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HOW TO CUT A CAKE ALMOST FAIRLY

SVEN O. KRUMKE 1, MAARTEN LIPMAN, WILLEM E. DE PAEPE 2, DIANA POENSGEN1,
JÖRG RAMBAU 1, LEEN STOUGIE3, AND GERHARD J. WOEGINGER

ABSTRACT. In the cake cutting problem,n ≥ 2 players want to cut a cake inton
pieces so that every player gets a “fair” share of the cake by his own measure. We
describe a protocol withn− 1 cuts in which each player can enforce to get a share of
at least1/(2n−2). Moreover we show that no protocol withn−1 cuts can guarantee
a better fraction.

1. INTRODUCTION

Bob and Carol own a cake which they want to split into two parts to be allotted
between them. Carol likes the right side of the cake since it is thicker with frosting
than the left side. Bob is on a diet and does not care much about the frosting, but
still he would like the cherry in the middle of the cake. Moreover Bob likes the nuts,
but they are scattered with concentrations on both the left and right sides, but not
many in the middle. Is there any protocol which enables Bob and Carol to cut the
cake into two pieces such that both will get at least half of the cake by their own
measure? The answer to this question is “Yes”, and there is a quite simple solution due
to Steinhaus [3] from 1948: Bob cuts the cake into two pieces, and Carol chooses her
piece out of the two. Bob is sure to get at least half the cake if he cuts the cake into two
equal pieces by his measure. Carol is sure to get at least half the cake by her measure
by choosing the better half.

In a more general and more mathematical formulation, there aren players1, . . . , n
and a cakeC. Every playerp (1 ≤ p ≤ n) has his own measureµp on the subsets ofC.
These measures satisfyµp(X) ≥ 0 for all X ⊆ C, andµp(X)+µp(X ′) = µp(X∪X ′)
for all disjoint subsetsX,X ′ ⊆ C. For everyX ⊆ C and for everyλ with 0 ≤ λ ≤ 1,
there exists a pieceX ′ ⊆ X such thatµp(X ′) = λ · µp(X).

A protocolis a step by step interactive procedure that can issue queries to the players
whose answers may affect future decisions. Feasible queries are: “Cut the second
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piece of cake into eight subpieces” or “Choose your favorite three pieces out of these
twenty pieces” or “The third piece is alloted to the first player”. The protocol has
no information on the measuresµp of the players – this is private information. The
protocol cannot ask two players to jointly cut a piece into subpieces; every cut is to
be done by a single player in complete isolation, and without the interaction of other
players. Moreover, if all players obey the protocol then each participant will end up
with a piece after finitely many steps. Astrategyof a player is an adaptive sequence
of moves consistent with the protocol. For a real numberβ with 0 ≤ β ≤ 1, a β-
strategyof a player is a strategy that will guarantee him at least a fractionβ of the cake
according to his own measure, independently of the play of the othern− 1 players. A
protocol is calledβ-fair, if every player has aβ-strategy. A protocol forn players is
calledperfectly fair, if every player has a1n -strategy. A protocol forn players is called
frugal, if it only usesn − 1 cuts; note that no protocol can do with a smaller number
of cuts, sincen pieces are to be produced.

Even & Paz [2] show that forn ≥ 3 players, there does not exist a perfectly fair
protocol that does onlyn − 1 cuts. Moreover, [2] describe a perfectly fair protocol
for n ≥ 3 players that uses onlyn log2 n cuts. Tighter results are known for small
values ofn: For n = 2 players, the Steinhaus protocol yields a perfectly fair protocol
with a single cut. Forn = 3 andn = 4 players, Even & Paz [2] presents perfectly
fair protocols that make at mostn cuts. Webb [4] presents a perfectly fair protocol for
n = 5 players with6 cuts, and he shows that no perfectly fair protocol exists that uses
only 5 cuts. For more information on this problem and on other variants, we refer the
reader to the book by Brams & Taylor [1].

In this paper we are interested in frugal protocols forn players. What is the largest
valueβ, for which there exists aβ-fair frugal protocol forn = 3 players? The result
of Even & Paz [2] mentioned above implies thatβ < 1

3 . We will show that in fact the
best possible value forβ is 1

4 . This is a special case of our main theorem:

Theorem 1.1. For n ≥ 2 players, there exists a1/(2n − 2)-fair frugal protocol for
cake cutting. Moreover, there does not exist aβ-fair frugal protocol for cake cutting
with β > 1/(2n− 2).

A consequence of our main theorem is that usingn or more cuts in a protocol can
buy us at most a factor of2 in the fairness.

2. PROOF OF THE UPPER BOUND

In this section, we prove the positive statement in Theorem 1.1. We now define
a recursive protocol that in certain terminal steps will have to divide a single piece
among a single player. In such a case withn = 1, the whole cakeC is alloted to this
player. Forn ≥ 2 players, we use the following protocol.

(S1): The first player cuts the cake into a left pieceCL and a right pieceCR.
(S2): Setx1 = 1. For p = 2, . . . , n the playerp chooses an integerxp with

0 ≤ xp ≤ n.
(S3): The players are divided into two non-empty groupsL andR, such that

xp ≥ |L| holds for every playerp ∈ L and such thatxp ≤ |L| holds for every
playerp ∈ R.
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(S4): The players inL recursively share the left pieceCL. The players inR
recursively share the right pieceCR.

We first argue that step (S3) of the protocol indeed can be implemented.

Lemma 2.1. Letn ≥ 2, and letY be a multi-set ofn integers from[0, n] with 1 ∈ Y .
Then there exists a partition ofY into two non-empty multi-setsL and R such that
` ≥ |L| for any` ∈ L, andr ≤ |L| for anyr ∈ R.

Proof. Let y1 ≥ y2 ≥ · · · ≥ yn be an enumeration of the elements inY . Since1 ∈ Y ,
we haveyn = 1 or yn = 0 and thereforeyn < n. Moreover,1 ∈ Y impliesy1 ≥ 1.
Let k be the smallest index withyk < k. By the preceding observations2 ≤ k ≤ n.
Thenyk−1 ≥ k − 1 andyk ≤ k − 1, and the multi-setsL = { yi : i ≤ k − 1 } and
R = { yi : i ≥ k } give the desired partition ofY , with |L| = k − 1. 2

Lemma 2.2. For n ≥ 2 players, the above protocol is1/(2n − 2)-fair. For a single
player, the above protocol is1-fair.

Proof. The statement will be proved by induction on the numbern of players. The
statement forn = 1 is trivial.

We first describe the winning strategies for the playersp with 2 ≤ p ≤ n. The only
decision made by this player is the choice of the integerxp in step (S2). We claim that

xp =





0 if (2n− 2)µp(CL) < µp(C)
n if (2n− 2)µp(CL) > (2n− 3)µp(C)
d(n− 1) · µp(CL)/µp(C)e otherwise

is a good choice for him. Consider the case where in step (S3) the protocol assigns
playerp to the groupL. Sincexp ≥ |L| ≥ 1 holds,xp = 0 is not possible in this case.
This yieldsµp(C) ≤ (2n− 2)µp(CL). If |L| = 1, thenp will receive the whole piece
CL that has measure at leastµp(C)/(2n − 2). If |L| ≥ 2 andxp < n,, then playerp
by induction may enforce to receive a piece of measure at least

µp(CL)
2|L| − 2

≥ µp(CL)
2xp − 2

≥ µp(CL)
2(n− 1)µp(CL)/µp(C)

=
µp(C)
2n− 2

.

Finally, if |L| ≥ 2 andxp = n, then playerp by induction may enforce to receive at
least

µp(CL)
2|L| − 2

≥ µp(CL)
2n− 4

≥ µp(C)
2n− 2

.

Next consider the case where the protocol assigns playerp to R. Since1 ≤ |R| =
n− |L| ≤ n− xp, xp = n is not possible in this case. This yields(2n− 2)µp(CL) ≤
(2n− 3)µp(C). If |R| = 1, thenp will receive the whole pieceCR that has measure

µp(CR) = µp(C)− µp(CL) ≥ µp(C)
2n− 2

.

If |R| ≥ 2, andxp > 0, then playerp by induction can force to get a piece of measure
at least

µp(CR)
2|R| − 2

≥ µp(CR)
2n− 2xp − 2

≥ µp(C)− µp(CL)
2n− 2(n− 1)µp(Cl)/µp(C)− 2

=
µp(C)
2n− 2

.
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Finally if |R| ≥ 2 andxp = 0, then playerp by induction can enforce to get at least

µp(CR)
2|R| − 2

≥ µp(CR)
2n− 4

≥ µp(C)
2n− 2

.

To summarize, in all possible cases playerp can get at least a fraction1/(2n − 2) of
µp(C).

Finally, we describe a winning strategy for the first player. The only decision made
by this player is how to cut the cake in Step (S1). We claim that cutting the cake such
thatµ1(CL) = µ1(C)/(2n− 2) is a good choice for him. If the first player is assigned
to groupL, he is the only player inL and gets the whole pieceCL of measure at least
µ1(C)/(2n− 2). If the first player is assigned to groupR, he sharesCR with at most
n− 2 other players. By induction, he can enforce to get a piece of measure at least

µ1(CR)
2n− 4

=
(2n− 3)µ1(C)/(2n− 2)

2n− 3
>

µ1(C)
2n− 2

.

This completes the proof of Lemma 2.2, and it also completes the proof of the positive
statement in Theorem 1.1. 2

3. PROOF OF THE LOWER BOUND

In this section, we prove the negative statement in Theorem 1.1. Suppose for the
sake of contradiction that for some real numberβ > 1/(2n− 2), there exists aβ-fair
protocol forn players that uses onlyn − 1 cuts. We investigate the situation where
all players behave according to their winningβ-strategies. Without loss of generality
we normalize the measures such thatµp(C) = 1 holds for all playersp. Whenever a
pieceX is cut into two piecesXL andXR, we fix the measuresµp(XL) andµp(XR)
for all players as follows:

• For the cutterp, his winning strategy fully determinesµp(XL) andµp(XR).
• If µp(XL) ≥ µp(XR), then for every playerq 6= p we fix

µq(XL) = min{1/(n− 1), µq(X)}
and

µq(XR) = µq(X)− µq(XL).

If µp(XL) ≤ µp(XR), then for q 6= p we fix µq(XR) = min{1/(n −
1), µq(X)} andµq(XL) = µq(X)− µq(XR).

A pieceX of the cake isdangerous, if µp(X) ≤ 1/(n − 1) holds for all playersp
except at most one. A pieceX is safeif it is not dangerous. By the above fixing of the
measuresµq(XL) andµq(XR), at least one of the piecesXL andXR is dangerous.

Lemma 3.1. Assume that at some moment in time, the protocol orders playerp to cut
some pieceX of the cake. If the protocol isβ-fair, thenX must be a safe piece.

Proof. Suppose thatX is a dangerous piece, and letXL andXR be the two new pieces
that result fromp’s β-strategy. First consider the case whereµp(X) ≤ 1/(n − 1).
Assume without loss of generality thatµp(XL) ≥ µp(XR) and henceµp(XR) ≤
1/(2n − 2). Then for every playerq 6= p, the cut of playerp may yieldµq(XR) = 0
andµq(XL) = µq(X). But then the measure ofXR is less or equal to1/(2n− 2) for
all players. AsXR is unacceptable to all players, that is a contradiction.
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Next consider the case whereµp(X) ≥ 1/(n − 1). SinceX is a dangerous piece,
µq(X) ≤ 1/(n− 1) holds for every playerq 6= p. In this case the cut of playerp may
yield µq(XL) ≤ 1/(2n− 2) andµq(XR) ≤ 1/(2n− 2) for every playerq 6= p. Since
at least one ofXL andXR (or a subpiece of them) must go to a playerq 6= p, this
playerq cannot avoid getting a piece of measure at most1/(2n − 2) although he was
following hisβ-strategy. That is again a contradiction. 2

Lemma 3.2. If the measures are fixed as described above, then at any moment in time
there is at most one safe piece.

Proof. In the beginning, the cakeC is the only safe piece. By Lemma 3.1, every cut
must subdivide a safe piece. By our fixing of the measures, at least one of the two
resulting pieces will be dangerous and at most one will be safe. 2

Lemma 3.3. If after k uts with0 ≤ k ≤ n − 2 there still exists a safe pieceX, then
µp(X) ≤ (n− k − 1)/(n− 1) holds for all playersp.

Proof. The proof is by induction onk. For k = 0, there is nothing to show since
µp(C) = 1 for all playersp. So assume that the statement holds afterk − 1 cuts,
and that playerp does thekth cut and thereby produces the piecesXL andXR with
µp(XL) ≥ µp(XR). ThenXL will be dangerous, and onlyXR might be safe. By the
inductive hypothesis, for the cutterp we have

µp(XR) ≤ 1
2
· µp(X) ≤ 1

2
· n− k − 2

n− 1
≤ n− k − 1

n− 1
.

By the fixing of the measures, for every playerq 6= p we have

µq(XR) = µq(X)−min{1/(n− 1), µq(X)} = max{0, µq(X)− 1/(n− 1)}.
The caseµq(XR) = 0 is fine. And ifµq(XR) = µq(X)−1/(n−1), then the inductive
hypothesis impliesµq(X) ≤ (n− k − 1)/(n− 1). 2

Now we are ready for the final contradiction: Aftern−2 cuts have been made, there
aren − 1 pieces of cake. By Lemma 3.2 at most one of these pieces is safe. Suppose
thatX is a safe piece. Then by Lemma 3.3 it must satisfyµp(X) ≤ 1/(n− 1) for all
playersp; but this exactly means thatX is dangerous. Consequently alln − 1 pieces
are dangerous, and by Lemma 3.1 the protocol has no possibility for making the final
cut. This contradiction completes the proof of the negative statement in Theorem 1.1.
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