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Merging criteria for defining pores and constrictions in
numerical packing of spheres

Feda Seblany1 · Ulrike Homberg2 · Eric Vincens1 · Paul Winkler3 ·
Karl Josef Witt3

Abstract The void space of granular materials is gen-

erally divided into larger local volumes denoted as pores
and throats connecting pores. The smallest section in
a throat is usually denoted as constriction. A correct

description of pores and constrictions may help to un-
derstand the processes related to the transport of fluid
or fine particles through granular materials, or to build

models of imbibition for unsaturated granular media. In
the case of numerical granular materials involving pack-
ings of spheres, different methods can be used to com-
pute the pore space properties. However, these methods

generally induce an over-segmentation of the pore net-
work and a merging step is usually applied to mitigate
such undesirable artifacts even if a precise delineation

of a pore is somewhat subjective. This study provides a
comparison between different merging criteria for pores
in packing of spheres and a discussion about their im-
plication on both the pore size distribution and the con-

striction size distribution of the material. A correspon-
dence between these merging techniques is eventually
proposed as a guide for the user.

Keywords Delaunay tessellation · Voronöı graph ·
Void space · Granular materials

1 Introduction

A granular medium includes a set of large volumes
of voids between solid particles (pores) connected by
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throats. The narrowest sections in these throats are gen-

erally denoted as constrictions. Pores and constrictions
constitute a partition of the void space helpful to de-
fine respectively its morphology and its topology [28,

45]. Such a partition can also help to build imbibition
models for unsaturated materials [16,23], models for the
coefficient of permeability [7,8] for fluid-calculation, or

geometrical filtration models for studying the migration
of particles through granular media [21,32,34,35].

There are different techniques for pore space char-
acterization: through experiments [15,19,40,42,46], us-
ing analytical approaches [22,29,36] or numerical ap-

proaches [17,26,28]. To overcome some limitations as-
sociated with experimental methods, the Discrete Ele-
ment Method (DEM) (among others [10]) can be help-
ful to draw some main tendencies for packings of spheres

with a given grading and density. The pore space of such
a packing can be extracted by combining the DEM with
spatial partitioning techniques: the Delaunay tessella-

tion [2,28,41] or its dual structure, the Voronöı diagram
[14,30,47] among others.

In the Delaunay tessellation, the primary definition
for a local pore is the Delaunay cell, i.e. a tetrahedron
which vertices are located at the centers of spherical

particles. Constrictions are found on the four faces of
each tetrahedron and a definition for them is chosen as
the largest empty discs that can be inscribed between

the three particle vertices of a tetrahedron face [2,28]
(Fig. 1). Eventually, the inscribed void sphere between
the four particles, vertices of a Delaunay cell is com-
puted and be considered as a characteristic of the mor-

phology of that cell. Obviously, the derived partition of
the void space is somehow artificial since a Delaunay
cell is merely related to the underlying mathematical

process of finding the three closest neighbors of a given
particle to generate a tetrahedron.
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Fig. 1 (a): Tetrahedron built from the centers of four neigh-
boring spheres; (b): Definition of a constriction: the largest
disc included in the void space for a given face

While the Delaunay tetrahedra constitute volumet-
ric entities that cover pores or parts of pores, a Voronöı
graph can complement the definition of the pore struc-
tures. Due to the duality of Delaunay and Voronöı de-

compositions, the Voronöı nodes should correspond to
the centers of the inscribed void spheres of the Delaunay
tetrahedra and their distance to the surrounding solid

spheres to the radius of these inscribed void spheres.
When applying a Voronöı computation that is based
on the Euclidean distance to the solid spheres as de-
scribed by Lindow et al. [20], the edges between the

Voronöı nodes are curved and run along the maximal
distance to the surrounding solid spheres. Then, they
describe the median path joining pore centers. The cen-

ters of constrictions are located where the distance to
the surrounding spheres is minimal along the edge. In
terms of duality, this is where the edges cut the com-

mon facet of the tetrahedra of the connecting Voronöı
nodes and, thus, correspond to the constrictions found
in the Delaunay tessellation (Fig. 2).

Even if the equivalence of results for the constric-
tion size distribution (CSD) extracted from a Delau-

nay tessellation and a Voronöı graph has been proven
in the past for a packing of spheres [44], the question
arises whether an excessive artificial partition of the

void space is generated by both mathematical tech-
niques and how to handle it.

Indeed, using a Delaunay tessellation, Al-Raoush et
al. [2] found that the inscribed void sphere confined in

each tetrahedron is not necessarily entirely included in-
side that tetrahedron, and two inscribed void spheres
attached to these two neighboring tetrahedra may over-
lap. It signifies that the opening size between two adja-

cent tetrahedra may be high enough to indicate a strong
interconnection between them. As a result, the tetrahe-
dral tessellation would tend to abusively subdivide a

complete pore structure into zones.

For the same reason, Homberg et al. [17] considered
that a merge between two adjacent pores may be re-
quired when the size of the constriction linking these

pores is very close to the smallest pore size (case where
the Voronöı approach is used to derive the void space

properties). In fact, in such a case, pores are intercon-

nected and seem to belong to a single entity. Figure 3
illustrates a case where two adjacent pores (hatched
and shaded area) are going to be merged.

Because different techniques may lead to different
pore structures and, as a consequence, to a different set
of pore and constriction sizes, this study aims to bet-
ter understand the implications of using a given tech-

nique for merging pores on the properties of the poral
space in packing of spheres. The problem that arises
here is that no definite poral structure can be derived

for a packing since the boundaries of a so-called pore is
vague by nature. Within these limits, this paper tries
to draw some advantages and limits of two techniques

for merging pores. The influence of the proposed crite-
ria for merging on the pore structures is also addressed
and, as a guide for the user, a correspondence between
the criteria associated to both techniques for merging

pores is given.

2 Generation of numerical samples

The open-source code Yade-DEM [39] was used here
to generate numerical samples composed of spheres. In
this DEM code, the contacts between particles are de-

formable while the particles are considered as infinitely
rigid bodies [10].

Two gradings are studied: a narrowly graded mate-

rial (UG) and a gap-graded material (GG). The former
grading is the one studied in previous studies [28,38],
ranging from 3mm to 12mm as shown in Figure 4a,
with a coefficient of uniformity (Cu) equal to 1.7. The

coefficient of uniformity measures the extent of particle
diameters and is defined as the ratio of the diameter
corresponding to 60% finer by weight to the diameter

corresponding to 10% finer by weight. The latter grad-
ing is the one studied by Reboul et al. [29] and is given
in Figure 4b. The minimum and maximum diameters
(D0 and D100) for this material are respectively equal

to 0.7mm and 10mm, and Cu is equal to 3.6. Since
different techniques for the sample creation may lead
to different structures for the packing [4,31], a deposit

under gravity of particles, which is a technique that
reflects the process used in actual experiments, is pre-
ferred.

To create the sample, a loose cloud of spheres with
a prescribed particle size distribution is initially gener-
ated in a box having a horizontal size equal to that of
the final sample but with a larger vertical size (about

twice as more as the horizontal size). The base of the
box is a square of 40mm width (approximately 4D100).
The lateral boundaries of the box are associated to peri-

odic conditions in order to avoid wall effects in the final
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(a) 
 

(b) 

Fig. 2 Detail of a Voronöı graph (GGD); (a): red spheres at crossing indicate the centers of pores, while the blue spheres
represent the centers of constrictions on the edges; (b): The diameter is color-coded along the edges with yellow (large) to red
(small)

Fig. 3 Scheme of a typical case encountered during pore
merging

samples [1,27]. If a sphere overlaps any other existing
spheres, another position is attributed to this sphere.

After this stage of particle generation, the packing

is subjected to gravity which induces the spheres to fall
freely in the box according to Newton’s laws. Interac-
tions between particles may occur as particles collide.

The process is ended when all particles reach a quasi-
static equilibrium state. The equilibrium is supposed to
have been found when the unbalanced forces (mean re-
sultant forces at contact divided by the mean contact

force over the sample) goes below 0.05.

The contact between particles and that between par-
ticle and the bottom wall of the sample box (this wall is
ruled as a particle with an infinite radius) is character-
ized by an elastic-frictional model. It includes a normal

and a tangential stiffness (respectively Kn and Kt) and
tangential forces are limited by the Coulomb criterion
characterized by a contact friction coefficient (µ).

In this study, particle density is taken equal to the
one of glass beads, and typical values for Kn and Kt

of such materials are chosen. For the specific contacts
between a particle and the bottom wall of the box, the
contact friction coefficient (µ) is set to 0. Dissipation in

the system is introduced by means of a global damping
(α) proportional to the acceleration forces [10].

In the case of UG material, 650 particles have been
used while for GG material, packings with 25000 parti-

cles were generated to obtain representative statistical
data. For each grading, two samples are generated cor-
responding to the loosest state (respectively UGL and

GGL) and to the densest state (respectively UGD and
GGD). The inter-particle friction coefficient is set to 0.3
which is approximately equal to the value obtained by

experimental test on spherical glass beads [3]. The re-
sulting maximum porosities for UGL and GGL match
the targeted values obtained through experiments by
Biarez and Hicher [6], for the same coefficient of unifor-

mity and the same particle aspect ratio of 1 (difference
between the largest dimension and the smallest dimen-
sion of a particle). These authors used the ASTM stan-

dard to determine both the maximum and minimum
porosity of actual granular materials having different
gradings and particle aspect ratios.

The densest state is also obtained by gravitational
deposition as described in [9,12], but with a contact
friction value between particles equal to zero. In fact,

setting the friction to zero is favorable for particle rear-
rangements, which in turn leads to the compaction of
the packing [37,43,49]. The minimum porosity reached

with such process is equal to that obtained previously
by Reboul et al. [28] for the same material (UG) though
the process of creation of this dense sample was differ-
ent. In their work, spheres are initially released under

gravity to create a loose sample and then, the densest
state is obtained by means of shearing cycles with a
contact friction value between particles equal to zero.

It must be noted that such typical DEM densifica-
tion processes lead to density states which are generally
looser than that obtained for actual materials using the

ASTM process [5]. Table 1 and Table 2 summarize the
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Fig. 4 Particle size distribution (ordinate on the left Y-axis) and cumulative particle size distribution (ordinate on the right
Y-axis) for (a): UG material and (b): GG material

set of parameters used to obtain the numerical samples
and their induced final properties.

Since the top and bottom boundaries of the sample
are not periodic, any computation of the poral char-

acteristics of the packing is carried out within a vol-
ume smaller than the total sample volume. While the
vertical lateral limits of this measurement volume cor-

respond to the periodic boundaries. The limits of the
top and bottom volume exclude then a zone of thick-
ness equal to D100 of the granular material. Finally, we
checked that the final volume used for the statistics of

the void space is greater than the Representative Ele-
mentary Volume.

3 Merging techniques for pores

The generated samples will be used as data basis for the
comparison of two different techniques: the overlap of
inscribed void spheres and the degree of the separation

of pores by their constrictions. Both techniques, with-
out any algorithmic restriction, would produce over-
merges in terms of ducts and less interlocked pores.

Thus, the techniques are accompanied by algorithmic
restriction: the overlapping criterion is based on levels
of neighborhood as initially considered by Seblany et
al. [33], while the degree of separation is strengthened

by a hierarchical separation [18]. Both approaches build
data structures from the Delaunay tessellation and the
Voronöı decomposition, respectively, and provide tools

to extract properties such as pore volumes and constric-
tion sizes.

Table 1 Mechanical and numerical parameters for DEM
simulations

Parameter Magnitude

Normal stiffness (Kn) 104 KN/m
Tangential stiffness (Kt) 104 KN/m
Specific weight of spheres (ρ) 2530 Kg/m3

Global damping (α) 0.7
Inter-particle friction (µ) 0.3 (loosest state)

0 (densest state)

Table 2 Characteristics of numerical samples

Material UG GG

Coefficient of uniformity (Cu) 1.7 3.6
D0 - D100 (mm) 3 - 12 0.7 - 10
Number of particles 650 25000
Maximum porosity 0.34 0.38
Minimum porosity 0.25 0.34

3.1 Overlapping inscribed void spheres technique

Once the locations and radii of the solid spheres are

known, a modified (weighted) tetrahedral tessellation
(Delaunay tessellation) of the space is performed [11].

Such a 3D partition induces a specific structure for
the pore space. Indeed, each tetrahedron is herein sup-
posed to represent a local pore associated to four ex-

its. The void volume included in each tetrahedron can
be derived together with other characteristics including
the inscribed void sphere. Then, a statistical study over
the whole sample can be computed for the properties

of the local pores. Accordingly, constrictions defined as
the largest empty discs on the tetrahedron faces can be
obtained and the CSD can be deduced by means of a

statistical study over the sample. All these characteris-
tics are obtained using optimization algorithms (for the
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distance mapping) and more details can be found in [2,
28,29].

The initial calculation of pores and constrictions
corresponds to a level 0 (L0) of analysis as proposed
by Reboul et al. [28]. This direct computation from the

Delaunay tessellation can include configurations where
constrictions are larger than pores (constrictions formed
by non-touching particles on the common face of two
adjacent interlocked pores [13]), and other configura-

tions where two adjacent inscribed void spheres are
almost superimposed (The overlapping of these void
spheres is greater than 99.9999%). Such cases corre-

spond to tetrahedra of undesirable shape (e.g. very flat
tetrahedra). The constrictions resulting from these cases
represent between 10% to 20% of the total number of
constrictions, depending on the grading and on the den-

sity of the material. Thus, a L0 description of the void
space may include some artifacts due to the mathe-
matical process used for the partitioning of the space.

A post-processing of L0 (Level L0
′) guarantees the re-

moval of these degenerated constrictions.

Apart from these cases, the inscribed void spheres
of two adjacent tetrahedra may just partly overlap and
these cases are distinguished from those where the in-

scribed void spheres are completely separated. In the
case of overlapping, a merging of the corresponding ad-
jacent pores is applied (Fig. 5), giving birth to a level 1
(L1) characterization of the void space. First, the tetra-

hedra derived from L0
′ are sorted by increasing order of

their inscribed void sphere, then for each tetrahedron,
the overlap criterion is checked for the four adjacent

tetrahedra. It should be noted here that after merging
two neighboring pores, the process of merging is ended
and didn’t go beyond the direct neighbor.

A level 2 (L2) is also processed where merging is
not only applied to the adjacent local pore but also to

the next adjacent local pore if the inscribed void sphere
of this latter overlaps that of the former pore (Fig. 5).
No further level for merging pores is envisioned since in
that case, the void space will tend to be characterized

in terms of duct.

Fig. 5 Definitions of different merging criteria associated to
the overlapping inscribed void spheres technique

Level 1 and level 2 can be envisioned as criteria

for merging pores in the context of the overlapping
inscribed void sphere technique. This technique and

the proposed criteria hold some advantages and lim-
its. First, even if this technique seems relevant in the
case of packing of spheres where a partition of Delau-
nay can be processed, it may not be able to address the

case of media with elongated particles which may give
rise to more elongated pores than in packing of spheres.
In that case, by nature, few overlapping inscribed void

spheres are expected to be found. In the case of pack-
ing of spheres, the proposed two criteria imply that the
persistence of a pore is limited in distance which can be

both an advantage and a drawback. It implies that a
pore can only be defined at a certain local scale involv-
ing a pore wall composed of maximum eight particles
in the case of L1 or of tens of particles in the case of

L2.

3.2 Pore separation technique

The pore separation technique relies on the elements of
the Voronöı graph that was computed from the spheres
geometry based on the Euclidean distance to the solid

spheres [20]. As described in Section 1, a Voronöı node
P and its respective distance represent a pore and its
size dP in the initial decomposition, and a constriction

C with its respective distance describe the narrowest
location between two adjacent pores along a Voronöı
edge (Fig. 6a).

The separation technique keeps track of this dis-

tance information and builds a hierarchical structure
of these elements that follows the topology of the dis-
tance function. It evaluates the separation of each pair

of pores Pi and Pj by their constriction Cij based on
the relative diameter difference tdiff(Pi,Cij ,Pj) = (dP -
dCij

)/dP with dP = min(dPi
,dPj

) and i 6= j. The value

tdiff will be used to merge neighboring pores according
to the degree of their separation, which is specified by a
user-defined threshold t. This approach was initially de-
veloped for materials with irregular particles and does

not consider sphere overlaps in order to include pairs
within elongated pores.

The hierarchical manner arises from specifying tu-

ples Tij = (Pi,Cij ,Pj ,tdiff(Pi,Cij ,Pj)) that are processed
in a particular order. The approach starts from tuples
of direct neighbors in the unmerged graph (Fig. 6b)

and evaluates them in increasing order of the difference
thresholds. Each step assigns the smaller pore to the
larger one. Hereafter, the neighbor tuples that contain
the newly merged pore will be updated by replacing

this pore by the larger representative one as well as by
re-computing tdiff accordingly.

For example, if dPi
< dPj

, then all neighbor tuples

Tik with k 6= j will be converted to Tjk = (Pj , Cjk, Pk,
tdiff(Pj ,Cjk,Pk)) to be neighbors of Pj . Pi and Cij are
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(a) 
 

(b) 
 

(c) 

Fig. 6 Detail of spheres and Voronöı graph extracted from the GGD sample; (a): Bright spheres at crossings indicate pore
centers, darker spheres indicate constrictions; (b): Unmerged pore centers are randomly colored by their label ID; (c): Merged
pore centers and their connection paths and constrictions will be labeled as belonging together (t = 1%)

labeled on the graph as belonging to Pj (Fig. 6c) and

will be discarded from further considerations. This step
is then repeated until all (newly created) tuples with a
difference threshold tdiff ≤ t have been processed. More
algorithmic details can be found in [18].

The resulting tuples represent hierarchical neigh-
bors rather than direct neighbors, where each pore rep-

resents all hierarchically assigned pores. They not only
treat local information on the separation but also al-
low considering the separation between groups of local
pores that are less significantly separated. The constric-

tion and the difference relation tdiff of such a tuple rep-
resent then the most significant separation criterion be-
tween the two hierarchically neighbored pores. This can

increase their life time as separated pores compared to
the direct neighbor relations and avoids inappropriate
merge propagation.

Voronöı approaches may produce additional pore
centers in the graph that do not correspond to maxima
in the distance function. In such cases, the diameter of

constriction separating two adjacent pores is equal to
that of the smaller pore (t = 0%). This is similar to
what was found with the weighted Delaunay tessella-
tion (see Sect. 3.1). On the graph, such constrictions

are then identical to the smaller pore (two edges in the
center of Fig. 6a), which will be merged at the very
beginning of the hierarchical merge.

4 Pore distributions derived from different

merging criteria

The dual complexes of the Delaunay/Voronöı decom-
position, as already described in Section 1, encode the

elements of the pore space of a sphere packing. Herein,
the Delaunay cells or tetrahedra are the entities that
cover the pores or parts of pores and, thus, the appro-

priate entity to evaluate the pore volumes from both
merging techniques.

4.1 Overlapping inscribed void spheres technique

The computational aspects of Delaunay tessellation in-
volve tetrahedral cells mainly inscribed in the void space,

which are more suitable than the Voronöı cells to char-
acterize and quantify pore volumes [7,24].

As explained previously in Section 3.1, the pore size
can be measured in terms of the largest inscribed void

sphere associated to each tetrahedron but also by con-
sidering the sphere having a volume equal to that of
the void within a Delaunay cell (L0) or within merged
Delaunay cells (L1, L2). This latter method is denoted

in the following equivalent void sphere approach. Using
these two definitions for characterizing the pores, the
distribution of pore sizes, for UG and GG materials,

at loose and dense states, are plotted in Figure 7 and
Figure 8. It is interesting to note that the pore size dis-
tributions can be well described by a Log-Normal law
in agreement with previous studies [28,48]. The corre-

lation is almost perfect for L0 (not shown herein); nev-
ertheless, the statistical model tends to shift the mode
towards larger pore diameters and to attenuate its fre-

quency when L1 and L2 criteria are considered.

For UGL sample, accordingly to the work of Re-
boul et al. [28] on the same grading, the distribution
computed on the basis of the inscribed void spheres
approach has a mode shifted towards the smaller diam-

eters compared to the other distributions obtained by
the equivalent void sphere approach, since this former
approach disregards a part of the void space. Moreover,

the distribution obtained from L1 is quite different than
that corresponding to L0, and a slight decrease in the
modal value is also observed, thus showing that numer-
ous pores around the mode in L0 have been merged

in L1. On the contrary, no significant difference in the
equivalent pore diameter distribution is observed from
L1 to L2 (Fig. 7a). It tends to indicate that within the

framework of this merging technique, the persistence of
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Fig. 7 Probability density functions for the equivalent pore diameter resulting from different definitions and corresponding
to the overlapping inscribed void spheres technique; (a): UGL, (b): UGD
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Fig. 8 Probability density functions for the equivalent pore diameter resulting from different definitions and corresponding
to the overlapping inscribed void spheres technique; (a): GGL, (b): GGD

a pore is mainly limited to an adjacent tetrahedron for
a given Delaunay cell.

For GGL sample, the distribution and the modal
value corresponding to the inscribed void sphere are
only slightly shifted towards the smaller diameters. This
may be a consequence of the wide range of particle

sizes involved in this material, which tends to generate
more flat tetrahedra with inscribed void spheres which
are not entirely confined in these tetrahedra. Conse-

quently, this would create the possibility of greater void
spheres than in the case of UG material, the volume of
which could match the volume of L1 or L2 distribution
(Fig. 8a). It must be noted that other well graded mate-

rials that were studied (not shown herein) also exhibited
this pattern. However, the tetrahedral shape seems to
be the main configuration represented within the sam-

ple, irrespective of the grading and porosity, since the
modal values for L0, L1 and L2 are almost similar. The

same finding was observed by Reboul et al. [28] for UGL
sample.

For the densest states (Fig. 7b and Fig. 8b), as ex-
pected, the equivalent diameter distributions are nar-
rower than those resulting from the loosest state (Fig. 7a

and Fig. 8a); this is also accompanied by a decrease of
the modal values. In fact, during the process of den-
sification, all the pores tend to reduce their volumes

but the larger ones are more sensitive to this process.
Indeed, arching that allows larger pores to be created
in UGL and GGL samples tends to be destroyed due

to the reduction of the local friction ratio during the
process of densification.

Figure 9 shows the number of Delaunay cells per

pore in the case of L1, for UG and GG materials, at
loose and dense states. Irrespective of the porosity and
of the grading, about 50% of Delaunay cells are not

affected by the merging. The tetrahedral shape is then
predominant, while more complex entities involving three
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or four tetrahedra (sharing a common face with a cen-
tral tetrahedron) are poorly represented in the sample.

4.2 Pore separation technique

As outlined previously, the pore separation technique is
based on the pore-constriction size relations extracted

from a Voronöı graph [20]. It computes the Voronöı
nodes by determining their four generator spheres, which
also are the spheres that build the corresponding tetra-
hedra in the Delaunay tessellation.

To measure the pore sizes for the comparison, an
approximated method was applied to each tetrahedron

and its bounding box. A set of quasi-random points
(obtained from a Niederreiter sequence [25]) were spa-
tially distributed within the bounding box. Knowing

the volume of the bounding box, the void volume is
estimated from the number of void points (points lo-
cated inside the tetrahedron but outside the spherical
particles) compared to the number of total points.

The underlying equivalent pore size distributions
are given in Figure 10 for both UGL and GGL samples,

and similar observations can be reported when the in-
scribed void sphere distribution is compared to that de-
rived from L0 (unmerged cells). Additionally, Figure 10
shows the behavior for large thresholds (t = 30%): the

difference between the equivalent pore size distributions
become highly significant. The mode is very shifted
towards the larger diameters. Such a large threshold

merges pore clusters that already had been merged for
smaller thresholds and, thus, massively increases the
corresponding pore size.

4.3 Discussion

A comparison of the pore distributions associated to
different merging criteria is developed in this section. As

expected, the distributions of the inscribed void sphere
diameter provided by the two tessellations of the void
space are identical (Fig. 7a and Fig. 10a; Fig. 8a and

Fig. 10b). The equivalent diameter of pores in the De-
launay cells derived from L0 computation in both ap-
proaches was found quite similar which was also ex-
pected.

A correspondence between different merging criteria
in terms of pore size distribution is given in Table 3 and

Table 4, for respectively UG and GG materials, at loose
and dense states. It can be seen from Table 3 that the
minimum relative errors, for UG material, correspond

to the couple L1 and t = 2% as well as L2 and t = 5%
independently of the density. Similarly, Table 4 shows

Table 3 Relative error (in %) between the pore size distri-
butions derived from different merging criteria for UG

t(%) 1 2 3 4 5 6

UGL
L1 3.9 3.0 3.1 3.8 5.6 8.2
L2 9.0 6.5 4.6 2.5 1.7 2.3

UGD
L1 3.7 2.1 2.2 2.8 4.2 5.5
L2 7.5 5.6 3.9 1.8 1.0 1.2

Table 4 Relative error (in %) between the pore size distri-
butions derived from different merging criteria for GG

t(%) 1 2 3 4 5 6

GGL
L1 2.5 5.5 8.2 11.1 13.7 16.4
L2 5.5 3.4 3.2 5.5 7.8 10.2

GGD
L1 3.5 2.2 3.0 4.7 6.4 8.1
L2 6.3 4.3 3.1 2.2 2.4 4.0

that the equivalent pore distribution corresponding to
L1 is close to that derived from t = 1%, while the equiv-
alent pore distribution derived from L2 is closer to that
resulting from t = 3%. For GGD sample, the minimum

relative error is found at t = 2% (t = 4% respectively)
for L1 (L2 respectively).

For UG material, higher values of t are required to

generate pore distributions similar to those obtained by
the overlapping inscribed void spheres approach. This
discrepancy is most likely caused by the nature of the

pore network of the studied materials. Broadly graded
material, notably at loosest state, more frequently pro-
duce clusters of dense inscribed spheres with large over-
lap, whereas inscribed spheres seem to be more dis-

tant with smaller overlap (higher separation) in the UG
material. Furthermore, within broadly graded material,
several solid spheres may build large voids containing

large clusters of inscribed spheres. Such cases may ex-
ceed the expected maximum size given by the neighbor
levels in the overlapping spheres approach and produce

multiple pore instances within such a void. Late merges
during the separation merge in UG material and under-
estimated volumes in GG during the L1 and L2 merges
most likely lead to the drifting of the L1 - t and L2 - t

correspondences between the UG and GG materials.

Each technique holds its own limits and holds some
advantages. The overlapping inscribed void spheres ap-

proach provides a pre-defined neighborhood limit (L1

and L2) assuming a general maximum pore size at a
meso scale. It may be artificial but seems relevant for

packing of spheres. Nevertheless, in the case of granular
materials with elongated particles, this technique may
not be appropriate since one expects to find elongated
pores with scarce overlapping inscribed void spheres oc-

currences. The separation technique allows tuning the
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Fig. 9 Number of Delaunay cells per pore in L1 for loose and dense states; (a): UG, (b): GG
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Fig. 10 Probability density functions for the equivalent pore diameter resulting from different definitions and corresponding
to the pore separation technique; (a): UGL, (b): GGL

pore structure more easily but the definition of the
threshold is difficult and requires experience. One can

note that this technique is more robust since it can be
used for any granular material with any particle shape
if a voxelization representation of the material (solids
and voids) is available.

5 Constriction size distributions derived from

different merging criteria

For convenience purposes, only the results correspond-
ing to the UGL and GGL samples are presented in this

section, but similar results were also found for UGD
and GGD samples.

5.1 Overlapping inscribed void spheres technique

The CSDs and the estimated probability density of con-

striction sizes for L1 and L2 merging are given in Fig-
ure 11 and Figure 12 for both samples.

First, it has been noted that the number of con-
strictions decreases by approximately 40% from L0 to

L1. In fact, the initial computation (L0) involves non
negligible sets of tetrahedra with overlapping inscribed
void spheres that are merged in L1. About half of them

comes from odd configurations (that were removed in
L0

′ merging as described in Section 3.1), the other half
comes from partly overlapping inscribed void spheres.
Moreover, L2 merging just provides few further merged

pores than L1 which means that such cases are not
significantly present in the packing of spheres. Accord-
ingly, a shift towards smaller constriction sizes is re-

ported when comparing L1 CSD with L0 CSD (Fig. 11a
and Fig. 12a).
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Fig. 11 (a): CSDs for the UGL sample; (b): underlying probability density function for different merging criteria defined in
the overlapping inscribed void spheres technique
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Fig. 12 (a): CSDs for the GGL sample; (b): underlying probability density function for different merging criteria defined in
the overlapping inscribed void spheres technique

Indeed, further merging criteria belonging to L1 were
also studied [33]. In addition to the overlap condition,
these criteria (herein denoted L1(p%), p is the threshold

denoted as t in the pore separation technique) evaluate
the degree of separation between pores (see Sect. 3.2).
The evolution of the relative number of constrictions
corresponding to UG and GG materials, at loose and

dense states, is shown in Figure 13. It can be noted
that the configurations involving a low degree of sepa-
ration (more precisely p ≤ 10%) are more represented

within the samples. Furthermore, the decrease in the
number of remaining constrictions is most significant
in the case of GG material (Fig. 13b) and at loosest

state in general.

Another feature is observed in Figure 11b. Merging
tends to let appear a clear and single mode while van-
ishing a coupled second mode. When merging, the first

mode for the constriction size almost stabilizes irrespec-
tive of the merging level (L1, L2). According to Yang et

al. [48], the first mode corresponds to the constriction
formed by nearly contacting particles while the second
one corresponds to that formed by non-touching par-

ticles. By merging interlocked pores, the constrictions
formed on the common face of the tetrahedra associated
to these pores are eliminated, and consequently, the first
mode becomes more significant. It must be noted that

the CSD, for dense packing, has a strong first mode
and a rather weak second mode since, in this case, the
Delaunay cells are mainly formed by touching particles.

For GGL, the distribution of constriction sizes ex-
hibits also two distinct modes. In contrast to UGL, the
distribution resulting from L1 or L2 remains bimodal

(Fig. 12b). In such a case, the smaller mode which is
approximately not affected by the merging is probably
related to constrictions between fine particles in con-

tact while the large one may include constrictions in-
volving at least one particle of diameter greater than
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Fig. 13 Evolution of the relative number of constrictions for different merging criteria belonging to L1, at loose and dense
states; (a): UG, (b): GG

the gap. Therefore, the second mode is not destroyed
when merging.

Another reason behind can be the large clusters ex-

ceeding the L1 and L2 neighborhood levels in the GG
material as described in Section 4.3. Multiple L1 or L2

instances are created within such a void while keep-

ing relatively large constrictions connecting these in-
stances.

In general, from the initial set of constrictions, irre-

spective of the grading, more than 60% of them corre-
spond to the exits of a single Delaunay cell and about
40% were removed from the statistics by the used merg-
ing criteria, which is significant.

5.2 Pore separation technique

Figure 14 and Figure 15 show the CSDs and the esti-

mated probability density of constriction sizes for re-
spectively UGL and GGL samples. One can note that
the CSDs gradually shift towards the smaller diameters

as the threshold value t increases, and this is accompa-
nied by a progressive decrease in the number of constric-
tions. Small thresholds mainly merge larger constric-

tions between pores within voids, which are bounded
by smaller constrictions that connect these void clus-
ters. The hierarchical approach strengthens the sep-
aration value for the latter ones so that they persist

longer. Large thresholds will also merge these cluster-
connecting constrictions successively so that the de-
duced pore structure is highly affected as shown for

t = 30%, which can certainly be considered as a signif-
icant separation (Fig. 14a and Fig. 15a).

In the case of UGL, the probability density of con-

striction sizes has two modes for L0, and then becomes
unimodal when merging criteria are applied (Fig. 14b).

Besides, the first mode is not affected by the merging
steps for t lower than 5%.

For GGL, the L0 probability density (Fig. 15b) is

similar to that obtained in Figure 12b but the bimodal
character is not as pronounced. However, the distribu-
tions still exhibit a bimodal shape when merging, as

described in Section 5.1.

5.3 Discussion

It has been proven in a previous study involving UGL
sample that the initial L0 CSDs derived from the De-
launay and the Voronöı methods are almost congruent

[44]. Herein, the proof is also given for the studied GGL
sample (Fig. 16) even if it was expected.

The two different merge approaches are based on
completely different techniques: overlapping spheres in
a local manner and the pore separation in a hierarchical
sense. This may lead to different merge behavior.

The overlapping inscribed void spheres approach im-
plies a criterion based on the distance between the cen-

ters of adjacent pores which seems to be more reason-
able according to Al-Raoush et al. [2] where neighbor-
ing pores are merged if the center of an inscribed void
sphere lies within the adjacent inscribed void sphere.

In fact, a statistical study over all tuples (Pi, Cij , Pj)
shows that more than 50% of overlap cases fulfil Al-
Raoush et al. criterion and thus correspond to highly

interconnected pores.

The separation technique evaluates the importance

of the distance maxima and minima along the Voronöı
graph: it fuses local pores that are insignificantly sep-
arated to their next larger pore, then evaluates the re-
maining more important pores among each other build-

ing up a hierarchy. That way, it detects significant con-
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Fig. 14 (a): CSDs for the UGL sample; (b): underlying probability density function of the constriction diameter for different
merging steps associated to the pore separation technique
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Fig. 15 (a): CSDs for the GGL sample; (b): underlying probability density function of the constriction diameter for different
merging steps associated to the pore separation technique
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Fig. 16 Initial CSD derived from Delaunay and Voronöı ap-
proaches for GGL sample

strictions and stops merging there for a given hierarchy
level, which depends on a user-defined threshold.

For each material, the relative error between the
CSDs derived from different merging criteria is calcu-
lated and given in Table 5 and Table 6. For UG mate-

rial, the correspondence between the two merging tech-
niques, previously found for the pore distribution, hold
true for the CSD (L1 and t = 2%; L2 and t = 5%)
(Tab. 5). For GGL sample, Table 6 indicates that the

resulting CSDs provided by L1 and L2 are closer to
those derived from t = 1% and t = 4% respectively.
Furthermore, one can note that, for the densest state,

the CSD associated to L1 and that corresponding to
t = 2% are approximately similar and it seems that a
threshold value of 5% is more suitable to predict L2.

Nevertheless, satisfactory results can be obtained be-
tween t = 1% and t = 2% for L1, and over the range
of 4−6% for L2. More precisely, and irrespectively of
density and grading, a threshold of about 2% (5% re-

spectively) can be considered suitable to predict the
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pore and constriction size distributions corresponding
to L1 (L2 respectively).

Table 5 Relative error (in %) between the CSD derived from
different merging criteria for UG

t(%) 1 2 3 4 5 6

UGL
L1 1.4 1.2 1.7 2.3 3.0 3.7
L2 4.2 3.1 2.4 1.8 1.4 1.5

UGD
L1 2.2 2.0 2.3 3.2 4.0 4.8
L2 4.8 3.5 2.8 2.0 1.7 1.9

Table 6 Relative error (in %) between the CSD derived from
different merging criteria for GG

t(%) 1 2 3 4 5 6
t(%) 1 2 3 4 5 6

GGL
L1 2.1 2.1 2.6 3.0 3.6 4.0
L2 4.6 3.0 1.9 1.5 1.8 2.1

GGD
L1 2.2 0.9 1.0 1.7 2.5 3.4
L2 4.6 2.9 1.7 0.9 0.8 1.5

6 Conclusion

In this paper, different void characteristics in packings
of spheres are derived from a partition of the space.
These characteristics are the distribution of the diam-

eter of the void sphere having a volume equal to that
of the pore, which characterizes the morphology of the
void space, and the constriction size distribution which

characterizes its topology. Since the usual Delaunay
or Voronöı partitions may lead to an artificial over-
segmentation of the pore space, two different techniques
for merging local pores were studied and compared.

These techniques, which lie on the computation of the
inscribed void sphere associated to a local pore, are the
overlapping void spheres technique and the pore sepa-

ration technique.
In the overlapping void spheres approach, two crite-

ria or levels are defined: a level 1 (L1) where two direct

neighboring local pores are merged if their respective
inscribed void spheres are overlapping, and a second
level (L2), where the next neighboring local pores can
also be merged with the two first ones to create a sin-

gle pore in case of further overlapping of void inscribed
spheres. The pore separation technique hierarchically
evaluates the degree of separation indicated by the dis-

tance function of the void space for a given threshold
t. To compare both approaches, different thresholds t

were tested to show the impact of the merging criterion

on the distribution of pore and constriction sizes.
Two materials were studied, one which can be con-

sidered as uniformly graded and another one which is

widely graded but gap-graded, both in a loose or in a
dense state. From a direct computation of pores and
constrictions, L1 merging induces the removal of about
40% of constrictions irrespective of the grading and of

the density. L2 level merging brings fewer new merg-
ing of local pores. In the pore separation technique, the
removal of constrictions is important for small values

of the threshold (t ≤ 1%) irrespective of grading and
density, and the rate of removal of further constrictions
tends to decrease as t increases.

In the case of the uniformly graded material, merg-
ing tends to remove the larger constrictions and lets
appear a clear single mode for the distributions of con-
striction sizes. In the case of the studied gap-graded

material, two close modes are obtained after merging
which is just typical of the studied grading. The same
trend is observed with the pore separation technique

while t is equal or smaller than 5%. For larger thresh-
old values, the constriction size corresponding to the
mode tends to shift to the smaller diameters.

A correspondence is found between the two merging
techniques irrespective of the considered void character-
istics, pores or constrictions, the grading and the den-
sity. L1 merging corresponds to a threshold of about

2% and L2 to a threshold of about 5%. It can serve
as a guide for a user for the definition of pores at a
meso scale even if a definite pore structure cannot be

obtained due to subjective nature of these bodies.
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26. O’Sullivan, C., Bluthé, J., Sejpar, K., Shire, T., Cheung,
L. Y. G.: Contact based void partitioning to assess filtration
properties in DEM simulations. Computers and Geotech-
nics 64, 120–131 (2015)

27. Radjai, F., Voivret, C.: Periodic boundary conditions.
Discrete Numerical Modeling of Granular Materials, 181–
198 (2011)

28. Reboul, N., Vincens, E., Cambou, B.: A statistical anal-
ysis of void size distribution in a simulated narrowly graded
packing of spheres. Granular Matter 10(6),457–468 (2008)

29. Reboul, N., Vincens, E., Cambou, B.: A computational
procedure to assess the distribution of constriction sizes for
an assembly of spheres. Computers and Geotechnics 37(1),
195–206 (2010)

30. Richard, P., Oger, L., Troadec, J. P., Gervois, A.: Tessel-
lation of binary assemblies of spheres. Physica A: Statistical
Mechanics and its Applications 259(1), 205–221 (1998)

31. Roux, J. N., Chevoir, F.: Simulation numérique discrete
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L., Sibille, L., Stránský, J., Thoeni, K.: Yade Documenta-
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