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Abstract

Mixed integer programs (MIPs) are commonly solved with branch
and bound algorithms based on linear programming. The success and
the speed of the algorithm strongly depends on the strategy used to se-
lect the branching variables. Today’s state-of-the-art strategy is called
pseudocost branching and uses information of previous branchings to
determine the current branching.

We propose a modification of pseudocost branching which we call
history branching. This strategy has been implemented in SIP, a state-
of-the-art MIP solver. We give computational results that show the
superiority of the new strategy.

1 Introduction

In this paper we are dealing with mixed integer programs (MIPs), which are
optimization problems of the following form:

c? = min cT x

Ax ≤ b

x ∈ Z
I × R

N\I ,

(1)

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n and I ⊆ N = {1, . . . , n}.

Among the most successful methods are currently linear programming based
branch and bound algorithms where the underlying linear programs (LPs)
are possibly strengthened by cutting planes. For example, most commer-
cial integer programming solvers, see [Sha95], or special purpose codes for
problems like the traveling salesman problem are based on this method. As
we will see below, branch and bound algorithms leave two choices: how to
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split a problem (branching) and which (sub)problem to select next. In this
paper we focus on the branching step and introduce a new branching rule
that performs in most of the cases better than the current rules when tested
on real-world instances.

We use the following notation. XMIP denotes the set of feasible solutions of
(1), and we set c? =∞ if XMIP = ∅. The linear programming relaxation of
(1) is obtained by removing the integrality constraints:

c̄PLP
= min

{

cT x | x ∈ PLP

}

, (2)

where PLP = {x ∈ R
n | Ax ≤ b}. Obviously, c̄PLP

≤ c?, since PLP ⊇ XMIP.

A typical LP based branch and bound algorithm for solving (1) looks as
follows:

Algorithm 1.1 (branch and bound)
Input : A MIP in the form (1).
Output : An optimal solution x? ∈ XMIP and its value c? = cT x? or the
conclusion that XMIP = ∅, denoted by c? :=∞.

1. Initialize the problem set S := {PLP} with the LP relaxation of the
MIP. Set c? :=∞.

2. If S = ∅, exit returning the optimal solution x? with value c?.

3. Choose a problem Q ∈ S and delete it from S.

4. Solve the linear program c̄Q = min{cT x | x ∈ Q} with optimal solution
x̄Q, where Q might have been strengthened by cutting planes.

5. If c̄Q ≥ c?, goto 2.

6. If x̄Q ∈ XMIP, set c? := c̄Q and x? := x̄Q, and goto 2.

7. Branching: Split Q into subproblems, add them to S and goto 3.

In Section 2 we review current branching strategies from literature and in
Section 3 we present our new selection rule. In Section 4 we compare all
strategies on some test problems and we indicate, why the new rule performs
better than those known from literature on the given problem instances.

If it is clear from the context we dispense with the subindex Q of all param-
eters from now on and write c̄, x̄, etc. instead of c̄Q, x̄Q, etc.

2



2 Current Branching Rules

Since branching is in the core of any branch and bound algorithm there is a
huge amount of literature on this topic. We refrain from giving details of all
existing strategies, but concentrate on the most popular rules used in todays
MIP solvers. For a comprehensive study of branch and bound strategies we
refer to [LP79] and [LS99] and the references therein.

The only way to split a problem Q within an LP based branch and bound
algorithm is to branch on linear inequalities in order to keep the property of
having an LP relaxation at hand. The easiest and most common inequalities
are trivial inequalities, i. e., inequalities that split the feasible interval of a
singleton variable. To be more precise, if i is some variable with a fractional
value x̄i in the current optimal LP solution, we set f+

i = dx̄ie − x̄i and
f−

i = x̄i − bx̄ic. We obtain two subproblems, one by adding the trivial
inequality f−

i ≤ 0 (called the left subproblem or left son, denoted by Q−
i )

and one by adding the trivial inequality f+
i ≤ 0 (called the right subproblem

or right son, denoted by Q+
i ). This rule of branching on trivial inequalities

is also called branching on variables, because it actually does not require to
add an inequality, but only to change the bounds of variable i. Branching
on more complicated inequalities or even splitting the problem into more
than two subproblems are rarely incorporated into general MIP solvers, but
turn out to be effective in special cases, see, for instance, [BFM98], [CN93],
or [Nad01]. In the following we focus on the most common variable selection
rules.

The ultimate goal is to find a fast branching strategy that minimizes the
number of branch and bound nodes that need to be evaluated. Since a
global approach to this problem is unlikely, one tries to find a branching
variable that is at least a good choice for the next branching. The quality
of a branching is measured by the change in the objective function of the
LP relaxations of the two sons Q−

i and Q+
i compared to the relaxation of

the parent node Q.

In order to compare branching candidates, for each candidate the two ob-
jective function changes ∆−

i := c̄Q−
i

− c̄Q and ∆+
i := c̄Q+

i

− c̄Q are mapped

on a single score value. This is typically done by using a function of the
form (cf. [LS99])

score(q−, q+) = (1− µ) ·min{q−, q+}+ µ ·max{q−, q+}. (3)

The score factor µ is some number between 0 and 1. It is usually an empiri-
cally determined constant, which is sometimes adjusted dynamically through
the course of the algorithm.

In the forthcoming explanations all cases are symmetric for the left and right
subproblem. Therefore we will only consider one direction, the other will be
analogously.
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2.1 Most Infeasible Branching

This still very common rule chooses the variable with fractional part closest
to 0.5. The heuristic reason behind this choice is that this is a variable
where the least tendency can be recognized to which “side” (up or down)
the variable should be rounded. The hope is that a decision on this variable
has the greatest impact on the LP relaxation.

2.2 Strong Branching

The idea of strong branching, invented by [CPL01] (see also [ABCC95]), is
before actually branching on some variable to test which of the fractional
candidates gives the best progress. This testing is done by temporarily
introducing an upper bound bx̄ic and subsequently a lower bound dx̄ie for
variable i with fractional LP value x̄i, and solving the linear relaxations.

If we choose as candidate set the full set C = {i ∈ I | x̄i 6∈ Z} and if we solve
the resulting LPs to optimality, we call the strategy full strong branching.
In other words, full strong branching can be viewed as finding the locally
(with respect to the given score function) best variable to branch on.

Unfortunately the computation times of full strong branching are prohibitive.
Accordingly all branching rules we present from now on, try to find a (fast)
estimate of what full strong branching actually measures.

One possibility to speed strong branching up, is to restrict the candidate
set in some way, e.g. by considering only part of the fractional variables.
To estimate the changes in the objective function for a specific branching,
often only a few simplex iterations are performed, because the change of the
objective function in the simplex algorithm is usually decreasing with the
iterations. Thus, the parameters of strong branching to be specified are the
size of the candidate set, the maximum number of dual simplex iterations to
be performed on each candidate variable, and a criterion according to which
the candidate set is selected.

2.3 Pseudocost Branching

This is a sophisticated rule in the sense that it keeps a history of the success
of the variables on which already has been branched. This rule goes back
to [BGG+71]. In the meantime various variations of the original have been
proposed and implemented. In the following we present the one used in SIP.
For alternatives see [LS99].

Let ς+
i be the objective gain per unit change in variable i at node Q, that

is
ς+
i = ∆+

i /f+
i . (4)
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Let σ+
i denote the sum of ς+

i over all problems Q, where i has been selected
as branching variable and Q+

i has already been solved, and let η+
i be the

number of these problems.

Then the pseudocosts for the upward branching of variable i are

Ψ+
i = σ+

i /η+
i . (5)

Observe that at the beginning of the algorithm σ+
i = η+

i = 0 for all i ∈ I.
We call the pseudocost value of a variable i ∈ I uninitialized for the upward
branching direction, if η+

i = 0. Uninitialized pseudocosts are set to Ψ+
i =

Ψ+
avg, where Ψ+

avg is the average of the upward pseudocosts over all variables.
The average number is initialized with 0.

A special treatment is necessary, if the subproblems Q+
i is infeasible. In SIP,

an infeasible Q+
i leads to the pseudocost update σ+

i ← σ+
i + κ · Ψ+

avg and

η+
i ← η+

i + 1, where κ is some constant. Now pseudocost branching works
as follows:

Algorithm 2.1 (pseudocost branching)
Input : Actual subproblem Q with an optimal LP solution x̄ /∈ XMIP.
Output : An index i ∈ I of a fractional variable x̄i /∈ Z.

1. Let C = {i ∈ I | x̄i /∈ Z} be the set of branching candidates.

2. For all candidates i ∈ C, calculate the score si = score(Ψ−
i ,Ψ+

i ).

3. Return an index i ∈ C with si = maxj∈C{sj}.

2.4 Hybrid Pseudocost Branching

Even with the limitations indicated at the end of Section 2.2, the compu-
tational burden of strong branching is high, and the higher the speed up,
the less precise the decisions are. On the other hand, the weakness of pseu-
docosts is that at the very beginning there is no information available, and
si is almost identical for all variables. Thus, at the beginning where the
branching decisions are usually the most crucial, the pseudocosts take no
effect.

The following rule, which is called hybrid pseudocost branching tries to cir-
cumvent these drawbacks and to combine the positive aspects of pseudocost
branching and strong branching. The idea, which goes back to [LS99], is to
use strong branching only for variables where no pseudocost values are at
hand and use these strong branching values to initialize the pseudocosts. The
following algorithm describes the changes to Algorithm 2.1 as implemented
in SIP.
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Algorithm 2.2 (hybrid pseudocost branching)
Input : Actual subproblem Q with an optimal LP solution x̄ /∈ XMIP.
Output : An index i ∈ I of a fractional variable x̄i /∈ Z.

1. Let C = {i ∈ I | x̄i /∈ Z} be the set of branching candidates.

2. For all candidates i ∈ C, calculate the score si = score(Ψ−
i ,Ψ+

i ).

3. For all candidates i ∈ C with uninitialized pseudocosts, beginning with
argmini|x̄i − bx̄ic − 0.5|, recalculate the pseudocosts as follows:

(a) Perform a small number of dual simplex iterations on each sub-
problem Q−

i and Q+
i .

(b) Update the pseudocosts (5), but instead of c̄
Q−

i

and c̄
Q+

i

in (4)

use the suboptimal solution values c̃Q−
i

and c̃Q+

i

acquired after

the limited simplex iterations.

(c) Recalculate the score si = score(Ψ−
i ,Ψ+

i ).

(d) If the maximum score maxj∈C{sj} does not change for λ consec-
utive initializations, goto 4.

4. Return an index i ∈ C with si = maxj∈C{sj}.

The parameter λ is some small constant in SIP. Hybrid pseudocost branch-
ing almost always outperforms the standard version, see for instance [LS99,
Mar98, CPL01]. Therefore, we only consider the hybrid strategy for com-
parison from now on.

3 History Branching

As we have seen in the previous section the major tasks for designing a good
branching rule, which predicts the gain in the objective function well,i. e.,
resembles full strong branching, are to decide on the quantities for the pre-
diction and how to initialize and update them. In the following we suggest
some new ideas for these tasks. For the prediction of the gain in the objective
function we define new quantities, which we call history values.

Let η̃+
i denote the number of times strong branching has been applied to

variable i for upward branching. Note that we will allow strong branching
to be performed more than once for each variable in contrast to hybrid
pseudocost branching. Then we calculate similar as in Section 2.3 quantities

Ψ̃+
i = σ̃+

i /η̃+
i , (6)
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where we use in (4) in the numerator the value ∆̃+
i = c̃Q+

i

− c̄Q that we

obtain from strong branching instead of ∆+
i . Now for a given LP solution

x̄ the history value for variable i is defined as

ω+
i =











f+
i α+

i Ψ+
i , if η+

i > 0, (pseudocost)

f+
i α̃+

i Ψ̃+
i , if η+

i = 0, η̃+
i > 0, (strong branching)

f+
i , if η+

i = 0, η̃+
i = 0. (uninitialized)

(7)

The scaling factors α̃+ and α+ in (7) are calculated dynamically in time,
and represent the average scaling factors needed to achieve the correct gain
(which is available after solving a subproblem). This scaling is necessary to
compensate for the fact that ∆̃+

i ≤ ∆+
i due to the limited number of simplex

iterations used.1

In case η+
i = η̃+

i = 0 the computation of the score for variable i is even more
involved than indicated in (7). History values do not only exist for variables,
but we also introduce a global history value and a history value for so-called
classes. The global history value ω+

g is an average of the history values of all
variables, similar to the one used in pseudocost branching. A class is a group
of variables having some common properties.2 A class history value ω+

c is

1 The exact computation of α+ (α̃+ is defined accordingly) is done as follows: Whenever
we decided to branch on some variable i, we keep track of whether the value of the score
function resulted from the strong branching or the pseudocost value. n+ counts the number
of times the score value came from pseudocosts. In addition, we have quantities g+ and
p+ which reflect the sums of the gains and predictions when the pseudocosts determined
the score value. Both are initialized with 0 and updated for a node Q, where i was selected
as branching variable, via

g+ ← τ+ · g+ + (1− τ+) ·∆+

i
, and p+ ← τ+ · p+ + (1− τ+) ·Ψ+

i
.

Note that earlier evaluated nodes are weighted by an exponentially decreasing factor
influenced by τ+, defined as

τ+ = min{
n+

n+ + 1
, τmax}, with τmax ∈ [0, 1].

A maximal weight factor τmax = 1 results in g+- and p+-values resembling exactly the
average gain and prediction of all nodes. SIP uses a value of τmax = 0.995, which leads to
“forgetting” earlier node evaluations and adapting to the situation of the last nodes.

Now the scaling factor is defined as α+ = g+ / p+. The scaling factor for strong branch-
ing α̃+ is determined analogously, where all the above parameters g+, p+, τ+, n+, Ψ+ are
substituted by their corresponding tilde values g̃+, p̃+, τ̃+, ñ+, Ψ̃+.

Observe that the scaling factors α̃+ and α+ are quotients of two average values. A
second, and maybe more natural way of calculating the factors would be taking the average
of the individual quotients. We choose the way described above, because it sets priority
on nodes with large changes in the dual bound. With the latter approach, a quotient with
denominator near zero could easily dominate the whole average quotient.

2 At the moment, the variables are grouped with respect to their name in the model, or
(if the name classification fails) with respect to their objective function coefficient, lower
and upper bounds, and constraint matrix entries. In the future, we plan to link SIP to the
modeling language Zimpl [Koc01], from where the variable classes come out naturally.
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Feature Hybrid Pseudocost History

hierarchy levels 2 levels: variable and global
pseudocosts

3 levels: variable, class, and
global history

infeasible subproblems update pseudocosts don’t update history values

nodes, where prepro-
cessing or strengthen-
ing cuts were applied

update pseudocosts don’t update history values

use of strong branching

information
only for uninitialized pseu-
docost values; no distinction
between values from strong

branching and from solved
subproblems

also for unreliable history en-
tries; values are stored sep-
arately from solved subprob-
lem values and are dynami-
cally scaled

order of candidate
variables for strong

branching evaluation

ordered by decreasing frac-
tionality |x̄i − bx̄ic − 0.5|

ordered by decreasing history
score values, starting with
uninitialized entries

simplex iterations in
strong branching

fixed dynamically adjusted

Table 1. Differences between hybrid pseudocost and history branching.

the average of all ever calculated history values of the variables belonging
to the particular class c. Now the score of variable i is determined from
the values in (7) if η+

i + η̃+
i > 0, otherwise we look at the entry w+

c of the
corresponding class c in case η+

c + η̃+
c > 0 and finally, if the latter condition

does not hold, we use the global history value ω+
g .

Initialization of history values via strong branching is not only performed
for uninitialized history entries, but also for “unreliable” variables. A vari-
able i is called unreliable if η+

i + η̃+
i < ηrel, which is a dynamically adjusted

parameter depending on the number of integer variables |I|. The candidates
are initialized in a decreasing order of their history scores, where variables
with η+

i + η̃+
i = 0, called uninitialized variables, are always initialized be-

fore the unreliable ones. Note that in each branching step at least for a
certain number of uninitialized or unreliable variables strong branching is
performed. For these variables the outcome of strong branching is used in
the actual branching decision.

In updating the history values, we ignore branching results, where one of the
subproblems is infeasible or where node preprocessing or strengthening cuts
where applied at the child nodes, because this would lead to unfair large
gain values in comparison to other nodes.

Nearly all parameters, like the number of simplex iterations used for initial-
izing history values, the maximum number of history entries to be initialized
at one node, or the maximal size ηrel for entries being called unreliable, are
dynamically adjusted depending on measurements like the ratio of total time
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used for branching and total time used for solving LP subproblems. Fur-
thermore, most of the parameters depend on the current node’s depth such
that the effort of strong branching is increased at the upper nodes.

The following Algorithm 3.1 outlines once more the selection of a branching
variable by history values and Table 1 summarizes the main differences to
hybrid pseudocost branching.

Algorithm 3.1 (history branching)
Input : Actual subproblem Q with an optimal LP solution x̄ /∈ XMIP.
Output : An index i ∈ I of a fractional variable x̄i /∈ Z.

1. Let C = {i ∈ I | x̄i /∈ Z} be the set of branching candidates.

2. For all candidates i ∈ C, calculate the score si = score(ω−
i , ω+

i ) and
sort them in non-increasing order of their history score.

3. First for uninitialized and then for unreliable variables i ∈ C do:

(a) Perform a small number of dual simplex iterations on each sub-
problem Q−

i and Q+
i . Let ∆̃−

i and ∆̃+
i be the outcome.

(b) Update the strong branching history values Ψ̃−
i and Ψ̃+

i .

(c) Recalculate the score si = score(α̃−∆̃−
i , α̃+∆̃+

i ).

(d) If at least a certain number of variables has been tried and the
maximum score maxj∈C{sj} has not changed for λ consecutive
initializations, goto 4.

4. Return an index i ∈ C with si = maxj∈C{sj}.

4 Numerical Results

In this section we present computational results of hybrid pseudocost branch-
ing and history branching on several MIP instances. Our test set consists of
those MIPLIB 3.0 [BCMS98] problems, where CPlex 7.5 [CPL01] needs
more than 1000 branching nodes3, and which SIP using history branching
solves in less than 3600 CPU seconds4, which was our time limit in all runs.
Note that SIP also solves all of the excluded small problems except modglob
(2007 nodes) in less than 1000 nodes. And CPlex neither solves one of the
excluded big instances in less than an hour.

3 This excludes 10teams, air03/04/05, dcmulti, dsbmip, egout, fiber, fixnet6,
flugpl, gen, gesa2/3/3 o, gt2, khb05250, l152lav, lseu, misc03/06, mitre, mod008/010,
modglob, nw04, p0033/0201/0282/0548/2756, pp08a/CUTS, qnet1/ o, rentacar, set1ch,
and vpm1

4 This excludes arki001, dano3mip, danoint, fast0507, harp2, markshare1/2, mas74,
noswot, seymour, and swath.
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pseudocost history CPlex 7.5

Example B & B Time B & B Time B & B Time

bell3a 23161 12.3 24153 12.5 24185 19.6

bell5 9498 4.2 35409 14.0 659302 288.3

blend2 4662 9.1 3965 10.2 1884 2.2

cap6000 5201 114.0 3334 70.8 12085 258.8

enigma 2594 0.8 602 0.6 10782 3.2

gesa2 o 193064 2683.6 69336 513.3 1167 5.3

mas76 534909 265.6 451595 235.5 782033 255.0

misc07 118720 452.2 57342 276.0 111859 227.1

mod011 2134 131.5 625 120.1 7877 3039.0

pk1 332534 184.3 316338 185.1 347913 194.5

qiu 39955 713.1 10237 270.9 41558 931.8

rgn 2049 2.1 1632 2.6 2467 0.7

rout > 478738 > 3600.0 9919 78.6 > 215797 > 3600.0

stein27 3113 2.3 2461 5.2 3661 1.1

stein45 51020 85.2 55252 96.8 74487 46.0

vpm2 21309 37.1 9158 22.9 7911 5.8

aflow 20 90 13662 51.2 4073 35.7 6707 42.7

aflow 22 90a 41615 160.7 15497 93.5 40533 278.1

aflow 22 90b 5930 44.9 2785 43.0 5391 48.9

aflow 30 50 294518 1808.3 60847 352.8 147583 1301.3

aflow 30 90 33627 689.1 9792 111.5 50503 835.9

aflow 40 50 50306 1914.9 34286 982.0 60530 956.9

Total (22) 2262319 12966.7 1178638 3533.5 2616215 12342.1

Table 2. Branch and bound nodes (B&B) and time in seconds needed to solve each instance.

In addition, we tested the branching rules on some randomly generated
instances of the arborescence flow problem (see [Pfe00]).

To compare the results of SIP with CPlex, we used CPlex 7.5 with default
options, except that we set the “absolute mipgap” to 10−10 and the “rela-
tive mipgap” to 0.0, which are the corresponding tolerances in SIP. Note
that the version of SIP used here utilizes CPlex as embedded LP solver.
All calculations were performed on an Alpha 21264 (750 Mhz) with 2 GB
memory.

In Table 2, the number of branching nodes and the time needed to solve the
problem instances are presented for SIP with hybrid pseudocost branching,
SIP with history branching and CPlex 7.5. For nearly all instances, history
branching outperforms hybrid pseudocost branching.

A problem with the numbers given in Table 2 are the complex interrelations
between cutting plane generation, primal heuristics, node selection, and
branching variable selection. For example, it is possible that a “worse”
branching rule results in less branching nodes and a faster solution time for

10



Example random most infeasible fullstrong pseudocost history

bell3a 22881 22739 6513 22003 23655

bell5 496017 > 2975391 288683 9689 61097

blend2 6729 6527 121 1553 301

cap6000 6879 5001 2803 4525 3719

enigma 1 1 1 1 1

gesa2 o > 627982 > 629791 6115 80674 27399

mas76 1913905 1444685 63113 551601 487529

misc07 47359 15555 16531 84259 51859

mod011 23861 4555 21 815 91

pk1 919461 654119 45685 321861 294627

qiu 372537 294621 14873 46375 15769

rgn 2137 1891 391 1681 1667

rout > 1427694 > 1343046 1035 389791 10117

stein27 4481 4635 2187 4425 3219

stein45 62599 74527 24545 55959 53263

vpm2 113003 35073 881 15461 7895

aflow 20 90 861247 > 7401188 957 8949 1443

aflow 22 90a > 1934913 > 2756897 2147 31611 7981

aflow 22 90b 1532441 > 8633642 573 3079 1347

aflow 30 50 > 1076483 > 1578088 9013 178729 34325

aflow 30 90 > 932820 > 1783439 1305 17767 6435

aflow 40 50 > 1070442 > 1632770 877 14425 1939

Total (22) > 13455872 > 31298181 488370 1845233 1095678

Table 3. Branch and bound nodes (B&B) needed to solve each problem instance only using cuts
at the root node and supplying the optimal solution in advance.

a specific problem, because the variable selection leads incidentally to an
early discovering of a good or optimal primal solution.

For this reason, we ran a second test on the problem instances, see Table 3,
where we provided the optimal solution in advance. Additionally, we gener-
ated cutting planes in the root node with SIP once, and used the resulting
MIP with all cutting plane generations in the solvers disabled.5 For reasons
of comparison, we tried three more branching rules, namely random branch-
ing, most infeasible branching, and full strong branching. Random branching
picks a random candidate out of the candidate list as the branching variable,
most infeasible and full strong branching are described in Section 2.

As mentioned before, full strong branching is the “optimal” branching rule
under our local goal to maximize the score at each node. Both, pseudocost
branching and history branching, can be viewed as an approximation of full
strong branching.

Table 3 shows the number of branching nodes needed to solve the problem

5 In this setting enigma could always be solved in the root node.
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pseudocost history pseudocost history

(total) (total) (depth < 10) (depth < 10)

Example ξ ρ ξ ρ ξ ρ ξ ρ

bell3a 0.997 0.997 0.946 0.963 0.983 0.991 1.000 1.000

bell5 0.930 0.927 0.920 0.852 0.706 0.816 0.998 0.973

blend2 0.686 0.758 0.763 0.813 0.597 0.783 0.967 0.986

cap6000 0.726 0.650 0.764 0.699 0.753 0.638 0.853 0.829

enigma 0.537 0.820 0.504 0.741 0.566 0.868 0.960 0.981

gesa2 o 0.589 0.846 0.673 0.862 0.547 0.869 0.856 0.970

mas76 0.439 0.690 0.589 0.779 0.606 0.686 0.726 0.794

misc07 0.260 0.649 0.346 0.673 0.449 0.574 0.525 0.707

mod011 0.526 0.751 0.557 0.723 0.535 0.756 0.771 0.852

pk1 0.416 0.694 0.542 0.764 0.574 0.686 0.799 0.863

qiu 0.316 0.704 0.605 0.732 0.451 0.679 0.736 0.836

rgn 0.647 0.592 0.618 0.604 0.726 0.645 0.959 0.963

rout 0.280 0.704 0.490 0.798 0.350 0.696 0.740 0.931

stein27 0.388 0.750 0.478 0.868 0.549 0.688 0.707 0.917

stein45 0.512 0.760 0.569 0.686 0.638 0.630 0.730 0.764

vpm2 0.432 0.647 0.528 0.711 0.512 0.745 0.679 0.864

aflow 20 90 0.415 0.775 0.506 0.835 0.417 0.691 0.797 0.931

aflow 22 90a 0.364 0.844 0.518 0.865 0.291 0.762 0.779 0.948

aflow 22 90b 0.441 0.848 0.514 0.893 0.383 0.840 0.730 0.951

aflow 30 50 0.346 0.824 0.418 0.873 0.306 0.799 0.575 0.918

aflow 30 90 0.418 0.800 0.424 0.843 0.291 0.717 0.669 0.900

aflow 40 50 0.266 0.796 0.603 0.922 0.335 0.836 0.698 0.942

Total (22) 0.497 0.764 0.585 0.795 0.526 0.746 0.784 0.900

Table 4. Score quotients (ξ) and position quotients (ρ) of the full trees (left half), and the
average quotients of the uppermost 10 depth levels (right half).

instances. With the exception of the instances bell5 and misc07, the local
optimal full strong branching leads to the by far fewest branching nodes.
History branching performs better than hybrid pseudocost branching on all
instances except bell3a and bell5. On some instances like gesa2 o, qiu,
rout and the aflow problems the improvement is significant.

In order to find out the reasons for the success of history branching, we ana-
lyzed the branchings performed in hybrid pseudocost and history branching
with the settings of Table 2. At each node, we solved all subproblems as-
sociated to the fractional variables (i. e., the branching candidates), and
compared the score sselected of the selected variable with the score smax of
the best possible candidate under the given score function. This gives us
two different measurements at each node n: the score quotient

ξn :=
sselected

smax

, (8)
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and the position quotient

ρn := 1.0−
posselected − 1

|C| − 1
, (9)

where posselected is the position of the selected candidate in the candidate
list C ordered by descending score. If there is only one candidate or if all
candidates have the same score, we define both quotients as 1.0.

Both quotients have a value of 1.0, if an optimal (with respect to the score
function) candidate was chosen, and are strictly less than one, if a sub-
optimal candidate was selected. The smaller the number the worse the
candidate. Note that full strong branching always has score and position
quotients of ξ = ρ = 1.0.

Table 4 shows that history branching yields better score and position quo-
tients than hybrid pseudocost branching on nearly all of the problems. This
results in a behavior that more closely resembles full strong branching. Ac-
cordingly the number of branching nodes is smaller in those cases where full
strong branching performs well.

Especially on the problems blend2, gesa2 o, mas76, mod011, qiu, rout

and all aflow instances, the differences in the average score quotient are
substantial and coincide with substantial differences in the number of nodes
needed.

Note that bell5 on which full strong branching performed badly, is not well
handled by history branching as well. One reason for this might be that all
score quotients are very close to one, which indicates a lack of discrimination
for the branching decision.

In the upper (and more important) part of the branch and bound tree,
the differences in the average score and position quotients are even stronger.
This results from the more frequent use of strong branching (primarily in the
top level nodes) and the more balanced comparisons between values derived
from history and strong branching as described in Section 3. A comparison of
Table 2 and Table 4 shows that large differences in the number of branch and
bound nodes coincide with large differences in the average score quotients
of the top level nodes.

A second indication, why history branching performs better than hybrid
pseudocost branching, is the different ability of the history and pseudocost
values to predict the actual gains ∆− and ∆+ in the objective function. To
demonstrate this consider Figure 5, which shows the history and pseudocost
estimates compared to the actual gains for problem instance aflow 40 50.
Looking at the average lines the history values give a more monotone and
sharper prediction of the actual gains ∆− and ∆+. That means, a large
history value is on average a more reliable indication of a large gain than a
large pseudocost value.
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Figure 5. Pseudocost and history predictions for aflow 40 50. In the two left hand plots, the

actual gains ∆− for downward branching are plotted over the prediction values from pseudocosts

Ψ− in the upper plot, and history ω− in the lower plot. On the right hand side, respective results

are shown for the upward branching.

5 Conclusion

We presented a variant of the today’s state of the art pseudocost branch-
ing, which we call history branching. Both branching rules have been im-
plemented in SIP, a LP based branch and bound solver for mixed integer
programs. It was shown that the superior gain prediction capabilities of the
history values together with the dynamic parameter adjustments and the
more intensive use of strong branching — specifically in the upper part of
the branch and bound tree — leads to significant improvements in both,
the number of branch and bound nodes and the time needed to solve the
considered problem instances.
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