
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

RALF BORNDÖRFER, HEIDE HOPPMANN, MARIKA KARBSTEIN,
NIELS LINDNER

Separation of Cycle Inequalities in Periodic
Timetabling

ZIB Report 18-16 (July 2018)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Separation of Cycle Inequalities in Periodic Timetabling∗

Ralf Borndörfer Heide Hoppmann Marika Karbstein Niels Lindner

Zuse Institute Berlin

Abstract

Cycle inequalities play an important role in the polyhedral study of the periodic
timetabling problem. We give the first pseudo-polynomial time separation algo-
rithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial
time separability of the change-cycle inequalities. Moreover, we provide several
NP-completeness results, indicating that pseudo-polynomial time is best possible.
The efficiency of these cutting planes is demonstrated on real-world instances of the
periodic timetabling problem.

1 Introduction

Periodic timetable construction is a fascinating problem because it is intuitively under-
stood and mathematically formulated, but very hard to solve. In fact, even though
real world instances give rise to relatively small optimization models, branch-and-bound
based methods can easily stall with large duality gaps. The likely reasons for this resistiv-
ity are the occurrence of genuine integer variables, symmetries, and modulo constraints.

The classical approach to periodic timetabling is to use a formulation in terms of the
periodic event scheduling problem (PESP) by Serafini and Ukovich [15]. This model has
been the basis for the development of a variety of exact and heuristic solution methods
for the optimization and the feasibility version. Integer programming approaches were
proposed, e.g., by Nachtigall [9], Lindner [8], and Liebchen [4]. A topological search
method based on cohomology feasibility was used by Schrijver [13] to optimize a Dutch
railway timetable. A modulo network simplex heuristic was invented by Nachtigall and
Opitz [10]. Liebchen and Peeters [6] studied the relation to integral cycle bases to find
tighter lower bounds. A SAT approach for the feasibility problem was developed by
Kümmling et al. [3]. A comprehensive and up-to-date survey of the literature on math-
ematical timetable optimization and its applications is summarized in Sels et al. [14].

The best method to compute lower bounds for the optimization problem is to study
the polyhedral structure of the periodic timetabling problem (PTP) associated with the
PESP. Several classes of valid inequalities have been identified, namely, chain, cycle,

∗This research was carried out in the framework of Matheon supported by Einstein Foundation
Berlin.

1

change-cycle, flow, and multi-circuit inequalities, see [4, 8, 9, 11, 12]. Some of them are
known to be facet defining or in some Chvátal closure for the PESP polytope or relax-
ations of it under certain conditions [7]. It is also known that the change-cycle inequal-
ities can be separated in pseudo-polynomial time [9]. The cycle inequalities have been
used computationally by means of heuristic separation. They improve the lower bound
significantly and are considered to be “the computationally most interesting cuts” [4,
p. 210].

We study in this paper the separation problem for the cycle and the change-cycle
inequalities for the periodic timetabling problem. We give the first pseudo-polynomial
time separation algorithm for cycle inequalities. Its complexity is O(Tn2m), where T is
the period time, n the number of nodes, and m the number of arcs. The change-cycle
inequalities have been studied by Nachtigall [9], who gave a rough sketch of a pseudo-
polynomial algorithm and claimed a complexity of O(T (mn + n2)). We cannot follow
this argument, but give a precise description of the algorithm and prove a complexity of
O(T 2n2m). Moreover, we show that there are no strongly polynomial-time versions of
the separation algorithms, and that the separation problem is weakly NP-complete when
restricted to forward directed cycles. Computational results on real world instances from
a Dutch railway system and two German cities corroborate the efficiency of these cuts.

The paper is structured as follows. Section 2 gives a mathematical statement of the
problem. Section 3 introduces the periodic slack polyhedron and states the cycle and the
change-cycle inequalities. Section 4 contains the separation algorithms for the change-
cycle inequalities and the cycle inequalities. They are based on similar ideas, but cycle
separation requires the setup of an additional auxiliary graph. Section 5 deals with the
separation problem from a complexity theory standpoint, starting from Partition-like
problems. Section 6 concludes with computational results.

2 Periodic Timetabling Problem and PESP

Most models in the literature about periodic timetabling are based on the periodic event
scheduling problem (PESP) developed by [15]. In this problem, we are given a directed
graph N = (V,A), the event-activity network. The nodes V are called events and rep-
resent arrivals and departures of lines at their stations. The arcs A ⊆ V × V are called
activities and model lines driving between stations, waiting at stations, and possible
transfers for passengers between lines at stations. Further, each activity a ∈ A is associ-
ated with a lower and an upper time bound `a, ua ∈ Q≥0, respectively, on its duration.
Let n = |V | be the number of events and m = |A| be the number of activities.

A periodic timetable π : V → [0, T) determines the timings of all events, which are
assumed to repeat periodically w.r.t. a period time T ∈ N. Given x ∈ Q, we define the
modulo operator by [x]T := min{x + zT | x + zT ≥ 0, z ∈ Z}. We call a timetable
feasible if the periodic interval constraints

[πw − πv − `a]T ∈ [0, ua − `a] ∀ a = (v, w) ∈ A (1)

are satisfied. We assume w.l.o.g. that `a < T and ua − `a < T for all a ∈ A. Many

2

operational requirements can be modeled with the constraints (1), see [5]. For a feasible
timetable π, the periodic tension of activity a ∈ A is defined by xa := `a+[πw−πv−`a]T
and corresponds to its duration. The periodic slack of activity a ∈ A is defined by
ya := [πw−πv−`a]T . Given activity weights w ∈ QA, the goal of the periodic timetabling
problem is to find a feasible timetable that minimizes the weighted sum of the periodic
slacks, i.e., min

∑
a∈Awa ya.

An oriented cycle C in N is a sequence C = (v0, a1, v1, . . . , ak, vk), where k ≥ 1,
v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, v0 = vk, and ai ∈ {(vi−1, vi), (vi, vi−1)}. Activities with
ai = (vi−1, vi) ∈ C are called forward directed and activities with ai = (vi, vi−1) ∈ C
backward directed. An oriented cycle containing only forward directed activities is called
a circuit. An oriented cycle is elementary if no event appears more than once in the
sequence. For an oriented cycle C in N , we define its incidence vector γC ∈ {−1, 0, 1}A
as

γCa =

1 if a ∈ C and a is forward directed,

−1 if a ∈ C and a is backward directed,

0 if a /∈ C.

For convenience, we will refer interchangeably to C and γC . Let B = {C1, . . . , Cν},
ν = m− n+ 1, be an cycle basis of N and denote by Γ ∈ ZB×A the corresponding cycle
matrix, i.e., the rows of Γ correspond to the characteristic vectors γCi ∈ {−1, 0, 1}A,
i ∈ {1, . . . , ν}. We require B to be integral, meaning that all non-zero maximal minors
of Γ have absolute value one [6]. Introducing periodic slack variables y ∈ RA and periodic
offset variables z ∈ ZA, we can state the periodic timetabling problem as the following
mixed-integer program [9, 4]:

(PTP) min
∑
a∈A

waya

s.t. Γ y − T Γ z = −Γ` (2)

0 ≤ y ≤ u− ` (3)

z ∈ ZA (4)

3 Periodic Slack Polyhedron

The literature considers different versions of the PTP polyhedron, e.g., the projection
on the space of the periodic slack variables or the periodic offset variables, see [9, 4, 7].
Nachtigall [9] also considers the polyhedron that is obtained when the upper bounds
in constraints (3) are omitted. In the following, we study the polyhedron PIP (PTP)
associated with the feasible solutions of (PTP), i.e., a polyhedron defined in the slack
and offset space. We recall the cycle and change-cycle inequalities in a unified notation.

Definition 1. The periodic slack and offset space is defined by

S =
{

(y, z) ∈ RA × ZA | Γ y − T Γ z = −Γ`, 0 ≤ y ≤ u− `
}
.

3

The periodic slack polyhedron is defined by

PIP (PTP) = conv(S)

and the corresponding LP relaxation by

PLP (PTP) =
{

(y, z) ∈ RA × RA | Γ y − T Γ z = −Γ`, 0 ≤ y ≤ u− `
}
.

The following lemma shows that the cycle equations (2) do not only hold for integer
periodic offset variables and the cycles of the cycle basis but for any feasible solution of
the LP relaxation of (PTP) and any cycle in the event-activity network.

Lemma 2. Let (y, z) ∈ PLP (PTP) and let γ ∈ ZA be an oriented cycle in N . Then we
have

γty = −γt`+ T γtz.

Proof. Since B is a cycle basis, there exists a vector λ ∈ Rν such that γ = Γt λ. Hence,
we get

γty = λt Γ y = λt (−Γ `+ T Γ z) = −(Γt λ)t`+ T (Γt λ)t z = −γt`+ T γt z.

Lemma 2 implies that for any feasible solution of (PTP) the following modulo cycle
equations hold:

Corollary 3. Let (y, z) ∈ S and let γ ∈ ZA be an oriented cycle in N . Then we have

γty ≡T −γt`.

Proof. The corollary follows directly from γtz ∈ Z and Lemma 2.

For convenience, we introduce further notation. For an oriented cycle γ ∈ Zm in N
we define the positive part γ+ ∈ Zm and the negative part γ− ∈ Zm, respectively, by

γ+,a :=

{
1 if γa = 1

0 else
and γ−,a :=

{
1 if γa = −1

0 else

for all a ∈ A. In particular, γ = γ+ − γ−.
The following class of valid inequalities was introduced by Nachtigall [9] and are

defined for every oriented cycle in the event-activity network.

Theorem 4. Let γ ∈ ZA be an oriented cycle in N and define α =
[
−γt`

]
T

. Then the
change-cycle inequality

(T − α) γt+y + αγt−y ≥ α (T − α) (5)

is valid for PIP (PTP).

4

A second class of inequalities are also induced by the oriented cycles in the event-
activity network and were first described by Odijk [11]. These inequalities are denoted
as cycle inequalities. They are usually defined in terms of the periodic offset variables.
We will show next that they can also be defined in terms of the slack variables.

Theorem 5. Let γ ∈ ZA be an oriented cycle in N . Then the z-cycle inequality

γt z ≥
⌈

1

T

(
γt+`− γt−u

)⌉
(6)

is valid for PIP (PTP).

Proof. Let (y, z) ∈ S. We have with Lemma 2

T γt z = γty + γt` = γt+y − γt−y + γt` ≥ −γt− (u− `) + γt` = γt+`− γt−u.

Since γt z ∈ Z, the inequality (6) follows.

Lemma 6. Let α ∈ R. Then

[α]T = α+ T
⌈
−α
T

⌉
. (7)

Proof. Let α ∈ R. Then

0 = α+ T ·
(
−α
T

)
≤ α+ T

⌈
−α
T

⌉
< α+ T ·

(
−α
T

+ 1
)

= T,

and the claim follows by definition of [α]T .

With Lemma 6 we can show that the z-cycle inequalities can be expressed equiva-
lently in terms of the slack variables.

Theorem 7. Let γ ∈ ZA be an oriented cycle in N and let (y, z) ∈ PLP (PTP). Then
the z-cycle inequality (6) holds if and only if the the y-cycle inequality

γty ≥
[
−γt+`+ γt−u

]
T

+ γt−(`− u) (8)

holds.

Proof. Let (y, z) ∈ PLP (PTP). Using first Lemma 6 and afterwards Lemma 2,

γtz ≥
⌈

1

T

(
γt+`− γt−u

)⌉
⇔ Tγtz ≥ T

⌈
1

T

(
γt+`− γt−u

)⌉
⇔ γty + γt` ≥ T

⌈
1

T

(
γt+`− γt−u

)⌉
⇔ γty + γt` ≥

[
−γt+`+ γt−u

]
T

+ γt+`− γt−u
⇔ γty ≥

[
−γt+`+ γt−u

]
T

+ γt−`− γt−u.
=
[
−γt+`+ γt−u

]
T

+ γt−(`− u).

5

Corollary 8. Let γ ∈ ZA be an oriented cycle in N . Then the y-cycle inequality

γty ≥
[
−γt+`+ γt−u

]
T

+ γt−(`− u)

is valid for PIP (PTP).

4 Separation Algorithms

4.1 Separation of Change-Cycle Inequalities

In this subsection we describe a pseudo-polynomial dynamic programming procedure to
separate violated change-cycle inequalities (5). The idea of this algorithm was originally
proposed by Nachtigall [9]. He claimed a running time of O(T (mn + n2)), but did not
give a proof. We prove a complexity of O(T 2n2m).

Given a point (y∗, z∗) ∈ PLP (PTP), the separation problem is to find an oriented
cycle γ in N such that the change-cycle inequality (5) induced by γ is violated, i.e., for
α0 =

[
−γt`

]
T

holds

(T − α0)γt+y
∗ + α0 γ

t
−y
∗ < α0 (T − α0),

or to conclude that no such cycle exists. The idea behind the algorithm is to solve for
each fixed α0 ∈ {0, . . . , T − 1} the problem

f∗(α0) = min{(T − α0)γt+y
∗ + α0 γ

t
−y
∗ | γ oriented cycle in N ,

[
−γt`

]
T

= α0}, (9)

which is to find the minimum cost cycle w.r.t.

ca :=

(T − α0)y∗a if γa = 1

α0y
∗
a if γa = −1

0 else

among all oriented cycles γ with
[
−γt`

]
T

= α0. Note that a violated change-cycle
inequality exists if and only if for some α0 ∈ {0, . . . , T − 1} holds f∗(α0) < α0 (T − α0).

The minimization problem (9), again, can be solved with a dynamic program that
iterates over the cycle lengths w.r.t. the number of activities. We denote by a chain a
path that can contain forward directed activities as well as backward directed activities.
Let Ckij be the set of all chains in N from event i ∈ V to event j ∈ V that contain exactly
k activities, given by their characteristic vectors. For α ∈ {0, . . . , T − 1}, let

fkij(α0, α) := min

(T − α0)
∑
a∈A:
pa>0

y∗a + α0

∑
a∈A:
pa<0

y∗a

∣∣∣∣∣∣∣∣ p ∈ C
k
ij , α =

[
−pt`

]
T

6

be the minimum length w.r.t. ca of all chains in Ckij with α =
[
−pt`

]
T

. Since a chain of
length k ≥ 2 consists of a chain of length k − 1 and an additional activity, the following
recursive equation holds for all k ≥ 0:

fk+1
ij (α0, α) := min

 min
a=(u,j)

[α′−`a]T =α

fkiu(α0, α
′) + (T − α0)y∗a, min

a=(j,u)
[α′+`a]T =α

fkiu(α0, α
′) + α0y

∗
a

 ,

(10)
where

f0
ij(α0, α) :=

{
0 if i = j, α = 0

∞ else.

Since every elementary cycle has at most n activities and ca ≥ 0 for all a ∈ A, the
minimum length w.r.t. c of all oriented cycles γ with α0 =

[
−γt`

]
T

is given by

f∗(α0) = min
i∈V

n
min
k=1

fkii(α0, α0).

For fixed k ∈ {0, . . . , n − 1}, the recursive equation (10) can be solved with Algo-
rithm 1.

Algorithm 1: Computing fk+1
ij (α0, α) for all α ∈ {0, . . . , T − 1}

Input : (y∗, z∗) ∈ PLP (PTP), α0 ∈ {0, . . . , T − 1}, k ∈ {0, . . . , n− 1},
fkij ,∀i, j ∈ V

Output: fk+1
ij , ∀i, j ∈ V

1 for a = (u, v) ∈ A do
2 for α′ := 0, . . . , T − 1 do
3 for i ∈ V do
4 α := [α′ − `a]T
5 if fk+1

iv (α0, α) > fkiu(α0, α
′) + (T − α0)y∗a then

6 fk+1
iv (α0, α) := fkiu(α0, α

′) + (T − α0)y∗a
7 end
8 α := [α′ + `a]T
9 if fk+1

iu (α0, α) > fkiv(α0, α
′) + α0y

∗
a then

10 fk+1
iu (α0, α) := fkiv(α0, α

′) + α0y
∗
a

11 end

12 end

13 end

14 end

15 return fk+1
ij ,∀i, j ∈ V

Theorem 9. For given α0 ∈ {0, . . . , T − 1}, k ∈ {0, . . . , n− 1}, and fkij for all i, j ∈ V ,

Algorithm 1 computes fk+1
ij (α0, α) for all i, j ∈ V and α ∈ {0, . . . , T − 1} in O(Tmn).

7

Proof. For a given k ∈ {0, . . . , n − 1} and α0 ∈ {0, . . . , T − 1}, Algorithm 1 obviously
solves equation (10) for all i, j ∈ V and for all α ∈ {0, . . . , T − 1}. The computation
involves O(Tmn) elementary operations.

The described separation algorithm is given in pseudocode in Algorithm 2.

Algorithm 2: Separation of Change-Cycle Inequalities

Input : LP-point (y∗, z∗) ∈ PLP (PTP)
Output: Cycle γ ∈ N such that the change-cycle inequality (5) is violated, or

NULL if no such cycle exists.

1 f∗ :=∞
2 ρ∗ := 0
3 for α0 := 0, . . . , T − 1 do

4 fkik(α0, α) :=

{
0 if k = 0, i = j, α = 0

∞ else

5 for k := 1, . . . , n do
6 compute fkij(α0, α) for all α ∈ {0, . . . , T − 1}, for all i, j ∈ V
7 end

8 f∗(α0) := mini∈V minnk=1 f
k
ii(α0, α0)

9 if f∗(α0)− α0(T − α0) < ρ∗ then
10 f∗ := f∗(α0)
11 ρ∗ := f∗(α0)− α0(T − α0)

12 end

13 end
14 if ρ∗ < 0 then
15 return γ(f∗)
16 else
17 return NULL
18 end

Theorem 10. Algorithm 2 solves the separation problem for the change-cycle inequali-
ties (5) in O(T 2n2m).

Proof. The Algorithm 2 solves for each α0 ∈ {0, . . . , T−1} the minimization problem (9)
and correctly reports if there exists an α0 ∈ {0, . . . , T−1} such that f∗(α0) < α0 (T−α0).
Hence, with the previous argumentation, the correctness of the algorithm follows. The
algorithm needs to call Algorithm 1, see line 6 of Algorithm 2, in total nT -times. By
Theorem 9, this results in a running time in O(T 2n2m).

4.2 Separation of Cycle Inequalities

In this subsection we describe a pseudo-polynomial dynamic programming procedure to
separate violated cycle inequalities (8) using an auxiliary network Ñ that was proposed

8

by Nachtigall [9]. The auxiliary network allows to reduce cycle separation to finding
certain modulo constrained circuits. Such a circuit can be found by a modification of
the change-cycle separation Algorithm 2.

[`, u]

[`, u]

[−u,−`]

Figure 1: Left : the network N , Right : the auxiliary network Ñ . The solid arcs corre-
spond to the cycle γ and the circuit γ̃ from Theorem 11, respectively.

We obtain Ñ by copying N and additionally introducing for each activity a = (i, j)
the back activity ā = (j, i). The copies of the original activities keep their bounds,
the bounds of the back activities are set to ˜̀̄

a := −ua and ũā := −`a, see Figure 1.
For a point (y, z) ∈ PLP (PTP) we define ỹ on the activities of Ñ by ỹa := ya and
ỹā := ua − `a − ya.

Theorem 11. Let be (y∗, z∗) ∈ PLP (PTP). Then, N contains a cycle γ that violates
the y-cycle inequality (8), i.e.,

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u),

if and only if Ñ contains a circuit γ̃ (cycle containing only forward directed activities)
with

γ̃tỹ∗ <
[
−γ̃t ˜̀

]
T
.

Proof. Let γ be a cycle inN and γ̃ be the circuit in Ñ obtained by replacing all backward
directed activities in γ with their auxiliary back activities, see Figure 1. Then we get

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u)

⇔ γt+y
∗ + γt−(u− `− y∗) <

[
−γt+`+ γt−u

]
T

⇔ γt+ỹ
∗ + γt−ỹ

∗ <
[
−γt+`− γt−(−u)

]
T

⇔ γ̃tỹ∗ <
[
−γ̃t ˜̀

]
T
.

By Theorem 11, there exists a violated cycle inequality (8) if and only if

δ∗ := min
{
γ̃tỹ∗ −

[
−γ̃t ˜̀

]
T

∣∣∣ γ̃ directed circuit in Ñ
}
< 0.

9

Hence, we can solve the separation problem by minimizing δ(γ̃) := γ̃tỹ∗ −
[
−γ̃t ˜̀

]
T

over

all directed circuits in the auxiliary network Ñ . We describe in the following the idea of
the algorithm, which is given in pseudocode in Algorithm 3.

Algorithm 3: Separation of Cycle Inequalities

Input : LP-point (y∗, z∗) ∈ PLP (PTP)
Output: Cycle γ ∈ N such that the cycle inequality (8) is violated, or NULL

if no such cycle exists.

1 d∗ :=∞
2 δ∗ := 0

3 dkij(α) :=

{
0 if k = 0, i = j, α = 0

∞ else

4 for k := 1, . . . , n do

5 for a = (u, v) ∈ Ã do
6 for α′ ∈ {0, . . . , T − 1}, i ∈ V with dkiu(α′) <∞ do

7 α :=
[
α′ − ˜̀

a

]
T

8 if dkiv(α) > dk−1
iu (α′) + ỹ∗a then

9 dkiv(α) := dk−1
iu (α′) + ỹ∗a

10 if i = v and dkii(α)− α < δ∗ then
11 d∗ := dkii(α)

12 δ∗ := dkii(α)− α
13 end

14 end

15 end

16 end

17 end
18 if δ∗ < 0 then
19 return γ(d∗)
20 else
21 return NULL
22 end

Let Pkij be the set of all (i, j)-paths in Ñ that contain exactly k activities, given by
their characteristic vectors. For α ∈ {0, . . . , T − 1}, let

dkij(α) := min

 ∑
a∈A:pa>0

ỹ∗a

∣∣∣∣∣∣ p ∈ Pkij , α =
[
−pt ˜̀

]
T

 (11)

be the minimum length with respect to ỹ∗ of all paths in Pkij with α =
[
−pt ˜̀

]
T

. We can

10

use the following recursive equation to compute (11)

dk+1
ij (α) := min

a=(u,j)
[α′−`a]T =α

dkiu(α′) + ỹ∗a, ∀ k ≥ 0

with

d0
ij(α) =

{
0 if i = j, α = 0

∞ else.

Since every elementary circuit has at most n activities and ỹ∗a ≥ 0 for all a ∈ A, the

minimum length w.r.t. ỹ∗ of all directed circuits γ̃ with α =
[
−γ̃t ˜̀

]
T

is given by

d∗(α) = min
i∈V

n
min
k=1

dkii(α)

and we have
δ∗ = min{d∗(α)− α | α ∈ {0, . . . , T − 1}}.

Theorem 12. Algorithm 3 detects a violated cycle inequality in O(Tn2m).

Proof. The argumentation in this section proves that the algorithm computes δ∗ and,
thus, correctly detects violated cycle inequalities. In total, O(Tn2m) elementary opera-
tions are involved.

5 NP-Completeness

For a point (y∗, z∗) ∈ PLP (PTP), the algorithms 2 and 3 compute a maximally violated
(change-)cycle inequality in pseudo-polynomial time. In this section, we prove that given
such a point and a number M , it is weakly NP-complete to decide whether a cycle exists
such that the corresponding (change-)cycle inequality is violated by more than M . In
particular, there are no strongly polynomial-time alternatives to algorithms 2 and 3
unless P = NP.

Definition 13. For a PTP instance on an event-activity network N , let (y∗, z∗) ∈
PLP (PTP). Further let M ≥ 0.

• The maximally violated cycle cut problem (MVC) is to decide whether there is an
oriented cycle γ in N such that

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u)−M.

• The maximally violated change-cycle cut problem (MVCC) is to decide whether
there is an oriented cycle γ in N such that

(T − α)γt+y
∗ + αγt−y

∗ < α(T − α)−M,

where α =
[
−γt`

]
T

.

Note that Algorithm 3 solves MVC, and Algorithm 2 solves MVCC. In particular,
both problems are located inside the complexity class NP. To show that they are also
NP-hard, we need in either case to introduce a few auxiliary NP-complete problems first.

11

5.1 Cycle Inequality

Lemma 14 (Twisted Subset Sum). The following problem is NP-hard: Given m ∈ N,
c ∈ Zm, is there an x ∈ {0, 1}m such that xtc = 1?

Proof. Let n ∈ N, w ∈ Nn. The Partition problem is to find a y ∈ {0, 1}n such that

n∑
i=1

yiwi =
n∑
i=1

(1− yi)wi.

This is one of the classical weakly NP-complete problems [2, SP12]. Let (n,w) be
a Partition instance and consider the Twisted Subset Sum instance defined by
m := n+ 1 and c := (2w1, . . . , 2wn, 1− w1 − · · · − wn).

Suppose that there is an x ∈ {0, 1}m such that xtc = 1. Then

n∑
i=1

2xiwi + xn+1

(
1−

n∑
i=1

wi

)
= 1.

This implies that xn+1 = 1, as otherwise the left-hand side would be even. Thus we have

n∑
i=1

2xiwi + 1−
n∑
i=1

wi = 1

⇔
n∑
i=1

2xiwi =

n∑
i=1

wi

⇔
n∑
i=1

xiwi =

n∑
i=1

(1− xi)wi,

and we found a positive answer to the Partition instance by setting yi := xi, i =
1, . . . , n.

Conversely, any solution y to the Partition instance gives rise to a solution of the
Twisted Subset Sum instance via x := (y, 1).

Theorem 15. The maximally violated cycle cut problem (MVC) is weakly NP-complete.

Proof. It remains to show that the problem is NP-hard. To this end, consider a Twisted
Subset Sum instance, i.e., an integer m and a vector c ∈ Zm. W.l.o.g., we can assume
that no entry of c is zero.

We build a periodic timetabling instance as follows: Let N be a digraph with a single
node and m directed self-loops a1, . . . , am. Define

T :=
m∑
i=1

|ci|+ 2,

`ai := [ci]T , i = 1, . . . ,m,

uai := T, i = 1, . . . ,m,

wai arbitrary non-negative, i = 1, . . . ,m.

12

Figure 2: Event-activity network from a twisted subset sum instance with m = 6

A cycle basis of N is simply given by the individual loops in forward direction. This
basis is integral, as its cycle matrix is the identity matrix. The corresponding periodic
timetabling problem reads as follows:

(PTP) min

m∑
i=1

waiyi

s.t. yi − Tzi = − [ci]T , i = 1, . . . ,m, (12)

0 ≤ yi ≤ T − [ci]T , i = 1, . . . ,m, (13)

zi ∈ Z, i = 1, . . . ,m.

Note that this PTP instance is trivial to solve, as it has a unique solution: By (13),

[ci]T ≤ yi + [ci]T︸ ︷︷ ︸
=Tzi

≤ T − [ci]T + [ci]T = T.

Since ci 6= 0 and |ci| < T , constraint (12) enforces zi = 1 and hence yi = T − [ci]T for all
i = 1, . . . ,m. However, the optimal solution (y∗, z∗) ∈ PLP (PTP) to the LP-relaxation
is given by

y∗i = 0 and z∗i =
[ci]T
T

, i = 1, . . . ,m.

Now suppose there is an oriented cycle γ in N such that

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u)− (T − 2). (14)

This is an instance of MVC with M = T − 2. Plugging in, we obtain

0 <

− ∑
i:γai=+1

[ci]T +
∑

i:γai=−1

T

T

+
∑

i:γai=−1

([ci]T − T)− (T − 2)

⇔ 0 <
[
−γt+c

]
T

+
∑

i:γai=−1

([ci]T − T)− (T − 2).

13

Note that
[
−γt+c

]
T
≤ T − 1 and [ci]T − T < 0 for all i. This shows that the right-hand

side is bounded from above by 1, and it is at most 0 if γ− 6= 0. In particular, (14) holds
if and only if

[
−γt+c

]
T

= T − 1 and γ− = 0. As a consequence, γ = γ+, and
[
γtc
]
T

= 1.
Since, by construction of T , the inequality −T + 2 ≤ γtc ≤ T − 2 holds, we obtain
γT c = 1. This translates directly into a solution to the Twisted Subset Sum problem.

Conversely, any solution to the Twisted Subset Sum problem gives an oriented
cycle γ in N by traversing the corresponding loops in forward direction. This cycle
satisfies γ = γ+ and γtc = 1, so that

[
−γt+c

]
T

= T − 1 and γ− = 0. In particular, the
inequality

0 <
[
−γt+c

]
T

+
∑

i:γai=−1

([ci]T − T)− (T − 2)

holds, and hence γ fulfills (14).

5.2 Change-Cycle Inequality

Lemma 16 (Non-Negative Ternary Partition). The following is NP-hard: Given
m ∈ N, c ∈ Nm, is there an x ∈ {0, 1, 2}m such that

m∑
i=1

xici =
1

2

m∑
i=1

ci ?

Proof. We consider a Partition instance as in the proof of Lemma 14. Given n ∈ N
and w ∈ Nn, we ask if there is a y ∈ {0, 1}n such that

n∑
i=1

yiwi =
n∑
i=1

(1− yi)wi.

Adding the left-hand side to the equation and dividing by 2, this is equivalent to

n∑
i=1

yiwi =
1

2

n∑
i=1

wi.

Define

m := 2n,

N :=

⌈
log3

n∑
i=1

wi

⌉
,

ci := wi + 3N+i, i = 1, . . . , n,

ci+n := 3N+i, i = 1, . . . , n.

Assume that there is an x ∈ {0, 1, 2}m such that

m∑
i=1

xici =
1

2

n∑
i=1

ci,

14

or equivalently,

n∑
i=1

xiwi +

n∑
i=1

(xi + xi+n)3N+i =
1

2

n∑
i=1

wi +

n∑
i=1

3N+i. (15)

Since
n∑
i=1

xiwi ≤
n∑
i=1

2wi ≤ 2 · 3N < 3N+1,

taking remainders modulo 3N+1 yields

n∑
i=1

xiwi =
1

2

n∑
i=1

wi.

Moreover, comparing the 3-adic expansion of both sides, we obtain for all i = 1, . . . , n
the equality

xi + xi+n = 1,

implying xi ∈ {0, 1} for i = 1, . . . , n. Consequently, we find a solution to the Partition
instance via yi := xi, i = 1, . . . , n.

Conversely, a solution y to the Partition instance gives rise to an x ∈ {0, 1, 2}m
satisfying (15) by setting xi := yi and xi+n := 1− xi for i = 1, . . . , n.

Lemma 17 (Ternary Partition). The following problem is NP-hard: Given m ∈ N,
c ∈ Nm, is there an x ∈ {−1, 0, 1}m such that

m∑
i=1

xici = ±1

2

n∑
i=1

ci ?

Proof. Let (m, c) be a Non-Negative Ternary Partition Instance. Suppose there
is an x ∈ {−1, 0, 1}m such that

m∑
i=1

xici = ±1

2

n∑
i=1

ci.

We can assume that the sum is negative, otherwise, we replace x by −x. But then

m∑
i=1

(xi + 1)ci =
1

2

n∑
i=1

ci

is a solution to the Non-Negative Ternary Partition Instance.
Conversely, a solution x′ to Non-Negative Ternary Partition yields a solution

to Ternary Partition on the same m and c by subtracting 1 from each entry of x′.

Theorem 18. The maximally violated change-cycle cut problem (MVCC) is weakly NP-
complete.

15

Proof. It suffices to prove NP-hardness. Consider an instance of Ternary Partition,
i.e., a positive integer m and a vector c ∈ Nm. We build almost the same PTP instance
as in the proof of Theorem 15, the only exception being that we now set T :=

∑m
i=1 ci.

W.l.o.g., we can assume that T is even, because otherwise, the Ternary Partition
instance would trivially have no solution. Again, there is a unique solution to the PTP
and the optimal solution (y∗, z∗) ∈ PLP (PTP) to the LP relaxation satisfies y∗ = 0.

Now suppose that there is an oriented cycle γ in the network such that

(T − α)γt+y
∗ + αγt−y

∗ < α(T − α)− T 2 − 1

4
, (16)

where α =
[
−γt`

]
T

. This is an instance of the MVCC problem with M = (T 2 − 1)/4.
Inserting y∗ = 0, (16) becomes

α(T − α) >
T 2 − 1

4
.

By elementary calculus, this is equivalent to∣∣∣∣α− T

2

∣∣∣∣ < 1

2
.

Since α is integer and T is even, this means that α = T/2. Since −T ≤ γT ` ≤ T and
α =

[
−γt`

]
T

, we hence obtain that γt` equals either T/2 or −T/2. Therefore

m∑
i=1

γaici =

m∑
i=1

γai [ci]T = γT ` = ±T
2

= ±1

2

m∑
i=1

ci,

where a1, . . . , am are the individual loops in the network. This translates directly into a
positive answer to the Ternary Partition problem.

Conversely, a solution to the Ternary Partition problem yields an oriented cycle
γ with

[
−γt`

]
T

= T/2, so that γ satisfies (16).

Remark 19. The PTP instance used in the proofs of Theorem 15 and 18 seems rather
artificial. However, we could use instead a more realistic network by adding more arcs
a with `a = ua = wa = 0, as depicted in Figure 3. Although the cycle space is bigger,
the proofs still work as before.

5.3 Circuits

It remains open whether (change-)cycle cuts can be separated in strongly polynomial
time when the violation is not required to be maximal. However, we can prove the
following:

Theorem 20. Given a PTP instance on an event-activity network N and (y∗, z∗) ∈
PLP (PTP), it is weakly NP-complete to decide whether there is a circuit γ in N such
that γ violates the cycle inequality or the change-cycle inequality.

16

Figure 3: Larger event-activity network for m = 4. The bold blue arcs carry the data of
the loops from the network used in the proofs.

Recall that by a circuit we mean an oriented cycle containing only forward activities.
Before proving the theorem, we first make a simple observation:

Lemma 21. For a circuit, the change-cycle and cycle inequalities coincide.

Proof. Since for a circuit γ holds γ = γ+ and γ− = 0, this follows immediately from the
formulations (5) and (8).

Proof of Theorem 20. Algorithm 3 yields a pseudo-polynomial time method to search
for a circuit violating the cycle inequality. Hence it remains to show NP-hardness. As in
the proof of Theorem 15, we use a reduction from Twisted Subset Sum. Thus consider
a natural number m and a vector c ∈ Zm. From this, we construct the following PTP
instance, see Figure 4: The network N contains m + 1 events 0, 1, . . . ,m. For each
i = 1, . . . ,m, add two activities ai and ai from i− 1 to i. Moreover, there is an activity
a0 from m to 0.

0 1 2 3 4

a1 a2 a3 a4

a1 a2 a3 a4

a0

Figure 4: Event-activity network from the proof of Theorem 20 for m = 4

17

Further let

T :=

m∑
i=1

|ci|+ 2,

`ai := [−ci]T , `ai := 0, i = 1, . . . ,m, and `a0 := 2,

uai := T, uai := 0, i = 1, . . . ,m, and ua0 := T,

wa arbitrary non-negative, a activity in N .

The pairs (ai, ai), i = 1, . . . ,m, together with (a0, a1, . . . , am) form an integral cycle
basis of N . Note that the periodic slack on the overlined activities is zero, so that the
corresponding periodic timetabling problem can w.l.o.g. be simplified to

(PTP) min
m∑
i=1

waiyi

s.t. yi − Tzi = − [−ci]T , i = 1, . . . ,m,

y0 − Tz0 = −2, (17)

0 ≤ yi ≤ T − [−ci]T , i = 1, . . . ,m,

0 ≤ y0 ≤ T − 2, (18)

zi ∈ Z, i = 0, . . . ,m.

We may further use constraints (17) and (18) to fix y0 := T − 2. Doing so, the optimal
solution (y∗, z∗) to the LP relaxation of the program is given by

y∗0 = T − 2, z∗0 = 1, and

y∗i = 0, z∗i =
[−ci]T
T

, i = 1, . . . ,m.

Now suppose there is a circuit γ such that the (change-)cycle inequality

γty∗ ≥
[
−γt`

]
T
,

cf. Lemma 21, is violated. As every circuit in our network N needs to traverse the arc
a0, this is equivalent to

T − 2 <

[
−

m∑
i=1

γi`i − γ0`0

]
T

=

[
m∑
i=1

γici − 2

]
T

.

Since the expression inside the bracket is an integer between −T and T − 2, and reduces
to T − 1 modulo T by the above inequality, it must be equal to −1. This shows

m∑
i=1

γici = 1,

which solves the Twisted Subset Sum problem. Note that γ has only entries in {0, 1},
as it contains only forward arcs. Conversely, a positive answer to the Twisted Subset
Sum problem yields a circuit γ violating the (change-)cycle inequality.

18

6 Computational Results

This section gives some indication of the computational usefulness of cycle-separation
compared to a heuristic separation.

As far as we know, the cycle inequalities (6) are added in cutting-plane algorithms
only with heuristic separation algorithms, see [9, 4, 7]. In the so-called spanning tree
heuristic, a minimum spanning tree of the event-activity network weighted with the slack
values of the LP-solution is computed and the fundamental cycles of this tree are checked
for violated inequalities.

We have implemented a full separation algorithm according to Algorithm 3 to sep-
arate all violated cycle inequalities (8) with a given maximum length. Such a length
restriction is necessary to handle the memory consumption and the computation time
of the separation algorithm. We tested a length restriction of 10, 15, and 20.

Our test set consists of seven instances, which are given in Table 1. The instance
Wuppertal is based on the real multi-modal public transportation network of the city
of Wuppertal for 2013. The remaining Wuppertal-instances are obtained by selecting
a subset of lines of this instance. The Dutch instance is based on a network that was
introduced by Bussieck in the context of line planning [1]. The Potsdam instance is
based on the real multi-modal public transportation network for 1998. We consider a
period time of 20 for all instances. The activity weights are obtained by computing an
uncapacitated multi-commodity flow in the event-activity network for a given passenger
demand.

Table 1: Statistics on the test instances. The columns list the instance name, the number
of stations and lines of the transportation network, the number of events and activities
of the event-activity network, the number of slack variables, periodic offset variables,
and constraints in the original problem, and the number of variables and constraints
after preprocessing.

name |S| |L| n m #y #z #cons #vars* #cons*

Wuppertal 14 28 14 168 499 52 39 39 52 39
Wuppertal 44 64 44 395 1 426 122 85 85 106 77
Wuppertal 98 123 98 1 242 8 997 1 299 1 208 1 208 1 294 1 204
Wuppertal core 148 154 1 677 14 446 2 048 1 903 1 903 2 044 1 902
Wuppertal 1 582 311 13 202 79 251 3 188 2 886 2 886 3 150 2 862
Dutch 23 58 419 3 138 115 70 70 111 70
Potsdam 320 164 8 092 99 103 1 413 1 262 1 262 1 400 1 255

Our code is based on the constraint integer programming framework SCIP ver-
sion 3.2.0 using Cplex 12.6.3 as an LP-solver. All computations were done on an Intel(R)
Xeon(R) CPU E3-1245, 3.4 GHz computer (in 64 bit mode) with 8 MB cache, running
Linux and 32 GB of memory. We set the time limit to one hour.

We compare the performance of the general MIP separators implemented in SCIP
(no add. cuts), adding either the spanning-tree heuristic (heuristic) or our separation

19

Table 2: Statistics on the computations. The columns list the instance name, the used
cut separation, the solving time, the separation time, the number of separated cycle
cuts, the number of cycle cuts selected by SCIP to be applied to the LP, the dual bound
of the root node, the dual bound after termination, the best known primal bound, and
the primal-dual gap in %.
name method solving

time
sepa.
time

cuts applied
cuts

root dual dual primal gap in %

Wuppertal 14

no add. cuts 0.06s - - - 16 231.80 24 074.55 24 074.55 0.00
heuristic 0.04s 0.00s 2 2 16 499.35 24 074.55 24 074.55 0.00
length ≤ 10 0.10s 0.03s 28 9 23 050.60 24 074.55 24 074.55 0.00
length ≤ 15 0.18s 0.12s 84 16 23 088.89 24 074.55 24 074.55 0.00
length ≤ 20 0.28s 0.22s 129 18 20 775.85 24 074.55 24 074.55 0.00

Wuppertal 44
no add. cuts 0.10s - - - 28 778.74 37 755.40 37 755.40 0.00
heuristic 0.11s 0.00s 1 1 28 669.75 37 755.40 37 755.40 0.00
length ≤ 10 0.19s 0.05s 18 5 31 846.58 37 755.40 37 755.40 0.00
length ≤ 15 0.46s 0.29s 40 9 31 953.26 37 755.40 37 755.40 0.00
length ≤ 20 1.05s 0.80s 72 10 31 953.26 37 755.40 37 755.40 0.00

Wuppertal 98
no add. cuts 1h - - - 81 940.30 112 023.51 477 161.17 325.95
heuristic 1h 0.02s 20 20 89 284.15 124 697.64 468 467.85 275.68
length ≤ 10 1h 1.16s 747 354 128 857.01 161 485.01 477 161.17 195.48
length ≤ 15 1h 11.52s 2 413 887 149 847.94 173 291.01 477 161.17 175.35
length ≤ 20 1h 41.34s 3 644 1 128 155 819.69 180 986.98 477 161.17 163.64

Wuppertal core
no add. cuts 1h - - - 98 654.95 118 462.71 464 533.25 292.13
heuristic 1h 0.02s 24 22 99 896.39 117 042.04 464 533.25 296.89
length ≤ 10 1h 2.40s 949 448 137 337.00 155 433.06 464 533.25 198.86
length ≤ 15 1h 25.90s 3 211 1 186 167 898.07 187 486.25 464 533.25 147.77
length ≤ 20 1h 82.94s 4 886 1 488 175 122.92 184 265.70 464 533.25 153.09

Wuppertal
no add. cuts 1h - - - 190 989.51 235 669.35 997 285.99 323.17
heuristic 1h 0.08s 65 63 198 269.80 248 616.97 997 285.99 301.13
length ≤ 10 1h 2.10s 1 082 402 232 178.52 273 620.80 997 285.99 264.48
length ≤ 15 1h 21.55s 3 336 810 244 127.40 281 855.42 997 285.99 253.83
length ≤ 20 1h 123.19s 5 307 1 098 255 288.10 290 249.68 997 285.99 243.60

Dutch
no add. cuts 7.06s - - - 2 455.13 6 155.00 6 155.00 0.00
heuristic 7.14s 0.00s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 10 7.99s 0.01s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 15 8.26s 0.04s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 20 8.24s 0.08s 0 0 2 455.13 6 155.00 6 155.00 0.00

Potsdam
no add. cuts 1h - - - 25 797.07 43 944.09 130 840.00 197.74
heuristic 1h 0.03s 10 10 28 407.66 46 545.79 130 840.00 181.10
length ≤ 10 1h 0.34s 26 10 26 231.44 46 671.69 130 840.00 180.34
length ≤ 15 1h 1.82s 106 33 27 115.22 45 784.24 130 840.00 185.76
length ≤ 20 1h 8.04s 254 86 34 422.07 51 912.86 130 840.00 152.04

20

algorithm with a given length restriction (length ≤ 10, length ≤ 15, and length ≤ 20).
The additional separators are only called at the root node. The results are listed in
Table 2.

Looking at the root dual bound, one can see significant improvements, e.g., of up
to 90% for Wuppertal 98, in comparison to the strategy without cycle cuts, and almost
75% over heuristic cycle cut separation. Hence, the separation algorithm has a greater
effect on the dual bound than the heuristic, even though the separator only considers
cycles of a restricted length. Only Wuppertal 14 has a smaller root dual bound if all
cycles of maximum length 20 are separated compared to a cycle length of 10 or 15. This
is not caused by the cycle inequalities, but by the additional “flow cover” and “strong
cg” inequalities (heuristically) found by the default separator of SCIP. The given length
restriction influences the performance of the separation algorithm: Separating cycle
inequalities with higher length increases the computation time, but also, in general,
the dual bound, especially for larger instances. In particular, the root dual bound for
Potsdam can be further improved by 30% by using a length restriction of 20 compared
to a length restriction of 10. Potsdam features the largest number of events, see Table 1,
and benefits from a consideration of longer cycles.

References

[1] M. Bussieck. Gams – lop.gms: Line optimization. http://www.gams.com/modlib/
libhtml/lop.htm.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and
Company, San Francisco, 1979.

[3] M. Kümmling, P. Großmann, K. Nachtigall, J. Opitz, and R. Weiß. A state-
of-the-art realization of cyclic railway timetable computation. Public Transport,
7(3):281–293, 2015. URL: http://dx.doi.org/10.1007/s12469-015-0108-5,
doi:10.1007/s12469-015-0108-5.

[4] C. Liebchen. Periodic timetable optimization in public transport. PhD thesis, Tech-
nische Universtität Berlin, 2006. URL: http://www.dissertation.de.

[5] C. Liebchen and R. H. Möhring. The modeling power of the periodic event
scheduling problem: Railway timetables – and beyond. In F. Geraets, L. Kroon,
A. Schoebel, D. Wagner, and C. D. Zaroliagis, editors, Algorithmic Methods for
Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages
3–40. Springer Berlin Heidelberg, 2007.

[6] C. Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling. Discrete
Optimization, 6:98–109, 2009.

[7] C. Liebchen and E. Swarat. The Second Chvatal Closure Can Yield Better Railway
Timetables. In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic

21

http://www.gams.com/modlib/libhtml/lop.htm
http://www.gams.com/modlib/libhtml/lop.htm
http://dx.doi.org/10.1007/s12469-015-0108-5
http://dx.doi.org/10.1007/s12469-015-0108-5
http://www.dissertation.de

Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] T. Lindner. Train Schedule Optimization in Public Rail Transport. PhD thesis,
Technische Universtität Braunschweig, 2000.

[9] K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Ha-
bilitation thesis, Universtität Hildesheim, 1998.

[10] K. Nachtigall and J. Opitz. Solving periodic timetable optimisation problems by
modulo simplex calculations. In M. Fischetti and P. Widmayer, editors, ATMOS’08,
volume 9, 2008.

[11] M. A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm.
Technical Report 94-61, TU Delft, 1994.

[12] L. W. P. Peeters. Cyclic Railway and Timetable Optimization. PhD thesis, Erasmus
Universiteit Rotterdam, 2003.

[13] A. Schrijver. Routing and timetabling by topological search. Documenta Mathe-
matica, Extra Volume ICM 1998:1–9, 1998.

[14] P. Sels, T. Dewilde, D. Cattrysse, and P. Vansteenwegen. Reducing the passenger
travel time in practice by the automated construction of a robust railway timetable.
Transportation Research Part B: Methodological, 84:124 – 156, 2016. URL: http:
//www.sciencedirect.com/science/article/pii/S0191261515002684.

[15] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

22

http://www.sciencedirect.com/science/article/pii/S0191261515002684
http://www.sciencedirect.com/science/article/pii/S0191261515002684

	Introduction
	Periodic Timetabling Problem and PESP
	Periodic Slack Polyhedron
	Separation Algorithms
	Separation of Change-Cycle Inequalities
	Separation of Cycle Inequalities

	NP-Completeness
	Cycle Inequality
	Change-Cycle Inequality
	Circuits

	Computational Results

