
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

ALEXANDER TESCH

Improving Energetic Propagations for
Cumulative Scheduling

ZIB Report 18-29 (June 2018)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Improving Energetic Propagations for
Cumulative Scheduling

Alexander Tesch

Zuse Institute Berlin (ZIB)
Takustraße 7, 14195 Berlin, Germany

tesch@zib.de

Abstract. We consider the Cumulative Scheduling Problem (CuSP) in
which a set of n jobs must be scheduled according to release dates, due
dates and cumulative resource constraints. In constraint programming,
the CuSP is modeled as the cumulative constraint. Among the most
common propagation algorithms for the CuSP there is energetic reason-
ing [1] with a complexity of O(n3) and edge-finding [21] with O(kn logn)
where k ≤ n is the number of different resource demands. We consider
the complete versions of the propagators that perform all deductions in
one call of the algorithm. In this paper, we introduce the energetic edge-
finding rule that is a generalization of both energetic reasoning and edge-
finding. Our main result is a complete energetic edge-finding algorithm
with a complexity of O(n2 logn) which improves upon the complexity
of energetic reasoning. Moreover, we show that a relaxation of energetic
edge-finding with a complexity of O(n2) subsumes edge-finding while
performing stronger propagations from energetic reasoning. A further
result shows that energetic edge-finding reaches its fixpoint in strongly
polynomial time. Our main insight is that energetic schedules can be in-
terpreted as a single machine scheduling problem from which we deduce
a monotonicity property that is exploited in the algorithms. Hence, our
algorithms improve upon the strength and the complexity of energetic
reasoning and edge-finding whose complexity status seemed widely un-
touchable for the last decades.

Note: We fixed a mistake in the definition of ω̃(t) in the original version.

1 Introduction

In the CuSP, we are given a set of non-preemptive jobs i ∈ {1, . . . , n} with
processing times pi > 0, resource demands ci > 0, release dates ri, due dates
di and a resource capacity C. We assume that 0 ≤ ri ≤ di − pi for all jobs
i = 1, . . . , n without loss of generality. In the CuSP, we compute start times Si

for every job i = 1, . . . , n such that every job is scheduled within its time interval
and the resource capacity is never exceeded. More formally, it can be stated as∑

i=1,...,n:
Si≤t<Si+pi

ci ≤ C ∀t ∈ [0, T] (1)

ri ≤ Si ≤ di − pi ∀i = 1, . . . , n. (2)

where T is an upper bound on the time horizon. In general, the CuSP can be
seen as a decision variant of the scheduling problem P |rj , sizej |Lmax in which a
set of n non-preemptive multiprocessor jobs is scheduled onto C machines where
every job j allocates cj = sizej machines at the same time. The objective is
to minimize the maximum lateness Lmax = maxn

j=1 max{0, Sj + pj − dj} where
Lmax = 0 if and only if the CuSP is feasible. The CuSP is NP-complete since
already the scheduling problem 1|rj |Lmax is strongly NP-hard [11].

In practice, the CuSP often occurs as a dedicated subproblem in more com-
plex scheduling or optimization problems [9,17]. In order to reduce the size of
the search tree, the idea is to derive stronger bounds on the release and due
dates of the jobs without violating the feasibility of the problem in general. For
the CuSP, many propagation algorithms have been suggested in the literature
where one can observe a general trade-off between their propagation power and
running time.

1.1 Previous Work

Many different propagators exist for the CuSP in the literature as well as re-
laxations and hybrids of them. In this paper, we focus on complete propagation
algorithms that perform all reductions according to their respective rule. The
energetic reasoning propagation rule has been first introduced in [6] where the
methods were refined in [1] to give a complete O(n3) algorithm. Since energetic
reasoning counts to the most powerful propagation rules for the CuSP many
efforts have been made to improve the general O(n3) complexity, for example by
reducing the number of considered intervals [2,5]. In [3] an algorithm is presented
that detects at least one energetic reasoning propagation in O(n2 log n) that was
improved in [20] to an algorithm that detects at least one possible energetic
reasoning propagation for every job in O(n2 log n). Both algorithms, however,
remain incomplete and do not compute all the maximum propagations in one
run. However, they converge to the same fixpoint of energetic reasoning.

Another common propagation rule is edge-finding where a first complete
algorithm was introduced in [14] with complexity O(kn2) and also a stronger
variant called extended edge-finding with the same complexity. This complexity
was improved in [21] to O(kn log n) and in [16] they use a modification of similar
techniques to integrate propagations from extended edge-finding and timetabling
also in O(kn log n). In general, energetic reasoning yields stronger propagations
than (extended) edge-finding. However, its high complexity of O(n3) prevents it
from being used in practice where edge-finding or hybrids such as time-table edge-
finding [19,22] are preferred. Thus, a major open question is whether the O(n3)
complexity of energetic reasoning can be improved to lower the discrepancy
between the different propagation schemes.

Further propagation algorithms for the CuSP are timetabling [7,12] and not-
first/not-last [18] where the latter is incomparable to energetic reasoning.

2

1.2 Results

In this paper, we introduce the novel energetic edge-finding propagation rule
that generalizes and combines ideas from energetic reasoning and edge-finding.
We first show that energetic edge-finding reaches its fixpoint in strongly poly-
nomial time. But our main contribution is a complete energetic edge-finding
algorithm that runs in O(n2 log n) and therefore improves upon the previous
O(n3) complexity of energetic reasoning. Moreover, by excluding some difficult
time intervals, we obtain a relaxed version of energetic edge-finding that runs
in O(n2) and subsumes the edge-finding rule while simultaneously performing
stronger propagations from energetic reasoning. This also improves the general
O(kn log n) of edge-finding [21]. A major component in our algorithms is the in-
terpretation of energetic schedules as a single machine scheduling problem with
release dates [8]. Energy profiles of single machine problems yield a monotonicity
property that we highly exploit in our algorithms. We implemented and tested
the algorithms on instances of the well-established PSPLIB [13]. We believe that
the given approaches yields new insights for the development of more efficient
propagation algorithms for the CuSP.

2 Energetic Edge-Finding

In this section we formally introduce the energetic edge-finding rule. It can be
seen as a generalization and combination of both energetic reasoning and edge-
finding. It takes advantage of the propagation strength of energetic reasoning
and the stable fixpoint behavior of edge-finding by integrating additional prop-
agations from subintervals. Our version of energetic edge-finding is not to be
mixed-up with the one given in [10] who consider a similar but incomplete rule.

We begin with some notation. Let the minimum left-right-shift duration of
a job i in a time interval [t1, t2] be defined as

pi(t1, t2) = max{0,min{pi, t2 − t1, ri + pi − t1, t2 − di + pi}} (3)

where only the left-shift duration of job i in [t1, t2] is given by

pli(t1, t2) = max{0,min{t2 − t1, pi, ri + pi − t1, t2 − ri}}. (4)

Moreover, let e(t1, t2) =
∑n

i=1 ci · pi(t1, t2) denote the energy in the interval
[t1, t2] where the energy overload in [t1, t2] is given by

ω(t1, t2) = e(t1, t2)− C · (t2 − t1) (5)

that equals the slack between the minimum consumed energy and available en-
ergy in [t1, t2]. If there exists an interval [t1, t2] with ω(t1, t2) > 0 then the CuSP
is already infeasible. Thus we assume that ω(t1, t2) ≤ 0 for all intervals [t1, t2].
Analogously, for a job i and time interval [t1, t2] let

ωl
i(t1, t2) = ω(t1, t2) + ci ·

(
pli(t1, t2)− pi(t1, t2)

)
. (6)

3

be the energy overload under the condition that job i is left-shifted. If there
exists a time interval [t1, t2] with ωl

i(t1, t2) > 0 then the release date of job i is

invalid and can be increased to ri = t2 − pi(t1, t2) + ω(t1,t2)
ci

in order to pull the
exceeding energy out of the interval [t1, t2]. One could also consider right-shifts
but they are symmetric to left-shifts at time t = 0, so we will stick to left-shifts
if not mentioned otherwise. This propagation concept can be formalized by the
following rules.

Energetic Reasoning [1]. A complete energetic reasoning algorithm computes
for every job i = 1, . . . , n the release dates

r∗i = max
(t1,t2)∈T :

ωl
i(t1,t2)>0

(
t2 − pi(t1, t2) +

ω(t1, t2)

ci

)
(7)

where T is a set of relevant time intervals that is specified later.
In [1] it is shown that |T | ∈ O(n2) and they present a complete algorithm

with running time O(n3) to perform all propagations.

In this paper, we consider an even stronger variant of energetic reasoning that is
highly inspired by the edge-finding rule [21] that takes into account additional
propagations from subintervals.

Energetic Edge-Finding. A complete energetic edge-finding algorithm com-
putes for every job i = 1, . . . , n the release dates

r∗i = max
(t1,t2)∈T :

ωl
i(t1,t2)>0

max
(t′1,t

′
2)∈T :

[t′1,t
′
2]⊆[t1,t2],

ω(t′1,t
′
2)+ci·(t′2−t

′
1−pi(t

′
1,t

′
2))>0

(
t′2 − pi(t′1, t′2) +

ω(t′1, t
′
2)

ci

)
(8)

where T is the same set of time intervals as for energetic reasoning. The en-
ergetic edge-finding rule can be explained as follows. Once a left-shift overload
with ωl

i(t1, t2) > 0 for a job i and interval (t1, t2) ∈ T is detected, it includes
propagations of a subinterval [t′1, t

′
2] if the energy of all jobs different from i in

[t′1, t
′
2] prevent an earlier processing of i. In this case, its release date ri can be

updated accordingly for [t′1, t
′
2]. For the set of relevant time intervals T let

T1 = {ri, di − pi : i = 1, . . . , n}
T2 = {di, ri + pi : i = 1, . . . , n}

T3(t) = {ri + di − t : i = 1 . . . , n}

and from these sets we define

T12 = {(t1, t2) : t1 < t2, t1 ∈ T1, t2 ∈ T2}
T13 = {(t1, t2) : t1 < t2, t1 ∈ T1, t2 ∈ T3(t1)}
T23 = {(t1, t2) : t1 < t2, t2 ∈ T2, t1 ∈ T3(t2)}

4

where T = T12∪T13∪T23. Note that there exist tighter characterizations for the
set of relevant time intervals for energetic reasoning [5,20] but since they are more
complex we will stick to this definition. Moreover, in the first sections we only
consider propagations for intervals in T12 and T23. The integration of intervals
in T13 needs special treatment and is examined separately in Section 3.4.

Since propagations from energetic edge-finding are not idempotent in general,
we apply the rule until a fixpoint is reached. Because their overload conditions
are equivalent, energetic edge-finding converges to the same fixpoint as energetic
reasoning. However, we show that the additional integration of subintervals in
energetic edge-finding leads to a strongly polynomial fixpoint convergence. To
the best of our knowledge, the fixpoint complexity for only energetic reasoning
(as stated) is unknown. The paper [14] claims a non-strongly polynomial fixpoint
complexity for energetic reasoning but they use a weaker update function that
can lead to slower convergence.

Theorem 1. A complete energetic edge-finding algorithm reaches its fixpoint
after at most O(n2) iterations.

Proof. Let T2 = {t12, . . . , tN2 } with tb2 < tb+1
2 for all b = 1, . . . , N − 1. We show

that after at most b · n iterations no further propagation can be detected in any
interval [t1, t

b
2] with t1 < tb2.

Consider an arbitrary fixpoint iteration q of the complete energetic edge-
finding algorithm and assume by induction hypothesis that no propagation can
be found in any interval [t1, t

b′

2] for all tb
′

2 < tb2. If job i is propagated in iteration
q due to an interval [t1, t

b
2] with ωl

i(t1, t
b
2) > 0 then since ωl

i(t1, t
b
2) = ω(t1, t

b
2) +

ci · (pli(t1, tb2)− pi(t1, tb2)) we have that ω(t1, t
b
2) or pli(t1, t

b
2)− pi(t1, tb2) increased

from iteration q − 1 to q.
If pli(t1, t

b
2) − pi(t1, tb2) has increased then job i must have been propagated

in iteration q− 1. If ω(t1, t
b
2) has not changed for all t1 < tb2 from iteration q− 1

to q then energetic edge-finding would have found the propagation already in
iteration q − 1 giving a contradiction1.

Hence, ω(t1, t
b
2) has changed from iteration q − 1 to q. This happens if and

only if a job j 6= i with dj−pj < tb2 < dj is propagated to end after time tb2. Then
job j has a fixed part2 in the interval [dj − pj , tb2] to the beginning of iteration q.
Moreover, the value pj(t1, t

b
2) cannot be increased further by propagations from

other intervals [t′1, t
b
2], so job j cannot further increase ω(t1, t

b
2). Because at most

n jobs can increase ω(t1, t
b
2) this way, we have that q ≤ b · n. Since N ∈ O(n)

the fixpoint is reached after O(n2) iterations. ut

It is an open question whether this fixpoint complexity is tight and if there
exist examples where energetic reasoning needs Ω(n) more iterations to reach
the fixpoint.

1 Unlike energetic reasoning that may need additional iterations to reach the maximum
propagation for tb2.

2 Unlike standard edge-finding that does not consider partial overlaps, which gives a
short proof of its O(n) fixpoint complexity [14].

5

3 Algorithm

Our main algorithm iterates over all t2 ∈ T2 in an outer loop. We focus on
the resulting subproblem in the time horizon [0, t2] for times t ∈ T1 ∪ T3(d).
Time intervals (t1, t2) ∈ T23 are integrated separately in Section 3.4. Throughout
the rest of the paper we will consider a fixed t2 value and set the due date
d = t2 as a global constant. For abbreviation, we therefore omit d = t2 as
function argument and rewrite pi(t) = pi(t, d), pli(t) = pli(t, d), e(t) = e(t, d),
ω(t) = ω(t, d), ωl

i(t) = ωl
i(t, d) and T = {t : t < d, t ∈ T1 ∪ T3(d)}.

Our algorithm is divided into three phases: decomposition phase, detection
phase and update phase.

3.1 Decomposition Phase

In the decomposition phase, we will decompose the available energy e(0) in the
interval [0, d] into energy blocks B1, . . . , Bm in order to get a stronger represen-
tation for the overload function ω(t).

Let the energy envelope at time t < d be defined as

E(t) = t+
e(t)

C
(9)

that is a lower bound on the maximum completion time of jobs i with pi(t) > 0.
Then we have ω(t) = C · (E(t)− d).

From this definition, we create energy blocks as follows. Let T = {t1, . . . , tH}
with th < th+1 for all h = 1, . . . ,H−1. Starting with h = 1, we compute the next
greater h′ > h such that E(th) < E(th′). If e(th) > e(th′) we create a new canon-

ical block B with release date r(B) = th, processing time p(B) = e(th)−e(th′)
C and

resource demand C. Then we set h = h′ and repeat the procedure. If no h′ can

be found we finally set p(B) = e(th)
C and stop.

The set of all canonical blocks B1, . . . , Bm is also denoted as the canonical
decomposition [8]. In the following, let TB = {r(B1), . . . , r(Bm)} be the set of
release dates of the canonical blocks. Since every canonical block Bl has resource
demand C, the canonical decomposition can be interpreted as a scaled single ma-
chine schedule, see Figure 1. Moreover, the energy values e(th) can be computed
and maintained by the algorithm of Baptiste et al. [1] in O(n), so the canonical
decomposition can be computed in O(n) time.

A further important observation is that we can restrict to non-dominated
energy envelopes. That is, if E(t′) > E(t) for t′ < t then we can consider E(t′)
instead of E(t) for time t. Hence, we can replace the function E(t) by

Ẽ(t) = max
t′≤t

E(t′) (10)

where ω̃(t) = C · (Ẽ(t) − d) is a stronger lower bound on the overload in [t, d].
Consequently, we can replace ω(t) by ω̃(t) in our energetic edge-finding rule. In
particular, we have ω(t) = ω̃(t) for all t ∈ TB and since Ẽ(t) is monotonically

6

e(0)

e(1)

e(3)

C

0 1 2 3 4 5 6

B1 B2

Fig. 1. Canonical decomposition: the three energy blocks (above) show the energy
envelopes E(t) for t ∈ {0, 1, 3} with due date d = 6 for some CuSP instance. We
obtain the canonical decomposition B1, B2 (below) that shows more precisely where
the energy is induced. If there exists an energy overload for any interval [t, d] then it
is always generated by the last canonical block Bm.

non-decreasing in t we also have that ω̃(t) is monotonically non-decreasing in t.
We will highly exploit this fact in our algorithms.

We can further use the canonical decomposition to efficiently compute ω̃(t).
For given time t, let Bl be the canonical block with smallest index l such that
t ≤ r(Bl) + p(Bl) then we have

ω̃(t) = C ·

min{t, r(Bl)}+
∑
l′≥l

p(Bl′)− d

 (11)

where this definition depends only on the canonical decomposition. We will use
the canonical decomposition for the next phases that depend only on TB ⊆ T .

3.2 Detection Phase

In the detection phase, we check for every job i = 1, . . . , n if there exists a time
t ∈ T such that ωl

i(t) > 0. In this case, job i must end strictly after time d
and this relation is stored in an n-dimensional array end by setting end[i] = d,
similar to [21]. For given due date d, we compute all such relationships as follows.

The condition ωl
i(t) > 0 is equivalent to

ci ·
(
pli(t)− pi(t)

)
> −ω(t) (12)

where both left- and right-hand side are non-negative since ω(t) ≤ 0 for all t ≤ d.
We replace ω(t) by the stronger overload function ω̃(t) which yields

ci ·
(
pli(t)− pi(t)

)
> −ω̃(t) (13)

and this is still a valid condition since ω(t) ≤ ω̃(t) and thus not less intervals are
checked for energetic edge-finding (8).

Moreover, both functions on the left- and right-hand side of (13) are piece-
wise linear in t. Let psi = pli(0) − pi(0) then the function on the left-hand side

7

decomposes into the segments:

ci · (pli(t)− pi(t)) =


ci · psi , t ≤ ri
ci · (psi − t+ ri), ri ≤ t < ri + psi
0, else

(14)

for all jobs i = 1, . . . , n where we only consider jobs i with psi > 0 or jobs with
positive left-shift slack respectively.

We have to compute for every i = 1, . . . , n the time t ∈ T for which inequal-
ity (13) is maximally satisfied. For this, we compute the upper envelope of the
line segments (14) of all jobs i = 1, . . . , n by using a sweep line approach [4]. The
sweep line data structure comprises a binary status tree W and an event heap
H. The status tree W changes dynamically with t and stores the line segments
as leaves while maintaining the line segment of maximum value ci · (pli(t)−pi(t))
for the current t in the root node using a bottom-up approach. The event heap
H stores time events at which the order of two line segments in W is changing
or the maximum line segment of W must be retrieved from the root node. New
events are added dynamically to H. Since there are O(n) line segments, one line
segment can be added or deleted in O(log n) and sweeping over all t ∈ T takes
O(n log n) since for every node in W at most one event is added dynamically to
H. In particular, we can restrict to TB ⊆ T since ω̃(t) is locally maximal there.

Thus, in our algorithm we sweep over all t ∈ TB in decreasing order and
retrieve the maximum function value vi = ci · (pli(t) − pi(t)) of the currently
dominating job i from the root node of W . While the currently dominating
job i satisfies vi > ω̃(t) we set end[i] = d and delete all line segments that
belong to job i (the dominating job may change) and store the update value

rdi = d− pi(t) + ω̃(t)
ci

. Hence, for the given due date d the detection phase takes
O(n log n) time, compare Algorithm 1.

An improvement can be made by omitting the constant line segment for t ≤ ri
in (14) since ω̃(t) is monotonically non-decreasing and therefore inequality (13)
is maximally satisfied at t = ri but this point is also covered by the second line
segment. In this case, we need to add an event at t = ri to H to retrieve possible
overloads from W .

A special case occurs when we have c = ci for all i = 1, . . . , n respectively. In
this case, all line segments have the same slope so we can use a simple queue to
process the line segments from right to left where the first line segment that is
added remains the dominating one until it is deleted. This allows a processing
in O(n) and will yield a complete O(n2) energetic edge-finding algorithm.

Proposition 1. Let t∗ ∈ TB be the time where we set end[i] = d for a job i.
Then we have t∗ < ri + psi and t∗ also maximizes

max
t∈T :

ω̃(t)+ci·(pl
i(t)−pi(t))>0

(
d− pi(t) +

ω̃(t)

ci

)
. (15)

8

Algorithm 1: detection phase

Input: due date d, canonical decomposition B1, . . . , Bm

Output: end[i] and rdi for all i = 1, . . . , n,
1 initialize sweep line tree W for all jobs i with ri < d < di
2 E ← 0

3 forall l = m, . . . , 1 do
4 E ← E + C · p(Bl)
5 t← r(Bl)
6 sweep to(W, t)

7 while i←W.root.job and E + ci · (pli(t)− pi(t)) > C · (d− t) do
8 end[i]← max{end[i], d}
9 rdi ← d− pi(t) + 1

ci
· (E − C · (d− t))

10 delete line segments of i from W

11 return end[i] and rdi for all i = 1, . . . , n

Proof. As mentioned, we can replace T by TB in the given formula. Whenever
the algorithm sets end[i] = d for t∗ ∈ TB , we have ω̃(t∗)+ci ·(pli(t∗)−pi(t∗)) > 0
and therefore pli(t

∗)− pi(t∗) > 0 which holds only if t∗ < ri + psi .
For all t < ri + psi we have pi(t) = pi(0) is constant. Thus, the overload

function turns into ω̃(t) + ci · (pli(t) − pi(0)) > 0 and the update function into

d− pi(0) + ω̃(t)
ci

that is equivalent to maximizing ω̃(t). Since both overload and
update function are monotonically non-decreasing in t, the maximum t that
satisfies ω̃(t) + ci · (pli(t) − pi(0)) > 0 is optimal for (15). Since the algorithm
iterates over all t ∈ TB in decreasing order, we obtain the optimal time t = t∗.

ut

Adding the O(n) iterations of every due date d from the outer loop and
adding the intervals in T23 treated later yields the following result.

Corollary 1. Computing the detection phase for every due date d ∈ T2 yields a
complete energetic reasoning algorithm with running time O(n2 log n).

In Practice. The sweep line algorithm improves the theoretical performance
of energetic reasoning. The necessity of computing the upper envelope is due to
the fact that there might exist instances in which, say O(n) many, line segments
are active at the same time t. In this case, we always need to keep track of the
maximum line segment that may change for small deviations of t such that the
upper envelope needs to be explored completely. In practice however, the line
segments of the jobs are mostly disjoint and generally only few are active at
the same time. Moreover, upper envelope computations involve complex data
structures that need to be build in every iteration that generates overhead for
instances where n is small.

Thus, we decided to implement the following more output-sensitive but still
complete version: we sweep from right to left but whenever a line segment be-
comes active we add it into a list L. If it becomes inactive we delete it from L,

9

both can be done in O(1) by storing job pointers. Then for every t ∈ TB we
iterate all elements in L to detect the line segment of maximum value. As men-
tioned, the size of L is practically small (mostly zero). This leads to a complete
complexity of O(n + m · h) for the detection phase where h is the maximum
number of simultaneously active line segments. Multiplying the O(n) iterations
of the outer loop, this is O(n3) in general but much faster on practical instances.

In order to guarantee a stable fixpoint behavior we additionally include pos-
sible propagations from all subintervals. The next section describes how to com-
pute them efficiently in an additional phase.

3.3 Update Phase

For a given due date d, the update phase computes for every job i = 1, . . . , n
with psi > 0 and d ≤ end[i] stronger release dates by including propagations
from subintervals. Again, let psi = pli(0)−pi(0). By Proposition 1, the maximum
propagation for all t ∈ TB with t < ri + psi is already found in the detection
phase. Thus, assume that t ≥ ri + psi which leads to the problem of computing

rdi = max
t∈T :

t≥ri+ps
i

ω(t)+ci·(d−t−pi(t))>0

(
d− pi(t) +

ω(t)

ci

)
. (16)

Again, we replace ω(t) by its stronger version ω̃(t) and set

rdi = max
t∈TB :

t≥ri+ps
i

ω̃(t)+ci·(d−t−pi(t))>0

(
d− pi(t) +

ω̃(t)

ci

)
(17)

where we can restrict to t ∈ TB by the same argument as for the detection phase.
We want to simplify formula (17). Consider the parametrization

rd(c) = max
t∈TB :

ω̃(t)+c·(d−t)>0

(
d+

ω̃(t)

c

)
(18)

for variable resource demands c. We use the following lemma.

Lemma 1. Given a job i ∈ {1, . . . , n} then t ∈ TB with t ≥ ri + psi is optimal
for (17) if and only if t is optimal for (18) with rdi = rd(ci)− pi(t) > t.

Proof. Assume first that t ∈ TB with t ≥ ri + psi is optimal for (17). Then

rdi + pi(t) = d + ω̃(t)
ci

and since rdi > t we also have that rdi + pi(t) > t that
yields ω̃(t) + ci · (d− t) > 0, hence the point t ∈ TB is valid for (18) that implies
rdi + pi(t) ≤ rd(ci).

Now assume that t′ ∈ TB is optimal for rd(ci) with rd(ci) > rdi + pi(t)
where t′ > t by monotonicity of ω̃(t). Since t ≥ ri + psi it holds pi(t) − pi(t′) =

10

Algorithm 2: update phase

Input: due date d, canonical decomposition B1, . . . , Bm,
resource demands {c1, . . . , ck}
Output: td(c) and rd(c) for all c ∈ {c1, . . . , ck}

1 h← k, l← m, E ← 0
2 while h ≥ 1 and l ≥ 1 do
3 t← r(Bl)

4 if E − (C − ch) · (d− t) > 0 then

5 rd(ch)← d+ 1
ch
· (E − C · (d− t))

6 td(ch)← t
7 h← h− 1

8 else
9 l← l − 1

10 E ← E + p(Bl) · C

11 return td(c) and rd(c) for all c ∈ {c1, . . . , ck}

max{0, t′ − t}. Thus, if pi(t
′) = pi(t)− t+ t′ we get ω̃(t′) + ci · (d− t′ − pi(t′)) ≥

ω(t)+ci · (d− t−pi(t)) > 0 by feasibility of t for (17). Otherwise, if pi(t
′) = pi(t)

we also have ω̃(t′) + ci · (d− t′ − pi(t′)) ≥ ω̃(t) + ci · (d− t− pi(t)) > 0. Hence,
the solution at t′ ∈ TB is also feasible for (17) and its objective value is equal to
rd(ci)−pi(t′) > rdi which contradicts the assumption that rdi is optimal for (17).
It follows that rd(ci) ≤ rdi + pi(t) and therefore rd(ci) = rdi + pi(t) which shows
the statement. ut

Lemma 1 allows us to work with the parametrized version (18): if we have
computed rd(ci) with optimal time t ∈ TB we only have to verify that rd(ci)−
pi(t) > t and set rdi = rd(ci)− pi(t), otherwise there exists no better update.

In the following we show how to compute rd(c) for all c ∈ {c1, . . . , cn} with

k = |{c1, . . . , cn}| efficiently. Substituting g(c, t) = d+ ω̃(t)
c yields

rd(c) = max
t∈TB :

g(c,t)>t

g(c, t) (19)

that now has a quite simple form. For fixed c, the function g(c, t) is piecewise
linear and non-decreasing in t. Thus, for given resource demand c ∈ {c1, . . . , cn}
the largest value t ∈ TB with g(c, t) > t is optimal for rd(c). However, g(c, t)
is also non-decreasing in c since ω̃(t) ≤ 0. Hence, we iterate over all t ∈ TB in
decreasing order as long as g(c, t) ≤ t. Starting with the last considered resource
demand c, we set rd(c) = g(c, t) as long as g(c, t) > t for all c in decreasing
order. We repeat the same search starting with the next smaller t until either
rd(c) is determined for the smallest c value or the minimum of TB is reached.
This procedure takes O(k +m) to compute all rd(c), see also Algorithm 2.

Since the full algorithm iterates over all due dates d ∈ T2 in an outer loop and
by including the detection phase every inner iteration takes O(n log n+k+m) we

11

Algorithm 3: energetic edge-finding

Input: CuSP instance
Output: propagated release dates r∗i from energetic edge-finding

1 end[i]← −∞ for all i = 1, . . . , n

2 forall d ∈ T2 in decreasing order do
3 B1, . . . , Bm ← decomposition phase(d)

4 (end, rd)← detection phase(d,B)

5 (td(c), rd(c))← update phase(d,B)

6 forall i = 1, . . . , n do

7 ri = max{rdi , rd(ci)− pi(td(ci)) : d ≤ end[i], d ∈ T2}
8 return ri for all i = 1, . . . , n

get a final running time of O(n2 log n) for energetic edge-finding that is subsumed
in Algorithm 3. After termination of the outer loop, we finally update the release
date of every job i = 1, . . . , n with psi > 0 by

r∗i = max{ri,max{rdi : d ≤ end[i], d ∈ T2}} (20)

that takes an additional O(k · n) time.

3.4 Integration of Symmetric Intervals

In this section, we show how the remaining set of time intervals T13 can be
integrated into the given concepts. The main problem here is that d depends on
t and not vice versa. A first important observation is that left-shift propagations
on T13 are symmetric to right-shift propagations on T23. Thus, our approach
is to include the line segments of the corresponding right-shift slack function
ci · (pri (t)− pi(t)) > −ω̃(t) with pri (t) = max{0,min{pi, d− t, di− t, d− di + pi}}
with the propagation d∗i = t+pi(t)− ω̃(t)

ci
and set start[i] = t. In order to perform

the update phase we have to build the canonical decomposition in [t,∞) but now
according to due dates and from right to left and proceed symmetrically. The
last step is not implemented in our algorithm. However, it is a complete energetic
reasoning algorithm. In respect to the scope of this paper, we will not explicitly
formulate this case during the next sections.

4 Relation to Standard and Extended Edge-Finding

Energetic edge-finding is strongly motivated by standard edge-finding [21]. In
particular, energetic edge-finding can be slightly modified to give a complete
O(n2) edge-finding but that additionally performs stronger propagations from
energetic reasoning.

For every interval [t, d] standard edge-finding considers only propagations of
jobs i with t ≤ ri < d. We can replace our detection phase to include all such

12

intervals for fixed d in linear time as follows: we iterate over all ri with ri < d
in non-increasing order and check immediately if ω̃(t) + ci · (pli(t) − pi(t)) > 0
holds. Under the condition t ≤ ri, we have by monotonicity of ω̃(t) that t = ri
maximally satisfies this inequality and yields the maximum propagation update.
If the inequality is satisfied we set end[i] = d, otherwise no propagation can be
found for job i. The update phase is executed as previously introduced. Note
that we have to iterate over t ∈ TB simultaneously to get the ω̃(t) values.

Consequently, for fixed due date d the detection phase takes O(n+m), see also
Algorithm 2. In total, this yields a complete edge-finding algorithm in O(n2) time
but that additionally performs stronger propagations because the basic energy
in every interval [t, d] is taken from energetic reasoning. Since the currently best
complete edge-finding algorithm has complexity O(kn log n) [21], our algorithm
constitutes a further improvement in the landscape of energetic propagators.

Corollary 2. There exists a complete O(n2) algorithm for edge-finding that ad-
ditionally takes energetic reasoning as energy lower bound in each time interval.

A further open question asks for the relation to extended edge-finding [14]
that includes propagations for partially overlapping jobs. In particular, the case
of partially overlapping jobs is exactly the bottleneck of our algorithm since
by the ’usual’ approach of fixing one interval limit, say t2 = d, and computing
the partially overlapping job i in an interval [t, d] with ri < t < ri + psi that
maximally contributes to the energy in [t, d] will always lead to an upper envelope
problem. Hence, it is unlikely that there exists a complete O(n2) algorithm for
extended edge-finding by using known techniques. In turn, if there exists an
efficient method to compute such propagations then we believe it can also be
used for energetic reasoning, thus indicating that extended edge-finding and
energetic reasoning are of the same complexity.

5 Improving Propagations by Detectable Precedences

In this section we present a relaxation of energetic edge-finding and a possible
improvement for energetic edge-finding.

In every propagation that is performed for job i due to a left-shift overload
in the time interval [t, d] we can improve the propagation by considering the
minimum earliest completion time of the jobs that are contributing to the energy
in [t, d]. In other words, if ω̃(t) + ci · (pli(t)− pi(t)) > 0 then we can propagate

rdi = min
j 6=i:

pj(t)>0

(rj + pj). (21)

To the best of our knowledge, we believe that this rule, in its generality to ener-
getic reasoning, has not been investigated so far. Since our algorithms iterates
over all t in non-increasing order we can include such propagations by storing
an update value that is set to rj + pj whenever t = rj + pj for jobs j with
pj(0) > 0. As for energetic edge-finding, we can extend this rule by propagations
from subintervals of [t, d] or subsets of jobs if there is still an overload.

13

In the following we show that detectable precedences naturally extends en-
ergetic edge-finding since both propagations are incomparable.

Example 1. Given a CuSP instance of four jobs with p1 = p2 = p3 = p and
p4 = 2p for some large p. Moreover, let ci = 1 for all i = 1, . . . , n and C = 2. The
scheduling intervals [ri, di] for i = 1, . . . , 4 are given by [0, 3p− 1], [0, 2p], [0, 2p]
and [0,∞). Energetic reasoning propagates job 4 according to the interval [0, 2p]
since for d = 2p we have ω̃(0)+ci ·(pli(0)−pi(0)) = (2p+1−4p)+(2p−0) = 1 > 0
and thus we propagate r2p4 = d−p4(0) + ω̃(0) = 2p−0 + (2p+ 1−4p) = 1. After
that, no further propagation is detected, so the fixpoint is reached for energetic
edge-finding and all dominated rules. In contrast, detectable precedences (21)
finds that min{rj + pj : pj(0) > 0, j 6= i} = p and thus we propagate r2p4 = p.
This is the strongest possible propagation. Note that the not-first/not-last rule
does not consider the partial overlap of job 1, so nothing is propagated.

Example 2. Given a CuSP instance of three jobs with p1 = p2 = p and p3 = 1
for some p > 0. Moreover, let c1 = c2 = c3 = 1 and C = 1. The scheduling
intervals [ri, di] for i = 1, 2, 3 are given by [0, 2p], [0, 2p], [0,∞). The interval
[0, 2p] contains full energy of 2p. Thus, detectable precedences updates r3 =
p while energetic reasoning (even edge-finding) updates the strongest possible
propagation r3 = 2p.

Corollary 3. Detectable precedences and energetic reasoning are incomparable.

The given examples reveal the weakness of current energetic approaches:
the lack of knowledge about the inner structure of an interval and its possible
realizations. Future propagators should make stronger predictions by analyzing
how possible realizations of a certain interval may look like.

6 Computational Results

In the following we give a rough analysis of the computational performance of
the presented methods. We use the test sets J30, J60 and J120 that contain 480,
480 and 600 instances respectively from the well-established PSPLIB [13] for
the Resource-Constrained Project Scheduling Problem (RCPSP). The name of
the test set indicates the number of considered jobs and every instance has four
resources with additional precedence constraints.

Our algorithms are programmed in C language with GCC compiler version
7.3.0 and executed on a Intel Xeon CPU E5-2660 with 2.60 GHz using a single
thread. We compute lower bounds to the RCPSP by destructive improvement,
that is we start with a lower bound on the makespan and increase it as long as
we detect infeasibility or the time limit of 600 seconds is reached.

We use a static branching rule [17] that schedules the jobs in order of earliest
release dates. Ties are broken by minimum domain value di − pi − ri. Addi-
tionally, we apply a dominance rule that skips the right branch of the currently
branched job i if it does not contribute to the earliest resource conflict when

14

J30 J60 J120

opt ∆ LB nodes/s opt ∆ LB nodes/s opt ∆ LB nodes/s

ER 384 0 48.70 347 0 15.96 141 0 8.32

EnEF 393 126 581.35 349 86 249.68 143 77 92.93

EnEF (w/o up) 394 174 662.76 349 86 246.44 143 77 94.12

EnEF (relaxed) 405 221 680.25 348 85 245.26 143 79 96.63

Table 1. Computational results for the J30, J60 and J120 test sets.

all jobs are scheduled at their release dates. We consider a static branching rule
rather than a dynamic one to compare the real performance between the differ-
ent propagators. For the computation of best possible solutions to the RCPSP,
we more sophisticated methods [17] that exceed the scope of this paper.

In every search node we first apply timetabling [7,12] in combination with
one of the following: energetic reasoning as given in [1] with complexity O(n3),
energetic edge-finding, energetic edge-finding without the update phase and the
incomplete O(n2) energetic edge-finding algorithm of Section 4. All energetic
edge-finding propagators include propagations from detectable precedences.

Table 1 displays the number of optimal solutions found (opt), the deviation
in the total sum of lower bounds (∆ LB) normed to the weakest propagator and
the average number of backtracking nodes for instances that took longer than
five seconds to solve. As expected the O(n3) energetic reasoning propagator (ER)
is slower than energetic edge-finding (EnEF) such that energetic edge-finding is
able to compute better lower bounds in total. The exclusion of the update phase
and the relaxed variant yield speedups only on small instances. We conclude
that integrating all subintervals has mainly a theoretical rather than practical
relevance. Surprisingly, the relaxed version of energetic edge-finding cannot profit
from its O(n2) complexity on large instances. The reason is that our output-
sensitive implementation of the detection phase runs in almost the same time
because the left-shift slack intervals of the jobs are mostly disjoint.

7 Conclusion

We believe that the monotonicity in the single machine interpretation of ener-
getic schedules can lead to new ideas for faster propagation algorithms for the
CuSP and related problems. Since energetic arguments have natural limitations,
one future direction can be to combine energetic propagations with arguments
about the inner structure of time intervals to derive stronger propagations. A
first approach is made with detectable precedences. Another open question is to
resolve the fixpoint complexity of energetic reasoning.

Acknowledgements. The author would like to thank anonymous reviewers for
their helpful comments on the paper, especially for the advice to take a simpler
representation of ω̃(t) as given in the current version of the paper.

15

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time bound ad-
justments for cumulative scheduling problems. Annals of Operations research, 92,
305-333. (1999)

2. Berthold, T., Heinz, S., Schulz, J.: An approximative criterion for the potential of
energetic reasoning. In Theory and Practice of Algorithms in (Computer) systems
(pp. 229-239). Springer Berlin Heidelberg. (2011)

3. Bonifas, N.: A O(n2log(n)) propagation for the Energy Reasoning, Conference
Paper, Roadef 2016. (2016)

4. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O. C.: Computational
Geometry. In Computational Geometry (pp. 1-17). Springer, Berlin, Heidelberg
(2000)

5. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In Principles and Practice of Constraint Programming (pp. 289-297).
Springer International Publishing. (2014)

6. Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time
and resources constraints. In 2nd international workshop on project management
and scheduling, pp. 115-121. (1990)

7. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the
cumulative constraint. In International conference on principles and practice of
constraint programming (pp. 149-157). Springer, Cham. (2015)

8. Goemans, M. X.: A supermodular relaxation for scheduling with release dates. In
International Conference on Integer Programming and Combinatorial Optimiza-
tion (pp. 288-300). Springer, Berlin, Heidelberg. (1996)

9. Hooker, J. N.: A hybrid method for planning and scheduling. In International
Conference on Principles and Practice of Constraint Programming (pp. 305-316).
Springer, Berlin, Heidelberg. (2004)

10. Kameugne, R., Fetgo, S. B., Fotso, L. P. . Energetic extended edge finding filtering
algorithm for cumulative resource constraints. American Journal of Operations
Research, 3(06), 589. (2013)

11. Lenstra, J. K., Kan, A. R., Brucker, P.: Complexity of machine scheduling prob-
lems. In Annals of Discrete Mathematics (Vol. 1, pp. 343-362). Elsevier. (1977)

12. Letort, A., Beldiceanu, N., Carlsson, M. . A scalable sweep algorithm for the
cumulative constraint. In Principles and Practice of Constraint Programming
(pp. 439-454). Springer, Berlin, Heidelberg. (2012)

13. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library: OR
software-ORSEP operations research software exchange program. (1997) Euro-
pean journal of operational research, 96(1), 205-216.

14. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. IN-
FORMS Journal on Computing, 20(1), 143-153. (2008)

15. Mercier, L., & Van Hentenryck, P.: Strong polynomiality of resource constraint
propagation. Discrete Optimization, 4(3-4), 288-314. (2007)

16. Ouellet, P., Quimper, C. G.: Time-table extended-edge-finding for the cumulative
constraint. In Principles and Practice of Constraint Programming (pp. 562-577).
Springer Berlin Heidelberg. (2013)

17. Schutt, A., Feydy, T., Stuckey, P. J., Wallace, M. G.: Explaining the cumulative
propagator. Constraints, 16(3), 250-282. (2011)

18. Schutt, A., Wolf, A.: A New O(n2 logn) Not-First/Not-Last Pruning Algorithm
for Cumulative Resource Constraints. In Principles and Practice of Constraint
Programming - CP 2010 (pp. 445-459). Springer Berlin Heidelberg. (2010)

16

19. Schutt, A., Feydy, T., Stuckey, P. J.: Explaining time-table-edge-finding propa-
gation for the cumulative resource constraint. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems (pp.
234-250). Springer Berlin Heidelberg. (2013)

20. Tesch, A. A Nearly Exact Propagation Algorithm for Energetic Reasoning in
O(n2 logn). In International Conference on Principles and Practice of Constraint
Programming (CP 2016) (pp. 493-519). Springer International Publishing. (2016)

21. Vilim, P.: Edge Finding Filtering Algorithm for Discrete Cumulative Resources
in O(kn logn). In Principles and Practice of Constraint Programming - CP 2009
(pp. 802-816). Springer Berlin Heidelberg. (2009)

22. Vilim, P.: Timetable edge finding filtering algorithm for discrete cumulative re-
sources. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (pp. 230-245). Springer Berlin Heidelberg.
(2011)

17

	Lecture Notes in Computer Science
	Introduction
	Previous Work
	Results

	Energetic Edge-Finding
	Energetic Edge-Finding.

	Algorithm
	Decomposition Phase
	Detection Phase
	Update Phase
	Integration of Symmetric Intervals

	Relation to Standard and Extended Edge-Finding
	Improving Propagations by Detectable Precedences
	Computational Results
	Conclusion

