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HOW TO CUT A CAKE ALMOST FAIRLY

SVEN O. KRUMKEl, MAARTEN LIPMAN, WILLEM E. DE PAEPE 2, DIANA POENSGEN?,
JORG RAMBAU ', LEEN STOUGIE?, AND GERHARD J. WOEGINGER

ABSTRACT. In the cake cutting problem > 2 players want to cut a cake into
pieces so that every player gets a “fair” share of the cake by his own measure. We
describe a protocol with — 1 cuts in which each player can enforce to get a share of
atleastl/(2n—2). Moreover we show that no protocol with— 1 cuts can guarantee

a better fraction.

1. INTRODUCTION

Bob and Carol own a cake which they want to split into two parts to be allotted
between them. Carol likes the right side of the cake since it is thicker with frosting
than the left side. Bob is on a diet and does not care much about the frosting, but
still he would like the cherry in the middle of the cake. Moreover Bob likes the nuts,
but they are scattered with concentrations on both the left and right sides, but not
many in the middle. Is there any protocol which enables Bob and Carol to cut the
cake into two pieces such that both will get at least half of the cake by their own
measure? The answer to this question is “Yes”, and there is a quite simple solution due
to Steinhaus [3] from 1948: Bob cuts the cake into two pieces, and Carol chooses her
piece out of the two. Bob is sure to get at least half the cake if he cuts the cake into two
equal pieces by his measure. Carol is sure to get at least half the cake by her measure
by choosing the better half.

In a more general and more mathematical formulation, there atayersl, ..., n
and a cake€’'. Every playep (1 < p < n) has his own measuyg, on the subsets af'.

These measures satigfy(X) > 0forall X C C, andpu,(X)+pp(X') = pp(XUX')
for all disjoint subsetsy, X’ C C. For everyX C C and for everyA with0 < X < 1,
there exists a piec¥’ C X such thafu,(X') = X - u,(X).

A protocolis a step by step interactive procedure that can issue queries to the players

whose answers may affect future decisions. Feasible queries are: “Cut the second

IKonrad-zZuse-Zentrumiii Informationstechnik Berlin, Department Optimization, Takustr. 7, D-
14195 Berlin-Dahlem, Germany. Emaifkrumke,poensgen,rambau  }@zib.de . Research sup-
ported by the German Science Foundation (DFG, grant Gr 883/5-3)

2Department of Technology Management, Technical University of Eindhoven, P. O. Box 513,
5600MB Eindhoven, The Netherlands. Email.e.d.paepe@tm.tue.nl

3Department of Mathematics, Technical University of Eindhoven, P. O. Box 513, 5600MB Eindhoven,
The Netherlands and Centre for Mathematics and Computer Science (CWI), P. O. Box 94704, 1053 GH
Amsterdam, The Netherlands. Emdéen@win.tue.nl . Supported by the TMR Network DONET
of the European Community ERB TMRX-CT98-0202

Hnstitut fir Mathematik, Technische Univer&itGraz, Steyrergasse 30, A-8010 Graz, Austria. Email:
gwoegi@opt.math.tu-graz.ac.at Supported by the START program Y43-MAT of the Austrian
Ministry of Science.

1



3. 0. KRUMKE, M. LIPMAN, W. E. DE PAEPE, D. POENSGENDRG RAMBAU !, L. STOUGIE, AND G. J. WOEGINGER

piece of cake into eight subpieces” or “Choose your favorite three pieces out of these
twenty pieces” or “The third piece is alloted to the first player”. The protocol has
no information on the measures of the players — this is private information. The
protocol cannot ask two players to jointly cut a piece into subpieces; every cut is to
be done by a single player in complete isolation, and without the interaction of other
players. Moreover, if all players obey the protocol then each participant will end up
with a piece after finitely many steps. gtrategyof a player is an adaptive sequence

of moves consistent with the protocol. For a real numbeavith 0 < g < 1, ag-
strategyof a player is a strategy that will guarantee him at least a fra¢tiofthe cake
according to his own measure, independently of the play of the athet players. A
protocol is calleds-fair, if every player has @-strategy. A protocol forn players is
calledperfectly fair, if every player has %—strategy. A protocol fon players is called
frugal, if it only usesn — 1 cuts; note that no protocol can do with a smaller number
of cuts, since: pieces are to be produced.

Even & Paz [2] show that fon > 3 players, there does not exist a perfectly fair
protocol that does only, — 1 cuts. Moreover, [2] describe a perfectly fair protocol
for n > 3 players that uses onlylog, n cuts. Tighter results are known for small
values ofn: Forn = 2 players, the Steinhaus protocol yields a perfectly fair protocol
with a single cut. Fon = 3 andn = 4 players, Even & Paz [2] presents perfectly
fair protocols that make at mostcuts. Webb [4] presents a perfectly fair protocol for
n = 5 players with6 cuts, and he shows that no perfectly fair protocol exists that uses
only 5 cuts. For more information on this problem and on other variants, we refer the
reader to the book by Brams & Taylor [1].

In this paper we are interested in frugal protocolsifgrlayers. What is the largest
value 3, for which there exists g-fair frugal protocol forn = 3 players? The result
of Even & Paz [2] mentioned above implies thiak % We will show that in fact the
best possible value fgt¥ is i. This is a special case of our main theorem:

Theorem 1.1. For n > 2 players, there exists &/(2n — 2)-fair frugal protocol for
cake cutting. Moreover, there does not exigt-&air frugal protocol for cake cutting
with 3 > 1/(2n — 2).

A conseqguence of our main theorem is that usingr more cuts in a protocol can
buy us at most a factor @fin the fairness.

2. PROOF OF THE UPPER BOUND

In this section, we prove the positive statement in Theorem 1.1. We now define
a recursive protocol that in certain terminal steps will have to divide a single piece
among a single player. In such a case witk= 1, the whole cake& is alloted to this
player. Fom > 2 players, we use the following protocol.

(S1): The first player cuts the cake into a left pig€g and a right piec€'r.

(S2): Setxy = 1. Forp = 2,...,n the playerp chooses an integer, with
0<zp <n.

(S3): The players are divided into two non-empty groupsnd R, such that
x, > |L| holds for every playep € L and such that,, < |L| holds for every
playerp € R.
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(S4): The players inL recursively share the left piegg@;. The players inR
recursively share the right piec€es.

We first argue that step (S3) of the protocol indeed can be implemented.

Lemma 2.1. Letn > 2, and letY be a multi-set of: integers from0, n] with 1 € Y.
Then there exists a partition of into two non-empty multi-sets and R such that
¢>|L|forany? e L, andr < |L|foranyr € R.

Proof. Lety; > yo > --- > v, be an enumeration of the elementsinSincel € Y,
we havey, = 1 ory, = 0 and therefore;,, < n. Moreover,1 € Y impliesy; > 1.
Let £ be the smallest index witly, < k. By the preceding observatioBs< k£ < n.
Theny,_1 > k — 1 andy, < k — 1, and the multi-setd, = {y; : i < k—1} and
R ={y;: 1>k} give the desired partition df, with |L| = k — 1. O

Lemma 2.2. For n > 2 players, the above protocol is/(2n — 2)-fair. For a single
player, the above protocol isfair.

Proof. The statement will be proved by induction on the numbeaf players. The
statement for = 1 is trivial.

We first describe the winning strategies for the playensth 2 < p < n. The only
decision made by this player is the choice of the integen step (S2). We claim that

0 if (2n —2)pp(CL) < pp(C)
Tp=4n if (2n —2)u,(Cr) > (2n — 3)pp(C)
[(n— 1) 1p(CL)/1p(C)]  otherwise
is a good choice for him. Consider the case where in step (S3) the protocol assigns
playerp to the groupL. Sincex,, > |L| > 1 holds,z, = 0 is not possible in this case.
This yieldsy, (C) < (2n — 2)u,(Cr). If |L| = 1, thenp will receive the whole piece
C'r, that has measure at least(C)/(2n — 2). If |L| > 2 andz, < n,, then playep
by induction may enforce to receive a piece of measure at least

m(Cr) o mp(Cr) o #p(Cr) _ m(C)
21L1 =27 22y =2 7 2(n = Dp(Cr)/1p(C)  2n =2

Finally, if |[L| > 2 andz, = n, then playep by induction may enforce to receive at

least
pip(CL) > pp(CL) > pp(C)
21L| -2~ 2n—4 — 2n—2’
Next consider the case where the protocol assigns paieR. Sincel < |R| =
n— |L| < n —zp, z, = nis not possible in this case. This yiel@®: — 2),(Cr) <
(2n — 3)u,y(C). If |R| = 1, thenp will receive the whole piec€'r that has measure

p(C) = 1(C) — () 2 1)

If |R| > 2, andz, > 0, then playep by induction can force to get a piece of measure
at least

1p(Cr) > tp(Cr) > pp(C) — pp(Cr) _ pp(C)
2RI —2 " 2n—2x,—2 ~ 2n—2(n— 1)up(Cy) /pp(C) =2 2n—2°
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Finally if |[R| > 2 andz, = 0, then playep by induction can enforce to get at least

1(Cr) _ p(Cr) - 1p(C)
2JR| -2~ 2n—4 ~ 2n -2’
To summarize, in all possible cases playeran get at least a fractiary (2n — 2) of
pp(C).

Finally, we describe a winning strategy for the first player. The only decision made
by this player is how to cut the cake in Step (S1). We claim that cutting the cake such
thatu (Cr) = 11 (C)/(2n —2) is a good choice for him. If the first player is assigned
to groupL, he is the only player i, and gets the whole piecg; of measure at least
u1(C)/(2n — 2). If the first player is assigned to grout) he share€’r with at most
n — 2 other players. By induction, he can enforce to get a piece of measure at least

m(Cr) _ (2n=3)m(C)/(2n-2) _ m(C)

2n —4 2n — 3 2n — 2
This completes the proof of Lemma 2.2, and it also completes the proof of the positive
statement in Theorem 1.1. O

3. PROOF OF THE LOWER BOUND

In this section, we prove the negative statement in Theorem 1.1. Suppose for the
sake of contradiction that for some real numpBer 1/(2n — 2), there exists @-fair
protocol forn players that uses only — 1 cuts. We investigate the situation where
all players behave according to their winnifiestrategies. Without loss of generality
we normalize the measures such thatC') = 1 holds for all playerg. Whenever a
pieceX is cut into two pieces{;, and X r, we fix the measures,(X1) andu,(Xgr)
for all players as follows:

e For the cuttep, his winning strategy fully determings,(X1,) and,(Xg).
o If 11,(X1) > pp(XRg), then for every playeg # p we fix

pg(Xr) = min{1/(n — 1), g (X)}

and

Ha(XR) = j1g(X) = 1g(X1).
If 1p(Xr) < pp(Xg), then forg # p we fix py(Xg) = min{l/(n —
1), ug(X)} andpg(Xr) = pg(X) — pg(Xr).
A piece X of the cake isdangerousif 1,(X) < 1/(n — 1) holds for all playere
except at most one. A piece is safeif it is not dangerous. By the above fixing of the
measureg,,(X1,) andyu,(Xr), at least one of the pieces;, and X is dangerous.

Lemma 3.1. Assume that at some moment in time, the protocol orders platgecut
some pieceX of the cake. If the protocol i8-fair, then X must be a safe piece.

Proof. Suppose thak is a dangerous piece, and Jéf, and X  be the two new pieces
that result fromp’s 3-strategy. First consider the case wheggX) < 1/(n — 1).
Assume without loss of generality that(X.) > p,(Xg) and henceu,(Xg) <
1/(2n — 2). Then for every playeq # p, the cut of playep may yield,(Xr) = 0
andyuq(Xr) = pe(X). But then the measure of is less or equal ta/(2n — 2) for
all players. AsX is unacceptable to all players, that is a contradiction.
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Next consider the case wheng(X) > 1/(n — 1). SinceX is a dangerous piece,
1q(X) < 1/(n — 1) holds for every playeg # p. In this case the cut of playgrmay
yield 14(X1) < 1/(2n —2) andp,(Xr) < 1/(2n — 2) for every playeg # p. Since
at least one ofX;, and Xy (or a subpiece of them) must go to a playe# p, this
playerq cannot avoid getting a piece of measure at mgé2n — 2) although he was
following his g-strategy. That is again a contradiction. O

Lemma 3.2. If the measures are fixed as described above, then at any moment in time
there is at most one safe piece.

Proof. In the beginning, the cak€ is the only safe piece. By Lemma 3.1, every cut
must subdivide a safe piece. By our fixing of the measures, at least one of the two
resulting pieces will be dangerous and at most one will be safe. O

Lemma 3.3. If after k£ uts with0 < k& < n — 2 there still exists a safe pieck, then
pp(X) < (n—k—1)/(n— 1) holds for all playersp.

Proof. The proof is by induction ork. For k = 0, there is nothing to show since
up(C) = 1 for all playersp. So assume that the statement holds dfter 1 cuts,
and that playep does thekth cut and thereby produces the piecés and Xz with
wp(X1) > pp(Xr). ThenXy, will be dangerous, and onl  might be safe. By the
inductive hypothesis, for the cuttgiwe have
1 1 n—k—-2 n—-k-1

pp(XR) < §'MP(X) < S — < o1

By the fixing of the measures, for every playef p we have

1g(Xr) = 1g(X) — min{1/(n — 1), 114(X)} = max{0, 114(X) — 1/(n — 1)}
The casg,(Xr) = Oisfine. And ifu,(Xr) = pq(X)—1/(n—1), then the inductive
hypothesis implieg,,(X) < (n —k —1)/(n — 1). 0

Now we are ready for the final contradiction: After-2 cuts have been made, there
aren — 1 pieces of cake. By Lemma 3.2 at most one of these pieces is safe. Suppose
that X is a safe piece. Then by Lemma 3.3 it must satigfyX) < 1/(n — 1) for all
playersp; but this exactly means tha is dangerous. Consequently all- 1 pieces
are dangerous, and by Lemma 3.1 the protocol has no possibility for making the final
cut. This contradiction completes the proof of the negative statement in Theorem 1.1.
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