
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

PETER DEUFLHARD REINHARD HOCHMUTH

Multiscale Analysis of
Thermoregulation in the Human

Microvascular System

ZIB-Report 02–31 (September 2002)



Multiscale Analysis of Thermoregulation

in the Human Microvascular System

Peter Deuflhard and Reinhard Hochmuth 1

Abstract

The bio-heat transfer equation is a macroscopic model for describ-
ing the heat transfer in microvascular tissue. So far the derivation of
the Helmholtz term arising in the bio-heat transfer equation is not com-
pletely satisfactory. Here we use homogenization techniques to show that
this term may be understood as asymptotic result of boundary value prob-
lems which provide a microscopic description for microvascular tissue. An
appropriate scaling of so-called heat transfer coefficients in Robin bound-
ary conditions on tissue-blood boundaries is seen to play the crucial role.
In view of a future application of our new mathematical model for treat-
ment planning in hyperthermia, we derive asymptotic estimates for the
first order corrector.
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Introduction

A detailed understanding of thermoregulation in the human vascular system is
of utmost interest in a variety of applications in medical technology. The present
paper emerges from problems arising in the patient-specific therapy planning for
the cancer therapy regional hyperthermia – see [7, Chap. 1] for a general survey
or [8] for details concerning applied adaptive multilevel methods. Up to now,
the model of thermoregulation used therein is the quite popular bio-heat transfer
(BHT) equation, a partial differential equation (PDE) model developed by the
neurologist Pennes [15] already in 1948.

The aim of the present paper is to carefully revisit the original problem of
thermoregulation on the micro/meso scale via mathematical homogenization.

The paper is organized as follows. In Section 1 we describe the problem
setting in the framework of regional hyperthermia; the arguments underlying
the existing derivations of the BHT equation are discussed together with their
limitations. Next, in Section 2, we introduce a periodic model problem which is
a usual first step within the homogenization approach – see, e.g., the research
monograph [3]. This kind of model yields a slight variant of the BHT equation.
More general scaling laws are discussed as well. However, as turns out, the
more general approach does not lead to any further useful mathematical model.
In Section 3, in view of a possible embedding of the microvascular model in a
numerical multiscale model, we derive the first and second order corrector terms
of our periodic model and prove error estimates for the first order corrector.

1 Thermoregulation Modeling Revisited

The investigations of this paper have been motivated by a long term interdis-
ciplinary project in microwave regional hyperthermia, a rather recent cancer
therapy. Its clinical setting at the Charité in Berlin is shown in Fig. 1, left. A
prerequisite for mathematical therapy planning is the construction of a so-called
virtual lab, which contains a 3D grid model of the real patient, the so–called
virtual patient – see Fig. 1, right. The underlying medical and mathematical
problem is to tune the microwave antennas optimally in such a way that heat
is concentrated within the patient’s tumor, but nowhere else in healthy tissue.

For this purpose, the distribution of the temperature T within each indi-
vidual human body must be quantitatively carefully modeled. Up to now, the
rather simple so–called bio-heat transfer (BHT) equation

−∇κ∇T + ρtρbcbm(T − Tb) + S = 0 (1.1)

is mostly used, where κ denotes the thermal conductivity, ρt/b the density of
tissue/blood, cb the specific heat capacity, m the perfusion, Tb the arterial tem-
perature, and S some external thermal source – which in regional hyperthermia
is the heating by microwave absorption. This elliptic PDE dates back to an early
suggestion by the neurologist Pennes [15] from 1948 (actually he had treated the
time dependent parabolic PDE). The construction of his model was based on
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Figure 1: Regional hyperthermia: real patient (left, Charité), virtual patient
(right, ZIB).

experimental observations which he tried to understand by an ingenious mixture
of physical, physiological and mathematical arguments. His model was under-
stood to apply to the whole resting human forearm. Multiscale considerations
did not show up.

Not earlier than 1980 the two bioengineers Chen and Holmes [4] looked into
this topic again in subtle detail. In their derivation the above Helmholtz term
arises, when a “sufficiently large control volume” is considered, such that all
further bifurcations from precapillary arterioles are contained. Moreover, they
require the assumption that blood leaves the control volume at the solid tissue
temperature. Upon carefully examinating different heating effects by the blood
flow, they arrive at the BHT equation with an additional convection term. In
their summary, they draw the following main conclusions:

• The equilibration of blood temperature within solid tissue takes place
between arterial branches and precapillary arterioles, not in the capillaries.

• The heat transfer from larger vessels should be calculated individually,
and not collectively in a continuum formulation.

Obviously, these authors already envision a two-scale model – the BHT meso-
level and the large vessel macro-level.

Later, in 1989, one of the present authors suggested another derivation of
the Helmholtz term – see [17]. This derivation started from the above additional
convection term and assumed some potential temperature flow – in the spirit of
Darcy’s law as used in reservoir simulation. Following this line, Green’s theorem
then helps to recover a Helmholtz term just as the one in the BHT equation. As
is well-known, Darcy’s law has originally been based on experiments, whereas
today it can be derived by homogenization arguments. First such derivations
have used some periodic microstructure assumption [1, 9], more sophisticated
later derivations could dispense of such a type of assumption [2].

Stepping back to the original problem, we are facing a true multiscale sit-
uation. As shown in Fig. 2, we will have to deal in parallel with large blood
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vessels, medium size blood vessels, and small capillaries. Our computational
concept for this situation is as follows:

(a) Large blood vessels will be modeled as 3D spatial objects – compare also
[12].

(b) For the medium size blood vessels we might adopt a technique introduced
by Quarteroni et al. [16] and model them as 1D spatial objects.

(c) Finally, for the capillary heat distribution mechanism, we will need to derive
some micromodel via homogenization – which is the topic of the present
paper.

(a)
(b)

(c)

Figure 2: Multiscales in blood vessels: (a) capillaries, (b) medium size blood
vessels, (c) large blood vessels.

2 Homogenization of a Periodic Model Problem

In this section, we consider the homogenization in periodic microstructures, a
procedure which simplifies the presentation considerably and keeps the technical
problems as few as possible. A generalization to a non-periodic setting will be
given elsewhere.

Generally we use the notion a <∼ b to appreviate a ≤ Cb with some constant
C > 0, a >∼ b if b <∼ a and for a <∼ b <∼ a we write a ∼ b.

Let Ω ⊂ R
3, be a bounded domain. For yi > 0, i = 1, 2, 3, we set Y :=∏3

i=1(0, yi) and for a bounded domain Q with Q ⊂ Y we define Y ∗ := Y \ Q.
The boundary of Q is assumed to be polygonal or, alternatively, at least C2.
For ε > 0 let τ(εQ) := ∪k∈Z3ε(k + Q). We always assume that ∂Ω ∩ τ(εQ) = ∅
and write Qε := Ω ∩ τ(εQ) as well as Ωε := Ω \ Qε.

With respect to our underlying problem of heat-transfer in microvascular
tissue we think of Qε as small regions of blood of certain temperature. The
domains Ωε describe solid tissue parts where heat-transfer by conduction takes
place. For simplicity, we assume that heat transfer in the solid tissue is described
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by thermal conductivity with conductivity coefficient equal to 1. Taking into
account some external thermal sources Sε the temperature distribution is then
modeled by the diffusion equations −∆Tε = Sε. Furthermore, we shall assume
that on the inner boundaries ∂Qε the transition between blood regions and solid
tissue is governed by Newton’s cooling law with respect to an ε dependent heat
transfer coefficient.

More precisely speaking, we consider for appropriate ε > 0 and α > 0 the
boundary value problems


−∆Tε = Sε in Ωε,

Tε = 0 on ∂Ω,

∂Tε

∂n = εα(T ε
b − Tε) on ∂Qε,

(2.2)

for given thermal sources Sε and given blood temperatures T ε
b .

For Vε := {u ∈ H1(Ωε) | u|∂Ω = 0} and Sε ∈ V ′
ε , T ε

b ∈ L2(∂Qε) the
variational formulation of the boundary value problem reads as follows: Find
Tε ∈ Vε such that∫
Ωε

∇Tε · ∇v dx = 〈Sε, v〉V ′
ε ,Vε

− αε

∫
∂Qε

Tεv dσ + εα

∫
∂Qε

T ε
b v dσ for v ∈ Vε.

(2.3)
Clearly, the variational problems (2.3) possess unique solutions Tε ∈ Vε.

Our results in this section will show that the ε-scaling of the heat transfer
coefficient on ∂Qε is the correct scaling law. From a physical point of view,
one may motivate the ε scaling by the following arguments: Let us assume that
Tb = 0 and Sε := S is a real thermal source, i.e., Tε > 0 in Ωε and in the limit for
ε → 0 holds T ∗ := limε→0 Tε > 0 as well as on Ωδ := Ω\{x ∈ Ω | dist(x, ∂Ω) < δ}
for some small δ > 0 it is T ∗ >∼ 1. Therefore, for ε small enough, one also has
Tε|∂Qε∩Ωδ >∼ 1. Upon applying on ∂Qε the boundary conditions

∂Tε

∂n
+ hεTε = 0

for hε > 0, the variational formulation∫
Ωε

∇Tε∇v dx = 〈Sε, v〉V ′
ε ,Vε − hε

∫
∂Qε

Tεv dσ, v ∈ Vε,

gives for v = Tε

hε

∫
∂Qε

|Tε|2 dσ +
∫
Ωε

|∇Tε|2 dx = 〈S, Tε〉V ′
ε ,Vε

<∼ ‖Tε‖Vε
.

From this, applying the Poincaré inequality, see (2.6), we arrive at

hε

∫
∂Qε

|Tε|2 dσ <∼ 1. (2.4)
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Since ∫
∂Qε

|Tε|2 dσ ≥
∫

∂Qε∩Ωδ

|Tε|2 dσ >∼ |∂Qε ∩ Ωδ| >∼ ε−1,

the inequality (2.4) implies, for sufficiently small ε > 0, that

hε <∼ ε.

In the final part of this section we will see that for constant Tb > 0 and Sε = 0
the Robin boundary condition ∂Tε

∂n + hεTε = 0 with hε ∼ εγ for γ > 1 implies
‖ε1−γTε‖Vε

<∼ 1, hence ‖Tε‖Vε
<∼ εγ−1 and finally ‖Tε‖Vε → 0 for ε → 0.

Therefore one should have
hε ∼ ε.

In the following we make use of the existence of extension operators P ε ∈
L(Vε, H

1
0 (Ω)) such that

‖∇P ε(v)‖[L2(Ω)]3 ≤ C‖∇v‖[L2(Ωε)]3 , v ∈ Vε (2.5)

with C > 0 independent of ε > 0. Clearly, (2.5) implies the Poincaré inequality
on Ωε, i.e., there exist a constant C > 0 such that for appropriate ε > 0 holds

‖w‖L2(Ωε) ≤ C‖∇w‖[L2(Ωε)]3 , w ∈ Vε. (2.6)

Theorem 1 If Sε → S in L2(Ω) and T ε
b ⇀ Tb in H1

0 (Ω), then

P ε(Tε) ⇀ T ∗ in H1(Ω)

where T ∗ is the solution of the boundary value problem
 −div(A∇T ∗) + α |∂Q|

|Y | (T ∗ − Tb) = |Y ∗|
|Y | S in Ω,

T ∗ = 0 on ∂Ω.
(2.7)

The coefficients of the constant and positive definite matrix A = (aij)ij are
given by

aij =
|Y ∗|
|Y | δij −

1
|Y |

∫
Y ∗

∂χj

∂yi
dy (2.8)

where the functions χj are solutions to


−∆χj = 0 in Y ∗

∂(χj−yj)
∂n = 0 on ∂Q,

χj Y -periodic

(2.9)
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Proof. The proof of the theorem is essentially based on considerations in [5].
Therefore we only sketch the necessary modifications. In order to relate our
Robin boundary value problems (2.2) here to the Neumann problems studied
there, we set uε := ε−1Tε and fε := ε−1Sε, which leads to


−∆uε = fε in Ωε,

uε = 0 on ∂Ω,

∂uε

∂n + εαuε = αT ε
b on ∂Qε.

(2.10)

Note that fε = ε−1Sε need not and will not fulfil the uniform estimate ‖fε‖V ′
ε

<∼ 1
assumed in [5]. The boundary value problems (2.10) are interpreted as varia-
tional problems, i.e., uε ∈ Vε have to satisfy for v ∈ Vε∫

Ωε

∇uε · ∇v dx = 〈fε, v〉V ′
ε ,Vε − αε

∫
∂Qε

uεv dσ + α

∫
∂Qε

T ε
b v dσ. (2.11)

We notice that Corollaire 3.4 (b) in [5] implies for µε ∈ W−1,∞(Ω) defined by

〈µε, ϕ〉 := ε

∫
∂Qε

ϕ dσ, ϕ ∈ W 1,1
0 (Ω),

and µ ∈ W−1,∞(Ω) defined by

〈µ, ϕ〉 :=
|∂Q|
|Y |

∫
Ω

ϕ dx, ϕ ∈ W 1,1
0 (Ω),

that in W−1,∞(Ω) holds µε → µ for ε → 0, which provides in particular a
constant Cµ > 0 with

‖µε‖W−1,∞(Ω) ≤ Cµ (2.12)

for ε > 0. Applying (2.12) and ‖T ε
b ‖H1(Ω) ≤ C, which follows from T ε

b ⇀ Tb in
H1(Ω), we obtain

|
∫

∂Qε

T ε
b uε dσ| = ε−1|〈µε, T ε

b uε〉| ≤
Cµ

ε

∫
Ωε

|∇(uεT
ε
b )| dx ≤ Cµ · C

ε
(
∫
Ωε

|∇uε|2 dx)1/2.

Therefore, (2.11) for v = uε gives∫
Ωε

|∇uε|2 dx = 〈fε, uε〉V ′
ε ,Vε − αε

∫
∂Qε

|uε|2 dσ + α

∫
∂Qε

T ε
b uε dσ

≤ ε−1|〈Sε, uε〉V ′
ε ,Vε

| + αCµ · C
ε

(
∫
Ωε

|∇uε|2)1/2.
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In other words, there exists some constant C > 0 such that

‖εuε‖H1
0 (Ωε) ≤ C for ε > 0.

Selecting a suitable subsequence, there is u∗ ∈ H1
0 (Ω) with

P ε(εuε) ⇀ u∗ in H1
0 (Ω).

Now we proceed analogously to the proof of Théorème 4.7 in [5]: Setting ξε :=

∇(εuε) in Ωε and ξ̃ε :=


 0 in Qε

ξε in Ωε

, we obtain for ϕ ∈ C∞
0 (Ω)

∫
Ω

ξ̃ε · ∇ϕ dx = 〈χΩε
Sε, ϕ〉V ′

ε ,Vε
− α〈µε, εuεϕ〉 + α〈µε, T ε

b ϕ〉,

hence for ξ∗ ∈ [L2(Ω)]3 with ξ̃ε ⇀ ξ∗ for ε → 0∫
Ω

ξ∗ · ∇ϕ dx =
|Y ∗|
|Y | 〈S, ϕ〉H−1(Ω),H1

0 (Ω) − α〈µ, u∗ϕ〉 + α〈µ, Tbϕ〉,

i.e., in Ω holds

−divξ∗ =
|Y ∗|
|Y | S + α

|∂Q|
|Y | (Tb − u∗).

Furthermore, following the proof of Théorème 4.7 in [5] step by step and apply-
ing again εfε = Sε, we end up with

ξ∗ = A∇u∗ in Ω,

where the coefficents aij of the matrix A = (aij)ij are given in (2.8). Finally,
remember that Tε = εuε and denote u∗ by T ∗, which completes the proof.

At this point, some remarks on the boundary value problems (2.9) and their
solutions χj may be in order: If Q has a C2-boundary, f ∈ L2(Y ∗) and g ∈
H1/2(∂Q), then the inhomogeneous problem


−∆θ = f in Y ∗

∂θ
∂n = g on ∂Q,

θ Y -periodic

has a unique solution θ ∈ H2(Y ∗)/R iff∫
Y ∗

f dx = −
∫

∂Q

g dσ.

Furthermore, if f and g are constant functions, one has θ ∈ W 1,∞(Y ∗), see [10].
It is near by hand to ask for the resulting limit equation when the heat-

transfer coefficients on the inner boundaries ∂Qε are scaled in any other way.
In particular we are interested in the case hε ∼ εγ for γ > 1, since our remarks
in the beginning of this section already suggest hε <∼ ε.
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Theorem 2 If γ > 1, ε1−γSε → S in L2(Ω) and T ε
b ⇀ Tb in H1(Ω), the

solutions Tε ∈ Vε to 


−∆Tε = Sε in Ωε,

Tε = 0 on ∂Ω,

∂T ε

∂n = εγα(T ε
b − Tε) on ∂Qε.

satisfy
P ε(ε1−γTε) ⇀ T ∗ in H1

0 (Ω) (2.13)

with

−div(A∇T ∗) + α
|∂Q|
|Y | (T ∗ − Tb) =

|Y ∗|
|Y | S.

Proof. We set uε := ε−γTε, such that


−∆uε = ε−γSε in Ωε,

uε = 0 on ∂Ω,

∂uε

∂n + εγαuε = αT ε
b on ∂Ωε.

We follow the proof for γ = 1, i.e. Theorem 1, which leads us to∫
Ωε

|∇uε|2 dx ≤ ε−γ |〈Sε, uε〉V ′
ε ,Vε | +

αCµ · C
ε

(
∫
Ωε

|∇uε|2)1/2.

Thus, ε1−γ‖Sε‖V ′
ε
≤ C for ε > 0 implies ‖εuε‖H1(Ωε) ≤ C for ε > 0, which gives

P ε(εuε) ⇀ u∗ in H1
0 (Ω).

Next, ε1−γSε → S in L2(Ω) for ε → 0 implies

−divA∇u∗ =
|Y ∗|
|Y | S + α

|∂Q|
|Y | (Tb − u∗).

Since uε = ε−γTε, we have

P ε(ε1−γTε) ⇀ u∗ in H1
0 (Ω).

Setting T ∗ := u∗ gives the result.
Finally, let us shortly discuss the case when the heat transfer coefficients are

independent of ε: Considering on ∂Qε the Robin boundary condition

∂Tε

∂n
= α(T ε

b − Tε),

we obtain, under appropriate assumptions on Sε,

P ε(ε1/2Tε) ⇀ 0 in H1
0 (Ω).

This means that the solutions Tε to the periodic microscale problems need the
scaling factor ε1/2 to become uniformly bounded in H1

0 (Ωε).
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3 First and Second Order Correctors

It is well-known from general homogenization theory that the solution to the
homogenized equation is not the strong, but only the weak limit of the solutions
to the periodic problems. Therefore correctors are introduced, i.e. ε-dependent
functions, such that the sum of the solutions to the periodic problems and those
corrector functions converge strongly. Moreover, for many periodic problems it
could be shown that the convergence is of some order εs for s > 0 with respect
to appropriate norms.

Generally, correctors can be understood as smoothing operators, because
they suppress the fast oscillations in the gradient of Tε − T ∗. Thus, in view
of an efficient numerical approximation to the problems under consideration,
corrector results are of particular interest. For the role of correctors in numerical
homogenization see [11].

We shall prove two corrector results: Theorem 3 provides an asymptotic
estimate for the “classical” first order corrector, cf. [3, 6, 13]. With respect
to additional boundary correction terms an asymptotically better result is pre-
sented in Theorem 4.

In the following we assume that

dist(∂Ω, ∂Qε) >∼ ε for ε > 0,

which implies dist(∂Ω, ∂Qε) ≥ ε
CΩ

with some ε independent CΩ > 0. Further-
more, we assume that the domain Ω possesses a C∞-boundary ∂Ω, the boundary
of Q is at least C2 and for the data Sε = S ∈ C∞(Ω) and T ε

b = Tb ∈ C∞(Ω).
For the formal derivation of first and second order correctors we follow the

standard approach, cf. [13]: Starting point is the asymptotic ansatz

Tε(x) = T0(x, y) + εT1(x, y) + ε2T2(x, y) + . . . ,

with y = x/ε and where Ti are Y -periodic functions defined on Ω × Y ∗. Then,
applying

∆ = ε−2∆y + 2ε−1∆xy + ∆x,

where ∆y =
∑3

i=1
∂2

∂y2
i
, ∆xy =

∑3
i=1

∂2

∂xi∂yi
, ∆x =

∑3
i=1

∂2

∂x2
i
, as well as

∂

∂n
= ε−1 ∂

∂n(y)
+ n(y) · ∇x,

we obtain in Ωε

−∆Tε = −ε2∆yT0 − ε−1(∆yT1 + 2∆xyT0) − (∆xT0 + 2∆xyT1 + ∆yT2) + . . .

= S, (3.14)

and on ∂Qε

∂Tε

∂n
= ε−1 ∂

∂n(y)
T0 +

∂

∂n(y)
T1 + n(y) · ∇xT0 + ε(

∂

∂n(y)
T2 + n(y) · ∇xT1) + . . .

= εα(Tb − T0) − ε2αT1 − . . . . (3.15)
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Comparing the coefficients to ε−2 in (3.14) and ε−1 in (3.15), respectively, leads
to 


−∆yT0 = 0 in Y ∗,

∂T0(x,y)
∂n(y) = 0 on ∂Q,

T0 Y -periodic.

(3.16)

The only solutions to problem(3.16) are constants, i.e., T0 is independent of y.
Therefore, considering x as parameter, we get

T0(x, y) = T0(x)

with some x dependent function T0.
Next, comparing the coefficients to ε−1 in (3.14) and ε0 in (3.15), respectively,

yields 


−∆yT1 = 0 in Y ∗,

∂T1(x,y)
∂n(y) = −n(y) · ∇xT0(x) on ∂Q,

T1 Y -periodic.

(3.17)

Again, the variable x might be considered as parameter. Furthermore, applying
the functions χj from (2.9) we obtain

T1(x, y) = −
3∑

j=1

χj(y)
∂

∂xj
T0(x) + T̃1(x),

with some function T̃1 only depending on x. We choose T̃1(x) = 0.
Finally, the coefficients to ε0 in (3.14) and ε in (3.15), respectively, supply


−∆yT2(x, y) = S + ∆xT0(x) − 2

∑3
i,j=1

∂χj

∂yi
(y) ∂2

∂xi∂xj
T0(x) in Y ∗,

∂T2(x,y)
∂n(y) = α(Tb − T0) +

∑3
i=1 ni(y)(

∑3
j=1 χj(y) ∂2

∂xi∂xj
T0(x)) on ∂Q,

T2 Y -periodic.
(3.18)

There exists a solution T2 to (3.18), if and only if

−|Y ∗|∆xT0 +
3∑

i,j=1


∫

Y ∗

∂χj

∂yi
(y) dy


 ∂2T0

∂xi∂xj
+α|∂Q|(T0 −Tb) = |Y ∗|S in Ω,

which is equation (2.7). Therefore, we set T0 := T ∗,

T1(x, y) := −
3∑

j=1

χj(y)
∂

∂xj
T ∗(x)
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and obtain in Y ∗

−∆yT2 = −α
|∂Q|
|Y ∗| (Tb − T0) +

3∑
i,j=1


 1
|Y ∗|


∫

Y ∗

∂χj

∂yi
(y) dy


 − 2

∂χj

∂yi


 ∂2T ∗

∂xi∂xj
.

Introducing the functions χ ∈ H1(Y ∗) as the solutions to


−∆yχ = − |∂Q|
|Y ∗| in Y ∗,

∂χ
∂n(y) = 1 on ∂Q,

χ Y -periodic

(3.19)

and the functions χij ∈ H1(Y ∗) as the solutions to


−∆yχij = 1
|Y ∗|

( ∫
Y ∗

∂χj

∂yi
(y) dy

)
− 2∂χj

∂yi
in Y ∗,

∂χij

∂n(y) = ni(y)χj(y) on ∂Q,

χij Y -periodic,

(3.20)

the function T2 is given by

T2(x, y) = αχ(y)(Tb(x) − T ∗(x)) +
3∑

i,j=1

χij(y)
∂2T ∗(x)
∂xi∂xj

+ T̃2(x).

Again we set T̃2(x) = 0. The boundary value problem (3.19) is uniquely solvable,
since

∫
∂Q

1 dσ =
∫

Y ∗

|∂Q|
|Y ∗| dy, and the boundary value problems (3.20) are uniquely

solvable, since∫
∂Q

ni(y)χj(y) dσ =
∫

Y ∗

∂χj

∂yi
(y) dy

= −
∫

Y ∗


 1
|Y ∗|


∫

Y ∗

∂χj

∂yi
(y) dy


 − 2

∂χj

∂yi


 dy.

Now we are prepared to formulate the following theorem for the first order
corrector.

Theorem 3 If χ, χj , χij ∈ W 1,∞(Y ∗), there is a constant C > 0 independent
of ε > 0 such that

‖∇(Tε − (T ∗ − ε

3∑
j=1

χj(
·
ε
)
∂T ∗

∂xj
))‖[L2(Ωε)]3 ≤ Cε1/2.

12



Proof. Setting Rε := Tε − T ∗ − εT1 and Hε := Rε − ε2T2, we get

−∆Rε = S + ∆xT ∗ + 2∆xyT1 + ε∆xT1

and
−∆Hε = ε(∆xT1 + 2∆xyT2) + ε2∆xT2.

By our assumptions on ∂Ω, S and Tb, the solution T ∗ to (2.7) satisfies T ∗ ∈
C∞(Ω). Since χ, χij ∈ W 1,∞(Y ∗) we have ∆xT1, ∆xyT2, ∆xT2 ∈ L2(Ωε) with

‖∆xT1‖L2(Ωε) + ‖∆xyT2‖L2(Ωε) + ‖∆xT2‖L2(Ωε)
<∼ 1.

The boundary ∂Ωε splits into the two parts ∂Ω and ∂Qε. On ∂Ω the func-
tions Tε and T ∗ vanish by definition. Thus we have

Hε|∂Ω = −εT1|∂Ω − ε2T2|∂Ω with ‖T1‖L2(∂Ω) + ‖T2‖L2(∂Ω) <∼ 1 .

On ∂Qε we have
∂Tε

∂n
= εα(Tb − Tε)

and, see (3.17),

∂(T ∗ + εT1)
∂n

= n(y) · ∇xT ∗ +
∂

∂n(y)
T1 + εn(y) · ∇xT1 = εn(y) · ∇xT1,

i.e., it is
∂Rε

∂n
= ε[α(Tb − Tε) − n(y) · ∇xT1]

as well as, see (3.18),

∂Hε

∂n
=

∂Rε

∂n
− ε2

∂T2

∂n
= εα(T ∗ − Tε) − ε2n(y) · ∇xT2.

Thus, we obtain on ∂Qε with Zε := −αT1 − n(y) · ∇xT2 − εαT2 that

∂Hε

∂n
+ εαHε = ε2Zε. (3.21)

Integration by parts gives

‖∇Hε‖2
[L2(Ωε)]3

= −
∫
Ωε

∆HεHε dx +
∫

∂Qε

Hε
∂Hε

∂n
dσ +

∫
∂Ω

Hε
∂Hε

∂n
dσ. (3.22)

In what follows we need to estimate the three terms on the right side of (3.22).
First term: We notice that the Poincaré inequality implies

‖Hε‖L2(Ωε) ≤ ‖Tε − T ∗‖L2(Ωε) + ε‖T1‖L2(Ωε) + ε2‖T2‖L2(Ωε)

<∼ ‖∇(Tε − T ∗)‖[L2(Ωε)]3 + ε

<∼ 1.

13



Thus we get ∣∣∣∣∣∣
∫
Ωε

∆HεHε dx

∣∣∣∣∣∣ ≤ ‖∆Hε‖L2(Ωε)‖Hε‖L2(Ωε)
<∼ ε.

Second term: Applying the identity (3.21) we get∫
∂Qε

Hε
∂Hε

∂n
dσ = −εα

∫
∂Qε

H2
ε + ε2

∫
∂Qε

HεZε dσ ≤ ε2‖Hε‖L2(∂Qε)‖Zε‖L2(∂Qε).

(3.23)
Next we prove

‖Hε‖L2(∂Qε)
<∼ ε−1/2 :

To this end we introduce Y -periodic functions qj ∈ C1(Y ) with

qj(y) =


 nj(y) y ∈ ∂Q,

0 near ∂Y,

i.e., it is n2 =
∑3

j=1 q2
j (y) = 1 on ∂Q. Green then gives

∫
∂Qε

H2
ε (x) dσ =

3∑
j=1

∫
∂Qε

H2
ε (x)qj(x/ε)nj(x) dσ

= −
3∑

j=1

∫
∂Ω

H2
ε (x)qj(x/ε)nj(x) dσ +

3∑
j=1

∫
Ωε

qj(x/ε)
∂(H2

ε (x))
∂xj

dx

+ε−1
3∑

j=1

∫
Ωε

∂qj

∂yj
(x/ε)H2

ε (x) dx

<∼ ‖Hε‖2
L2(∂Ω) + ‖∇Hε‖2

[L2(Ωε)]3
+ ε−1‖Hε‖2

L2(Ωε)

<∼ ε−1,

i.e.,
‖Hε‖L2(∂Qε)

<∼ ε−1/2. (3.24)

For Zε we have to refine this argument: First we get∫
∂Qε

Z2
ε (x) dσ <∼ ‖Zε‖2

L2(∂Ω) + ε−1‖Zε‖2
L2(Ωε)

+
3∑

j=1

∫
Ωε

qj(x/ε)
∂(Z2

ε (x))
∂xj

dx.

Inserting the definition of Zε in the first both terms on the right hand side and
considering each part of Zε separately gives ‖Zε‖2

L2(∂Ω)
<∼ 1 and ‖Zε‖2

L2(Ωε)
<∼ 1.

For estimating the third term we notice that∫
Ωε

qj(x/ε)
∂(Z2

ε (x))
∂xj

dx = 2
∫
Ωε

qj(x/ε) · Zε(x) · ∂Zε(x)
∂xj

dx.

14



Again we have to insert the definition of Zε and to check each arising term
separately. Let us exemplarily consider

∫
Ωε

qj(x/ε) · T1(x) · ∂T1(x)
∂xj

dx: It is

∣∣∣∣∣∣
∫
Ωε

qj(x/ε) · T1(x) · ∂T1(x)
∂xj

dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ωε

qj(x/ε)

(
3∑

i=1

χi(x/ε)
∂T ∗(x)

∂xi

) (
3∑

k=1

ε−1 ∂χk

∂yj
(x/ε)

∂T ∗(x)
∂xk

+ χk(x/ε)
∂2T ∗(x)
∂xk∂xj

)
dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3∑

i,k=1

∫
Ωε

qj(x/ε)χi(x/ε)
∂T ∗(x)

∂xi

(
ε−1 ∂χk

∂yj
(x/ε)

∂T ∗(x)
∂xk

+ χk(x/ε)
∂2T ∗(x)
∂xk∂xj

)
dx

∣∣∣∣∣∣
<∼

3∑
i,k=1

∫
Ωε

∣∣∣∣∂T ∗(x)
∂xi

∣∣∣∣
(

ε−1

∣∣∣∣∂T ∗(x)
∂xk

∣∣∣∣ +
∣∣∣∣∂2T ∗(x)
∂xk∂xj

∣∣∣∣
)

dx

<∼ ε−1.

Checking analogously the other terms yields∣∣∣∣∣∣
∫
Ωε

qj(x/ε)
∂(Z2

ε (x))
∂xj

dx

∣∣∣∣∣∣ <∼ ε−1

and
‖Zε‖L2(∂Qε)

<∼ ε−1/2. (3.25)

Thus we obtain by (3.23) and (3.24)∫
∂Qε

Hε
∂Hε

∂n
dσ <∼ ε.

Third term: Inserting Hε|∂Ω = −εT1|∂Ω − ε2T2|∂Ω leads to∣∣∣∣∣∣
∫

∂Ω

Hε
∂Hε

∂n
dσ

∣∣∣∣∣∣ ≤ ε

∣∣∣∣∣∣
∫

∂Ω

T1
∂Hε

∂n
dσ

∣∣∣∣∣∣ + ε2

∣∣∣∣∣∣
∫

∂Ω

T2
∂Hε

∂n
dσ

∣∣∣∣∣∣ . (3.26)

Following an idea in [6], we take mε ∈ C∞
0 (R3) with

mε(x) =


 1 if dist(x, ∂Ω) ≤ ε/4CΩ,

0 if dist(x, ∂Ω) ≥ ε/2CΩ,
and transition such that‖∇mε‖L∞(Ω) <∼ ε−1.

15



We set Uε := {x ∈ Ω | dist(x, ∂Ω) ≤ ε/2CΩ}. Now,

∂

∂xk
(mε(x)T1(x)) =

∂mε

∂xk
T1(x) + mε(x)

∂T1(x)
∂xk

= −∂mε

∂xk

3∑
j=1

χj(y)
∂T ∗(x)

∂xj
− mε(x)

3∑
j=1

ε−1 ∂χj

∂yk
(x/ε)

∂T ∗(x)
∂xj

−mε(x)
3∑

j=1

χj(y)
∂2T ∗(x)
∂xk∂xj

.

Thus, we obtain

‖∇(mεT1)‖[L2(Uε)]3
<∼ ε−1‖∇T ∗‖[L2(Uε)]3 + 1.

Moreover, with
‖∇T ∗‖[L2(Uε)]3

<∼ ε1/2‖∇T ∗‖[H1(Ω)]3 ,

see [14], we conclude that

‖∇(mεT1)‖[L2(Uε)]3
<∼ ε−1/2.

Next, the identity mε|∂Ω = 1 gives∣∣∣∣∣∣
∫

∂Ω

T1
∂Hε

∂n
dσ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

∂Ω

mεT1
∂Hε

∂n
dσ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Ωε

mεT1∆Hε dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
Ωε

∇(mεT1)∇Hε dx

∣∣∣∣∣∣
<∼ ε + ‖∇(mεT1)‖[L2(Uε)]3‖∇Hε‖[L2(Ωε)]3

<∼ ε + ε−1/2‖∇Hε‖[L2(Ωε)]3 .

Since analogously to above holds

‖∇(mεT2)‖[L2(Uε)]3
<∼ ε−1/2,

we also get ∣∣∣∣∣∣
∫

∂Ω

T2
∂Hε

∂n
dσ

∣∣∣∣∣∣ <∼ ε + ε−1/2‖∇Hε‖[L2(Ωε)]3 .

Thus, we obtain by (3.26)∣∣∣∣∣∣
∫

∂Ω

Hε
∂Hε

∂n
dσ

∣∣∣∣∣∣ <∼ ε2 + ε1/2‖∇Hε‖[L2(Ωε)]3 .
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Term collection: Combining the estimates, we are led to

‖∇Hε‖2
[L2(Ωε)]3

<∼ ε + ε1/2‖∇Hε‖[L2(Ωε)]3

<∼ max{ε, ε1/2‖∇Hε‖[L2(Ωε)]3},

which implies
‖∇Hε‖[L2(Ωε)]3

<∼ ε1/2.

Finally, we get

‖∇Rε‖[L2(Ωε)]3 ≤ ‖∇Hε‖[L2(Ωε)]3 + ε2‖∇T2‖[L2(Ωε)]3
<∼ ε1/2 + ε <∼ ε1/2.

The order 1
2 in the asymptotic estimate for the first order corrector results

essentially from T1|∂Ω �= 0. In fact, appropriate additional correction terms
with respect to the boundary ∂Ω give the order 1 uniformly in ε. The following
theorem shows, that such correction terms are given by the solutions Θε ∈
H1(Ωε) of the boundary value problems


−∆Θε = 0 in Ωε,

Θε = T1 on ∂Ω,

∂Θε

∂n = −εαΘε on ∂Qε.

Theorem 4 If χ, χj , χij ∈ W 1,∞(Y ∗), there is a constant C > 0 independent
of ε > 0 such that

‖∇(Tε − (T ∗ − ε(
3∑

j=1

χj(
·
ε
)
∂T ∗

∂xj
+ Θε)))‖[L2(Ωε)]3 ≤ Cε.

Proof. We define R̃ε := Rε + εΘε and H̃ε := R̃ε − ε2T2. In Ωε holds

−∆H̃ε = −∆Hε = ε(∆xT1 + 2∆xyT2) + ε2∆xT2.

On ∂Ω we have
H̃ε = −ε2T2,

and on ∂Qε it is
∂H̃ε

∂n
+ εαH̃ε = ε2Zε.

We proceed analogously to the proof of Theorem 3 and observe first that

‖∇H̃ε‖2
[L2(Ωε)]3

= −
∫
Ωε

∆H̃εH̃ε dx +
∫

∂Qε

H̃ε
∂H̃ε

∂n
dσ +

∫
∂Ω

H̃ε
∂H̃ε

∂n
dσ.

Again we need to estimate the three terms on the right side.
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First term: The Poincaré inequality yields

‖H̃ε‖L2(Ωε) ≤ ‖Tε − T ∗ − ε(T1 − Θε)‖L2(Ωε) + ε2‖T2‖L2(Ωε)

<∼ ‖∇H̃ε‖[L2(Ωε)]3 + ε2(‖∇T2‖[L2(Ωε)]3 + ‖T2‖L2(Ωε))

<∼ ‖∇H̃ε‖[L2(Ωε)]3 + ε,

such that∣∣∣∣∣∣
∫
Ωε

∆H̃εH̃ε dx

∣∣∣∣∣∣ ≤ ‖∆H̃ε‖L2(Ωε)‖H̃ε‖L2(Ωε)
<∼ ε‖∇H̃ε‖[L2(Ωε)]3 + ε2.

Second term: First we obtain by (3.25)

∫
∂Qε

H̃ε
∂H̃ε

∂n
dσ = −εα

∫
∂Qε

H̃2
ε +ε2

∫
∂Qε

H̃εZε dσ ≤ ε2‖H̃ε‖L2(∂Qε)‖Zε‖L2(∂Qε)
<∼ ε3/2‖H̃ε‖L2(∂Qε).

(3.27)
Next, applying the Y -periodic functions qj ∈ C1(Y ), we get

∫
∂Qε

H̃2
ε (x) dσ = −

3∑
j=1

∫
∂Ω

H̃2
ε (x)qj(x/ε)nj(x) dσ +

3∑
j=1

∫
Ωε

qj(x/ε)
∂(H̃2

ε (x))
∂xj

dx

+ε−1
3∑

j=1

∫
Ωε

∂qj

∂yj
(x/ε)H̃2

ε (x) dx

<∼ ε4 + ‖H̃ε‖L2(Ωε)‖∇H̃ε‖[L2(Ωε)]3 + ε−1‖H̃ε‖2
L2(Ωε)

<∼ ε−1‖∇H̃ε‖2
[L2(Ωε)]3

+ ε.

Thus, the inequality (3.27) yields

∫
∂Qε

H̃ε
∂H̃ε

∂n
dσ <∼ ε‖∇H̃ε‖[L2(Ωε)]3 + ε2.

Third term: We apply again the functions mε ∈ C∞
0 (R3) and get∣∣∣∣∣∣

∫
∂Ω

H̃ε
∂H̃ε

∂n
dσ

∣∣∣∣∣∣ = ε2

∣∣∣∣∣∣
∫

∂Ω

mεT2
∂H̃ε

∂n
dσ

∣∣∣∣∣∣
≤ ε2




∣∣∣∣∣∣
∫
Ωε

mεT2∆H̃ε dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
Ωε

∇(mεT2)∇H̃ε dx

∣∣∣∣∣∣



<∼ ε3 + ε3/2‖∇H̃ε‖[L2(Ωε)]3 .
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Term collection: We obtain

‖∇H̃ε‖2
[L2(Ωε)]3

<∼ ε2 + ε‖∇H̃ε‖[L2(Ωε)]3

<∼ max{ε2, ε‖∇H̃ε‖[L2(Ωε)]3},

which implies
‖∇H̃ε‖[L2(Ωε)]3

<∼ ε.

As the final result, we then get

‖∇R̃ε‖[L2(Ωε)]3 ≤ ‖∇H̃ε‖[L2(Ωε)]3 + ε2‖∇T2‖[L2(Ωε)]3
<∼ ε.

Conclusion

We have studied the important medical modeling question of microvascular ther-
moregulation from the mathematical scratch using homogenization techniques.
As a result we obtain an elliptic PDE similar to, but slightly different from the
traditional bio–heat transfer (BHT) equation. In future numerical modeling –
such as therapy planning in the cancer therapy hyperthermia – we want to in-
tegrate our new model into a three–scale vascular model. For this reason, we
additionally derived the first order corrector together with uniform asymptotic
estimates.
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