distributed noise to the revenue to face the problem of having
multiple solutions. This approach might also be more realistic, since the generated
revenue probably di�ers amongst the specialties. We were not able to �nd values for
the revenue such that optimistic and conservative solution had di�erent objective values
but by adding noise we found the exact same solutions for (P+), (P−) and (SOCP ).
Again this proves that the linearizations give very good approximations of the chance
constraints for this particular problem.

3.2.2. Leveling OR Sta� Work Load

As we noted before the MSS visualized in �gure 3.6 would not be desirable for a real
world application since it assigns many OR blocks to single specialties on one day. This
would lead to unleveled work load for the OR sta� and therefore increase costs. To
tackle this problem we introduce a simpli�ed version of constraint 1.5:∑

l∈L

yd,s,l ≤ cs for all d ∈ {1, . . . , D}, s ∈ {1, . . . , S}. (3.1)
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This way we give an upper bound for the number of ORs one specialty can occupy on a
single day. Reasonable values for cs are obtained from the MSSs in 3.6:

si s1 s2 s3 s4 s5 s6 s7 s8

csi 1 3 4 4 4 2 4 3
.

With the additional constraints we solve the problems (P+) and (P−) with the param-
eters given in table 3.1 again. As in subsection 3.2.1 we add noise to the objective to
decrease the probability of multiple optimal solutions and obtain the MSSs visualized in
�gure 3.10. As desired these MSSs are not as sparse and distribute the work load of the

Optimal MSS for (P+)

Monday Tuesday Wednesday Thursday Friday
l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3

s1 1 1 1 1 1
s2 1 3 3 3 1 2
s3 2 1 1 1 2 4
s4 3 3 3 3 1 2
s5 4 4 4 4 4
s6 2 2 2 1 1 1
s7 4 4 3 1 2 2 1
s8 2 2 2 1 1 1 1

Optimal MSS for (P−)

Monday Tuesday Wednesday Thursday Friday
l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3 l1 l2 l3

s1 1 1 1 1 1
s2 1 2 3 3 2 1 3
s3 3 2 1 4
s4 4 2 4 3 1 4
s5 1 4 3 1 3 1 4
s6 2 1 1 2 1 1
s7 4 4 3 4
s8 2 1 1 2 3

Figure 3.10.: Solutions of the linearized problems with additional constraints on OR sta�
capacities

OR sta� more evenly throughout the week. Again we simulate the bed demand induced
by the found MSSs producing the following:
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3. Case Study

optimistic conservative
revenue 103.07 102.96
mean bed demand ICU 356.07 357.05
variance bed demand ICU 629.22 453.43
mean bed demand ward 198.74 197.84
variance bed demand ward 1176.42 1188.19
mean bed demand total 556.44 555.52
variance bed demand total 2617.45 2438.42
number of patients treated 174018 172914
probability of overshooting capacity ICU 0.1369% 0.0456%
probability of overshooting capacity ward 0.8669% 1.0036%

The revenue cannot be compared to the solutions before since the objective has been
altered. But we can see that with the additional constraints considerably less patients
where treated while the variance in bed demand increased except for the variance of the
bed demand in the ICU induced by the conservative solution.
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4. Conclusion

The main goal of this work is to �nd a cyclic master surgery schedule that optimizes
a hospital's revenue while ensuring the bed demand in the ICU and the ward will not
exceed the available capacities. In chapter 1 we established a model of the dependencies
between the processes in the OR department and the bed demand in the ICU and
the ward resulting in a non-convex optimization problem. By approximating the non-
convex constraints with linear ones we hoped to obtain tight bounds on the objective
value of the optimal solution to the original problem. We were also able to �nd an SOCP
formulation that is equivalent to the original problem. We analyzed the performance
of our model with real world data in section 3.2. Unfortunately, we were not able to
solve the SOCP formulation due to the long running time of the used solver. However,
the gap between the objective values of the linearized problems is remarkably small
and hence the solution of the conservative linearization gives a satisfying solution for
our problem. Compared to data collected in Virchow hospital the MSS found with our
model performed better with respect to leveling the bed demand and the work load
of nursing sta� in the ICU and the ward. But one needs to consider that our MSSs
only performed under simpli�ed conditions in a simulation and hence we cannot draw
reliable conclusions about the performance of our solution compared the MSS used by
Virchow hospital. By introducing additional constraints on the daily OR time for the
individual specialties we were able to achieve improvements with respect to leveling the
work load of the OR sta� at the price of reducing the total number of surgeries that
can be performed and increasing the variance in bed demand. Overall, we presume that
the MSS found in subsection 3.2.2 by adding said constraints is feasible in a real world
setting and can improve the utilization of the downstream units by leveling the bed
demand in the ICU and the ward without decreasing the revenue generated by the OR
department. However, one should review the performance more detailed by building
a more complex simulation of the processes in a real world hospital that includes for
example the dependencies of surgery duration, LOS in the ICU and LOS in the ward.
Additionally, we faced the obstacle of missing data that had to be generated. Before
implementing our approach in a real world setting one should collect all needed data such
as distributions for the LOS in the ICU and the ward, expected revenue and number of
performed surgeries per OR block, capacities of sta� and other resources, etc.
Moreover, the MSSs found with our approach do not fully utilize the bed capacities,

more precisely the probability of exceeding the capacities in the simulation is smaller
than demanded via the chance constraints. This could on the one hand be due to the
fact that for the formulation of the chance constraint the real distribution of the bed
demand has been approximated by a normal distribution. On the other hand our model
presumes the bed demand in the ICU and the ward to be independent when in reality
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4. Conclusion

these random variables are highly correlated. Hence by considering this correlation it
might be possible to fully utilize the bed capacities, enabling the OR department to
perform more surgeries and increasing the revenue of the hospital.
In section 3.2 we concluded that there probably are multiple solutions that have

similar objective values. If leveling the bed demand is of interest for the hospital, one
should consider including the variance in bed demand in the objective favoring solutions
inducing small variance over slightly greater revenue.
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A. Seperate Distributions for the

LOS in the ICU and the Ward

The available data contained distributions for the LOS after a surgery of any specialty.
However it is lacking information about how many days of his stay a patient spend in
intensive care. For our model it is necessary to have separate distributions for the LOS
in the ICU and the ward.
Let LOStotals , LOSICs and LOSWs be random variables denoting the number of days

a patient of specialty s has to stay in the hospital overall, in the ICU and in the ward
respectively. We want to retrieve reasonable approximations of LOSICs and LOSWs from
the known distribution of LOStotals . We assume LOSICs and LOSWs to be negative
binomially distributed as proposed in (CP14).

De�nition A.1. (DeG75)[p.213�.] Let q ∈ (0, 1) and r ∈ R>0. A random variable X
with the probability mass function

f(k, r, q) = P [X = k] =

{(
k+r−1
k

)
qk(1− q)r, if k ∈ N0

0, otherwise

is called negative binomially distributed and we write X ∼ NB(r, q). The expected value
and variance of X are given by

E[X] =
rq

1− q
and V[X] =

rq

(1− q)2
. (A.1)

Thus in our case we assume:

LOSICs ∼ NB
(
rICs , qICs

)
LOSWs ∼ NB

(
rWs , q

W
s

)
with probability mass functions f ICs = f(·, rIC , qIC) and fWs = f(·, rW , qW ) . Of course
it must hold, that LOStotals = LOSICs + LOSWs . If we assume that LOSICs and LOSWs
are independent, this implies that the probability mass function of the total length of
stay is the discrete convolution of f ICs and fWs :

P
[
LOStotals = k

]
=
(
f ICs ∗ fWs

)
(k). (A.2)

From our data we know the value of P
[
LOStotals = k

]
for any s and k. Hence we search

for rICs , qICs , rWs , q
W
s such that the least squares error of A.2 is as small as possible.
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The optimization of four parameters using the curve_fit function of SciPy version
0.19.0 did not yield acceptable results, therefore we reduced the number of parameters
to be optimized by requiring the distributions of LOStotals and LOSICs +LOSWs to have
the same mean and variance. Since we already assumed LOSICs and LOSWs to be
independent, we know that

E
[
LOStotals

]︸ ︷︷ ︸
:=µLOSs

= E
[
LOSICs

]
+ E

[
LOSWs

]
(A.3)

V
[
LOStotals

]︸ ︷︷ ︸
:=(σLOSs )2

= V
[
LOSICs

]
+ V

[
LOSWs

]
(A.4)

must hold as well. With A.1 we can reformulate A.3 to

µLOSs =
qICs rICs
1− qICs

+
qWs r

W
s

1− qWs

⇔ rICs =

(
µLOSs − qWs r

W
s

1− qWs

)(
1− qICs

) 1

qICs
. (A.5)

Analogously we obtain a representation for rWs . We could proceed by reformulating such
that we �nd representations for rICs and rWs that only depend on qICs and qWs and then
using curve_fit to �nd optimal qICs and qWs . But again this did not yield satisfying
results. Instead we reformulate A.4 to

(
σLOSs

)2
=

qICs rICs
(1− qICs )2 +

qWs r
W
s

(1− qWs )2

⇔ rICs =

((
σLOSs

)2 − qWs r
W
s

(1− qWs )2

)(
1− qICs

)2 1

qICs
(A.6)

and merge A.5 and A.6 to obtain

(
µLOSs − qWs r

W
s

1− qWs

)
=

((
σLOSs

)2 − qWs r
W
s

(1− qWs )2

)(
1− qICs

)
⇔ qICs = 1−

(
µLOSs − qWs rWs

1−qWs

)
(

(σLOSs )2 − qWs rWs
(1−qWs )2

) . (A.7)
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A. Seperate Distributions for the LOS in the ICU and the Ward

Finally we replace qICs in A.5 by its representation in A.7:

rICs =

(
µLOSs − qWs rWs

1−qWs

)2

(σLOSs )2 − qWs rWs
(1−qWs )2

· 1

1−
µLOSs − q

W
s rWs
1−qWs

(σLOSs )2− qWs rWs

(1−qWs )
2

=

(
µLOSs − qWs rWs

1−qWs

)2

(σLOSs )2 − µLOSs + qWs rWs
1−qWs

− qWs rWs
(1−qWs )2

=

(
µLOSs

(
1− qWs

)
− qWs rWs

)2(
(σLOSs )2 − µLOSs

)
(1− qWs )2 − (qWs )2 rWs

. (A.8)

Now we use curve_fit to �nd the optimal values for rWs and qWs . The missing pa-
rameters rICs and qICs can then be calculated by A.7 and A.8 and we obtain distributions
for LOSICs and LOSWs as shown in �gure A.1.

(a) General Surgery (b) Neurosurgery

Figure A.1.: Approximation of the distributions for LOSICs and LOSWs

The success of this approach naturally depends on the compatibility of the negative
binomial distribution and the real data. As one can see in �gure A.1 we can approximate
the total LOS for general surgery, while the approximation for the LOS for neurosurgery
does not �t the real data very well. Also note that exchanging the distributions of LOSICs
and LOSWs does not change the distribution of their sum and is therefore consistent with
our approach. We decided that the probability of a patient having to go the ICU after
a scheduled surgery should be relatively small. Based on this we chose the distributions
such that P

[
LOSICs = 0

]
> P

[
LOSWs = 0

]
.

With our previous considerations we are now able to calculate p
IC/W
s,t , the probability

that a patient of specialty s is in the ICU or the ward t days after surgery. For the ICU,
this is the probability, that a patient has to stay at least t days in the ICU after surgery:

pICs,t = P
[
LOSICs ≥ t

]
. (A.9)
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To be in the ward t days after surgery, a patient must have been t̃ < t days in the ICU
and at least t− t̃ days in the ward:

pWs,t =
t−1∑
t̃=0

f ICs
(
t̃
)
P
[
LOSWs ≥ t− t̃

]
. (A.10)

The distributions obtained by A.9 and A.10 is shown in �gure A.2. Furthermore, pICs,t+p
W
s,t

is our approximation of P
[
LOStotals ≥ t

]
, the probability of a patient having to stay at

least t days in the hospital given by the data. As one can see in �gure A.2 our approach
provides adequate results. In the case of general surgery however, our approach yields a

(a) General Surgery (b) Neurosurgery

Figure A.2.: Approximation of the probability of a patient being in the ICU/ward t days
after surgery

very high probability for a patient to be in the ICU after surgery. Additionally, for some
surgery specialties we observe that the mean of the generated LOS in the ICU is larger
than the mean LOS in the ward. In our model this will ultimately lead to a higher bed
demand in the ICU than in the ward because patients tend to occupy beds in the ICU
for long periods of time. We have no data about how close to reality this behavior is.
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B. Generating Distributions for the

Number of Performed Surgeries

For the formulation of some constraints of our model we need mean and variance of the
random variable Us,l that represents the number of surgeries specialty s can perform
during an OR block of length l. The data however only provided a distribution for the
duration of single surgeries for the individual specialties (see �gure 3.2). To generate
reasonable distributions for Us,l we randomly draw surgery durations from the given
data for specialty s until the combined lengths of the drawn surgeries exceeds the block
length l. This process was repeated 1000 times. This way we obtained distributions for
Us,l as shown in �gure B.1.

Figure B.1.: Distributions for Us,l

This approach is quite greedy and there surely are more intelligent techniques but we
assume that for real world applications distributions for Us,l will be available and hence
did not focus on this problem in the scope of this work.
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