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Abstract

The paper deals with the two-class priority M/M/1 system, where
the prioritized class-1 customers are served under FCFS preemptive re-
sume discipline and may become impatient during their waiting for ser-
vice with generally distributed maximal waiting times but finite expec-
tation. The class-2 customers have no impatience. The required mean
service times may depend on the class of the customer. As the dynamics
of class-1 customers are related to the well analyzed M/M/1 + GI sys-
tem, our aim is to derive characteristics for class-2 customers and for the
whole system. The solution of the balance equations for the partial prob-
ability generating functions of the detailed system state process is given
in terms of the weak solution of a family of boundary value problems for
ordinary differential equations. By means of this solution formulae for
the joint occupancy distribution and for the sojourn and waiting times
of class-2 customers are derived generalizing results recently obtained
by Choi et al. in case of deterministic maximal waiting times. For de-
terministic maximal waiting times partially new explicit formulae are
given.

Mathematics Subject Classification (MSC 2000): 60K25, 68M20,
90B22.

Keywords: two-class priority M/M/1 system; preemptive resume; im-
patient customers; occupancy distribution; waiting time; sojourn time.

1 Introduction and model description

In this paper we consider the two-class priority M/M/1 system, where the
customers of higher priority are served under preemptive resume but where



additionally they may become impatient during their waiting for service.
More precisely, at a single server with a waiting room of infinite capacity
there arrive two Poisson streams of customers (classes of customers) with
positive intensity A;, i« € {1,2}, which require exponential service times
with mean 1/u;, @ € {1,2}, respectively. The class-1 customers are served
with a preemptive priority discipline over the class-2 customers, i.e., an
arriving class-1 customer enters service immediately if a class-2 customer is
in service, the preempted service of the class-2 customer is resumed from
that time instant where no class-1 customers are present in the system, cf.
e.g. [GH]. For both classes we have a FCFS queuing discipline. The class-1
customers waiting in the queue for service may become impatient according
to the following mechanism: each class-1 customer arriving at the system
has a random maximal waiting time I. If the offered waiting time, i.e., the
time which a class-1 customer would have to wait for accessing the server if
it were sufficiently patient, exceeds I, then the customer departs from the
system after having waited time I. The maximal waiting times are assumed
to be i.i.d. with a general distribution C(u) := P(I < u), u € R, , where its
expectation is finite.

In view of the preemptive discipline, the dynamics of class-1 customers
are not affected by class-2 customers and hence correspond to the dynamics
of a M/M/1 system with impatient customers, denoted by M/M/1 + GI,
which is well investigated by several authors, partly as special cases of more
general models and/or particular C(u), cf. [BBH|, [BH], [BKL], [Bal], [Ba2],
[BB1], [BB3], [Brl], [Br2], [Dall, [GK5], [GKo], [HS], [Jul], [KBL], [Mov],
[Pal] and the references therein. In contrast, the dynamics of class-2 cus-
tomers are extremely influenced by class-1 customers. They can be served
only if no class-1 customers are in the system. The model is of interest in the
framework of telecommunication models if one thinks of class-1 customers
as time critical jobs which get lost or are routed to another system if they
have to wait too long for service and of class-2 customers as less time critical
jobs and if both classes of jobs are served by the same processor. Besides
the references given above for special cases, there are many papers dealing
with priority models and impatience mechanisms, cf. [GH], [Mil], [Jai] and
the references given in [GK6]. However, the most relevant paper to ours
seems to be [CKC], where — besides other results — in case of deterministic
maximal waiting times the stability condition, the probability generating
function (PGF) of the occupancy distribution and the LST of the sojourn
time of class-2 customers are given. The aim of our paper is to derive formu-
lae for performance characteristics in case of generally distributed maximal
waiting times with finite expectation. It turns out that some of them are



also new in the special case of deterministic maximal waiting times.

In the literature, there are several other mechanisms where customers
leave the system due to impatience: If a customer can calculate its prospec-
tive waiting time at its arrival instant then it leaves immediately if this time
exceeds its maximal waiting time. This strategy yields a better utilization
of the waiting places because they will not be occupied by customers which
later abandon due to impatience. Also, impatience may act on the sojourn
times. In this case not all work is useful because a customer may leave the
system due to impatience during its service. For references and other more
general models with impatience mechanisms we refer to [CKC], [BBH], [BH],
[Ju2], [Sin], [Teg], [BB2] and the references therein.

The paper is organized as follows. In Section 2 firstly a system of balance
equations is derived for the density of the stationary vector process of the
numbers of class-1 and class-2 customers and of the residual and original
maximal waiting times of the class-1 customers waiting for service in the
system. The state description is analogously to that in [BB1] where the
M(n)/M(n)/s + GI system is analyzed. However, in the present paper we
use another mathematical technique. The idea is to derive from the balance
equations a system of equations for the partial PGF’s of the vector process,
which can be considered as a generalization of the approach given in [CKC]|
in the special case of GI = D. Then an explicit solution for these equations
in terms of the weak solution of a family of boundary value problems for
ordinary differential equations is derived. Unfortunately, for the latter only
existence and uniqueness of the solution is shown, an explicit expression
does not exist in the general case. By means of the partial PGF’s, in Sec-
tion 3 a formula for the joint occupancy distribution is derived. In Section 4
expressions for the LST’s of the sojourn and waiting time distribution of
class-2 customers are given, where for the latter the LST of the busy period
distribution for the associated M /M /1 + GI system is needed, which seems
to be known only for GI = D. As an application, in Section 5 we specialize
our general formulae to GI = D providing partially new results for this
special case.

2 A system of balance equations and its solution

If n class-1 customers are in the system then £ := (n — 1) of them are
waiting for service in the queue. The notation £ := (n — 1), will be used
also in the following. We number the waiting class-1 customers according
to their positions in the queue. By the FCFS preemptive resume discipline



the first class-1 customer waiting in the queue will be potentially the next
for service. In this section we assume that the system is stable (the stability
condition will be given later), that F I is finite and, if not stated otherwise,
that C(u) has a continuous density c¢(u). Let

0i 1= N/ i — offered load of class-i customers, 7 € {1,2},

N;(t) — number of class-i customers in the system at
time ¢, i € {1,2},

L(t) := (N1(t) — 1)1+ — number of waiting class-1 customers at time ¢,

(X1(t),..., Xp)(t)) — vector of the residual maximal waiting times

of waiting class-1 customers ordered according
to their positions in the queue at time ¢,

(L1 (t), ..., I () — vector of the original maximal waiting times of
waiting class-1 customers ordered according to
their positions in the queue at time ¢.

For the stationary distribution of the vector process
(N1(t), No(8); X1 (1), - - -, Xppy(); 1n(8), - - - Iy (1), tER,

we want to solve the corresponding balance equations. Let

P(n’m;wla sy Ly UL, - - - a’u'f) = P(Nl(t) = naNQ(t) =m;

Xl(t) < Tiy--- aXZ(t) < $27Il(t) < Uty - - - aIE(t) < uE)
— stationary distribution of the state process on
{(N1(2), No(2)) = (n,m)},
p(n,m) := P(Ny(t) = n, Na(t) = m)

— stationary distribution of the vector of the
numbers of customers in the system.

Then

o0
P(n;zi,..., U1, ..,up) == ZP(n,m;xl,...,xg;ul,...,w)

m=0
= P(N(t) = n; Xy (t) <1, .., Xo(t) Sz L (2) Swn,y - To(E) Swe)
is the stationary distribution of (X1(2),..., Xr)(t); I1(2),---, L) (t)) on
{Ni(t) =n} and

p(n) =Y p(n,m) = P(Ni(t) = n)

m=0



is the stationary distribution of the number of class-1 customers in the sys-
tem. Obviously, for fixed n € N\ {1}, where N := Z \ {0}, and m € Z,
the support of P(n, m;x1,...,Zeu1,...,ur) is contained in

Qp:={(z1,...,zp5u1,...,up) E]R?f tup—x1> ... >ug—x >0}, (2.1)

In view of the assumptions on C(u), the densities

p(’n’am;a;la-"ame;ula"-aue)
aZK
= Plnm;z1,...,ZpU1,...,U 2.2
0z ... 0xp0uy - ... - Ouy (nyms 21,z o) (22)
and
o0
p(n;xl,.--,ﬁﬂe;Uh.--,Ug) ::Zp(n,m;xl,---,-T[;Ul,---,uf)
m=0

are continuous on .

Since the dynamics of the class-1 customers correspond to those of a
M/M/1 + GI system with parameters A1, p1, C(u), cf. Section 1, for the
marginal system of class-1 customers we obtain immediately explicit results
by specializing results for the general M(n)/M(n)/s + GI system given in
[BB1] to the case s := 1. (For results concerning M (n)/M/s+GI see [Mov].)
From [BB1] equations (2.17), (3.2), (3.3) by choosing s := 1, A\, = Ay,
n € Ly, pp = p1,n €N, for n € N\ {1} we find

p(ny 1, ..., UL, ..., Up)

V4
— (o1, T UL,y ug) € m}g(H Mc(ui)) emmlm=m) (33)

=1
where
g_1 = 91—1 + /e)‘lF(g)_édf, (2.4)
Ry
&/
F() = / (1-C(n)dy, €€R,. (2.5)
0

Further, from [BB1] Theorem 3.1 it follows that for a general distribution
C(u) with E' T < oo the marginal system of class-1 customers is always stable
and that the occupancy distribution of class-1 customers is given by

PO =go's o) = L5 [uF@)r et neN. @0
Ry
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The stability condition concerning the class-2 customers can be obtained as
follows: Observe that 1 — p(0) is the time fraction where class-1 customers
are served. Further, the process of class-2 customers in the system is stable
iff all class-2 customers are served in which case g, is the time fraction where
class-2 customers are served by the server, and since 1 — p(0,0) is the time
fraction where the server is busy with serving class-1 or class-2 customers,
in case of a stable system it follows

1-p(0)+02 = 1-p(0,0),
or equivalently, cf. (2.6), (2.4),

~1
p(0,0) = p(0)— g2 = (1+91 / ehF@fds) 0. 27)

R
Hence the process of class-2 customers is stable iff the r.h.s. of (2.7) is
positive, i.e., iff

-1
09 < (1+91/6)‘1F(§)_5d§) . (2.8)

Ry
Thus we obtain the following stability condition for the whole system.

Theorem 2.1 For a general distribution C(u) of the mazimal waiting times
I with EI < oo the system is stable iff the stability condition (2.8) is fulfilled.

Remark 2.1 Denoting by pr the probability that an arriving class-1 cus-
tomer will leave the system due to impatience later, by the conservation
principle it follows that (1 —pr)o1 = 1—p(0), cf. also [BB1] formulae (3.6),
(3.8) with s := 1, A := Xy, Ay := A1, n € Zy, piy := p1, n € N, and thus
(2.8) is equivalent to

(1-pro1+e2 <1, (2.9)

which is nothing else that the total served load has to be smaller than 1.
It is clear that this approach combined with the results of [BB1] provides
the stability condition for the many-server system, too, i.e., the stability
condition for the two-class s-server system reads (1 — pr)oi1 + 02 < s.

In the following we assume that the stability condition (2.8) is fulfilled.
Now, let us deal with the stationary distribution of the two-class model. In
case of n € {0,1}, m € Z we have the balance equations

(A +A2+T{m >0}pu2)p(0,m) = Agp(0, m—1)
+ p1p(1, m)+pap(0,m+1), (2.10)



(A1+A2+p1)p(1,m) = A1p(0,m)+A2p(1,m—1)

+/p(2,m; 0; u)du +u1/p(2,m;:v;u)d:vdu, (2.11)

2
R+ R+

where p(n,m) := 0 and p(2,m;z;u) := 0 for all infeasible states. In case of
n € N\ {1}, m € Z; and (z1,...,z¢u1,...,u7) € Qp, which in view of (2.1)
especially implies 0 < z; < uy, we have the balance conditions

p(’n’am;xl""7$Z;ula"'auﬁ)

=pn,m;x1+h,...,ceth;ur, ..., up)(1—=h(A1+Ao+ 1))

+1
+hz /p(n+1am;xla"'axi—l’oaxi"" » L3

Ulyeney Uiy Uy Uy - - -, Ug)dU

-l—hul/p(n-l-l,m;x,a:l,...,:Bg;u,ul,...,uz)da:du
3
+ hXop(n,m—1;21,...,2g5U1,-..,ug) + o(h),
h>0, xp<uy,

or equivalently

p(n,m;z1+h, ..., ze+h;ur, ..., up) —p(n,m;z,...,T5ul,. .., up)
h
= (/\1—|—/\2—|—u1)/p(n,m;a:1—|—£, ce U, ,Ug)df
0
1 h
- Z //p(n-l_]-amal'l-l'&aale-l_éa()aml'i_é.a s Te+E;
i=1 g,
Ulyneny Uiy Uy Uy - -, Ug)dudE
h
_/1‘1/ /p(n—l—l,m,w,:vl-l—f, c TptHE Uy U, - ,U@)ddedE
0 Ri

— A2 p(nam_1;$1+£7 con & U, ,’UIZ)d&,

Cc ~—=

0<h<u—z¢, (2.12)



and
p(n,m;T1, ..., Tp 1,Up; UL, ..,Up)
=pn—1,m;x1, ..., Te_1;U1,-..,Up—1)c(ug), (2.13)
where all corresponding quantities for infeasible states are assigned zero.

For solving (2.10)—(2.13) it is convenient to introduce the partial PGF’s

Qn(z) == p(n,m)z™, =ze€[-1,1], ne{0,1},

o0
Qn(z; 21, U, ..., up) == Zp(n,m;a:l,...,xg;ul,...,w)zm,

m=0

z€[-1,1], mneN\({1}.

In view of (2.3) and (2.6), it follows that Q,(1) = p(n), n € {0,1}, and
Qn(l;z1,...,z5u1,...,ur) = p(n;z1,...,Z5uL,...,u7), n € N\ {1}, are
known. Now, multiplying each of the equations (2.10)—(2.13) by 2™ and
summing over m € Z, after some algebra for n € {0,1} we obtain

(/\1+A2(1—Z)+/1,2 %)Qo(z)—m %p(0,0) = HlQl(z) s (2.14)
(A1 +A2(1—2)+p1)Q1(2) = MQo(2)

+/Q2(2; 0; u)du +u1/Q2(z;a:;u)da:du, (2.15)
R4 R%

and for n € N'\ {1} it follows

Qn(z;zi+h, ..., cethjur, ... up) — Qu(Z321, -, To3 UL, - - -, Ug)

h
= (/\1—|—)\2(1—z)—|—ul)/Qn(z; :El—i-f,...,xg—l—f;ul,...,Ug)df
0
+1 b
- Z //Qn+1(2;371+§,---,mz‘—1+§,0,$i+§,---,we+§;
i=1 ) R,
ULy eey U1y Uy Uiy - - - 5 Ug)dudé
h
—pl//Q,H_l(z;x,wl-l-f,...,a:g+§;u,u1,...,ug)dxdudf,
0 R‘i

0<h<ug—z¢, (2.16)



Qn(z;wla <oy Lg—1, U3 UL, - - - aue)
= MQn-1(2Z1,- -+, Te-13U1, - - -, ug—1)c(up) - (2.17)
For z € [-1,1] and n € N\ {1} we try the substitution

Qn(z;z1, .. xpsut, .. ug) = I{(z1, ..., Tg5u1, ..., up) € g}

£
Z) A C(’U,z) f(z,u - )a (218)
(Z[Il 1 ) 1—T1

cf. (2.3) and (2.6) for n =1 in case of z = 1, where f(z,-) let be a continu-
ously differentiable function on R, satisfying the boundary conditions
: 0f(z,¢)
=1, 1 =1
f(z,0)=1, Jim f(2,€) Jim =
for fixed z € [—1,1]. Obviously, the r.h.s. of (2.18) satisfies (2.17). Inserting

(2.18) into (2.16), by unifying the intervals of integration and some algebra
we obtain that (2.16) is fulfilled iff for 0 < h < up — zp < uy — 1 =: ¢

=0 (2.19)

0= f(zsb—h) — (2€) — (M +Aa(1—2)+ 1) / F(z€—m)dn

h €
+>\1/O/fz§ n)e(u— n)dudn+>\1//fzu n)c(u—n)dudn
h oo, u—t
+u1>\10/§/(b/ Z,u—n— x)dx)c(u n)dudn,
to

which is equivalent

o= % g?“ — o=2)+m)f(6)
o (f(z,u)—f(z,£)+u1 f(z,n)dn) c(u)du, €cER, . (2.20)
3 3

Integration by parts provides the equivalent integro-differential equation

0= _ 3f(z & (all-2) ) f(2.6)

oY / (He™ st ) a-Coinan, €ery. (221



Lemma 2.1 For a general distribution C(u) of the mazimal waiting times
I with EI < oo and fized z € (—o0,1] there exists a uniquely determined
solution f(z,-) of (2.21), (2.19) in C(R,). Moreover, there exists an open
disk I with center at z = 1 in the complexr plane C such that for fixed
z € D there exists a uniquely determined solution f(z,-) of (2.21), (2.19) in
COR,,C), and f(-,&), (0/0€)f(-,€) are holomorphic functions in D for
fized £ € Ry. It holds

0f(z,€)
If C(u) is continuous within an interval (o, 5) C Ry, then f(z,-) is twice

continuously differentiable in (a,8) and satisfies the ordinary differential
equation

0%f (2, €)
&2

€ (—oo,—m1], z€ (—o00,1]. (2.22)

9f(2,¢)
23

+ M (1-C(€)f(2,8)=0, f€(a,p), (2.23)
for fized z € (—o0,1] UD.

+ (A (1-C(&)) +A2(1—2)+p1)

Proof. For fixed z € C, the substitution

£
fe8) = emes [ 090G an, e, 224
0
provides that (2.21), (2.19) is equivalent to

(2 €) = —Mo(l—z)e i€ / M (1=Cm)p(z m)dy
£

3
- / Ao(1=2)e T Op(z,m)dn, €€ R, (2.25)
0

where ¢(z,+) is a continuous function on Ry with
lim ¢(z,£) =0. (2.26)
£—00

Note that ¢(1,£) := 0 is a solution of (2.25), (2.26) in case of z = 1.

10



For fixed z € C let ¢i1(z,-), p2(z,-) be the solutions of the integral
equations

£
p1(2,8) =1— />\1 (1=C)+Xe(1=2)e )y (z,m)dn,  (2.27)
0

3
ooz, ) = (1—eHi€) / (A1 (1= C()) + Ao (1—2)e P9y (z, )y
0

(2.28)

for ¢ € Ry, respectively, where the existence and uniqueness follows from
Banach’s fixed point theorem using the norm

lloll1 == sup |e (&)
§ERy

for sufficiently large k € Ry in the subset of C (R, C) defined by ||¢||1 < oo.
Considering the sequence of intervals [0, n], n € N, instead of Ry, one finds
that uniqueness even holds in the whole class C(R;,C). Choosing the norm
llell2 := sup [e*™MEE)p(g)],
§ERy

where k, &, € Ry are sufficiently large, then Banach’s fixed point theorem
provides that the solutions of (2.27) and (2.28) are uniformly bounded in
A x Ry for any compact subset A of Dy := {2 € C : |z — 1| < p1/A2}. The
©;(+,&) are holomorphic functions in C for fixed £ € Ry, j € {1,2}, as the
sequences of iterations given by Banach’s fixed point theorem if one starts
from the zero function are sequences of polynomials w.r.t. z which converge
locally uniformly in C for fixed € € R, .

Obviously, ¢1(z,€) is positive for sufficiently small £ € Ry and fixed
z € (—00,1). If for some z € (—o0, 1) there exists a zero and thus a smallest
zero & € Ry of ¢1(z,&) then it follows

o
I

providing a contradiction. By arguments of continuity thus ¢1(z,&) is non-
negative for (z,£) € (—o0,1] x Ry. In view of (2.27), for z € (—o0, 1] hence
there exists the limit of

() =1 / M(1=C )i (z,m)dn
0

11



for &€ — 00. As p9(z,£) is positive for sufficiently small ¢ € (0,00) and
fixed z € (—o0,1), analogously it follows that s(z,£) is non-negative for
(2,8) € (—o00,1] x Ry, and in view of (2.28), for z € (—o0, 1] hence there
exists the limit of

£
(2, €) = (1—e M) - / M (1=C )z m)dy
0

for & — oco. As the ¢j(z,-) are bounded functions, locally uniformly for
z € Dy, j € {1,2}, for z € Dy there also exist the limits of ;(z,&) for
& — o0, j € {1,2}, and these limits are holomorphic functions of z € Dy.
Because of

£
(2, €) = Py(2,€) — / Do(1-2)e 1=, (2 )dn, j € {1,2},
0

which implies

£
0i(2,8) = ¥;(2,€) —/Az(l—Z)e(’““2(1_"))(”‘5)¢j(z,n)dn,
0
thus there exist the limits
aj(z) = glingogoj'(z,ﬁ), z € (—o0,1]UDy, je€{1,2}.

The «;(z) are holomorphic functions for z € Dy, and it holds «;(z) € [0,1]
for z € (—o0,1]. Assume that ai(z) = 0 for some z € (—o0,1]. Then from
(2.27) it follows

/ M (1—C)gr (2 mdn =1,
0

and thus from (2.27) we obtain

max ¢1(z,0) = ¢1(z, &)

0e(¢,00)
o vf*
=/Al(l—C(n))m(z,n)dn—/Az(l—z)e“l("5*)901(z,n)d77
I 0
E*
< max (2 6) / M (1=C(n)dn
0el€,00)

12



for 0 < ¢ < & < oo and suitable &, € [€,£%) if ¢i(z,n) = 0 for n > &,
providing a contradiction by choosing £* minimal and £ € [0,&*) close to &*,
ie., a1(z) # 0 for z € (—o0, 1]. Thus there exists an open disk D C Dy with
center at z = 1 in the complex plane C such that ai(z) # 0 for z € D. For
z € (—oo,1]UD let

()

#2:6) = 2(1=2)(pa(e,0) — o @(0) . EER (229)

Due to the definition of «j(z), j € {1,2}, it holds (2.26). From (2.27), (2.28)
it follows

P(2,6) = —do(l-z)e ¢ + /\2(1—2)(1 - a2—(Z))

a1 (2)

£
- / Ca(1—C)+Aa(1—2) e Oz )dy, € €R,. (230)

0
Thus (2.26) yields

o0
ay(z)

[ M=cetaman = x0-2(1- 23).
and hence it holds (2.25). As ¢(z,&) is a holomorphic function in D for fixed
¢ € Ry, from (2.24) it follows that f(-,£) and (9/0€)f(-,&) are holomorphic
functions in D for fixed £ € R;..

Assume that there exist two different solutions of (2.25), (2.26) for some

z € (—00,1] UD. Then its difference ¢.(z,-) is a nontrivial solution of the
homogenized equation

00 3
pu(2,6) = / M (1=C () pa (2 m)dn — / Do(1-2)em 1, (2 n)dn,
3 0
EER,, (231)
Eli)m v(2,€) =0. (2.32)
From (2.31) it follows

pu(2,6) = / M (1=C())gn (2 m)dn

0

€
/,\1 (1-C(n))+ro(1—2)e" =)o, (z,7)dn,
0

13



yielding
o

w&&%wﬂ%@/hﬂ—ﬂmwdmmw,feRﬁ

0

as the solution ¢1(z,&) of (2.27) is uniquely determined. Hence (2.32) and
limg o0 91(2,€) = a1(2) # 0 provide the contradiction ¢4 (2,£) =0, { € R,
For fixed z € (—o0, 1] from (2.24) and (2.30) we obtain

0f(2,¢)

7‘ az(z)
23 £=0 a1(2) H

Thus (2.22) results from «;(z) > 0 and az(z) > 0 for z € (—o0, 1].

If C(u) is continuous within the interval (o, 8) C Ry, then from (2.21) it
follows that f(z,-) is twice continuously differentiable in («, 3) and satisfies
the differential equation (2.23) there for fixed z € (—o0,1] UD.

= ¢(2,0) = p1 = —X(1-2)

O

In the following we assume that f(z,-) is the solution of (2.21), (2.19).
For z = 1 from ¢(1,£) = 0 and (2.24) it follows f(1,£) = e7#&. In the
general case of z € (—o00,1] UD only for particular C(u), cf. Section 5,
explicit solutions of (2.21), (2.19) can be given. However, the following
lemma gives more insight into the structure of f and provides the partial
derivatives with respect to z at z = 1, in principle.

Lemma 2.2 It holds

f@8) =) f©)(E-1Y, (56 €eDxRy, (2:33)
7=0

Bféz,ﬁ) :ifj’-(f)(z—l)j, (2,6) e D x Ry, (2.34)
7=0

where fo(&) = e &, ¢ € Ry, and for j € N the functions fj are recursively
given by

'3 00
fi(&) = _,\Z/em(ﬂ—é) 6A1(F(u19)—F(u177))fj{_l(g)dgdn, EER, .
0

n
(2.35)
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In particular, it holds

o

f1(0) = /\Q/eAlF(f)—fdg, (2.36)
0
)\2 oo o0 o0
u_? / / eAIF(n)—ndn< / ME )=y o~ (MF(E)=E) _1>d5_
0 ¢ 3

(2.37)

Proof. For fixed £ € Ry the r.h.s. of (2.33) are the Taylor series of f(z,¢)
at z = 1, where the coefficients are denoted by f;(§). As (9/0€)f(z,§) is
holomorphic in D for fixed ¢ € Ry, (2.34) follows from (2.33). f(1,¢) = e 1€
yields fo(€) = e~#1¢. Inserting (2.33), (2.34) into (2.21) and comparing the
coefficients of (2 — 1)7, we find that the f;(¢) satisfy the linear system of
integro-differential equations

o0

PO~ (€)M / (1) 401 £5(m) (1= C(m)dn = —Aofj—1(€)
‘ (eRy, jEN, (2.38)

and (2.19) yields the boundary conditions
f(0) =0, lim f;(¢) = lim f(€) =0, jEN. (2.39)
£E—o0 E—o0

As the solution of (2.21), (2.19) is uniquely determined in case of z = 1, the
fj(&) are uniquely determined by (2.38), (2.39) and f;_1(£). By induction
using integration by parts it follows that the r.h.s. of (2.35) is well defined
and satisfies the boundary conditions (2.39). In view of (2.5) and (2.39),
inserting (2.35) into the Lh.s. of (2.38) and integrating by parts provides
that the r.h.s. of (2.35) satisfies (2.38), too. From (2.35) for j = 1 and
fo(€) = e™#¢& it follows

o0

¢
fl(& _>\2,U16 le//e MF(pu10)—p10)—(M F(pin)— pln)dgdn (2'40)
0 n

yielding (2.36). Equation (2.37) can be obtained along the following steps:
(1) taking the first derivative of (2.35) for j = 2 at £ = 0, (ii) integrating by
parts and using (2.39), (iii) inserting f1(#) according to (2.40) and applying

15



Fubini’s theorem.

O

By means of the preceding results of this section we are in a position to
determine Q,(z), n € {0,1}, and hence the r.h.s. of (2.18), providing the
solution of the system of equations (2.14)—(2.17).

Theorem 2.2 For the partial PGF’s Qn(z), n € {0,1}, it holds

_ p2(1—2) vl
Qo) = A T e (1-G)) —dariog) P00 ZELELL),
(2.41)
Q1(2) = 01G(2)Qo(2), =ze€[-1,1], (2.42)
where Qo(1) = p(0) is given by (2.6), p(0,0) is given by (2.7) and
(=] T el
G(z) := ,ul( o L_o> € (0,1], €[-1,1]. (2.43)

The partial PGF’s Qu(2;21,...,Zgu1,...,u), 2 € [-1,1], n € N\ {1},
are given by (2.18), where Q1(z) is given by (2.42) and f(z,-) is the unique
solution of (2.21), (2.19) in CO(R,).

Proof. Because of (2.22), G(z) is well defined with G(z) € (0,1], z € [-1,1].
It remains to prove (2.41) and (2.42). With the substitution (2.18) and in
view of (2.19), equation (2.15) is equivalent to

(A2(1=2)+p1)Q1(z) = MQo(2)

e [ (f(z,U)—f(z,O)er / f(z,g)dg)cw)du.
0

Ry

Thus (2.20) for £ = 0 yields

(A2(1=2)+p1)Q1(2) = M Qo(2)

@) (TR s - mse0)|

and we obtain (2.42) in view of (2.19), (2.43). Equation (2.41) follows from
(2.14) and (2.42) immediately.

O
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Remark 2.2 Note that Lemma 2.2 gives the analytic continuation of G(z)
and hence also of Qn(2), n € {0,1}, in a neighborhood of z = 1. Thus the
identity (2.7) could be obtained, alternatively to the load arguments before
Theorem 2.1, also from (2.41) by letting z — 1 and using (2.43), (2.34),
(2.36), (2.6), (2.4) as well as Qo(1) = p(0).

3 The PGF of the joint occupancy distribution

In this section again we assume that the system is stable, that the expec-
tation of the maximal waiting times is finite and, if not stated otherwise,
that its distribution C'(u) has a continuous density c¢(u). First we deal with
the PGF of Ny(t) on {Ni(t) = n}. Let Qu(2) := E [zV>) I{N,(¢) = n}],
z € [-1,1], n € N\ {1}. From (2.18) it follows

Qn(z) = /Qn(z;ml,...,mg;ul,...,ue)dml...da:gdul...du@
2
¢
= Ql(z))\{/ (Hc(ui)>f(z,u1—x1)d$1 ...dzgduy ... duy
g, Ni=l
for n € N\ {1}, where £ :=n — 1. In view of the definition (2.1) of £y, the

substitution u; = &; + x; yields

¢
Qn(2) = Qu(2) X] /]I{&Z ZEe}(HC(§i+SEi)>f(Z,€1)
i—1

s

dri...dzgdé;...d&
1 ¢ -1
=X [ =g ( / (1—C(n))dn> (1-C(€)1 (=, £)d
Ry 0
o X T T coma) 20
- - [{ [u-cman) e,
Ry O

where the last equality follows from integration by parts and (2.19). Hence
from (2.42), (2.5) and (2.19) finally we obtain

nl2) = Q) 25 [OWFEO) h 9 de, neN, (3

(n—l).lR
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where

Bf(z, §/M1)
¢ )

Note that h(z,0) = 1. Now, the case of a general distribution C'(u) of the

maximal waiting times with finite expectation is obtained by considering

C(u) as the limit in distribution of a suitable sequence of distributions C,, (u)

with continuous density and by arguments of continuity.
For the PGF

Q(w,2z) = E[w™M® 0] (w,2) € [-1,1]2,

h(z,€) = —G(z) (3.2)

of the vector of the numbers of customers in the system from the definition
of @, (z) and (3.1) after elementary algebra it follows

Q(w,2) = Qo(2) + Y Qu(2)w"
n=1

= Qo(2) (1 + 0w / Mr® h(z@)d&) : (3.3)
Ry
Choosing w = 1, for the PGF R(z) := E [z™?(")] we obtain
R(2) = Qo(2) (1 + o1 / eMF®) h(z,f)df) : (3.4)
R

In view of (3.2), (2.5), integration by parts and (2.19) provide

[ O hz )€ = G+ MG ) [ M- ).
R, Ry
Replacing on the r.h.s. Ao(1 — 2) f(2,7n) by the term obtained from (2.21), it
follows that the integrand is just the derivative of a product function, and

hence the integral can be evaluated. Applying now (2.21) for & = 0 as well
as (2.19), (2.43) yields

/eAlF(g) h(z,€)dé = p1(1-G(2)) )

: A2(1—2)
Thus from (3.4), (2.41) we find
R(z) = M(1=G(2) + A2(1—%) p2p(0,0)
pa(1—2) — M2(1-G(2)) — Maz(1—2) Ao’
z€[-1,1). (3.5)
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Since the factorial moments My := E [N(t)(N2(t) — 1) ... (No(t) —k+1)],
k € Z, of Ny(t) are given by
k

M, ), = lim — R(z), (3.6)
z—1

from (3.5) one can derive explicit formulae for the M, j, in principle. In order
to compute the r.h.s. of (3.6) one has to determine f;(0) for j =1,...,k+1.
In case of k = 1, the mean number E Ny(t) = My of class-2 customers is
given by the limit of the logarithmic derivative of R(z) for z — 1. Thus
from (3.5), (2.43), (2.34) and fo(&) = e 1€ after some algebra one obtains

Mgz (F20) 4 £3(0)) + (i de 4 0 £4(0))

(Nluz— (H1>\2+>\1f{(0))) (Ml)\2+>\1f{ (0))
where the f;(0), j = 1,2, are given by (2.36) and (2.37), respectively.

E Ny(t) =

(3.7)

Remark 3.1 In [CKC] Section 3.1 a performance analysis is given in case
of deterministic mazximal waiting times. In our terminology the starting
point there is the Markov process Z(t) defined by

Z(t) := { (NV1(2),0, N2(2)) Ny (t) € {0,1},
Tl @L®)-X(1), Na(t), Ni(t) €N\ {1}.

Then via Kolmogorov’s balance equations for Qn(z), n € {0,1}, and the
partial PGF’s

K(z,2)=) %P(Nl(t) > 2,11 (t)-X1(t) < z,No(t) = k)2*  (3.8)
k=0

a system of equations is derived and solved explicitly, providing the basis for
determining further performance measures, cf. [CKC] (3.12), (3.13). Note
that the approach in [CKC| indeed is limited to the case of deterministic
mazimal waiting times.

Using (2.18) for general distributions C'(u) with continuous density ¢(u) and
EI < 00, by a similar calculation yielding (3.1) we find

o
K(z,z) = Z /Qn(z;xl,...,xg;:v1+m,uQ,...,ug)
n=2 por-1
+ dzides...dzxpdus ... duy
= Q1(2)f (z,2)(1-C(z)) } M T E17)| (3.9)

generalizing the corresponding results of [CKC] to generally distributed max-
imal waiting times with finite expectation.
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4 Sojourn and waiting times of class-2 customers

Since the dynamics of class-1 customers correspond to the dynamics of a
M/M/1 + GI system, cf. Section 1, the well-known results for sojourn and
waiting times for this type of queuing systems can be applied, cf. e.g. [BB1],
[BH], [Dal], [Jul], [Mov]. Thus we concentrate on the sojourn and waiting
times of class-2 customers. Let

Vo - stationary sojourn time of a class-2 customer in the system, i.e.,
the time from its arrival until its service completion,

N3 — stationary number of class-2 customers in the system seen by an
arriving class-2 customer,

N§ — stationary number of class-2 customers in the system immedi-
ately after a departure of a class-2 customer.

From the PASTA property and the conservation principle it follows
Ny(t) 2 Ng 2 N¢. (4.1)

Analogously to the standard arguments for deriving the LST for the so-
journ time in M/GI/1/o0c queues, cf. e.g. [GH], we observe that in view
of the FCFS discipline immediately after the departure instant of a class-2
customer there are just those class-2 customers in the system which arrived
during the sojourn time of the departing customer. This and the properties

of a Poisson process imply

Aot)"

P(N§ =n) = / @ et AV (t), (4.2)

n!

Ry

where V5(t) := P(Vo < t) denotes the distribution function of V5. From
(4.1), (4.2) for R(z) we obtain

R =Y [P cann = v ui-2),

n=0 Ry n
where V5 (s) = E[e *"2] is the LST of V,(¢) and R(z) is explicitly given by
(3.5) for z € [—1,1), in principle. Transformation of variables yields
Vi(s) = R(1—5/%), (43)

cf. also [CKC] Section 3. Taking the kth derivative on both sides of (4.3)
and letting s | 0, by taking into account (3.6) we find that

EVf|=X* My, kezZ,. (4.4)
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In particular, for £ = 1 Little’s formula is obtained.

Now, we will deal with the stationary waiting time W5 of a class-2 cus-
tomer in the queue until its service starts for the first time. Note that its
distribution Ws(t) := P(Wy < t) has an atom at ¢ = 0. In the standard
M/GI/1/oo analysis the stationary waiting time distribution is obtained
via the observation that the sojourn time is the sum of the waiting and
service time. In view of the preemptive service discipline this argument fails
for the class-2 customers because the service of a class-2 customer may be
interrupted by serving class-1 customers. However, we can modify the argu-
ments by taking into account the service interruption by class-1 customers
as follows: Obviously, the sojourn time V5 of an arriving class-2 customer is
given by

Vo=Wr+ U, (4.5)

where U is the time from the beginning of service until finishing service of
the class-2 customer. The r.v.’s W5 and U are stochastically independent.
Let us consider U and its distribution U(t) := P(U < t) in more detail.
At the beginning of service for the class-2 customer, there are no class-1
customers in the system. The service can be continued as long as no class-1
customers arrive. If a class-1 customer arrives before service completion then
the service will be interrupted as long as there are still class-1 customers in
the system. The duration B of this interruption corresponds to the busy
period in the corresponding M /M /1 + GIT system of class-1 customers with
parameters Aj, p1, C(u). After time B the service of the class-2 customer
will be continued, and, since the residual service time is again exponentially
distributed with parameter po, we are stochastically in the same situation
as at the beginning of service. Let B(t) := P(B < t) be the busy period
distribution. The above considerations lead to the following renewal type

equation
U(t) = M (E)\1+M2 * B x U) (t) + r2 E)\1+N2 (t) ’
A1+po A1+p2

where FE,(t) denotes the exponential distribution with parameter o and x*
the convolution operator. For the LST’s U*(s) = E [e™*V], B*(s) = E [e~*F]
thus we find

* _ K2
U(s) = A (1—=B*(s))+po+s (46)

From (4.5) and (4.6) finally for the LST W3 (s) = E [e=*"2] we obtain

Wi (s) = i(/\1(1—3*(3))+/12+3)V2*(8), (4.7)
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where V' (s) is given by (4.3), (3.5) for s € (0,2)\2], in principle, and the
LST B*(s) of the busy period of the marginal M /M /14 GI system of class-1
customers has to be given. Taking the kth derivative of both sides of (4.7)
and letting s | 0 provides

EW§] = B[V} - Mﬁ (1+ M EB) E[VFY]

Ao [k _
" 2 (E)E[BE]E[X/'; ‘], keN. (4.8)

Unfortunately, for the authors best knowledge, it seems that there are no
explicit results available for B*(s) or for higher moments E [BY], £ € N\ {1},
for general GI. In case of deterministic maximal waiting times, B*(s) is
given explicitly even for the more general M/GI/1 4+ D system in [KBL)]
Theorem 3.3. It remains an unsolved problem to find corresponding expres-
sions in the general case in order to exploit (4.7) or (4.8). However, in case
of k = 1 we are able to determine E Wy in terms of E N(t) as follows: In
the associated M /M /1 + GI system of class-1 customers the time epochs
where the system becomes empty, i.e., where No(t —0) = 1, Na(t +0) =0,
are regeneration points of Ny(t), ¢ > 0. A typical cycle of the regenerative
process Ny(t), t > 0, has length Y = Z + B, where Z is exponentially dis-
tributed with parameter A;, B is a busy period of the M/M /1 + GI system
and Z and B are independent. From the theory of regenerative processes,
cf. e.g. [Asm] p. 126, it follows

o-EBZ_ 1
PO EY "1+ nEB’
where p(0) is given by (2.6). This, (4.8) for kK = 1 and Little’s formula yield
1 1 1

EWo=EVy — — = — ENy(t) —
2 27 pap(0) X 2() p2p(0)

(4.9)

. (4.10)

5 Deterministic maximal waiting times

Assume that the maximal waiting times are constant 7 € (0,00), i.e., that
C(u) := T{u > 7}, u € Ry. Moreover, we assume that the stability condi-
tion (2.8) is fulfilled and that o; # 1. (The case of g; = 1 is obtained by a
limiting process.)

In view of (2.5), the stability condition (2.8) reads

1-01

02 <
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where
d:= grela—tmr (5.2)

and p(0) is given by the r.h.s. of (5.1), cf. [CKC].
For z € (—o0,1] and & € (0, 7) the differential equation (2.23) simplifies
to

0°f(2,¢)
o2

9f (2,

+ (A1 +A2(1—2)+p1) o€

+ Alulf(zag) =0

with the condition f(z,0) = 1. Its general solution is
f(2,€) = a1(2) " ®F + (1-ay(z)) e, (5-3)

where

1o (2) = —%(A1+A2(1—z)+u1) + %\/()\1+)\2(1—z)+u1)2 ~ D
(5.4)

For z € (—o0,1] and & € (1,00) the differential equation (2.23) reduces to

0%f (2 €) 9f(z,€)

o oe "

+ (A2(1—2)+p1)

with the condition

: _ i (8

E—o0
whose general solution is given by
I (2:€) = ay(z) e”Celizaltmt, (5.5)

The functions a;(2), z € (—o0,1], j € {1,2}, have to be chosen such that
the function f(z,-) is continuously differentiable at £ = 7, implying

B bo(z) eb2(?)
al(Z) - bg(z) ebz(z) — bl(z) ebl(z) ;
(ba(z) — b1 (2)) e??(2) et (2)
) = ) — b >0
where
bi(z) == (kj(2)+A(1—2)+p1)T, j€{1,2}. (5.7)
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For the mean number E Ny(t) of class-2 customers from (2.5), (2.36),
(2.37) and (3.7) after some algebra one obtains

E Ny(t) =

_ peo2(e1—(1—01)((1+01)pi7+3)d—d?)
p1(1—01)((1—01)—02(1—d))(1—-d)
02(1-d)
(1-01)—02(1-d)’

(5.8)

where d is defined by (5.2). Finally, EV5 and E W, are given by Little’s
formula and (4.10), respectively.
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