Zuse Institute Berlin

Ralf Borndörfer, Heide Hoppmann, Marika Karbstein, Niels Lindner

Separation of Cycle Inequalities in Periodic Timetabling

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Separation of Cycle Inequalities in Periodic Timetabling*

Ralf Borndörfer Heide Hoppmann Marika Karbstein Niels Lindner
Zuse Institute Berlin

Abstract

Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.

1 Introduction

Periodic timetable construction is a fascinating problem because it is intuitively understood and mathematically formulated, but very hard to solve. In fact, even though real world instances give rise to relatively small optimization models, branch-and-bound based methods can easily stall with large duality gaps. The likely reasons for this resistivity are the occurrence of genuine integer variables, symmetries, and modulo constraints.

The classical approach to periodic timetabling is to use a formulation in terms of the periodic event scheduling problem (PESP) by Serafini and Ukovich [15. This model has been the basis for the development of a variety of exact and heuristic solution methods for the optimization and the feasibility version. Integer programming approaches were proposed, e.g., by Nachtigall [9], Lindner [8], and Liebchen [4]. A topological search method based on cohomology feasibility was used by Schrijver [13] to optimize a Dutch railway timetable. A modulo network simplex heuristic was invented by Nachtigall and Opitz [10. Liebchen and Peeters [6] studied the relation to integral cycle bases to find tighter lower bounds. A SAT approach for the feasibility problem was developed by Kümmling et al. [3. A comprehensive and up-to-date survey of the literature on mathematical timetable optimization and its applications is summarized in Sels et al. [14].

The best method to compute lower bounds for the optimization problem is to study the polyhedral structure of the periodic timetabling problem (PTP) associated with the PESP. Several classes of valid inequalities have been identified, namely, chain, cycle,

[^0]change-cycle, flow, and multi-circuit inequalities, see [4, 8, 9, 11, 12]. Some of them are known to be facet defining or in some Chvátal closure for the PESP polytope or relaxations of it under certain conditions [7]. It is also known that the change-cycle inequalities can be separated in pseudo-polynomial time [9]. The cycle inequalities have been used computationally by means of heuristic separation. They improve the lower bound significantly and are considered to be "the computationally most interesting cuts" 4, p. 210].

We study in this paper the separation problem for the cycle and the change-cycle inequalities for the periodic timetabling problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities. Its complexity is $\mathcal{O}\left(T n^{2} m\right)$, where T is the period time, n the number of nodes, and m the number of arcs. The change-cycle inequalities have been studied by Nachtigall 9, who gave a rough sketch of a pseudopolynomial algorithm and claimed a complexity of $\mathcal{O}\left(T\left(m n+n^{2}\right)\right)$. We cannot follow this argument, but give a precise description of the algorithm and prove a complexity of $\mathcal{O}\left(T^{2} n^{2} m\right)$. Moreover, we show that there are no strongly polynomial-time versions of the separation algorithms, and that the separation problem is weakly NP-complete when restricted to forward directed cycles. Computational results on real world instances from a Dutch railway system and two German cities corroborate the efficiency of these cuts.

The paper is structured as follows. Section 2 gives a mathematical statement of the problem. Section 3introduces the periodic slack polyhedron and states the cycle and the change-cycle inequalities. Section 4 contains the separation algorithms for the changecycle inequalities and the cycle inequalities. They are based on similar ideas, but cycle separation requires the setup of an additional auxiliary graph. Section 5 deals with the separation problem from a complexity theory standpoint, starting from Partition-like problems. Section 6 concludes with computational results.

2 Periodic Timetabling Problem and PESP

Most models in the literature about periodic timetabling are based on the periodic event scheduling problem (PESP) developed by [15]. In this problem, we are given a directed graph $\mathcal{N}=(V, A)$, the event-activity network. The nodes V are called events and represent arrivals and departures of lines at their stations. The arcs $A \subseteq V \times V$ are called activities and model lines driving between stations, waiting at stations, and possible transfers for passengers between lines at stations. Further, each activity $a \in A$ is associated with a lower and an upper time bound $\ell_{a}, u_{a} \in \mathbb{Q} \geq 0$, respectively, on its duration. Let $n=|V|$ be the number of events and $m=|A|$ be the number of activities.

A periodic timetable $\pi: V \rightarrow[0, T)$ determines the timings of all events, which are assumed to repeat periodically w.r.t. a period time $T \in \mathbb{N}$. Given $x \in \mathbb{Q}$, we define the modulo operator by $[x]_{T}:=\min \{x+z T \mid x+z T \geq 0, z \in \mathbb{Z}\}$. We call a timetable feasible if the periodic interval constraints

$$
\begin{equation*}
\left[\pi_{w}-\pi_{v}-\ell_{a}\right]_{T} \in\left[0, u_{a}-\ell_{a}\right] \quad \forall a=(v, w) \in A \tag{1}
\end{equation*}
$$

are satisfied. We assume w.l.o.g. that $\ell_{a}<T$ and $u_{a}-\ell_{a}<T$ for all $a \in A$. Many
operational requirements can be modeled with the constraints (1], see [5]. For a feasible timetable π, the periodic tension of activity $a \in A$ is defined by $x_{a}:=\ell_{a}+\left[\pi_{w}-\pi_{v}-\ell_{a}\right]_{T}$ and corresponds to its duration. The periodic slack of activity $a \in A$ is defined by $y_{a}:=\left[\pi_{w}-\pi_{v}-\ell_{a}\right]_{T}$. Given activity weights $w \in \mathbb{Q}^{A}$, the goal of the periodic timetabling problem is to find a feasible timetable that minimizes the weighted sum of the periodic slacks, i.e., $\min \sum_{a \in A} w_{a} y_{a}$.

An oriented cycle C in \mathcal{N} is a sequence $C=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$, where $k \geq 1$, $v_{1}, \ldots, v_{k} \in V, a_{1}, \ldots, a_{k} \in A, v_{0}=v_{k}$, and $a_{i} \in\left\{\left(v_{i-1}, v_{i}\right),\left(v_{i}, v_{i-1}\right)\right\}$. Activities with $a_{i}=\left(v_{i-1}, v_{i}\right) \in C$ are called forward directed and activities with $a_{i}=\left(v_{i}, v_{i-1}\right) \in C$ backward directed. An oriented cycle containing only forward directed activities is called a circuit. An oriented cycle is elementary if no event appears more than once in the sequence. For an oriented cycle C in \mathcal{N}, we define its incidence vector $\gamma_{C} \in\{-1,0,1\}^{A}$ as

$$
\gamma_{C_{a}}= \begin{cases}1 & \text { if } a \in C \text { and } a \text { is forward directed } \\ -1 & \text { if } a \in C \text { and } a \text { is backward directed } \\ 0 & \text { if } a \notin C\end{cases}
$$

For convenience, we will refer interchangeably to C and γ_{C}. Let $\mathcal{B}=\left\{C_{1}, \ldots, C_{\nu}\right\}$, $\nu=m-n+1$, be an cycle basis of \mathcal{N} and denote by $\Gamma \in \mathbb{Z}^{\mathcal{B}} \times A$ the corresponding cycle matrix, i.e., the rows of Γ correspond to the characteristic vectors $\gamma_{C_{i}} \in\{-1,0,1\}^{A}$, $i \in\{1, \ldots, \nu\}$. We require \mathcal{B} to be integral, meaning that all non-zero maximal minors of Γ have absolute value one [6]. Introducing periodic slack variables $y \in \mathbb{R}^{A}$ and periodic offset variables $z \in \mathbb{Z}^{A}$, we can state the periodic timetabling problem as the following mixed-integer program [9, 4]:

$$
\begin{array}{rlr}
(\mathrm{PTP}) \min & \sum_{a \in A} w_{a} y_{a} \\
& \Gamma y-T \Gamma z & =-\Gamma \ell \\
\text { s.t. } & \leq y & \leq u-\ell \\
& z & \in \mathbb{Z}^{A}
\end{array}
$$

3 Periodic Slack Polyhedron

The literature considers different versions of the PTP polyhedron, e.g., the projection on the space of the periodic slack variables or the periodic offset variables, see [9, 4, 7]. Nachtigall [9] also considers the polyhedron that is obtained when the upper bounds in constraints (3) are omitted. In the following, we study the polyhedron $P_{I P}(\mathrm{PTP})$ associated with the feasible solutions of (PTP), i.e., a polyhedron defined in the slack and offset space. We recall the cycle and change-cycle inequalities in a unified notation.

Definition 1. The periodic slack and offset space is defined by

$$
\mathcal{S}=\left\{(y, z) \in \mathbb{R}^{A} \times \mathbb{Z}^{A} \mid \Gamma y-T \Gamma z=-\Gamma \ell, 0 \leq y \leq u-\ell\right\}
$$

The periodic slack polyhedron is defined by

$$
P_{I P}(\mathrm{PTP})=\operatorname{conv}(\mathcal{S})
$$

and the corresponding LP relaxation by

$$
P_{L P}(\mathrm{PTP})=\left\{(y, z) \in \mathbb{R}^{A} \times \mathbb{R}^{A} \mid \Gamma y-T \Gamma z=-\Gamma \ell, 0 \leq y \leq u-\ell\right\}
$$

The following lemma shows that the cycle equations (2) do not only hold for integer periodic offset variables and the cycles of the cycle basis but for any feasible solution of the LP relaxation of (PTP) and any cycle in the event-activity network.

Lemma 2. Let $(y, z) \in P_{L P}(\mathrm{PTP})$ and let $\gamma \in \mathbb{Z}^{A}$ be an oriented cycle in \mathcal{N}. Then we have

$$
\gamma^{t} y=-\gamma^{t} \ell+T \gamma^{t} z
$$

Proof. Since \mathcal{B} is a cycle basis, there exists a vector $\lambda \in \mathbb{R}^{\nu}$ such that $\gamma=\Gamma^{t} \lambda$. Hence, we get

$$
\gamma^{t} y=\lambda^{t} \Gamma y=\lambda^{t}(-\Gamma \ell+T \Gamma z)=-\left(\Gamma^{t} \lambda\right)^{t} \ell+T\left(\Gamma^{t} \lambda\right)^{t} z=-\gamma^{t} \ell+T \gamma^{t} z
$$

Lemma 2 implies that for any feasible solution of (PTP) the following modulo cycle equations hold:

Corollary 3. Let $(y, z) \in \mathcal{S}$ and let $\gamma \in \mathbb{Z}^{A}$ be an oriented cycle in \mathcal{N}. Then we have

$$
\gamma^{t} y \equiv_{T}-\gamma^{t} \ell
$$

Proof. The corollary follows directly from $\gamma^{t} z \in \mathbb{Z}$ and Lemma 2.
For convenience, we introduce further notation. For an oriented cycle $\gamma \in \mathbb{Z}^{m}$ in \mathcal{N} we define the positive part $\gamma_{+} \in \mathbb{Z}^{m}$ and the negative part $\gamma_{-} \in \mathbb{Z}^{m}$, respectively, by

$$
\gamma_{+, a}:=\left\{\begin{array}{ll}
1 & \text { if } \gamma_{a}=1 \\
0 & \text { else }
\end{array} \quad \text { and } \quad \gamma_{-, a}:= \begin{cases}1 & \text { if } \gamma_{a}=-1 \\
0 & \text { else }\end{cases}\right.
$$

for all $a \in A$. In particular, $\gamma=\gamma_{+}-\gamma_{-}$.
The following class of valid inequalities was introduced by Nachtigall [9] and are defined for every oriented cycle in the event-activity network.

Theorem 4. Let $\gamma \in \mathbb{Z}^{A}$ be an oriented cycle in \mathcal{N} and define $\alpha=\left[-\gamma^{t} \ell\right]_{T}$. Then the change-cycle inequality

$$
\begin{equation*}
(T-\alpha) \gamma_{+}^{t} y+\alpha \gamma_{-}^{t} y \geq \alpha(T-\alpha) \tag{5}
\end{equation*}
$$

is valid for $P_{I P}(\mathrm{PTP})$.

A second class of inequalities are also induced by the oriented cycles in the eventactivity network and were first described by Odijk [11]. These inequalities are denoted as cycle inequalities. They are usually defined in terms of the periodic offset variables. We will show next that they can also be defined in terms of the slack variables.
Theorem 5. Let $\gamma \in \mathbb{Z}^{A}$ be an oriented cycle in \mathcal{N}. Then the z-cycle inequality

$$
\begin{equation*}
\gamma^{t} z \geq\left\lceil\frac{1}{T}\left(\gamma_{+}^{t} \ell-\gamma_{-}^{t} u\right)\right\rceil \tag{6}
\end{equation*}
$$

is valid for $P_{I P}(\mathrm{PTP})$.
Proof. Let $(y, z) \in \mathcal{S}$. We have with Lemma 2

$$
T \gamma^{t} z=\gamma^{t} y+\gamma^{t} \ell=\gamma_{+}^{t} y-\gamma_{-}^{t} y+\gamma^{t} \ell \geq-\gamma_{-}^{t}(u-\ell)+\gamma^{t} \ell=\gamma_{+}^{t} \ell-\gamma_{-}^{t} u
$$

Since $\gamma^{t} z \in \mathbb{Z}$, the inequality (6) follows.
Lemma 6. Let $\alpha \in \mathbb{R}$. Then

$$
\begin{equation*}
[\alpha]_{T}=\alpha+T\left\lceil-\frac{\alpha}{T}\right\rceil \tag{7}
\end{equation*}
$$

Proof. Let $\alpha \in \mathbb{R}$. Then

$$
0=\alpha+T \cdot\left(-\frac{\alpha}{T}\right) \leq \alpha+T\left\lceil-\frac{\alpha}{T}\right\rceil<\alpha+T \cdot\left(-\frac{\alpha}{T}+1\right)=T
$$

and the claim follows by definition of $[\alpha]_{T}$.
With Lemma 6 we can show that the z-cycle inequalities can be expressed equivalently in terms of the slack variables.

Theorem 7. Let $\gamma \in \mathbb{Z}^{A}$ be an oriented cycle in \mathcal{N} and let $(y, z) \in P_{L P}(\mathrm{PTP})$. Then the z-cycle inequality (6) holds if and only if the the y-cycle inequality

$$
\begin{equation*}
\gamma^{t} y \geq\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u) \tag{8}
\end{equation*}
$$

holds.
Proof. Let $(y, z) \in P_{L P}(\mathrm{PTP})$. Using first Lemma 6 and afterwards Lemma 2 ,

$$
\begin{array}{rlrl}
& & \gamma^{t} z & \geq\left[\frac{1}{T}\left(\gamma_{+}^{t} \ell-\gamma_{-}^{t} u\right)\right] \\
\Leftrightarrow & T \gamma^{t} z & \geq T\left[\frac{1}{T}\left(\gamma_{+}^{t} \ell-\gamma_{-}^{t} u\right)\right] \\
\Leftrightarrow & \gamma^{t} y+\gamma^{t} \ell & \geq T\left[\frac{1}{T}\left(\gamma_{+}^{t} \ell-\gamma_{-}^{t} u\right)\right] \\
\Leftrightarrow & \gamma^{t} y+\gamma^{t} \ell & \geq\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{+}^{t} \ell-\gamma_{-}^{t} u \\
\Leftrightarrow & \gamma^{t} y & \geq\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t} \ell-\gamma_{-}^{t} u . \\
& & =\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u) .
\end{array}
$$

Corollary 8. Let $\gamma \in \mathbb{Z}^{A}$ be an oriented cycle in \mathcal{N}. Then the y-cycle inequality

$$
\gamma^{t} y \geq\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u)
$$

is valid for $P_{I P}(\mathrm{PTP})$.

4 Separation Algorithms

4.1 Separation of Change-Cycle Inequalities

In this subsection we describe a pseudo-polynomial dynamic programming procedure to separate violated change-cycle inequalities (5). The idea of this algorithm was originally proposed by Nachtigall [9]. He claimed a running time of $\mathcal{O}\left(T\left(m n+n^{2}\right)\right)$, but did not give a proof. We prove a complexity of $\mathcal{O}\left(T^{2} n^{2} m\right)$.

Given a point $\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP})$, the separation problem is to find an oriented cycle γ in \mathcal{N} such that the change-cycle inequality (5) induced by γ is violated, i.e., for $\alpha_{0}=\left[-\gamma^{t} \ell\right]_{T}$ holds

$$
\left(T-\alpha_{0}\right) \gamma_{+}^{t} y^{*}+\alpha_{0} \gamma_{-}^{t} y^{*}<\alpha_{0}\left(T-\alpha_{0}\right),
$$

or to conclude that no such cycle exists. The idea behind the algorithm is to solve for each fixed $\alpha_{0} \in\{0, \ldots, T-1\}$ the problem

$$
\begin{equation*}
f^{*}\left(\alpha_{0}\right)=\min \left\{\left(T-\alpha_{0}\right) \gamma_{+}^{t} y^{*}+\alpha_{0} \gamma_{-}^{t} y^{*} \mid \gamma \text { oriented cycle in } \mathcal{N},\left[-\gamma^{t} \ell\right]_{T}=\alpha_{0}\right\}, \tag{9}
\end{equation*}
$$

which is to find the minimum cost cycle w.r.t.

$$
c_{a}:= \begin{cases}\left(T-\alpha_{0}\right) y_{a}^{*} & \text { if } \gamma_{a}=1 \\ \alpha_{0} y_{a}^{*} & \text { if } \gamma_{a}=-1 \\ 0 & \text { else }\end{cases}
$$

among all oriented cycles γ with $\left[-\gamma^{t} \ell\right]_{T}=\alpha_{0}$. Note that a violated change-cycle inequality exists if and only if for some $\alpha_{0} \in\{0, \ldots, T-1\}$ holds $f^{*}\left(\alpha_{0}\right)<\alpha_{0}\left(T-\alpha_{0}\right)$.

The minimization problem (9), again, can be solved with a dynamic program that iterates over the cycle lengths w.r.t. the number of activities. We denote by a chain a path that can contain forward directed activities as well as backward directed activities. Let $\mathcal{C}_{i j}^{k}$ be the set of all chains in \mathcal{N} from event $i \in V$ to event $j \in V$ that contain exactly k activities, given by their characteristic vectors. For $\alpha \in\{0, \ldots, T-1\}$, let

$$
f_{i j}^{k}\left(\alpha_{0}, \alpha\right):=\min \left\{\left(T-\alpha_{0}\right) \sum_{\substack{a \in \mathcal{A}_{\dot{5}} \\ p_{a}>0}} y_{a}^{*}+\alpha_{0} \sum_{\substack{a \in \mathcal{A}_{\dot{a}} \\ p_{a}<0}} y_{a}^{*} \mid p \in \mathcal{C}_{i j}^{k}, \alpha=\left[-p^{t} \ell\right]_{T}\right\}
$$

be the minimum length w.r.t. c_{a} of all chains in $\mathcal{C}_{i j}^{k}$ with $\alpha=\left[-p^{t} \ell\right]_{T}$. Since a chain of length $k \geq 2$ consists of a chain of length $k-1$ and an additional activity, the following recursive equation holds for all $k \geq 0$:
$f_{i j}^{k+1}\left(\alpha_{0}, \alpha\right):=\min \left\{\min _{\substack{a=(u, j) \\\left[\alpha^{\prime}-\ell_{a}\right]_{T}=\alpha}} f_{i u}^{k}\left(\alpha_{0}, \alpha^{\prime}\right)+\left(T-\alpha_{0}\right) y_{a}^{*}, \min _{\substack{a=(j, u) \\\left[\alpha^{\prime}+\ell_{a}\right]_{T}=\alpha}} f_{i u}^{k}\left(\alpha_{0}, \alpha^{\prime}\right)+\alpha_{0} y_{a}^{*}\right\}$,
where

$$
f_{i j}^{0}\left(\alpha_{0}, \alpha\right):= \begin{cases}0 & \text { if } i=j, \alpha=0 \tag{10}\\ \infty & \text { else. }\end{cases}
$$

Since every elementary cycle has at most n activities and $c_{a} \geq 0$ for all $a \in A$, the minimum length w.r.t. c of all oriented cycles γ with $\alpha_{0}=\left[-\gamma^{t} \ell\right]_{T}$ is given by

$$
f^{*}\left(\alpha_{0}\right)=\min _{i \in V} \min _{k=1}^{n} f_{i i}^{k}\left(\alpha_{0}, \alpha_{0}\right) .
$$

For fixed $k \in\{0, \ldots, n-1\}$, the recursive equation (10) can be solved with Algorithm 1 .

```
Algorithm 1: Computing \(f_{i j}^{k+1}\left(\alpha_{0}, \alpha\right)\) for all \(\alpha \in\{0, \ldots, T-1\}\)
    Input : \(\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP}), \alpha_{0} \in\{0, \ldots, T-1\}, k \in\{0, \ldots, n-1\}\),
                \(f_{i j}^{k}, \forall i, j \in V\)
    Output: \(f_{i j}^{k+1}, \forall i, j \in V\)
    for \(a=(u, v) \in A\) do
        for \(\alpha^{\prime}:=0, \ldots, T-1\) do
            for \(i \in V\) do
                \(\alpha:=\left[\alpha^{\prime}-\ell_{a}\right]_{T}\)
                if \(f_{i v}^{k+1}\left(\alpha_{0}, \alpha\right)>f_{i u}^{k}\left(\alpha_{0}, \alpha^{\prime}\right)+\left(T-\alpha_{0}\right) y_{a}^{*}\) then
                    \(f_{i v}^{k+1}\left(\alpha_{0}, \alpha\right):=f_{i u}^{k}\left(\alpha_{0}, \alpha^{\prime}\right)+\left(T-\alpha_{0}\right) y_{a}^{*}\)
            end
            \(\alpha:=\left[\alpha^{\prime}+\ell_{a}\right]_{T}\)
            if \(f_{i u}^{k+1}\left(\alpha_{0}, \alpha\right)>f_{i v}^{k}\left(\alpha_{0}, \alpha^{\prime}\right)+\alpha_{0} y_{a}^{*}\) then
                \(f_{i u}^{k+1}\left(\alpha_{0}, \alpha\right):=f_{i v}^{k}\left(\alpha_{0}, \alpha^{\prime}\right)+\alpha_{0} y_{a}^{*}\)
            end
            end
        end
    end
    return \(f_{i j}^{k+1}, \forall i, j \in V\)
```

Theorem 9. For given $\alpha_{0} \in\{0, \ldots, T-1\}, k \in\{0, \ldots, n-1\}$, and $f_{i j}^{k}$ for all $i, j \in V$, Algorithm 1 computes $f_{i j}^{k+1}\left(\alpha_{0}, \alpha\right)$ for all $i, j \in V$ and $\alpha \in\{0, \ldots, T-1\}$ in $\mathcal{O}(T m n)$.

Proof. For a given $k \in\{0, \ldots, n-1\}$ and $\alpha_{0} \in\{0, \ldots, T-1\}$, Algorithm 1 obviously solves equation (10) for all $i, j \in V$ and for all $\alpha \in\{0, \ldots, T-1\}$. The computation involves $\mathcal{O}(T m n)$ elementary operations.

The described separation algorithm is given in pseudocode in Algorithm 2.

```
Algorithm 2: Separation of Change-Cycle Inequalities
    Input : LP-point \(\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP})\)
    Output: Cycle \(\gamma \in \mathcal{N}\) such that the change-cycle inequality (5) is violated, or
            \(N U L L\) if no such cycle exists.
    \(f^{*}:=\infty\)
    \(\rho^{*}:=0\)
    for \(\alpha_{0}:=0, \ldots, T-1\) do
        \(f_{i k}^{k}\left(\alpha_{0}, \alpha\right):= \begin{cases}0 & \text { if } k=0, i=j, \alpha=0 \\ \infty & \text { else }\end{cases}\)
        for \(k:=1, \ldots, n\) do
            compute \(f_{i j}^{k}\left(\alpha_{0}, \alpha\right)\) for all \(\alpha \in\{0, \ldots, T-1\}\), for all \(i, j \in V\)
        end
        \(f^{*}\left(\alpha_{0}\right):=\min _{i \in V} \min _{k=1}^{n} f_{i i}^{k}\left(\alpha_{0}, \alpha_{0}\right)\)
        if \(f^{*}\left(\alpha_{0}\right)-\alpha_{0}\left(T-\alpha_{0}\right)<\rho^{*}\) then
            \(f^{*}:=f^{*}\left(\alpha_{0}\right)\)
            \(\rho^{*}:=f^{*}\left(\alpha_{0}\right)-\alpha_{0}\left(T-\alpha_{0}\right)\)
        end
    end
    if \(\rho^{*}<0\) then
        return \(\gamma\left(f^{*}\right)\)
    else
        return NULL
    end
```

Theorem 10. Algorithm 2 solves the separation problem for the change-cycle inequalities (5) in $\mathcal{O}\left(T^{2} n^{2} m\right)$.
Proof. The Algorithm 2 solves for each $\alpha_{0} \in\{0, \ldots, T-1\}$ the minimization problem (9) and correctly reports if there exists an $\alpha_{0} \in\{0, \ldots, T-1\}$ such that $f^{*}\left(\alpha_{0}\right)<\alpha_{0}\left(T-\alpha_{0}\right)$. Hence, with the previous argumentation, the correctness of the algorithm follows. The algorithm needs to call Algorithm 1, see line 6 of Algorithm 22 in total $n T$-times. By Theorem 9, this results in a running time in $\mathcal{O}\left(T^{2} n^{2} m\right)$.

4.2 Separation of Cycle Inequalities

In this subsection we describe a pseudo-polynomial dynamic programming procedure to separate violated cycle inequalities (8) using an auxiliary network $\tilde{\mathcal{N}}$ that was proposed
by Nachtigall [9]. The auxiliary network allows to reduce cycle separation to finding certain modulo constrained circuits. Such a circuit can be found by a modification of the change-cycle separation Algorithm 2 .

Figure 1: Left: the network \mathcal{N}, Right: the auxiliary network $\tilde{\mathcal{N}}$. The solid arcs correspond to the cycle γ and the circuit $\tilde{\gamma}$ from Theorem 11, respectively.

We obtain $\tilde{\mathcal{N}}$ by copying \mathcal{N} and additionally introducing for each activity $a=(i, j)$ the back activity $\bar{a}=(j, i)$. The copies of the original activities keep their bounds, the bounds of the back activities are set to $\tilde{\ell}_{\bar{a}}:=-u_{a}$ and $\tilde{u}_{\bar{a}}:=-\ell_{a}$, see Figure 1 , For a point $(y, z) \in P_{L P}(\mathrm{PTP})$ we define \tilde{y} on the activities of $\tilde{\mathcal{N}}$ by $\tilde{y}_{a}:=y_{a}$ and $\tilde{y}_{\bar{a}}:=u_{a}-\ell_{a}-y_{a}$.

Theorem 11. Let be $\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP})$. Then, \mathcal{N} contains a cycle γ that violates the y-cycle inequality (8), i.e.,

$$
\gamma^{t} y^{*}<\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u)
$$

if and only if $\tilde{\mathcal{N}}$ contains a circuit $\tilde{\gamma}$ (cycle containing only forward directed activities) with

$$
\tilde{\gamma}^{t} \widetilde{y}^{*}<\left[-\tilde{\gamma}^{t} \tilde{\ell}\right]_{T}
$$

Proof. Let γ be a cycle in \mathcal{N} and $\tilde{\gamma}$ be the circuit in $\tilde{\mathcal{N}}$ obtained by replacing all backward directed activities in γ with their auxiliary back activities, see Figure 1. Then we get

$$
\begin{aligned}
& \gamma^{t} y^{*} & <\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u) \\
\Leftrightarrow & \gamma_{+}^{t} y^{*}+\gamma_{-}^{t}\left(u-\ell-y^{*}\right) & <\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T} \\
\Leftrightarrow & \gamma_{+}^{t} \widetilde{y^{*}}+\gamma_{-}^{t} \widetilde{y^{*}} & <\left[-\gamma_{+}^{t} \ell-\gamma_{-}^{t}(-u)\right]_{T} \\
\Leftrightarrow & \tilde{\gamma}^{t} \widetilde{y}^{*} & <\left[-\tilde{\gamma}^{t} \tau\right]_{T} .
\end{aligned}
$$

By Theorem 11, there exists a violated cycle inequality (8) if and only if

$$
\delta^{*}:=\min \left\{\tilde{\gamma}^{t} \widetilde{y}^{*}-\left[-\tilde{\gamma}^{t} \tilde{\ell}\right]_{T} \mid \tilde{\gamma} \text { directed circuit in } \tilde{\mathcal{N}}\right\}<0
$$

Hence, we can solve the separation problem by minimizing $\delta(\tilde{\gamma}):=\tilde{\gamma}^{t} \widetilde{y}^{*}-\left[-\tilde{\gamma}^{t} \tilde{\ell}\right]_{T}$ over all directed circuits in the auxiliary network $\tilde{\mathcal{N}}$. We describe in the following the idea of the algorithm, which is given in pseudocode in Algorithm 3 .

```
Algorithm 3: Separation of Cycle Inequalities
    Input : LP-point \(\left(y^{*}, z^{*}\right) \in P_{L P}\) (PTP)
    Output: Cycle \(\gamma \in \mathcal{N}\) such that the cycle inequality (8) is violated, or \(N U L L\)
                if no such cycle exists.
    \(d^{*}:=\infty\)
    \(\delta^{*}:=0\)
    \(d_{i j}^{k}(\alpha):= \begin{cases}0 & \text { if } k=0, i=j, \alpha=0 \\ \infty & \text { else }\end{cases}\)
    for \(k:=1, \ldots, n\) do
        for \(a=(u, v) \in \tilde{A}\) do
            for \(\alpha^{\prime} \in\{0, \ldots, T-1\}, i \in V\) with \(d_{i u}^{k}\left(\alpha^{\prime}\right)<\infty\) do
                \(\alpha:=\left[\alpha^{\prime}-\tilde{\ell}_{a}\right]_{T}\)
                if \(d_{i v}^{k}(\alpha)>d_{i u}^{k-1}\left(\alpha^{\prime}\right)+\widetilde{y_{a}^{*}}\) then
                \(d_{i v}^{k}(\alpha):=d_{i u}^{k-1}\left(\alpha^{\prime}\right)+\widetilde{y_{a}^{*}}\)
                if \(i=v\) and \(d_{i i}^{k}(\alpha)-\alpha<\delta^{*}\) then
                    \(d^{*}:=d_{i i}^{k}(\alpha)\)
                    \(\delta^{*}:=d_{i i}^{k}(\alpha)-\alpha\)
                    end
                end
            end
        end
    end
    if \(\delta^{*}<0\) then
        return \(\gamma\left(d^{*}\right)\)
    else
        return \(N U L L\)
    end
```

Let $\mathcal{P}_{i j}^{k}$ be the set of all (i, j)-paths in $\tilde{\mathcal{N}}$ that contain exactly k activities, given by their characteristic vectors. For $\alpha \in\{0, \ldots, T-1\}$, let

$$
\begin{equation*}
d_{i j}^{k}(\alpha):=\min \left\{\sum_{a \in A: p_{a}>0} \widetilde{y_{a}^{*}} \mid p \in \mathcal{P}_{i j}^{k}, \alpha=\left[-p^{t} \tilde{\ell}\right]_{T}\right\} \tag{11}
\end{equation*}
$$

be the minimum length with respect to $\widetilde{y^{*}}$ of all paths in $\mathcal{P}_{i j}^{k}$ with $\alpha=\left[-p^{t} \tilde{\ell}\right]_{T}$. We can
use the following recursive equation to compute (11)

$$
d_{i j}^{k+1}(\alpha):=\min _{\substack{a=(u, j) \\\left[\alpha^{\prime}-\ell_{a}\right]_{T}=\alpha}} d_{i u}^{k}\left(\alpha^{\prime}\right)+\widetilde{y_{a}^{*}}, \quad \forall k \geq 0
$$

with

$$
d_{i j}^{0}(\alpha)= \begin{cases}0 & \text { if } i=j, \alpha=0 \\ \infty & \text { else }\end{cases}
$$

Since every elementary circuit has at most n activities and $\widetilde{y}_{a}^{*} \geq 0$ for all $a \in A$, the minimum length w.r.t. \tilde{y}^{*} of all directed circuits $\tilde{\gamma}$ with $\alpha=\left[-\tilde{\gamma}^{t} \tilde{\ell}\right]_{T}$ is given by

$$
d^{*}(\alpha)=\min _{i \in V} \min _{k=1}^{n} d_{i i}^{k}(\alpha)
$$

and we have

$$
\delta^{*}=\min \left\{d^{*}(\alpha)-\alpha \mid \alpha \in\{0, \ldots, T-1\}\right\}
$$

Theorem 12. Algorithm 3 detects a violated cycle inequality in $\mathcal{O}\left(T n^{2} m\right)$.
Proof. The argumentation in this section proves that the algorithm computes δ^{*} and, thus, correctly detects violated cycle inequalities. In total, $\mathcal{O}\left(T n^{2} m\right)$ elementary operations are involved.

5 NP-Completeness

For a point $\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP})$, the algorithms 2 and 3 compute a maximally violated (change-)cycle inequality in pseudo-polynomial time. In this section, we prove that given such a point and a number M, it is weakly NP-complete to decide whether a cycle exists such that the corresponding (change-)cycle inequality is violated by more than M. In particular, there are no strongly polynomial-time alternatives to algorithms 2 and 3 unless $\mathrm{P}=\mathrm{NP}$.

Definition 13. For a PTP instance on an event-activity network \mathcal{N}, let $\left(y^{*}, z^{*}\right) \in$ $P_{L P}(\mathrm{PTP})$. Further let $M \geq 0$.

- The maximally violated cycle cut problem (MVC) is to decide whether there is an oriented cycle γ in \mathcal{N} such that

$$
\gamma^{t} y^{*}<\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u)-M
$$

- The maximally violated change-cycle cut problem (MVCC) is to decide whether there is an oriented cycle γ in \mathcal{N} such that

$$
(T-\alpha) \gamma_{+}^{t} y^{*}+\alpha \gamma_{-}^{t} y^{*}<\alpha(T-\alpha)-M
$$

where $\alpha=\left[-\gamma^{t} \ell\right]_{T}$.
Note that Algorithm 3 solves MVC, and Algorithm 2 solves MVCC. In particular, both problems are located inside the complexity class NP. To show that they are also NP-hard, we need in either case to introduce a few auxiliary NP-complete problems first.

5.1 Cycle Inequality

Lemma 14 (Twisted Subset Sum). The following problem is NP-hard: Given $m \in \mathbb{N}$, $c \in \mathbb{Z}^{m}$, is there an $x \in\{0,1\}^{m}$ such that $x^{t} c=1$?

Proof. Let $n \in \mathbb{N}, w \in \mathbb{N}^{n}$. The Partition problem is to find a $y \in\{0,1\}^{n}$ such that

$$
\sum_{i=1}^{n} y_{i} w_{i}=\sum_{i=1}^{n}\left(1-y_{i}\right) w_{i}
$$

This is one of the classical weakly NP-complete problems [2, SP12]. Let (n, w) be a Partition instance and consider the Twisted Subset Sum instance defined by $m:=n+1$ and $c:=\left(2 w_{1}, \ldots, 2 w_{n}, 1-w_{1}-\cdots-w_{n}\right)$.

Suppose that there is an $x \in\{0,1\}^{m}$ such that $x^{t} c=1$. Then

$$
\sum_{i=1}^{n} 2 x_{i} w_{i}+x_{n+1}\left(1-\sum_{i=1}^{n} w_{i}\right)=1
$$

This implies that $x_{n+1}=1$, as otherwise the left-hand side would be even. Thus we have

$$
\begin{array}{rlrl}
& & \sum_{i=1}^{n} 2 x_{i} w_{i}+1-\sum_{i=1}^{n} w_{i} & =1 \\
\Leftrightarrow & \sum_{i=1}^{n} 2 x_{i} w_{i} & =\sum_{i=1}^{n} w_{i} \\
\Leftrightarrow & \sum_{i=1}^{n} x_{i} w_{i} & =\sum_{i=1}^{n}\left(1-x_{i}\right) w_{i},
\end{array}
$$

and we found a positive answer to the Partition instance by setting $y_{i}:=x_{i}, i=$ $1, \ldots, n$.

Conversely, any solution y to the Partition instance gives rise to a solution of the Twisted Subset Sum instance via $x:=(y, 1)$.

Theorem 15. The maximally violated cycle cut problem (MVC) is weakly NP-complete. Proof. It remains to show that the problem is NP-hard. To this end, consider a Twisted Subset Sum instance, i.e., an integer m and a vector $c \in \mathbb{Z}^{m}$. W.l.o.g., we can assume that no entry of c is zero.

We build a periodic timetabling instance as follows: Let \mathcal{N} be a digraph with a single node and m directed self-loops a_{1}, \ldots, a_{m}. Define

$$
\begin{array}{rlrl}
T & :=\sum_{i=1}^{m}\left|c_{i}\right|+2, & \\
\ell_{a_{i}} & :=\left[c_{i}\right]_{T}, & i & =1, \ldots, m \\
u_{a_{i}} & :=T, & i & =1, \ldots, m \\
w_{a_{i}} & \text { arbitrary non-negative, } & & i=1, \ldots, m
\end{array}
$$

Figure 2: Event-activity network from a twisted subset sum instance with $m=6$

A cycle basis of \mathcal{N} is simply given by the individual loops in forward direction. This basis is integral, as its cycle matrix is the identity matrix. The corresponding periodic timetabling problem reads as follows:

$$
\begin{array}{rcl}
\text { (PTP) min } & \sum_{i=1}^{m} w_{a_{i}} y_{i} & \\
\text { s.t. } & y_{i}-T z_{i}=-\left[c_{i}\right]_{T}, & i=1, \ldots, m, \tag{13}\\
& 0 \leq y_{i} \leq T-\left[c_{i}\right]_{T}, & i=1, \ldots, m, \\
& z_{i} \in \mathbb{Z}, & i=1, \ldots, m
\end{array}
$$

Note that this PTP instance is trivial to solve, as it has a unique solution: By (13),

$$
\left[c_{i}\right]_{T} \leq \underbrace{y_{i}+\left[c_{i}\right]_{T}}_{=T z_{i}} \leq T-\left[c_{i}\right]_{T}+\left[c_{i}\right]_{T}=T .
$$

Since $c_{i} \neq 0$ and $\left|c_{i}\right|<T$, constraint (12) enforces $z_{i}=1$ and hence $y_{i}=T-\left[c_{i}\right]_{T}$ for all $i=1, \ldots, m$. However, the optimal solution $\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP})$ to the LP-relaxation is given by

$$
y_{i}^{*}=0 \quad \text { and } \quad z_{i}^{*}=\frac{\left[c_{i}\right]_{T}}{T}, \quad i=1, \ldots, m
$$

Now suppose there is an oriented cycle γ in \mathcal{N} such that

$$
\begin{equation*}
\gamma^{t} y^{*}<\left[-\gamma_{+}^{t} \ell+\gamma_{-}^{t} u\right]_{T}+\gamma_{-}^{t}(\ell-u)-(T-2) . \tag{14}
\end{equation*}
$$

This is an instance of MVC with $M=T-2$. Plugging in, we obtain

$$
\begin{array}{ll}
& 0<\left[-\sum_{i: \gamma_{a_{i}}=+1}\left[c_{i}\right]_{T}+\sum_{i: \gamma_{a_{i}}=-1} T\right]_{T}+\sum_{i: \gamma_{a_{i}}=-1}\left(\left[c_{i}\right]_{T}-T\right)-(T-2) \\
\Leftrightarrow & 0<\left[-\gamma_{+}^{t} c\right]_{T}+\sum_{i: \gamma_{a_{i}}=-1}\left(\left[c_{i}\right]_{T}-T\right)-(T-2) .
\end{array}
$$

Note that $\left[-\gamma_{+}^{t} c\right]_{T} \leq T-1$ and $\left[c_{i}\right]_{T}-T<0$ for all i. This shows that the right-hand side is bounded from above by 1 , and it is at most 0 if $\gamma_{-} \neq 0$. In particular, (14) holds if and only if $\left[-\gamma_{+}^{t} c\right]_{T}=T-1$ and $\gamma_{-}=0$. As a consequence, $\gamma=\gamma_{+}$, and $\left[\gamma^{t} c\right]_{T}=1$. Since, by construction of T, the inequality $-T+2 \leq \gamma^{t} c \leq T-2$ holds, we obtain $\gamma^{T} c=1$. This translates directly into a solution to the Twisted Subset Sum problem.

Conversely, any solution to the Twisted Subset Sum problem gives an oriented cycle γ in \mathcal{N} by traversing the corresponding loops in forward direction. This cycle satisfies $\gamma=\gamma_{+}$and $\gamma^{t} c=1$, so that $\left[-\gamma_{+}^{t} c\right]_{T}=T-1$ and $\gamma_{-}=0$. In particular, the inequality

$$
0<\left[-\gamma_{+}^{t} c\right]_{T}+\sum_{i: \gamma_{a_{i}}=-1}\left(\left[c_{i}\right]_{T}-T\right)-(T-2)
$$

holds, and hence γ fulfills (14).

5.2 Change-Cycle Inequality

Lemma 16 (Non-Negative Ternary Partition). The following is NP-hard: Given $m \in \mathbb{N}, c \in \mathbb{N}^{m}$, is there an $x \in\{0,1,2\}^{m}$ such that

$$
\sum_{i=1}^{m} x_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{m} c_{i} ?
$$

Proof. We consider a Partition instance as in the proof of Lemma 14. Given $n \in \mathbb{N}$ and $w \in \mathbb{N}^{n}$, we ask if there is a $y \in\{0,1\}^{n}$ such that

$$
\sum_{i=1}^{n} y_{i} w_{i}=\sum_{i=1}^{n}\left(1-y_{i}\right) w_{i} .
$$

Adding the left-hand side to the equation and dividing by 2 , this is equivalent to

$$
\sum_{i=1}^{n} y_{i} w_{i}=\frac{1}{2} \sum_{i=1}^{n} w_{i} .
$$

Define

$$
\begin{array}{rlrl}
m & :=2 n, & \\
N & :=\left\lceil\log _{3} \sum_{i=1}^{n} w_{i}\right\rceil, & & \\
c_{i} & :=w_{i}+3^{N+i}, & i=1, \ldots, n, \\
c_{i+n} & :=3^{N+i}, & i=1, \ldots, n .
\end{array}
$$

Assume that there is an $x \in\{0,1,2\}^{m}$ such that

$$
\sum_{i=1}^{m} x_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{n} c_{i},
$$

or equivalently,

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} w_{i}+\sum_{i=1}^{n}\left(x_{i}+x_{i+n}\right) 3^{N+i}=\frac{1}{2} \sum_{i=1}^{n} w_{i}+\sum_{i=1}^{n} 3^{N+i} . \tag{15}
\end{equation*}
$$

Since

$$
\sum_{i=1}^{n} x_{i} w_{i} \leq \sum_{i=1}^{n} 2 w_{i} \leq 2 \cdot 3^{N}<3^{N+1}
$$

taking remainders modulo 3^{N+1} yields

$$
\sum_{i=1}^{n} x_{i} w_{i}=\frac{1}{2} \sum_{i=1}^{n} w_{i}
$$

Moreover, comparing the 3 -adic expansion of both sides, we obtain for all $i=1, \ldots, n$ the equality

$$
x_{i}+x_{i+n}=1,
$$

implying $x_{i} \in\{0,1\}$ for $i=1, \ldots, n$. Consequently, we find a solution to the Partition instance via $y_{i}:=x_{i}, i=1, \ldots, n$.

Conversely, a solution y to the Partition instance gives rise to an $x \in\{0,1,2\}^{m}$ satisfying (15) by setting $x_{i}:=y_{i}$ and $x_{i+n}:=1-x_{i}$ for $i=1, \ldots, n$.

Lemma 17 (Ternary Partition). The following problem is NP-hard: Given $m \in \mathbb{N}$, $c \in \mathbb{N}^{m}$, is there an $x \in\{-1,0,1\}^{m}$ such that

$$
\sum_{i=1}^{m} x_{i} c_{i}= \pm \frac{1}{2} \sum_{i=1}^{n} c_{i} ?
$$

Proof. Let (m, c) be a Non-Negative Ternary Partition Instance. Suppose there is an $x \in\{-1,0,1\}^{m}$ such that

$$
\sum_{i=1}^{m} x_{i} c_{i}= \pm \frac{1}{2} \sum_{i=1}^{n} c_{i} .
$$

We can assume that the sum is negative, otherwise, we replace x by $-x$. But then

$$
\sum_{i=1}^{m}\left(x_{i}+1\right) c_{i}=\frac{1}{2} \sum_{i=1}^{n} c_{i}
$$

is a solution to the Non-Negative Ternary Partition Instance.
Conversely, a solution x^{\prime} to Non-Negative Ternary Partition yields a solution to Ternary Partition on the same m and c by subtracting 1 from each entry of x^{\prime}.

Theorem 18. The maximally violated change-cycle cut problem (MVCC) is weakly NPcomplete.

Proof. It suffices to prove NP-hardness. Consider an instance of Ternary Partition, i.e., a positive integer m and a vector $c \in \mathbb{N}^{m}$. We build almost the same PTP instance as in the proof of Theorem 15, the only exception being that we now set $T:=\sum_{i=1}^{m} c_{i}$. W.l.o.g., we can assume that T is even, because otherwise, the Ternary Partition instance would trivially have no solution. Again, there is a unique solution to the PTP and the optimal solution $\left(y^{*}, z^{*}\right) \in P_{L P}(\mathrm{PTP})$ to the LP relaxation satisfies $y^{*}=0$.

Now suppose that there is an oriented cycle γ in the network such that

$$
\begin{equation*}
(T-\alpha) \gamma_{+}^{t} y^{*}+\alpha \gamma_{-}^{t} y^{*}<\alpha(T-\alpha)-\frac{T^{2}-1}{4}, \tag{16}
\end{equation*}
$$

where $\alpha=\left[-\gamma^{t} \ell\right]_{T}$. This is an instance of the MVCC problem with $M=\left(T^{2}-1\right) / 4$. Inserting $y^{*}=0$, 16) becomes

$$
\alpha(T-\alpha)>\frac{T^{2}-1}{4} .
$$

By elementary calculus, this is equivalent to

$$
\left|\alpha-\frac{T}{2}\right|<\frac{1}{2} .
$$

Since α is integer and T is even, this means that $\alpha=T / 2$. Since $-T \leq \gamma^{T} \ell \leq T$ and $\alpha=\left[-\gamma^{t} \ell\right]_{T}$, we hence obtain that $\gamma^{t} \ell$ equals either $T / 2$ or $-T / 2$. Therefore

$$
\sum_{i=1}^{m} \gamma_{a_{i}} c_{i}=\sum_{i=1}^{m} \gamma_{a_{i}}\left[c_{i}\right]_{T}=\gamma^{T} \ell= \pm \frac{T}{2}= \pm \frac{1}{2} \sum_{i=1}^{m} c_{i},
$$

where a_{1}, \ldots, a_{m} are the individual loops in the network. This translates directly into a positive answer to the Ternary Partition problem.

Conversely, a solution to the Ternary Partition problem yields an oriented cycle γ with $\left[-\gamma^{t} \ell\right]_{T}=T / 2$, so that γ satisfies (16).
Remark 19. The PTP instance used in the proofs of Theorem 15 and 18 seems rather artificial. However, we could use instead a more realistic network by adding more arcs a with $\ell_{a}=u_{a}=w_{a}=0$, as depicted in Figure 3. Although the cycle space is bigger, the proofs still work as before.

5.3 Circuits

It remains open whether (change-)cycle cuts can be separated in strongly polynomial time when the violation is not required to be maximal. However, we can prove the following:

Theorem 20. Given a PTP instance on an event-activity network \mathcal{N} and $\left(y^{*}, z^{*}\right) \in$ $P_{L P}(\mathrm{PTP})$, it is weakly NP-complete to decide whether there is a circuit γ in \mathcal{N} such that γ violates the cycle inequality or the change-cycle inequality.

Figure 3: Larger event-activity network for $m=4$. The bold blue arcs carry the data of the loops from the network used in the proofs.

Recall that by a circuit we mean an oriented cycle containing only forward activities. Before proving the theorem, we first make a simple observation:

Lemma 21. For a circuit, the change-cycle and cycle inequalities coincide.
Proof. Since for a circuit γ holds $\gamma=\gamma_{+}$and $\gamma_{-}=0$, this follows immediately from the formulations (5) and (8).

Proof of Theorem 20. Algorithm 3 yields a pseudo-polynomial time method to search for a circuit violating the cycle inequality. Hence it remains to show NP-hardness. As in the proof of Theorem 15 , we use a reduction from Twisted Subset Sum. Thus consider a natural number m and a vector $c \in \mathbb{Z}^{m}$. From this, we construct the following PTP instance, see Figure 4. The network \mathcal{N} contains $m+1$ events $0,1, \ldots, m$. For each $i=1, \ldots, m$, add two activities a_{i} and $\overline{a_{i}}$ from $i-1$ to i. Moreover, there is an activity a_{0} from m to 0.

Figure 4: Event-activity network from the proof of Theorem 20 for $m=4$

Further let

$$
\begin{array}{rlrlrl}
T & :=\sum_{i=1}^{m}\left|c_{i}\right|+2, & & & \\
\ell_{a_{i}} & :=\left[-c_{i}\right]_{T}, & \ell_{\overline{a_{i}}}:=0, & & i=1, \ldots, m, \quad \text { and } & \ell_{a_{0}}:=2, \\
u_{a_{i}} & :=T, & u_{\overline{a_{i}}}:=0, & & i=1, \ldots, m, \quad \text { and } & u_{a_{0}}:=T, \\
w_{a} \text { arbitrary non-negative }, & & & a \text { activity in } \mathcal{N} . &
\end{array}
$$

The pairs $\left(a_{i}, \overline{a_{i}}\right), i=1, \ldots, m$, together with $\left(a_{0}, \overline{a_{1}}, \ldots, \overline{a_{m}}\right)$ form an integral cycle basis of \mathcal{N}. Note that the periodic slack on the overlined activities is zero, so that the corresponding periodic timetabling problem can w.l.o.g. be simplified to

$$
\begin{array}{rlr}
\text { (PTP) min } & \sum_{i=1}^{m} w_{a_{i}} y_{i} & \\
\text { s.t. } & y_{i}-T z_{i}=-\left[-c_{i}\right]_{T}, & i=1, \ldots, m, \\
& y_{0}-T z_{0}=-2, & i=1, \ldots, m, \\
& 0 \leq y_{i} \leq T-\left[-c_{i}\right]_{T}, & \\
& 0 \leq y_{0} \leq T-2, & i=0, \ldots, m . \tag{18}
\end{array}
$$

We may further use constraints (17) and (18) to fix $y_{0}:=T-2$. Doing so, the optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation of the program is given by

$$
\begin{array}{llrl}
y_{0}^{*} & =T-2, & & z_{0}^{*}=1, \\
& & \text { and } \\
y_{i}^{*} & =0, & & z_{i}^{*}=\frac{\left[-c_{i}\right]_{T}}{T},
\end{array}
$$

Now suppose there is a circuit γ such that the (change-)cycle inequality

$$
\gamma^{t} y^{*} \geq\left[-\gamma^{t} \ell\right]_{T}
$$

cf. Lemma 21, is violated. As every circuit in our network \mathcal{N} needs to traverse the arc a_{0}, this is equivalent to

$$
T-2<\left[-\sum_{i=1}^{m} \gamma_{i} \ell_{i}-\gamma_{0} \ell_{0}\right]_{T}=\left[\sum_{i=1}^{m} \gamma_{i} c_{i}-2\right]_{T} .
$$

Since the expression inside the bracket is an integer between $-T$ and $T-2$, and reduces to $T-1$ modulo T by the above inequality, it must be equal to -1 . This shows

$$
\sum_{i=1}^{m} \gamma_{i} c_{i}=1
$$

which solves the Twisted Subset Sum problem. Note that γ has only entries in $\{0,1\}$, as it contains only forward arcs. Conversely, a positive answer to the Twisted Subset Sum problem yields a circuit γ violating the (change-)cycle inequality.

6 Computational Results

This section gives some indication of the computational usefulness of cycle-separation compared to a heuristic separation.

As far as we know, the cycle inequalities (6) are added in cutting-plane algorithms only with heuristic separation algorithms, see [9, 4, 7]. In the so-called spanning tree heuristic, a minimum spanning tree of the event-activity network weighted with the slack values of the LP-solution is computed and the fundamental cycles of this tree are checked for violated inequalities.

We have implemented a full separation algorithm according to Algorithm 3 to separate all violated cycle inequalities (8) with a given maximum length. Such a length restriction is necessary to handle the memory consumption and the computation time of the separation algorithm. We tested a length restriction of 10,15 , and 20.

Our test set consists of seven instances, which are given in Table 1. The instance Wuppertal is based on the real multi-modal public transportation network of the city of Wuppertal for 2013. The remaining Wuppertal-instances are obtained by selecting a subset of lines of this instance. The Dutch instance is based on a network that was introduced by Bussieck in the context of line planning [1]. The Potsdam instance is based on the real multi-modal public transportation network for 1998. We consider a period time of 20 for all instances. The activity weights are obtained by computing an uncapacitated multi-commodity flow in the event-activity network for a given passenger demand.

Table 1: Statistics on the test instances. The columns list the instance name, the number of stations and lines of the transportation network, the number of events and activities of the event-activity network, the number of slack variables, periodic offset variables, and constraints in the original problem, and the number of variables and constraints after preprocessing.

name	$\|\mathcal{S}\|$	$\|\mathcal{L}\|$	n	m	$\# y$	$\# z$	$\#$ cons	\#vars*	\#cons*
Wuppertal 14	28	14	168	499	52	39	39	52	39
Wuppertal 44	64	44	395	1426	122	85	85	106	77
Wuppertal 98	123	98	1242	8997	1299	1208	1208	1294	1204
Wuppertal core	148	154	1677	14446	2048	1903	1903	2044	1902
Wuppertal	1582	311	13202	79251	3188	2886	2886	3150	2862
Dutch	23	58	419	3138	115	70	70	111	70
Potsdam	320	164	8092	99103	1413	1262	1262	1400	1255

Our code is based on the constraint integer programming framework SCIP version 3.2.0 using Cplex 12.6 .3 as an LP-solver. All computations were done on an $\operatorname{Intel}(\mathrm{R})$ Xeon(R) CPU E3-1245, 3.4 GHz computer (in 64 bit mode) with 8 MB cache, running Linux and 32 GB of memory. We set the time limit to one hour.

We compare the performance of the general MIP separators implemented in SCIP (no add. cuts), adding either the spanning-tree heuristic (heuristic) or our separation

Table 2: Statistics on the computations. The columns list the instance name, the used cut separation, the solving time, the separation time, the number of separated cycle cuts, the number of cycle cuts selected by SCIP to be applied to the LP, the dual bound of the root node, the dual bound after termination, the best known primal bound, and the primal-dual gap in $\%$.

name	method	solving time	sepa. time	cuts	applied cuts	root dual	dual	primal	gap in \%
Wuppertal 14	no add. cuts	0.06 s	-	-	-	16231.80	24074.55	24074.55	0.00
	heuristic	0.04s	0.00s	2	2	16499.35	24074.55	24074.55	0.00
	length ≤ 10	0.10 s	0.03 s	28	9	23050.60	24074.55	24074.55	0.00
	length ≤ 15	0.18 s	0.12 s	84	16	23088.89	24074.55	24074.55	0.00
	length ≤ 20	0.28 s	0.22 s	129	18	20775.85	24074.55	24074.55	0.00
Wuppertal 44	no add. cuts	0.10s	-	-	-	28778.74	37755.40	37755.40	0.00
	heuristic	0.11 s	0.00s	1	1	28669.75	37755.40	37755.40	0.00
	length ≤ 10	0.19s	0.05 s	18	5	31846.58	37755.40	37755.40	0.00
	length ≤ 15	0.46 s	0.29 s	40	9	31953.26	37755.40	37755.40	0.00
	length ≤ 20	1.05 s	0.80s	72	10	31953.26	37755.40	37755.40	0.00
Wuppertal 98	no add. cuts	1h	-	-	-	81940.30	112023.51	477161.17	325.95
	heuristic	1 h	0.02 s	20	20	89284.15	124697.64	468467.85	275.68
	length ≤ 10	1h	1.16 s	747	354	128857.01	161485.01	477161.17	195.48
	length ≤ 15	1h	11.52 s	2413	887	149847.94	173291.01	477161.17	175.35
	length ≤ 20	1h	41.34 s	3644	1128	155819.69	180986.98	477161.17	163.64
Wuppertal core	no add. cuts	1h	-	-	-	98654.95	118462.71	464533.25	292.13
	heuristic	1 h	0.02 s	24	22	99896.39	117042.04	464533.25	296.89
	length ≤ 10	1 h	2.40 s	949	448	137337.00	155433.06	464533.25	198.86
	length ≤ 15	1 h	25.90 s	3211	1186	167898.07	187486.25	464533.25	147.77
	length ≤ 20	1h	82.94s	4886	1488	175122.92	184265.70	464533.25	153.09
Wuppertal	no add. cuts	1h	-	-	-	190989.51	235669.35	997285.99	323.17
	heuristic	1 h	0.08 s	65	63	198269.80	248616.97	997285.99	301.13
	length ≤ 10	1 h	2.10 s	1082	402	232178.52	273620.80	997285.99	264.48
	length ≤ 15	1 h	21.55 s	3336	810	244127.40	281855.42	997285.99	253.83
	length ≤ 20	1h	123.19s	5307	1098	255288.10	290249.68	997285.99	243.60
Dutch	no add. cuts	7.06s	-	-	-	2455.13	6155.00	6155.00	0.00
	heuristic	7.14s	0.00s	0	0	2455.13	6155.00	6155.00	0.00
	length ≤ 10	7.99s	0.01 s	0	0	2455.13	6155.00	6155.00	0.00
	length ≤ 15	8.26 s	0.04 s	0	0	2455.13	6155.00	6155.00	0.00
	length ≤ 20	8.24 s	0.08 s	0	0	2455.13	6155.00	6155.00	0.00
Potsdam	no add. cuts	1h	-	-	-	25797.07	43944.09	130840.00	197.74
	heuristic	1 h	0.03 s	10	10	28407.66	46545.79	130840.00	181.10
	length ≤ 10	1 h	0.34 s	26	10	26231.44	46671.69	130840.00	180.34
	length ≤ 15	1h	1.82 s	106	33	27115.22	45784.24	130840.00	185.76
	length ≤ 20	1h	8.04s	254	86	34422.07	51912.86	130840.00	152.04

algorithm with a given length restriction (length ≤ 10, length ≤ 15, and length ≤ 20). The additional separators are only called at the root node. The results are listed in Table 2.

Looking at the root dual bound, one can see significant improvements, e.g., of up to 90% for Wuppertal 98, in comparison to the strategy without cycle cuts, and almost 75% over heuristic cycle cut separation. Hence, the separation algorithm has a greater effect on the dual bound than the heuristic, even though the separator only considers cycles of a restricted length. Only Wuppertal 14 has a smaller root dual bound if all cycles of maximum length 20 are separated compared to a cycle length of 10 or 15 . This is not caused by the cycle inequalities, but by the additional "flow cover" and "strong cg" inequalities (heuristically) found by the default separator of SCIP. The given length restriction influences the performance of the separation algorithm: Separating cycle inequalities with higher length increases the computation time, but also, in general, the dual bound, especially for larger instances. In particular, the root dual bound for Potsdam can be further improved by 30% by using a length restriction of 20 compared to a length restriction of 10 . Potsdam features the largest number of events, see Table 1 , and benefits from a consideration of longer cycles.

References

[1] M. Bussieck. Gams - lop.gms: Line optimization. http://www.gams.com/modlib/ libhtml/lop.htm.
[2] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Company, San Francisco, 1979.
[3] M. Kümmling, P. Großmann, K. Nachtigall, J. Opitz, and R. Weiß. A state-of-the-art realization of cyclic railway timetable computation. Public Transport, $7(3): 281-293,2015$. URL: http://dx.doi.org/10.1007/s12469-015-0108-5, doi:10.1007/s12469-015-0108-5.
[4] C. Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technische Universtität Berlin, 2006. URL: http://www.dissertation.de.
[5] C. Liebchen and R. H. Möhring. The modeling power of the periodic event scheduling problem: Railway timetables - and beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages 3-40. Springer Berlin Heidelberg, 2007.
[6] C. Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimization, 6:98-109, 2009.
[7] C. Liebchen and E. Swarat. The Second Chvatal Closure Can Yield Better Railway Timetables. In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic

Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08), volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[8] T. Lindner. Train Schedule Optimization in Public Rail Transport. PhD thesis, Technische Universtität Braunschweig, 2000.
[9] K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation thesis, Universtität Hildesheim, 1998.
[10] K. Nachtigall and J. Opitz. Solving periodic timetable optimisation problems by modulo simplex calculations. In M. Fischetti and P. Widmayer, editors, ATMOS'08, volume 9, 2008.
[11] M. A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm. Technical Report 94-61, TU Delft, 1994.
[12] L. W. P. Peeters. Cyclic Railway and Timetable Optimization. PhD thesis, Erasmus Universiteit Rotterdam, 2003.
[13] A. Schrijver. Routing and timetabling by topological search. Documenta Mathematica, Extra Volume ICM 1998:1-9, 1998.
[14] P. Sels, T. Dewilde, D. Cattrysse, and P. Vansteenwegen. Reducing the passenger travel time in practice by the automated construction of a robust railway timetable. Transportation Research Part B: Methodological, 84:124-156, 2016. URL: http: //www.sciencedirect.com/science/article/pii/S0191261515002684.
[15] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4):550-581, 1989.

[^0]: *This research was carried out in the framework of Matheon supported by Einstein Foundation Berlin.

