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Abstract. Optimization models often feature disjunctions of polytopes
as submodels. Such a disjunctive set is initially (at best) relaxed to its
convex hull, which is then refined by branching. To measure the error
of the convex relaxation, the (relative) difference between the volume of
the convex hull and the volume of the disjunctive set may be used. This
requires a method to compute the volume of the disjunctive set.

We propose a revised variant of an old algorithm by Bieri and Nef [BN83]
for this purpose. The algorithm uses a sweep-plane to incrementally
calculate the volume of the disjunctive set as a function of the offset
parameter of the sweep-plane.

1 Introduction

A (polyhedral) disjunctive set is a set that may be written as a union of polytopes
P = UU,_, P'. Disjunctive sets are a frequently occuring structure in many
optimization models. As they are in general nonconvex sets, global optimization
solvers rely on convex relaxations to obtain bounds. Using tight convex relaxations
during the solution process is crucial to be able to solve such models. The
tightness of the convex relaxation, i.e. the convexification error, may be naturally
measured using the volume. The volume may be used to compare two competing
convex relaxations [LSS18], or to numerically quantify the convexification error
by comparing the volume of P and its convex relaxation. This may be used
to devise a branching scheme for P that quickly improves the tightness of the
relaxation [HW17].

Computing the convexification error numerically requires computing the
volume of the disjunctive set P. Naively, this can be done via inclusion/exclusion
and leveraging the well-studied algorithms for computing the volume of a single
polytope. However, this is often inefficient. Bieri and Nef [BN83| proposed a
method for computing the volume of a disjunctive set which calculates the volume
up to a sweep-plane in a beneath and beyond approach. The sweep-plane is a
hyperplane given by {x | (s, ) = A\} where s is the sweep-direction and A is the
time in the sweep. Similar to a tomography, the sweep-plane is moved through
space, as visualized by Figure 1. The sweep-plane volume function f(\) describes
the volume Vol(P N {x | (s,x) < A}) that lies behind the sweep-plane. This
function allows us to see interesting changes in the volume over the course of the
sweep, which may be useful to guide decomposition methods as in [HW17].
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Fig. 1. Top row: A union of polytopes with sweep-planes at different times. Bottom
row: The corresponding sweep-plane volume graphs.

We propose a revised algorithm based on Bieri and Nefs general idea. First we
review a formula for the volume of a polytope as introduced in [Law91]. Afterwards
we extend the formula to unions of polytopes and discuss the resulting algorithm.
A preliminary python implementation of the proposed algorithm can be found at
https://gitlab.com/LovisAnderson/sweepvolume.

2 The Volume of a Polytope

We will first introduce a formula for the volume of a single polytope P, which is
given by P := {z € R? | Az < b}. We will restrict ourselves to simple polytopes,
i.e. polytopes for which at each vertex exactly dimensional many constraints
are active. The non-simple case can either be handled by perturbation of the
constraints or regularization as described in [BN83].

2.1 The Conic Decomposition

The vertex cone K, at a vertex v is given by the constraints that are active at
that vertex. We can also describe that cone as a Minkowski sum of the vertex
and the positive hull of its rays. In particular the rays on the d edges suffice to
describe the positive hull. We can write K,, = {v} + pos(ri,...,7q). The rays
T1,...,74 are unique up to scaling and can be calculated from the constraint
matrix. Let A, be the matrix that is given by the constraints that are active at
v. Then the rays are given by

(rl,...,'r'd):—A_l. (1)

v

A forward cone F(K,,s) for a vertex cone s results from flipping the rays such
that they point in the same direction as s. Formally,
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Fig. 2. The vertex cone and the forward cone.

r,  if (r;, 8) >0,

F(K,,s) :={v}+pos(T1),...,7q) with 7;:= {
—7r; else

Figure 2 visualizes the vertex cone and forward cone in an exemplary way.

Theorem 1 is a slight abbreviation of the main result from [Law91] and shows
how a polytope can be decomposed into its forward cones using the indicator
function 1.

Theorem 1. Let P be a simple polytope and s be a direction which induces a total
ordering v1,...,v, on the vertices of P via the dot product, i.e. (v;,s) < (vj, s)
fori < j. Let K; be the vertex cone at v; and o(K;,8) := #{i € {1,...,d} |
(r;, 8) < 0} be the number of rays that have to be flipped in order to obtain the
forward cone F(K;,s) from K;. Then we have

Ip =Y (1) p g, ). 2)
i€[n]

We are interested in the volume up to a sweep-plane, which depends on the
direction s and a time (or geometrically interpreted offset) A\. We denote the
negative halfspace at time A\ by H~(s,\) := {x € R? | (s,z) < A\}. Through
integration we can use Theorem 1 to write the volume up to the sweep-plane at
time A as

Vol(PNH™(s,)) = > _ (1) ") Vol(F(K;,s) N H (s, ))). (3)
1€[n]
2.2 The Sweep-Plane Volume of a Cone

To be able to compute the volume of a polytope by using Equation (3) we need
a way to compute the sweep-plane volume of a forward cone. The volume of a
simplex might be calculated with this neat determinant formula, see [Ste66].

Fact 2 The volume of a simplex S C RY with vertices sy,. .., 8441 is:

Vol(S) = %|det((sz — 81 ... Sap1— 51))| (4)
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We can adopt Equation (4) such that we can use it to compute the sweep-plane
volume of a forward cone. The forward cone up to a sweep-plane is a simplex
which can be described by its vertex and rays. In this simplex, the offset A of the
sweep is only reflected in the length of the rays and not in their direction.

Proposition 1. Let K,, = {v}+pos(ry,...,7rq) be a vertex cone of a polytope P.
Let s be such that it induces a total ordering on the vertices of P. Let Ay, := (s, v).
Then for the volume of the forward cone F(K,,s8) and X\ > Ay it holds that

qldet(ry, ... rq)]

Vol(F(Ky,s) NH ™ (s,\) = (=1)7Ew9) (X = \,) W

(5)

For A < Ay clearly holds Vol(F(K,,s) N H (s,\)) =0.

We need the vertices of P to be strictly ordered with respect to s to assure that
the dot product in Proposition 1 is not 0. However, this can always be achieved
by perturbing s.

3 Extension to Unions of Polytopes

We want to extend our decomposition to a union of polytopes P = (JI_, Pt
We now look at all constraints which describe polytopes in P and assume we
have them ordered as {alz < b;,i € {1,...,n}}. We call A := {(a;,b;) | i €
{1,...,n}} a hyperplane arrangement. The corresponding equality constraints
{afx =1, |i€ {1,...,n}} decompose the space into cells, which are defined as
the closures of the connected components of

R\ {x € R? | Ji s.t. al'x = b;}.

That means that the cells are the (closed) sets which are not intersected by a
hyperplane which is given by an equality constraint, see Figure 3. The union
of polytopes can be written as the union of a subset of these cells. All cells are
polytopes and are mutually internally disjoint. Therefore the sum of the volumes
of the cells which are subsets of the union of polytopes equals the total volume
of the union of polytopes.

Proposition 2. Let P = J;_, P; be a union of polytopes and Ap be the corre-
sponding hyperplane arrangement. Let Cy,...,C; be the cells of Ap which are
subsets of P. We can then write Vol(P) = 22:1 Vol(C;).

The following definition generalizes the well-known concept of a position
vector [Ede87] and helps us to describe cells and other faces of a hyperplane
arrangement.

Definition 1. Let A:= {(a;,b;) |i € {1,...,m}} be a hyperplane arrangement.
We call a vector (p1,...,pm) =: p € {+,—,0,}"™ a position vector for A. We
associate with it the set
< bz prz =
Alp) ={x eR|alx{>b; ifp;, =+, ie{l,...,m}}.
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Fig. 3. The hyperplane arrangement A(P), with P being the union of a square and a
triangle and the region describing position vectors.

To ensure that no two position vectors correspond to the same set we also demand
that for all i € [m] with p; = - there is a 1 € A(p) with alz1 < b; and a
x2 € A(p) with al'zy > b;. If there is no such pair T1, T2 we can replace » with
+ or —.

We can describe any face of the hyperplane arrangement using position vectors.
Including - in the definition also allows us to describe polytopes and vertex cones.
This allows us to compare those sets in a combinatorial way. For position vectors
pl, p? we say that p! is included in p? if

pi=pivei =+ if pie{+ -}
If p! is included in (p?) then A(p') C A(p?) and we write p* C p?.

Corollary 1. Let P = J_, be a union of polytopes and Ap be the corresponding
hyperplane arrangement. Let Cy,...,C; be the cells of Ap which are subsets of
P. Let v be a vertex whose active constraints in the arrangement are given by
the indices J := {j1,...,ja}. We define the restricted position vector of K, only

featuring the active constraints at v as pl¥(K,) := (pllv,...,plmv) with va =
(K if ield
pi(Ko) J; . A cone K, at a vertex v of the hyperplane arrangement is
. else

the vertezx cone of some cell C; if and only if there is a P; such that

pw)Cp(P) A p(K,) Cp(P). (6)
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This allows us to algorithmically find all vertex cones of cells belonging to P.

4 The Algorithm

The steps in the algorithm for computing the sweep-plane volume function for a
union of polytopes P := J;_, P; can be summarized as follows:

1. Calculate the vertices of the hyperplane arrangement
2. For each vertex calculate the vertex cones belonging to P using Corollary 1
3. Calculate the sweep-plane volume function using Proposition 1

In our implementation we do step 1 and 2 independently of step 3. We build
a data structure which we can then use in step 3 to calculate the sweep-plane
volume function. Almost all of the computational complexity lies in building the
data structure. Once the data structure is built, we are able to calculate sweep-
plane volume functions for many different directions. Through comparing these
functions, insights into the structure of the disjunctive set might be obtained.
Detecting structural changes in volume might be useful to guide decomposition
methods as in [HW17].
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