DFG-Research Center MATHEON
Mathematics for Key Technologies

ASTS Orientations on Undirected Graphs:
Structural analysis and enumeration

Kai Helge Becker Benjamin Hiller

MATHEON preprint
http://opusé.kobv.de/opus4-matheon

Preprint 2018 July 2018

Takustr. 7
14195 Berlin
Germany

Zuse Institute Berlin

KA1 HELGE BECKER, BENJAMIN HILLER

ASTS-Orientations on Undirected
Graphs: Structural analysis and
enumeration

This research is carried out within the framework of Matheon supported by Einstein Foundation Berlin (project MI10 "Acyclic Network Flows"). The authors would like
to thank the DFG for their support within project A04 in CRC TRR154 and the BMBF Research Campus Modal (fund number 05M14ZAM) and ICT COST Action
TD1207 for additional support.

ZIB Report 18-31 (July 2018)

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: 449 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

AST'S orientations on undirected graphs
Kai Helge Becker Benjamin Hiller

Abstract

All feasible flows in potential-driven networks induce an orientation on
the undirected graph underlying the network. Clearly, these orientations
must satisfy two conditions: they are acyclic and there are no "dead
ends" in the network, i.e. each source requires outgoing flows, each sink
requires incoming flows, and each transhipment node requires both an
incoming and an outgoing flow. In this paper we will call orientations
that satisfy these conditions acyclic source-transhipment-sink orientations
(ASTS-orientation) and study their structure. In particular, we characterize
graphs that allow for such an orientation, describe a way to enumerate
all possible ASTS-orientations of a given graph, present an algorithm to
simplify and decompose a graph before such an enumeration and shed
light on the role of zero flows in the context of ASTS-orientations.

1 Introduction

This paper studies a certain type of acyclic orientation of undirected graphs to see
how these may be used to improve the optimization of flows on potential-driven
networks. In [7] it was shown that MINLP models arising from so-called potential-
driven network flow problems can be strengthened by fixing the flow direction
and carrying out optimization-based bound tightening for each possible direction.
In the present paper we build on this insight and analyse the mathematical
structure that results from the flow directions.

All feasible flows in potential-driven networks induce an orientation on the
undirected graph underlying the network. Clearly, this orientation must satisfy
two conditions: they are acyclic and there are no "dead ends" in the network,
i.e. each source requires outgoing flows, each sink requires incoming flows, and
each transhipment node requires both an incoming and an outgoing flow. In this
paper we will call an orientation that satisfies these two conditions an acyclic
source-transhipment-sink orientation (ASTS-orientation).

The remainder of the paper is structured into five sections: In the following section
we will formalize the concept of ASTS-orientations and study their fundamental
structure. As our aim is to be able to generate all possible ASTS-orientations
of a given undirected graph underlying a potential-based network, Section 3
presents methods to simplify and decompose a graph before enummerating ASTS-
orientations. In Section 4 we will build on the previous two sections and briefly
sketch the conditions under which zero flows can occur in the context of ASTS-
orientations. Section 5 presents several ways to construct ASTS-orientations and

introduces an algorithm to enumerate all ASTS-orientations of a given graph.
The conclusion addresses some topics for further research.

2 Definition and fundamental properties of ASTS-
orientations

In this section we will consider only nontrivial simple finite (di)graphs, i.e. finite
(di)graphs with at least two nodes and without loops, multi-edges and multi-arcs.
We begin the defining the main concept of this section.

Definition 1 Let D(V, A) be a digraph with an underlying graph G, with V, CV
and V_ C V being sets of sources and sinks, respectively, with V. NV_ =0, and
with Vp :=V =V, —V_ being a set of transhipment nodes. A nodev € V is said
to satisfy the source-transhipment-sink-condition (STS-condition) if (i) v € Vi
and there exists an arc a € A with tail(a) = v, or (i) v € V_ and there exists
an arc a € A with head(a) = v, or (iii) v € Vp and there exist arcs a1,a2 € A
with head(ay) = tail(az) = v. If all nodes v € V satisfy the STS-condition, the
digraph D is said to be source-transhipment-sink-oriented (STS-oriented) or an
STS-orientation of the underlying graph G. If D is also acyclic, it is said to be
ASTS-oriented or an ASTS-orientation of the underlying graph G.

The following observation provides us with a first implication of this concept,
which answers the question of what an ASTS-orientation looks like.

Proposition 1 Let D(V, A) be an ASTS-oriented digraph, V. CV and V- CV
disjoint sets of sources and sinks, respectively, and Vp :=V —V, —V_ a set
of transhipment nodes. Then both Vi and V_ are non-empty, there exists a
"supersource”, i.e. a source that is tail of all arcs it is incident with, and a
"supersink’, i.e. a sink that is head of all arcs it is incident with, and every node
v € V is on a directed path from a supersource to a supersink.

PROOF Assume V_ is empty. As the digraph is ASTS-oriented, each node in
V. U Vp satisfies the STS-condition and, as a consequence, has an outgoing arc.
Now take a node in V, U Vp and follow a directed path from node to node via
outgoing arcs. As D is an acyclic digraph, the directed path cannot return to a
node we have already visited. Moreover, because D is finite, the directed path
must end in a sink, i.e. V_ is non-empty. Analogously, we can show that V.
is non-empty, and the same line of reasoning implies that every node is on a
directed path from a source to a sink and that there must be a super source and
a super sink. n

Remark 1 We note that the condition of Proposition 1 is only necessary, not
sufficient because a digraph with sources and sinks where all nodes are on paths
from a source to a sink may have cycles. (Consider, for example, two paths from
sources to sinks with nodes 1,2,3,4 and 5,6,7,8, where 1 and 5 are sources and
4 and 8 are sinks, with the additional arcs (3,6) and (7,2).

The following result is helpful for enummerating ASTS-orientations because it is
related to the fact that we can add a supersink and a supersource to a graph
with several sources and sinks, which then become transhipment nodes.

Corollary 1 Let D(V, A) be an ASTS-oriented digraph and s € V. the only
supersource. Then the digraph D'(V — {s}, A — {(s,v) : v € Succ(s)}), i.e. the
digraph that results from removing from D the supersource s and the arcs that
emanate from it, is ASTS-oriented, too, and one of the successors of s is a
supersource on D.

PRrROOF Removing the arcs emanating from s does not affect the acyclicity of
the graph. For seeing that the resulting graph is still STS-oriented it suffices to
notice that the nodes that were successors of the supersource are the only nodes
that are affected by removing the supersource. If these nodes were transhipment
nodes on D or sources, they are transhipment nodes or sources on D’, too. If
they wereif they were sources and have an outgoing arc each, i.e. can be sources:
Why still STS? Finally, the nodes that were successors of the supersource are
the only nodes to be affected by removing the supersource. As there was no
other supersource in the graph before removing the supersource and each ASTS-
orientation has a supersource according to Proposition 1, the new supersource
must be among the successors of s.]

The following theorem provides us with several ways of characterizing graphs
that allow for an ASTS-orientation. It also shows us that on graphs that allow for
an ASTS-orientation we can extend all partial ASTS-orientations on subgraphs
to an ASTS-orientation on the entire graph. Let us first recall the concepts of a
block and of a block tree graph (see e.g. [5], Chapter 3).

Definition 2 A block of a graph G is a mazimal connected subgraph of G that
does not have a cut-node.

As a consequence, a block is either a maximal 2-connected subgraph, a bridge
(including its endnodes), or an isolated node. Every edge of a graph lies in a
unique block, and two blocks of a graph overlap in at most one node, namely a
cut-node of the graph G.

Definition 3 The block graph of a graph G is the graph whose node set consists
of the cut-nodes of G and the blocks of G and where two nodes are adjacent iff
one node is a cut-node and the other node is a block that the cut-node is a node

of.

We note that the block graph of a graph is a bipartite tree. We are now prepared
for our characterization theorem.

Theorem 1 Let G(V, E) be a graph with node set V, V., CV and V- C V
disjoint sets of sources and sinks, respectively, and Vp :=V —V, — V_ the set
of transshipment nodes. Then the following four statements are equivalent:

(i) G has an ASTS-orientation.

(ii) Every node v € V is on a path from a source to a sink.

(iii) All components of G have both a source and a sink, and the leaves of the
block tree graph of G correspond to blocks that have a source or sink other than
the cut-node of the block.

(iv) There exists an ASTS-orientation of some subgraph of G, and for every
ASTS-orientation Do(Vy, Ag) of every subgraph Go(Vy, Eo) of G there exists an
orientation Ay of the edge set E — Ey such that D(V, Ag U Ay) is an ASTS-
orientation of G.

PrOOF We will prove the theorem in the following order:

(1) = (i) = (i) = (i) = (w) = (3).

(i) = (i1): The existence of a directed path from a source to a sink for all
nodes according to Proposition 1 trivially implies the existence of a path from a
source to a sink on the underlying undirected graph for all nodes in V' — V4.
(14) = (4i7): We show the contrapositive. Clearly, if the graph has components
without a source or a sink, not every node can be on a path from a source to
a sink. Moreover, if a block of a graph is a leaf of the block tree graph and all
nodes that are not the only cut-node of the block are neither a source nor a
sink, a path from any of these nodes to a source or to a sink must contain the
cut-node. Hence, except possibly the cut-node itself, no node of the block is on
a path from a source to a sink.

(#i1) = (ii): Let v € V be a node of G. If v is a source (sink) itself, it is
clearly on a path from a source to a sink as it is connected with the sink (source)
that exists in its component of G. Therefore, in the following let v be neither a
source nor a sink. We distinguish between three cases.

Case (1): The node v is in a block of G that has both a source and a sink.
By virtue of the 2-connectedness of the block there exist two internally disjoint
paths from v to a source and two internally disjoint paths from v to a sink. As
a consequence, v must be on a path from a source to a sink.

Case (2): The node v is in a block that has either a source or a sink. We
assume w.l.o.g. that the block has a source. If the block is a leaf of the block
tree graph of GG, the source cannot be the cut-node of the block. If the block is
not a leaf of the block tree graph, we will assume for the moment that it is not a
cut-node of the block. Now, since each component of G has a source and a sink,
the block must have a cut-node that is connected with a sink in a different block.
Then, due to the 2-connectedness of blocks, there exist two internally disjoint
paths from v to the source and from v via the cut-node to the sink, with the
latter being the case only if v is not the cut-node itself. In either case v is on a
path from a source to a sink.

Now let us consider the case where our block is not a leaf of the block tree graph
and the source is a cut-node of our block. Then the block contains at least two
cut-nodes and one of the other cut-nodes of the block must be providing us
with a path to a source or a sink in a further block, otherwise the block tree
graph of G would have a leaf without source or sink. If the cut-nodes provide us
with a path to a sink, there clearly exists, again due to the 2-connectedness of
blocks, a path from the block’s source to a sink that passes through v. If the
cut-nodes only provide us with a path to another source, there must be another
sink in a block that is accessible via the cut-node that is a source, otherwise the
component that v is a node of would not have a sink. As a consequence, v is

again on a path from a source to a sink.

Case (3): The node v is in a block without source and sink. Then v cannot
be in a block that is a leaf of the block tree graph and therefore the block
in which v is located contains at least two cut-nodes (one of which may be v
itself). All cut-nodes must be on a path from v to a source or from v to a sink,
otherwise the block tree graph of G would have a leaf without both source and
sink. Moreover, due to the fact that all components of G have both a source
and a sink, one of the cut-nodes must be on a path from v to a source and a
different cut-node must be on a path from v to a sink. As a consequence, since
a block is 2-connected, v must be on a path from a source to a sink.

(7i) = (iv): We will procede in two steps. In first step we will extend our
digraph Dy to an ASTS-oriented digraph whose underlying graph is still G and
that contains all sources and sinks in V', provided the latter is not the case
yet. In the second step we will show that, provided the graph underlying our
ASTS-oriented digraph contains all sources and sinks and is a proper subgraph
of G, we can always find a path on the remaining unoriented edge set of G that
can be oriented to provide a larger ASTS-oriented digraph with an underlying
subgraph of G. Statement (i¢) then follows by induction.

STEP 1: For each component of G all edges of which are in E — Ey we enlarge
the digraph Dy by connecting, with the sinks in their components, all sources
that are not yet in the node set of our digraph, using directed paths whose
internal nodes are not in the node set of our digraph either. The prodecure
is as follows: for each source, we take an arbitrary path on G from the source
to a sink, which is possible because all nodes are on a path from a source to
a sink, and orient, into the direction away form the source, either the subpath
from the source to the first node of the existing digraph or, if this is not possible
because none of the nodes of the path is on the digraph, the entire path from the
source to a sink. In a similar fashion we add all remaining sinks to our digraph:
by orienting edges that connect these sinks to the closest node of our existing
digraph or by directly connecting them with a source. The resulting enlarged
digraph has an underlying graph that is a subgraph of GG, has a node set that
includes all sources and sinks and is ASTS-oriented (note that we did not create
any directed cycle because we did not connect any two nodes that were already
in the node set of our digraph).

STEP 2: We will now show that given an ASTS-oriented digraph Dy with an
underlying proper subgraph G of G and with a node set that includes all sources
and sinks of GG, we can always find a path P with edges from E — Ej, with
distinct endnodes in Vj, and with all other nodes being in V' — Vj that can be
oriented such that the directed graph that arises from adding the oriented path
to Dy again yields an ASTS-oriented digraph.

We pick an arbitrary edge from F — Ej. If both endnodes of this edge are in Vj,
this edge is our path P. Otherwise, we extend this edge to a path by adding
edges from E — Ey until we have a path P with two distinct endnodes both of
which are in V. This is always possible because all nodes in V' are, on G, on a
path from a source to a sink, with the sources and sinks being in Vj according
to the construction in Step 1. We denote the endnodes of P by i,j € Vp, the
inner nodes of P by V/ CV — Vj, and the edges of P by E' C E — Ej.

We now orient P as a directed path, i.e. from one endnode to the other such that
each internal node of the path is both head and tail of an arc, and denote the
arcs of the directed path by A’. For constructing our orientation we observe that,

as Dy is acyclic and 7 and j are nodes of Dy, there is (a) no directed path on D
from i to j and no directed path from j to 4, or (b) there is a directed path from
i to j, but not from j to 7, or (c) there is a directed path from j to i, but not
from ¢ to j. In case (a) we choose an arbitrary orientation for our directed path.
In cases (b) and (c) we orient the path such that it has the same orientation
as the existing path. As a consequence the digraph D'(Vy UV’ Ag U A’) that
results from adding the arcs and nodes of the directed path to Dy will be acyclic,
too. (Note that by construction of P, only the endnodes of P are in V;, and
therefore orienting P cannot create any cycle containing an internal node of P.)
As the STS-condition is already satisfied at the endnodes i,j € V; and we have
oriented the path P to form a directed path, the inner nodes of the path and
hence the digraph D’ altogether also satisfy the STS-condition. All in all, the
resulting digraph D' (Vo UV’ Ag U A’) is ASTS-oriented.

(iv) = (i): As G has a component with both a source and a sink, we can
create an ASTS-orientation Dy of a subgraph Gy of G by orienting an arbitrary
path from a source to a sink into the direction away from the sink. Then we can
extend Dy to an ASTS-orientation D(V, Ao U A4;) of G. n

In the following we will make some (more or less obvious) complementing remarks
on the theorem.

Remark 2 Note that the subgraph Go(Vo, Ey) is not required to be the subgraph
induced by the node set Vy, i.e. there may be edges in E both endnodes of which
are in Vi that are not edges in Ey. Theorem 1 guarantees that also these edges
can be oriented to provide us with an overall ASTS-orientation of G.

Remark 3 Note that statement (ii) means that for every node there are two
internally disjoint paths, one from the node to a source and one from the node
to a sink. This implies that the location of the cut-nodes of the graph is relevant
for the possibility of having ASTS-orientations, see statement (iii).

Remark 4 Note that in statement (iit) it is crucial that we look at block tree
graphs [where the blocks are 2(-node)-connected] and not at bridge block trees
[where the "blocks" are 2-edge-connected]. The reason is that in a 2-connected
component that contains both a source and a sink it is guaranteed that all nodes
are on a path from a source to a sink. For a 2-edge-connected component, this
statement does not hold.
FEzxzample: The 2-edge-connected graph

G({1,2,3,4,5}, {{1,2},{1,3},{2,3},{3,4},{3,5}, {4,5}})

with V. = {4} and V_ = {5}.
Here nodes 1 and 2 are not on a path from the source to the sink.
So disregarding isolated nodes, we can say that for our purpose the relevant
building-blocks of graphs are maximal 2-connected subgraphs and bridges.

Remark 5 Note that in the proof of statement (iv), in our construction of an
ASTS-orientation, we used a technique that is similar to an open ear decom-
position (cf. [Z]), just that we used a forest instead of a path as the starting
point.

Remark 6 Obviously in statement (iv) the orientation Dy is necessarily acyclic.
Note that it is also necessary that Dy is already STS-oriented. Take the digraph

Do({1,2,3},{(1,2),(2,3)}) with Vo = {1,3} and V_ = {2} and the graph
G({1,2,3,4},{{1,2},{1,4},{2,3},{3,4}}). Except the fact that node 3 does not
satisfy the STS-condition, all other conditions of the proposition are satisfied,
and yet there exists no orientation of the edges {1,4} and {3,4} that would lead
to an ASTS-oriented digraph D(V, Ao U Ay).

Remark 7 A consequence of Proposition 1 is that graphs where all nodes are
transhipment nodes do not have ASTS-orientations, not even when we add zero
flows as orientations (except the trivial case where all flows are zero). Example:
the complete graph Ks. Conversely, Property (iv) in Theorem 1 states that for
graphs where every node is on a path from a source to a sink we do not need
zero-orientations on individual arcs to achieve an ASTS-orientation because all
unoriented edges can be oriented to achieve an overall ASTS-orientation.

Remark 8 Regarding the condition in Proposition 1 that every node on an
ASTS-oriented digraph is on a directed path from a source to a sink, we noted
that this condition is only necessary, but not sufficient. However, we now know
from Theorem 1 (ii) that any digraph that satisfies the necessary condition of
Theorem 1 allows for an ASTS-orientation. This means that for any cyclic
digraph with an STS-orientation that satisfies the condition of Proposition 1, it
is possible to construct an acyclic STS-orientation.

Remark 9 Note that ASTS-orientations have a rather strong structure. While
they are acyclic by definition, adding one node that is connected to all sources
and sinks is sufficient to ensure that each node is on a cycle. A different way of
looking at the same aspect: The proof that Property (iv) follows from Property (ii)
in Theorem 1 is similar to an ear decomposition in the sense that we successively
add directed paths to the digraph, with only the endsnodes of the paths being on
the existing digraph. But while an ear decompostion requires a 2-connected graph,
we just required that every node is on a path from a source to a sink. (This was
possible because we did not start our "ear decompostion” from a cycle, but from
a forest that connects all sources with sinks.)

The following direct corollary of the preceding theorem provides us with a way
to interpret ASTS-orientations of graphs:

Corollary 2 For each solution of a potential-based flow problem on an ASTS-
orientable graph G(V, E) there exists an ASTS-orientation D(V, A) of G such
that all edges with non-zero flows in the solution have the same orientation as
on D.

The subgraph induced by the set of arcs with non-zero flow clearly has an ASTS-
orientation where arcs with positive flow have one orientation and arcs with
negaive flow the other. According to statement (iv) of the preceding theorem,
this orientation can be extended to an ASTS-orientation D of G.

PROOF This corollary implies that we can interpret the orientations of the arcs
of an ASTS-orientation as non-positive flows (forward arcs) and non-negative
flows (backward arcs), i.e. we do not necessarily need to extend our concept
of ASTS-orientations to make specific provisions for zero flows. This has the
advantage that we will have fewer orientations to account for.

|V| | No of orient. | No of ASTS-orient.

4 64 2
6 3.28 x 10% 24

] 2.68 x 108 720

10 | 3.52 x 1013 40300

20 | 1.57 x 10°7 6.40 x 105

30 | 8.87 x 10130 3.05 x 102
40 | 6.36 x 10%34 5.23 x 10%
44 | 5.95 x 10284 1.41 x 10°1

Table 1: Upper bound on the number of ASTS-orientations with one source and
one sink

To finish this section, we will give an upper bound on the number of ASTS-
orientations of a graph.

Corollary 3 Let G(V, E) be a graph that has an ASTS-orientation with V.. CV
and V_ C 'V being disjoint sets of sources and sinks, respectively. Then the
number of ASTS-orientations of G is less than or equal to |V ||[V_|(|V] — 2)!,
the number of ASTS-orientations of the complete graph on |V| nodes.

PROOF Due to statement (iv) of the preceding theorem, every ASTS-orientation
on G can be interpreted as a subdigraph of an ASTS-orientation on a complete
graph K with the same number of nodes, sources and sinks. Moreover, we
observe that the set of all ASTS-orientations of K is equal to the set of acyclic
tournaments on K where the supersource of the tournament is in V; and its
supersink in V_. Disregarding the sets of sources and sinks, there exists a
bijection between the number of acyclic tournaments on K and the number of
permutations of the node set V. Taking into account that an acyclic tournament
has exactly one supersource and one supersink and that we can choose between
|V ||V_| pairs of supersource and supersink yields a number of |V, ||[V_|(|]V]|—2)!
acyclic tournaments on K such that the supersource and the supersink are from
Vi and V_, respectively. n

Table 1 illustrates for complete graphs with one source and one sink that the
number of ASTS-orientations can be considerably lower than the number of
orientations of the graph. Note that in real-life applications such as gas, water
or hydrogen networks, nodes do typically not have a degree greater than 4 or 5.
As a consequence, the number of ASTS-orientations of the graphs underlying
these networks is significantly lower than the number of ASTS-orientations of
complete graphs.

3 Simplication and decomposition of the under-
lying graph

Having presented some fundamental properties of ASTS-orientation, our aim is
now to find a fast way to enummerate all ASTS-orientations of a graph. In this
section we will present three basic statements that allow us to simplify a given
underlying graph. Moreover, we will give an outline of the general optimization
procedure.

3.1 Decomposition of the underlying graph

The first statement, which is a direct consequence of Theorem 1, allows us to
decompose any underlying graph into a part that allows for an ASTS-orientation,
while the remaining edges must have zero flow, i.e. can be removed form the
graph.

Corollary 4 The edge set E of any graph G(V, E) can be uniquely decomposed
into two (potentally empty) sets E = E1 + E such that for any feasible solution
of a potential-based flow problem on G

() the flow on all edges in E4 is zero, and

(it) the subgraph induced by the edges in Eq allows for an ASTS-orientation.

ProorF We will decompose the underlying graph as follows: One edge set
contains the edges from all components without source and sink and the edges
in a block of the graph that (a) does not have a source and a sink other than
the cut-node of the block or that (b) does not have two cut-nodes, one of which
is on the path from nodes of the block to a source and the other one of which
is on a path from nodes of the block to a sink. The remaining edges form the
second edge set.

Regarding the first edge set: All potential-based flows have an ASTS-orientation.
We know from Proposition 1 that all nodes of such an orientation are on a
directed path from a source to a sink. This is not possible for the subgraph
induced by the first edge set. The subgraph induced by the second edge set
allows for an ASTS-orientation by Theorem 1 (iii). ™

Remark 10 For a practical algorithmic setting Corollary 1 implies the following
procedure. We know that for any given graph we can allocate flow 0 to all edges
that are in a component without source and sink. Also we can sucessively allocate
flow 0 to all edges in blocks that correpond to a leaf of the block tree graph of
G and do not have a source or a sink that is not the cut-node of the block.
These blocks can then be removed from the graph and we can recursively re-apply
Corollary 1 again, thereby sucessively pruning the block tree graph until no leaf
of the block tree graph without source and sink that are not the cut-node of the
block is left. We are then guaranteed that there is an ASTS-orientation of the
remaining edges of our graph.

3.2 Elimination of nodes and edges

The first statement allows us to simplify a network by removing serial and
parallel edges.

Proposition 2 Let G(V, E) be a graph. Then all ASTS-orientations of G have
the following properties:

(i) All edges of a path subgraph of G where no internal node is a source or sink
and all internal nodes have degree 2 on G have the same orientation.

(13) All edges of two path subgraphs of G with common endnodes where no internal
node is a source or sink and all internal nodes have degree 2 on G have the same
orientation.

PROOF (i) If the edges were not oriented in the same direction, the subgraph
would not have an STS-orientation.

(i4) Due to (2), it remains to observe that the orientation would not be acyclic if
two paths with the same endnodes were given different orientations.]

Remark 11 [t is interesting that the general insight that in networks parallel and
serial edges can be replaced by equivalent single edges with a so-called equivalent
diameter (see e.g. [8]) is already relevant on the level of ASTS-orientations.
More precisely, parallel edges can be removed due to the acyclicity condition and
serial edges can be contracted due to the STS condition.

Remark 12 Obviously we can also remove leaves that are sourcs and sinks. But
it is not clear whether doing so would solve algoithmic time.

3.3 Fixing flows through cut-nodes

In the following we will fix the orientation of some edges by looking at the
demand distribution in the network.

Observation 1 Let G(V, E) be a graph that allows for an ASTS-orientation
with given supplies and demands for sources and sinks, respectively. Then we
can use the block tree graph of G to restrict the orientation of edges that the
cut-nodes of G are incident with by classifying the cut nodes of a block as sources,
sinks or transshipment nodes relative to the block considered and can consider
the orientations of each block independent of the orientations of the other blocks.

The following proposition expresses this insight.

Proposition 3 Let G(V, E) be a graph that allows for an ASTS-orientation
and let V' be the node set, V. CV and V_ C V disjoint sets of sources and sinks,
respectively, and Vp :=V —V, —V_ the set of transhipment nodes. Let F(R, f,g)
be flow structure of G. Then the block tree of G also has an ASTS-orientation
D, every ASTS-orientation D corresponds to a set of ASTS-orientations of G,
and any flow on G that satisfies the mass balance corresponds to a flow on D,
where the arcs on D represent the flows in and out of blocks.

10

PRrROOF As G allows for an ASTS-orientation, each leaf of the block tree graph
of G has a source or a sink that is not the cut-node of the block that the leaf
represents by Theorem 1. As a consequence, also by Theorem 1, the block tree
has an ASTS-orientation D if we identify each node that represents a block by
its non-cut-node source or sink (depending on which has the higher demand).
Such an ASTS-orientation D corresponds to all ASTS-orientation on G where
the arcs on D represent the incoming and outgoing flows of blocks on G. By
construction of R and f, the flows on R satify mass balances corresponding to
the mass balances on G.

Remark 13 In a practical setting we can use this insight as follows: We decom-
pose the underlying graph into its blocks and declare each cut-node of each block
source or sink depending on whether the block has in the flow structure graph, at
the point of the cut-node, an incoming or an out-going arc, respectively. Then
the number of ASTS-orientations of a graph is the product of the number of the
orientations of the blocks (where blocks with flow zero throughout are considered
to have one orientation) and .

3.4 General procedure for enumerating ASTS-orientations

Based on the insights of this and the previous section we can now present the
general framework for enumerating ASTS-orientations.

We start our algorithm in Step 1 with removing all connected components
without source and sink (because these will trivially have zero flows) and will
look at all components seperately in the following.

In Step 2, to further simplify the computational effort, we will remove all nodes
with degree 1. In the above framework a node of degree 1 (including the edge
incident to it and its neighbour) would be treated as a block with zero flow,
provided that the node is not a source or a sink, or would be treated as a block
with a source or sink other than its cut node. A computationally less expensive
approach is to remove a node with degree 1 ab initio and add its demand to
its neighbour because the flow direction on the one arc incident to the node is
determined by the demand at the node.

After removing all nodes with degree 1, we apply Corollary 2] Figure 1 demon-
strates how the sucessive application of this corollary leads to the elimination of
nodes and nodes. Note that doing so may lead to new nodes with degree 1, the
removal of which may allow for the further application of Corollary

In Step 3 we analyse the block structure of our graph, to be prepared for Corol-
lary] and Corollary [I}

Now we apply Corollary (] in Step 4 and iteratively remove the leaves of the
block tree graph if the coresponding blocks have no source or sink other than
the cut node of the block.

Removing blocks in Step 4 may lead to a graph in which we can further apply
Corollary 2] and remove nodes of degree 1. Therefore, in Step 5, we will repeat

11

Figure 1: Successive elimination of serial and parallel edges and nodes with
degree 1

Step 2 on the current graph.

In Step 6 we use Observation [[]and classify the cut nodes of all blocks as sources,
sinks or transshipment nodes relative to the block. This provides the basis for
enumerating, in Step 7, the ASTS-orientations of each block separately.
Altogether our algorithm for enumerating ASTS-orientations looks as follows:

1. Remove connected components without source and sink and look at all
remaining components separately.

2. Iteratively remove all nodes with degree 1, all nodes with degree 2 that
are transhipment nodes and all parallel edges.

3. Construct block tree graph.

4. Tteratively remove blocks that are leaves of the block tree graph and do
not have a source or sink other than the cut-node of the block.

5. Repeat Step 2.

6. Calculate flows through cut-nodes and classify the cut-nodes as sources,
sinks or transhipment nodes relative to their blocks.

7. Enumerate the ASTS-orientations of each block separately.

Remark 14 It may also be useful to decompose the underlying graph not only
into blocks, but also, more generally, into subgraphs that are connected by rather
small edge-cuts. In such a case, the orientations of the two subgraphs can be
treated in separate columns within a column generation framework, with some
additional constraints that ensure compatibility between the orientations of the
subgraphs. Altogether this will lead to fewer columns than having a column for
the orientation of the entire undecomposed graph.

We will demonstrate the approach developed in the present and the previous
section with an example. We would like to find all ASTS-orientations of the
network given in Figure 2.

As the entire graph is connected, Step 1 does not change our graph. After
carrying out Step 2, i.e. removing all nodes with degree 1 and all serial and
parallel arcs, we arrive at the reduced network in Figure 3. Note in particular
that the sucessive removal of nodes with degree 1 led to the removal of a sink
with demand -100, which has turned the sink’s neighbouring node into the new
sink with demand -100.

12

+200

Figure 2: Network example with 3 sources (grey upward triangles), 6 sinks (black
downward triangles) and 33 transhipment nodes (dots). Numbers indicate the
demands at sources (demand > 0) and sinks (demand < 0)

+100 -+200

Figure 3: Reduced network after carrying out Step 2

13

+100 +200

-100 _50
+200 -100

-100
-100

Figure 4: Network after Step 4

£100 4200
50
~100
4200 -250
100

Figure 5: Network after Step 5

We can now carry out Step 4 and remove three blocks (one of which is a bridge)
that have no sources and sinks or no sources or sinks other than their cut node.
Figure 4 shows the resulting network.

Removing has now led to a network that has a node with degree 1 again. Carrying
out Step 5, which here just means removing a node with degree 1 twice, yields
the network in Figure 5. Note how the removal of two sinks led to a sink withn
an overall demand of —250.

To the reduced network we apply Step 6, i.e. we classify the cut nodes of
the remaining graph as sources, sinks or transshipment nodes relativ to their
blocks. This has been achieved in Figure 6, where the three blocks have been
clearly separated. The dashed lines betweek nodes indicate that these two nodes
represent the same cut node in the previous graph. Note that in the process
of Step 6 a former sink in Block 2 has become a transhipment node because
the inflow of 4100 into this node from Block 3 has been balanced out by the
demand of —100 at this node.

In Step 7 we enumerate the orientations of each block separately. In Figure 7 we
can see the two ASTS-orientations of each of Block 1 and Block 3 (both blocks
have the same structure with one source and two sinks), while Figure 8 shows the

14

+50 +200

Block1 | ¥
-50 Block 2

50
2
0 50
100 -
+200
-100
Block 3

Figure 6: The three remaining blocks of the graph with classified cut nodes

<

Figure 7: Possible orientations for Blocks 1 and 3 in Figure 6

four possible ASTS-orientations of Block 2. It is easy to see that Blocks 1 and 3
must have 2 ASTS-orientations block: We know from Proposition 1 that each
ASTS-orientation must have a supersource and a supersink. The two blocks have
only one possible supersource each and two potential supersinks. After fixing
the orientations of the edges incident to the supersource, choosing one of the two
sinks as a supersink determines the orientation of the blocks. In the case of Block
2, we also have to choose which of the two sinks should become a supersink, but
due to the chord of the 5-cycle we have another degree of freedom here, whcih
leads to 4 orientations altogether. (Note that in the case of our blocks here,
we always had to choose one sink as a supersink. Depending on the network
structure also both sinks could become supersinks in an ASTS-orientation. In
our cases, however, making one sink a supersink excludes the other sink from
being a supersink.)

We can conclude from Figures 6 to 8, but multiplying the number of ASTS-
orientations of the blocks, that our graph in Figure 6 and, consequently, also the
original graph in Figure 2 have altogether 2 x 2 x 4 = 16 ASTS-orientations each.
One such orientation of the original graph in Figure 2 is shown in Figure 9.

15

Figure 8: Possible orientations for Block 2 in Figure 6

+200

Figure 9: One of the 16 possible ASTS-orientations of the network in Figure 2

16

+200

+100
Block 1
Block 2
-250

Block 3

Block 4

+100
Block 5

-100

Figure 10: Inner block with zero flow on all edges (Block 3)

4 Remarks on zero flows

Detecting zero flows is of crucial importance to speed up an algorithm: As
we have seen above we can interpret a forward arc of an ASTS-orientation as
a non-negative flow and a backward arc as a non-positive flow. If we know
beforehand whether a flow is zero we can reduce the number of orientations that
are possible for a given network flow problem. In the following, based on our
insights in the previous sections, we will provide an overview of different types
of zero flows that may arise in potential-driven networks.

We can distinguish between four types of zero flows:

1. Outer blocks We know from Corollary [] that we can uniquely decompose
any graph into two subgraphs such that the edges on one subgraphs have
always zero flows. The subgraph with zero flows consists of the blocks
that we obtain by sucessively removing those leaves of the block graph
of our underlying graph that represent blocks with no source and no sink
other than the cut node of the block. (See the step from Figure 3 to
Figure 4 above.) These flows are zero flows due to the structure of the
network, independent of the demand at the sources and sinks and the
pipeline characteristics, i.e. we can determine these zero flows prior to any
optimization algorithm.

2. Inner blocks Once the blocks with zero flows from the previous item
have been removed from the graph, we know from Theorem [I] that the
remaining graph has an ASTS-orientation. However, while all remaining
blocks do have an ASTS-orientation, there may be some blocks with flow
zero on all edges. In these cases all forward and backward edges of an
ASTS-orientation of the block correspond to zero flows. These blocks
are characterized by the fact that all cut nodes are transhipment nodes

17

relative to the block. This means that all cut nodes of the block in question
partition the graph into two components in each of which the sum of all
demands at sources and sinks is zero. As a consequence, there is no flow
through the cut nodes of the block and all edges of the block have a flow
of zero. This situation is illustrated in Figure 10, where Block 3 is a block
with zero flow. The nodes marked as circles are the cut-nodes of the graph.
Zero flows in inner blocks arise due to the block structure of the network
in conjunction with the demands at sources and sinks and are independent
of any pipeline characteristics. Theorefore, we can determine these zero
flows prior to any optimization procedure.

. Closed pipelines Once inner and outer blocks have been removed from
the graph, all remaining edges belong to blocks in which some, but not all
arcs have non-zero flow.

Trivially, zero flows can occur in such a block if a pipeline is closed off by a
gate valve that blocks any flow into the pipeline. In optimization problems
a gate will be closed off when any flow through the pipeline leads to sub-
optimal solutions (due to transport costs, for example). This is a decision
that depends on the cost structure of the optimization problem, possibly
in conjunction with the structure of the block, the pipeline characteristics,
the demand at the nodes of the block, and pressure losses in other parts of
the network, depending on the variables in the objective function.
Except in trivial cases, this type of zero flow cannot be detected prior to
the optimization problem. We finally note that due to Theorem [l (iv) is
will always be possible to allocate to any such pipeline with zero flow a
forward or backward arcs as part of an ASTS-orientation.

. Pipelines with pressure symmetry There is another type of zero flow
that can occur in blocks where not all flows are zero. Within a block the
flow from the sources to the sinks of the block will, due to the pressure loss
caused by the flow, typically distribute across all pipelines that are not
closed off. However, a zero flow can occur "accidentally" due to the values
of the demands at the sources and sinks of the block in combination with
the pipeline characteristic. We will provide an example for the simplest
cases in which this phenomenon can happen in the following.
Consider the block G(V, E) with

V={1,2,3,4} and E = {{1,2},{2,3},{3,4},{4,1}}
and let us assume that nodes 1 and 2 are sources with a demand of +100
each, while nodes 3 and 4 are sinks with a demand of —100 each (see Figure
11). For simplicity’s sake let us further assume that all edges are equal
with respect to all pipeline characteristics such as lengths and diameters.
Disregarding symmetry, this graph has two possible ASTS-orientations:
Dl(‘/, Al) with A1 = {(1, 2), (2, 3), (1, 4)7 (47 3)} and DQ(M Az) with A2 =
{(1,2),(2,3),(1,4),(3,4)}. (This can be seen easily by taking into account
that due to Proposition 1 one of the sources must be a supersource and
one of the sinks must be a supersink.)
Let us consider the flow on the arcs in the case of orientation D;. We
denote by x;j the flow on arc (i,7). All flows will be non-negative in
the direction of the orientation. Any flow x15 on arc (1,2) implies that
Zo3 = 100+212. As node 3 has a demand of —100, we must have xo3 < 100,
hence z15 = 0. Accordingly, z14 = 100. Due to the demand at node 4

18

+100 +100

1 2
4 3
-100 -100

Figure 11: Pipeline with pressure symmetry

being —100, we also have z43 = 3, i.e. this ASTS-orientation implies zero
flows on two arcs, (1,2) and (4, 3).

Now let us us consider the flow on the arc of orientation Ds. We denote by
dm;; the pressure loss along arc (4, j). If we have xo3 > x14, the pressure loss
function in potential-driven graphs (see [7]) implies dma3 > 0714, provided
that both pipelines have the same physical characteristics. However, we
also have dm4 = dmis + dmag + dmsy, which yields dmyq4 > dmo3. Since
our ASTS-orientation in conjunction with the demands at the nodes does
not permit the case that zs93 < x14, we must have x93 = x14, and hence
T19 = 234 = 0, i.e. this ASTS-orientation implies zero flows on the same
two edges as the previous ASTS-orientation.

As there are no flows on potential-driven networks that do not correspond
with an ASTS-orientation (cf. [7]) and we have considered all ASTS-
orientations of G (apart from symmetrical cases), we can conclude that
all feasible flows on our underlying graph G imply zero flows on the edges
{1,2} and {3,4}.

We note that in the case of D; the zero flow occured due to the demand
situation of the network in conjunction with the ASTS-orientation, while
in the case of Dy we also required a symmetric pressure situation in the
two components induced by the edge cut {(1,2),(3,4)}. This implies that
in most cases it will be difficult to detect such a zero flow prior to the
optimization procedure. Clearly, a necessary condition for such a non zero
flow to occur in a pipeline is that the pipeline is an element of an edge
cut of the graph such that in both node sets of the partition induced by
the cut the sum of all demands at sources and sinks is zero. However, this
condition is not sufficient as we can see when considering the graph G’
that results from subdividing the edges {1,2} and {3,4} of G with new
transshipment nodes 5 and 6, respectively, and introducing the edge {5,6}.
In this case the pressure differentials between nodes 1 and 4 and between
nodes 2 and 3 imply that there will be a flow on the edge {5,6}, and, as
a consequence, the network will not permit any non-zero flows (unless a
pipeline is shut down). Further research that would allow to distinguish
cases of zero flow that fall into this category as a part of pre-solving an
optimization problem may well be useful to save computational time.

Table 2 sums up the cases of zero flows that we have described.

19

Type Cause Independent| Independent| Does Part of pre-
of pipeline | of objective | block/edge | solving?
characteris- | function? allow for
tics? ASTS-

orientation?

Outer block Nodes not on | Yes Yes No Yes

path between
source and
sink

Inner block Cut nodes | Yes Yes Yes Yes

are tran-
shipment
nodes

Accidentally | Symmetry of | No Possible Yes Possibly

unused pipe | pressure loss

Closed pipe Pipe closed | No No Yes Typically not

by valve

5 Algorithms for generating ASTS-orientations

In this section we present an algorithm for enumerating all ASTS-orientations
of a given graph. Throughout the section we will assume that the underlying
graph admits an ASTS-orientation according to Theorem [I} In a second section

Table 2: Types of zero flows

we discuss other methods of generating ASTS-orientations.

5.1 An algorithm for enumerating ASTS orientations

For the problem of finding an acyclic orientation of a graph that has exactly one
supersource, no other source and no sink, [3] provide an algorithm the main idea

of which can be summarized as follows:

1. Construct a DFS tree that is rooted in the supersource.

2. Start from an empty digraph and traverse the tree backwards from the
leaves towards the root, adding one node after the other to the empty

digraph.

3. For each new node create a list of nodes that are reachable from the new
node and a list of nodes that can reach the new node by drawing on the
forward and backward reachabilities of its neighbours that are already

nodes of the digraph under construction.

4. For each node, generate all possible orientations of all arcs to nodes that
have already been added to the digraph such that all nodes who become
saturated by neighbours due to adding the new node have both indegree
and outdegree of at least 1. When doing so, update the reachability lists

and discard orientations that produce cycles.

20

This algorithm guarantees an acyclic orientation because it discards orientations
that produce cycles. It guarantees an STS-orientation because when traversing
the tree, each new transhipment node will have a neighbour further up the tree
(towards the root), which ensures that for each node, except the supersource,
there will be a neighbour left to prevent an outdegree of 0, which would lead to
making a source a supersource other than the given a supersource.

What makes this algorithm very efficient is the fact that the search backwards
up to the root prevents the algorithm from reaching a "dead end" that could be
caused by violating (a) the STS-condition or (b) the acyclicity condition.

In case (a), the algorithm would have to stop constructing an orientation when
adding a new node with arcs to its neighbours would force a neighbour to
become a supersource. As mentioned above, this cannot happen due to the
search backward up to the root of the tree.

In case (b) the algorithm would have to stop when adding new arcs would
inevitably lead to a cycle. It is easy to see that for each new node added to the
orientation there exist arcs incident to those of its neighbours that are already
part of the orientation that do not cause a cycle: simply orient all arcs as arcs
emanating from the new node. Note that this does not conflict with case (a)
as we will have come to a node later up the tree that will have an arc that is
incoming at the current node. (For details see [3].)

Unfortunately, we cannot use this algorithm directly for ASTS-orientations
because ASTS-orientations may have

(i) several sources

(ii) at least one of which must be a supersource, and
(iii) several sinks
(iv) at least one of which must be a supersink.

In the following we will present a modified version of the enumeration algorithm
that takes these aspects of ASTS-orientations into account. Unfortunately, in
contrast to the algorithm in [3], we cannot guarantee anymore that our algorithm
will not reach any dead end. It is, to the best of our knowledge, an open
problem whether an enumeration algorithm for ASTS-orientations exists that
is guaranteed to construct an ASTS-orientation by adding one node after the
other and orienting the edges incident to those neighbours that are already part
of the oriented digraph.

We will deal with aspects (i) and (ii) by introducing a dummy supersource s that is
adjacent to all sources of the graph G(V, E) for which we would like to find ASTS-
orientations, i.e. we will consider the graph G'(V U {s}), EU {{s,v} :v e V }.
Then making sure that s is oriented as the only supersource on G’ is equivalent
to ensuring that there are no supersources on G other than the nodes in Vj.
Additionally we will have to make sure that each source in V will have at least
one outgoing arc because the procedure of introducing the dummy supersource
may lead to an orientation in which there exists a node in V. that is a supersink.
We will achieve this by forcing the last unoriented edge incident to a source to be
oriented as an emanating arc if the source would become a supersink otherwise.
Should this forced orientation lead to a cycle, we will disregard the corresponding
branch in our search tree and backtrack.

For taking into account sinks, we will need to sort our node differently. Recall

21

that in the algorithm in [3] a DFS tree is rooted in the supersource is constructed
and then the nodes to be added to build up an orientation are sorted such
that the tree is traversded backwards from the leaves towards the root. If the
graph has a sink, we require a tree that is rooted in the supersource and has
the sink as a leave. We construct such a tree by starting with a path from the
supersource to the sink and then proceeding along this path with a BFS based
on the neigbourhood relation.

On this basis, we can deal with aspects (iii) and (iv) analogously to aspects
(i) and (ii) by introducing a dummy sink that is adjacent to all sinks of the
graph, by forcing the orientation of an edge should a node in V_ become a
supersource otherwise, and by disregarding the corresponding branch of the
search tree should a cycle be the consequence of the forced orientation.

The following we will present our algorithm for enumerating all ASTS-orientations
of a given graph G(V, E). In the light of the previous section, this algorithm
should be applied after the graph has been simplified, and it should be applied
to all blocks of the graph separately.

In a first step, Algorithm [T] sorts the node set V' into a list such that the first
node of the list is the dummy sink, the last node is the dummy sink, and for
all nodes u € V there exists a node v € V' that is neighbour of u and appears
after u in the list. Afterwards it calls the next algorithm that generates the
ASTS-orientations.

Algorithm 1: Sorting nodes and initializing GenerateOrientations
Input :A graph G(V, E) with sources V, C V and sinks V_ CV
Output: A list L of sorted nodes

V=V U{st};
E=FEU{{s,v}:veVi}U{{t,v}:veV_};
P .= list of nodes that constitute a path from s to ¢;
for i € P do

Add i to L;
L FollowNeighbour (G(V,E), P,i,L := @) ;

Reverse order of nodes in L;
GenerateOrientations (G(V, E), L, Dy, t, Ro);

Function FollowNeighbour ((G(V, E), P,i, L))
for j € N(i) do
if j ¢ Lj ¢ P then
L Add j to L;

FollowNeighbour (G(V, E), P,i, L);

The following algorithm, called from Algorithm [T} starts with an empty digraph
and adds one node i after the other from the node list L, each of which will
be connected via arcs with those of its neighbours that are already part of
the digraph. The collection of all possible combinations of arc orientations is
generated by Algorithm [3]and stored in a list of valid assignments A*. When
adding the arcs of a valid assignment, we make sure that no source can be
equipped with the orientations of a supersink and that no sink can be equipped
with the orientations of a supersource. We denote the oriented digraph that

22

includes all nodes up to (and including) node i by D;. A dictionary R; keeps
track of the nodes that can be reached from any node via forward and backward
arcs on D;. One a valid assignment has been added, the function recursively
calls itself to add another node from the list L and expand the existing partial
orientation D;.

Algorithm 2: GenerateOrientations
Input :A graph G(V, E), the sorted list L, the current partial
digraph D;_1, the current node i to be added, the current
reachability dictionary R;_1
Output : An orientation D containing D; 1

if ¢ = s then
Remove dummy sink t from Dg_q;
output finished orientation Dg_1;
else
A* := ListValidAssignments (G(V, E),L,D;_1, R;_1,1,9);
for any set of arcs A € A* do
Construct D;(V;, A;) with V; =V;_q1 Ui and A; = A;—1 U A%
if (i € V4 Vdegp, (i) # dega(i) V degp, (i) # indegp, (i) A (i &
VLV degp, (i) # dege(i) V degp, (i) # outdegp, (1)) then
for (u,v) € A do
L R; := ReachabilityUpdate (R;_1,u,v) ;

GenerateOrientations (G(V, E), L, D;(V;, A;,i + 1, R;);

Called from Algorithm [2], this Algorithm generates for a new node ¢ added
to the partial orientation D;_; all valid sets of orientations of all edges that
connect ¢ with those of its neighbours that are already nodes in D;_;. The
latter neighbours are denoted by the set N’. The incumbent valid set of oriented
edges that is being constructed during a particular iteration of the algorithm is
denoted by A. All such set are stored in the list A*. So make sure that we do not
create a supersource or a supersink we store those nodes than could become a
supersource or a supersink upon adding the node ¢ in the set V.. The algorithm
contains a function AddArc that recursively adds one oriented edge after the
other to be added to the current set A.

Finally we need an algorithm to update the reachability dictionary R;. This is
achieved by the following Algorithm [@] The dictionary has a forward component
Rifor and a backward component Ri**°* such that Ri/°"(u) denotes the set
of nodes to which there exists a dipath from u and Ri®°*(u) refers to the set of
nodes from which there exists a dipath to u.

5.2 Other approaches for constructing ASTS-orientations

In the following we will describe some alternative ways for arriving at ASTS-
orientations. While these may not be useful for enumerating all ASTS-orientations,
they may turn out to be helpful when ASTS- orientations are used in an opti-
mization context.

23

Algorithm 3: ListValid Assignments

Input :A graph G(V, E), the sorted list L, the current partial
digraph D;_1(V;_1, A;_1, the current reachability dictionary
R;_1, the current node 7 to be added, the current list A* of
valid orientations

Output: A list A* of all valid assignments of orientations to edges
incident to ¢

A:=0;
Vii=a;
V=g

if ¢ is a sink then
| A= AU{G1)
for j € N(i) do
if j € Vi A degp, (j) = outdegp, (j) = dega(j) — 1 then
A:=AU{(i,))};
ReachabilityUpdate (R;,i,7);
if j € Vi A degp, (j) = indeg, (j) = dega(j) — 1 then

A= AU{(1)}
ReachabilityUpdate (R;, j,);

if j can reach itself via forward or backward arcs then
Delete update of R; and added arcs in A,
return;

N':= (N@) N Vie) \ VI VA A{t);
AddArc (L,i,A,N',0,R;);
Function AddArc(L,i, A, N, k, R;)
if N' = @ then
A* = A*UA;
return ;
if A+# @ then
(u,v) := last arc added to A4 ;
ReachabilityUpdate (R;,u,v);

if ¢ is not forward-reachable from k then
| AddArc (L,i, AU (k,i), N'\ {k},k + 1, R;);

if ¢ is not backward-reachable from k then
L AddArc (L,i, AU (i,k), N'\ {k},k + 1, R;);

24

Algorithm 4: ReachabilityUpdate
Input :A reachability dictionary R;, and an arc (u,v) that extends
the reachability relation
Output : An updated reachability dictionary R;
RE™ (u) o= R (u) U {v};
RIh(0) = RI (o) U fu);
for n € R/™ (v) do
RI*™ (u) := RI”™ (u) U {n};
| RIh(n) = R (n) U {u);
for n € R**(u) do
RJ™(n) == R[”"™(n) U {v};
Rbek(v) := REe (u) U {n);
for m € R/ (v) do
RIP™ (n) := R (n) U {m};
RIk () := Rk (m) U {n}:

The first approach we are going to look at proceeds in a way opposite to the
the algorithm presented in the previous subsection, which attempts to construct
orientations where the nodes satisfy the STS-condition and then checks whether
these are acyclic. Obviously, an alternative approach would be to construct
acyclic orientations and then choose only those where all nodes satisfy the STS-
condition. For the first part we can exploit the fact that all permutations of the
nodes of the graph give rise to an acyclic orientation when we go through the
list of nodes in the order of the permutation and at each node orient all so far
unoriented edges such that they are emanating ftom the node.

Let G(V, E) be the graph for which we would like to generate all ASTS orienta-
tions. We proceed as follows:

1. Generate all trees of G' that have roots in V. Let v; denote the rootnode
of such a tree.

2. For each tree create all permutations of nodes (vy,va, ..., v|y|) that respect
the condition that all nodes v; are in the neighbourhood of some node v;
with j < i.

3. Go through the nodes on each tree in the order of each of its permutations
and for each node orient all non-oriented edges away from the node. If
during this process a node is reached all edges of which have already been
oriented, discard the permutation (STS-orientation impossible to satisfy).

Since all acyclic graphs can be constructed via permuations of nodes and orient-
ing edges in the order of the node permutation and since all STS-orientations
satisfy the above neighbourhood condition for some tree that has a root in V.,
this procedure even guarantees that we will find all ASTS orientations.
Clearly, the algorithm has two limitations: As some permutations lead to the
same acyclic graph, we may count some ASTS-orientations double. As we may
have to discard some permutations due to not satisfying the STS property, the
algorithm may not be very efficient.

25

We have seen above that also the algorithm in the previous section can happen
to reach "dead ends" where partially constructed orientation has to be discarded.
For enumerating acyclic orientations and for enumerating orientations that satisfy
the STS-condition it is easy to see that such a "dead end" can be prevented. It
must be considered an open question for further research whether it is possible
in principle to arrive at a more streamlined algorithm.

A possible candidate procedure for such an algorithm could be the concept of
reverse search for enumeration ([I]). In the case of acyclic orientations graphs, a
straight-forward reverse search procedure can be built on the insight that each
acyclic digraph has an arc the orientation of which can be reversed to yield
another acyclic digraph and that in this way all acyclic digraphs on the same
underlying graph can be sucessively converted into each other ([d]).

It can easily be seen that the same simple principle does not apply to ASTS-
oriented digraphs. However is an open question whether a similar same structural
insight may apply to ASTS-oriented graphs, or at least to a subclass of ASTS-
oriented graphs.

Another way of generating an ASTS-orientation can be based on the proof of
Theorem[I]of the present paper. In the proof we constructed an ASTS-orientation
by means of a decomposition of the underlying graph that is similar to an open
ear decomposition (cf. [2]), just that we used a forest instead of a path as the
starting point. For each oriented path that we added during the process of our
"forest-based" ear decomposition, we can freely choose the orientation, as long as
no cycle results and as long as we orient the entire path into the same direction.
Clearly, by choosing the path to add during this procedure and by choosing its
orientation, we can build a large variety of "customized" ASTS-orientations, i.e.
orientations that may be useful within an optimization framework.

Finally let us briefly note that further potential for constructing ASTS-orientations
may be found in the application of the theory of bipolar graphs, i.e. graphs with
exactly one supersource and one supersink, where all other nodes are tranship-
ment nodes. For these graphs there exists a method of counting orientations
based on successive minors of the underlying graph ([4]). It would be worth
studying the respect in which the theory of bipolar graphs may be extended to
complement the theory of ASTS-orientations developed in the present paper.

6 Conclusion

In this paper we have introduced the concept of ASTS-orientations to study
the interplay of two graph-theoretical structures: the STS-condition, according
to which an orientation must be compatible with the location of sources, sinks
and transhipment nodes on a graph, and acyclicity. This double structure is
interesting to study because it governs the interplay of the flow conservation
constraints and the acyclicity of flows on potential-based networks.

In particular, we have found a theorem with different characterizations of graphs
that allow for ASTS-orientations and an upper bound for the number of ASTS-
orientations of a given undirected graph, and have achieved an understanding
of the role of zero flows in the context of flow orientations in potential-based
networks.

The theoretical results from the previous item have been capitalized on to con-

26

struct an approach to sucessively simplify and decompose a given network for
which an ASTS-orientation is to be constructed. It exploits the block structure
that can typically be found in real-world infrastructure networks.

Based on these results, an algorithm has been developed that is capable of
enumerating all ASTS-orientations of a given network, which may be used to
inform a configuration model for optimization-based bound tightening ([7]).
There are several avenues for further research on the structure of ASTS-orientations.
In particular, we have mentioned the following three aspects:

For a given ASTS-orientation, changes in the orientation of an individual arc or a
subset of arcs may or nor may not lead to a new ASTS-orientation. We will study
the conditions (as related to the subset of arcs, the present ASTS-orientation, or
the structure of the graph) under which the ASTS-property will be preserved
and seek to exploit this insight to find a more efficient algorithm for enumerating
all ASTS-orientations, based on an existing approach for enumerating acyclic
orientations. In this context it may also be useful to study the relevance of the
tree-width of a graph for the complexity of the enumeration of ASTS-orientations.
Many network flow problems come with further restrictions on the flow direction
of arcs. It is therefore useful to study the conditions under which restrictions on
the orientation of arbitrary arcs can still guarantee the existence of an ASTS-
orientation on the entire network and how such an orientation can be constructed.
In the present paper we have identified four types of zero flows that can occur in
potential-based networks. Two of these can be identified prior to an optimiztion
procedure on the network. It would be useful to find ways to recognize zero
flows of the other two types within a pre-solving procedure.

ASTS-orientations are closely related to bipolar orientations of graphs. It would
be interesting to study this relationship in detail to see what results from the
theory of bipolar orientations translate into new results about the structure
of ASTS-orientations. In particular, further research into this direction may
lead to new algorithms for enumerating ASTS-orientations, which is not only
an interesting mathematical question per se, but is also likely to improve the
efficiency of solving flow optimization problems on potential-driven networks.

Acknowledgements This research is carried out in the framework of MATH-
EON supported by Einstein Foundation Berlin (project MI10). The authors
would also like to thank the DFG for their support within project A04 in
CRC TRR154 and the BMBF Research Campus Modal (fund number 05M14ZAM)
and ICT COST Action TD1207 for additional support.

References

[1] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65(1-3):21-46, 1996.

[2] Jgrgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and
applications. Springer Science & Business Media, 2008.

[3] Alessio Conte, Roberto Grossi, Andrea Marino, and Romeo Rizzi. Efficient
enumeration of graph orientations with sources. Discrete Applied Mathematics,
246:22-37, 2018.

27

Hubert De Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl.
Bipolar orientations revisited. Discrete Applied Mathematics, 56(2-3):157-179,
1995.

Reinhard Diestel. Graph theory (Graduate texts in mathematics), volume
173. Springer Heidelberg, 2005.

Komei Fukuda, Alain Prodon, and Tadashi Sakuma. Notes on acyclic
orientations and the shelling lemma. Theoretical computer science, 263(1-

2):9-16, 2001.

Benjamin Hiller and Kai Helge Becker. Improving relaxations for potential-
driven network flow problems via acyclic flow orientations. ZIB Report 18-30,
Zuse Institute Berlin, 2018.

Ralf Lenz and Kai Helge Becker. Optimization of capacity expansion in
potential-driven networks including multiple looping - a comparison of mod-
elling approaches. ZIB Report 18—44, Zuse Institute Berlin, 2018.

28

	Introduction
	Definition and fundamental properties of ASTS-orientations
	Simplication and decomposition of the underlying graph
	Decomposition of the underlying graph
	Elimination of nodes and edges
	Fixing flows through cut-nodes
	General procedure for enumerating ASTS-orientations

	Remarks on zero flows
	Algorithms for generating ASTS-orientations
	An algorithm for enumerating ASTS orientations
	Other approaches for constructing ASTS-orientations

	Conclusion

