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Piecewise Polynomial Taylor Expansions – The
Generalization of Faà di Bruno’s Formula

Tom Streubel and Caren Tischendorf and Andreas Griewank

Abstract We present an extension of Taylor’s theorem towards nonsmooth evalua-
tion procedures incorporating absolute value operaions. Evaluations procedures are
computer programs of mathematical functions in closed form expression and al-
low a different treatment of smooth operations and calls to the absolute value value
function. The well known classical Theorem of Taylor defines polynomial approx-
imation of sufficiently smooth functions and is widely used for the derivation and
analysis of numerical integrators for systems of ordinary differential or differential
algebraic equations, for the construction of solvers for the continuous nonlinear op-
timization of finite dimensional objective functions and for root solving of nonlinear
systems of equations. The herein provided proof is construtive and allow efficiently
designed algorithms for the execution and computation of generalized piecewise
polynomial expansions. As a demonstration we will derive a k-step method on the
basis of polynomial interpolation and the proposed generalized expansions.

Key words: generalized Taylor expansion, implicit generation of splines, nons-
mooth integration of differential algebraic equations (DAE and ODE), multistep
methods, generalized hermite interpolation, algorithmic piecewise differentiation
(AD and APD), evaluation procedures, treating absolute values (abs, max and min)
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1 Introduction, Preliminaries and Notions

In [6] a piecewise linear generalization of first order Taylor expansions as alterna-
tive but also related to Bouligand-subdifferentials has been introduced and analized
in detail. Furthermore several efficient approaches for numerical integration, root
solving and optimization have been propsed. The concept originally evolved among
many researchers from several countries with different backgrounds and from dif-
ferent areas within the field of applied mathematics to solve practical nonsmooth
problems arising from industry, finance and economy. Many subsequent papers have
been published, e.g. regarding numerical integration [10], [1], [22], root solving
[11], [9], [21], [19], [18], [2] and optimization [8], [12], [5], [4], [14], [3]. All of
them deal with the construction of new methods, their analysis and/or promising
numerical experiments. This work derives and proves the existence of higher order
piecewise polynomial expansions of certain non-smooth functions. In the spirit of
[6] this works continuous and extends the original concept. The first order expansion
in our sense coincides with the algorithmic piecewise linearization. In advance we
will derive a class of higher order k-step mehods based on the generalized Taylor ex-
pansion as a demonstration. Even though possible applications could be formulated
and presented for all areas mentioned above we will focus on the simulation of non-
smooth differential algebraic equations. For the purpose of introducing new notions
we will firstly formulate the classical Theorem of Taylor before its generalization.

Lemma 1 (Theorem of Taylor). Let f ∈ C d,1(Rn,R) be a sufficiently smooth func-
tion, x̊∈Rn a reference point and ∆x = x− x̊∈Rn an offset in the domain of f. Then
the following recursive statement holds true:

∀1≤ m≤ d : f(x̊+∆x)− f(x̊) =
m

∑
i=1

∆
(i)f(x̊;∆x)+O(‖∆x‖m+1), (1)

where ∆ (i)f(x̊;∆x)=∑
max
|δ |=i

[
∂ δ

∂xδ

f(x̊)
δ !

]
·∆xδ is the sum of all mixed partial derivatives

of order i in direction ∆x.

The Theorem of Taylor defines polynomial approximations of sufficiently smooth
functions. However many practical problems and most algorithms are not smooth
everywhere. Instead evaluations of

max(a,b) = (a+b+ abs(b−a))/2 and
min(a,b) = (a+b− abs(b−a))/2

or of the absolute value function are necessary. With this in mind consider some
piecewise smooth function f :Rn→R in the sense of [20] that doesn’t necessarily
satisfy the prerequisites of theorem 1. We then call an ordered family of d ≥ 1
Lipschitz-continuous functions f ≡ [ f (x̊),∆ (1) f (x̊;∆), . . . ,∆ (d) f (x̊;∆)] a general-
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ized Taylor expansion of order d of f on a nonempty open set D ⊆Rn if f satisfies
statement (1) for any x̊ ∈D and any ∆x ∈D− x̊ anyway.

The ith element ∆ (i) f (x̊;∆x) of f is called increment of order i. Of course incre-
ments can’t be defined via partial derivatives of f in general, since they might not
exist. For the sake of convenience we define ∆ (0) f (x̊;∆x)≡ f (x̊) as point evaluation
and we’ll use the notational abbreviation ∆ (i) f ≡ ∆ (i) f (x̊;∆x) when the arguments
are clear within the context. We will give algorithmic schemes for the evaluation of
generalized Taylor expanions of piecewise smooth computer programs and proof the
claimed approximation quality (1) for them. We will refer the computer programs as
composite piecewise smooth evaluation procedures or short evaluation procedures.
The next sections are organized as follows. In section 2 the concept of compos-
ite piecewise smooth evaluation procedures will be introduced and a propagation
scheme for the algorithmic evaluation of their generalized Taylor expansions will
be provided. In the subsequent section 3 the formula of Faà di Bruno will be proven
in the context of this generalization. In section 4 a integrator for differential alge-
braic equations in semi explicit fashion will be derived on the basis of the proposed
generlazied Taylor expansions. The derived method is closely related to linear k-step
methods such as Adams-Moulton (sometimes refered to as implicit Adams) or BDF
methods (see e.g. [13]).

2 Propagation-Scheme of Expansions for Non-Smooth
Evaluation Procedures

In this section an algorithm for the point evaluations of the generalized Taylor ex-
pansions will be provided. An evaluation procedure is a finite composition of so
called unary ϕ : R→R and binary ψ : R2→R elementary operations, which are
aggregated as a library Φabs = Φ ∪{abs} in their symbolic form and thus make up
the atomic constituents of complex and possibly vector-valued functions. Despite
the absolute value function as the only exception any other elementary operation
has to be at least d-times Lipschitz-continuously differentiable. This assumption is
called elementary differentiability (ED). This means any evaluation procedure con-
sisting solely of operations from Φ , which excludes the absolute value function,
inherit their order d differentiability by chain rule. In our framework any unary op-
eration complying to (ED) can be added to Φ by the user. But for the time being
we want to restrict the selection of binary operations to {+,−, ·,/}, this is sum,
difference, product and division. The dependencies among operations within some
evaluation procedure define a partial ordering which is called data dependence rela-
tion. This relation corresponds to a directed acyclic graph or evaluation graph of the
procedure.
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Example 1 (evaluation procedure, elementary code instruction, evaluation graph).

Consider the following example evaluation proce-
dure:

fex(x0,x1,x2) = x2 + x1 + |sin(x1 + |3 · x0|)|

Ex 1.a – closed form expression

which maps R3 to R. The acyclic directed evalua-
tion graph is depicted below and is not an expression
tree due to the 2 arcs leaving node x1. Each node
defines a subgraph by the closure of its dependen-
cies and thus can be interpreted as partial evaluation
function fex up to this node within the full graph.

v0 ≡ x0
z0 = v1 ≡ 3 · v0

v2 = abs(z0)
v3 ≡ x1
v4 ≡ v3 + v2

z1 = v5 ≡ sin(v4)
v6 ≡ abs(z1)
v7 ≡ v3 + v6
v8 ≡ x2
v9 ≡ v8 + v7

fex(x0,x1,x2) ≡ v9

Ex 1.b – elementary
instructions

x0

x1

x2

·3 abs

+

sin abs

+

+ fex

Ex 1.c – evaluation graph

Furthermore the closed form expression corresponds uniquely to an ordered list of
elementary instructions. The total order match one possible extension of the par-
tial dependency order. The left-hand-sides (LHS) within the elementary code in-
structions are intermediate variables of fex. Those of them which are arguments
of absolute value operations deserve special attention because their signs might be
flipped during an evaluation for example. They will be refered as switching vari-
ables throughout the text.

So any evaluation procedure within our scope can be expressed as ordered lists of
elementary instructions and a data dependence relation denoted by ≺ and thus any
intermediate variable vi for some interger i ∈ N matches either one of the cases
described by table 1. Variable initialisations vi ≡ x j can be interpreted as indentity
operation vi = id(x j) applied to some scalar-component x j of the input variable
vector to fit into the scheme of table 1. We will use the notion f ∈ span(Φabs )
whenever a function f : Rn → Rm has at least one representation as evaluation
procedure of elementary operations from Φabs .

Many properties and its computation of evaluation procedures can be carried out by
induction through the elementary instructions w.r.t. its dependency odering. This
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vi ≡ ϕ(ui), ϕ ∈Φ1 where ui = v j and j ≺ i
vi ≡ ψ(ui,wi), ψ ∈ {+,−, ·,/} where ui = v j,wi = vk and ( j,k)≺ i
vi ≡ abs(zi) where zi = v j and j ≺ i

Table 1 generic table for elementary instructions and Φ1 ⊆ Φ being the sub-library of all unary
operations ϕ : R→R that comply to assumption (ED)

process is called propagtion. For instance the Lipshitz-continuity of all elemen-
tary operations and repetitive application of the chain-rule implies the Lipschitz-
continuity of all evaluation procedures f ∈ span(Φabs ) by propagation.

With the concept of propagation at hand we can implicitly define more complex
processes and algorithms by imposing propagation rules to all occuring cases of
table 1. For the application of operator overlaoding we will extend the interpretation
of intermediate variables. From now on they consist of a scalar intermediate value
v̊i = vi(x̊0, x̊1, . . . , x̊n−1)∈R and an ordered list [∆ (0)vi,∆

(1)vi, . . . ,∆
(d)vi]∈Rd+1 of

increments representing the point evaluation of the generalized Taylor expansion of
the of the partial evaluation function up to vi within its evaluation procedure. The
propagation rules for the primal evaluation and for the exapnsions are defined as
follows:

variable and constant initialization
Let γ, x̊,∆x ∈ R and consider v = x as well as ṽ = γ , then the propagation rules
are defined as follows:

v(x̊) = x̊, ∆
(1)v = ∆x and ∀2≤ m≤ d : ∆

(m)v = 0,

ṽ(x̊) = γ, ∀1≤ m≤ d : ∆
(m)ṽ = 0.

sum, difference and linearity
Let α,β ∈ R, x̊,∆x ∈ Rn and u,w two other intermediate variables. Consider
v = α ·u±β ·w, then v(x̊) = α · ů±β · ẘ and the increment propagation is:

∀1≤ m≤ d : ∆
(m)v = α ·∆ (m)u±β ·∆ (m)w.

product
Let u,w be some intermediate variables, x̊,∆x ∈Rn and consider v = u ·w, then
the primal evaluation is v(x̊) = ů · ẘ and the increment operation is given by:

∀1≤ m≤ d : ∆
(m)v =

m

∑
i=0

∆
(i)u ·∆ (m−i)w

division
Let u,w be some intermediate variables, x̊,∆x ∈Rn and consider v = u

w , then the
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primal evaluation is v(x̊) = ů
ẘ and the increment operation reads as follows:

∀1≤ m≤ d : ∆
(m)v =

1
ẘ

[
∆
(m)u−

m−1

∑
i=0

∆
(i)v ·∆ (m−i)w

]

smooth unary operation
Let u be some intermediate variable, x̊,∆x ∈Rn and consider v = ϕ(u) for some
elementary operation ϕ ∈Φ1 complying with assumption (ED). The primal eval-
uation is carried by the execution of the symbolic instruction v(x̊) = ϕ(ů).

The formula of Faà die Bruno can be utilized for the formal definition of the
propagation step:

∀1≤ m≤ d : ∆
(m)v = ∑

(k1,...,km)∈Tm

ϕ
(k1+...+km)(ů) ·

m

∏
i=1

1
ki!
·∆ (i)uki , (2)

where (k1, . . . ,km) ∈ Tm ⇐⇒ o(k1, . . . ,km)≡ ∑
m
i=1 i · ki = m and ϕ(k1+...+km) the

(k1 + . . .+ km)th derivative of ϕ .

But note that for the propagation of frequently used functions (such as sin, cos,
exp, log, . . . and other smooth operations from the standard cmath-library of
c++) specialized formulas have been developed for the smooth algorithmic prop-
agation of Taylor polynomial expansions. These formulas can be found e.g. in [7]
or in [17] and are more efficient w.r.t. run-time and memory. Furthermore they
are equivalent to the application of (2), but still need to be slightly adjusted in
accordance to the incremental notion we use here.

So far the propagation rules fully comply with standard Taylor arithmetics. Thus the
generalized Taylor expansion becomes a polynomial Taylor expansion in the sense
of definition 1 for evaluation procedures f ∈ span(Φ) = span(Φabs \ {abs}) that
fully comply with assumption (ED) in that all elementary instructions of f do. But
now the absolute value operation is finally the last addition to our listing and the
seed for nonsmoothness in evaluation procedures.

absolute value
Let u be some intermediate variable and consider v = abs(u), then v(x̊) = |ů| and
the propagation rule is defined recursively:

∀1≤ m≤ d :
m

∑
i=0

∆
(i)v =

∣∣∣∣∣ m

∑
i=0

∆
(i)u

∣∣∣∣∣ =⇒ ∆
(m)v≡

∣∣∣∣∣ m

∑
i=0

∆
(i)u

∣∣∣∣∣−m−1

∑
i=0

∆
(i)v.

We want to conclude this section with an example expansion of some nonsmooth
evaluation procedure.

Example 2. Consider a nonlinear, nonsmooth evaluation procedure F ∈ span(Φabs ),
with F (x,y) = |exp(x)−|y||. There are 3 sets of non-differentiabilities:
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M0 = {(x,exp(x)) | x ∈R}, M1 = {(x,−exp(x)) | x ∈R} and M2 = {(x,0) | x ∈R}.

Plots of the function F and of its generalized expansions T
(i)

F ranging from order
1 (or piecewise linearization) up to order 5 can be found in figure 1.

x
−4−3 −2 −1 0 1 2

y
−3−2

−10
1 2

3

z

0
2
4
6

F(x,y)

x
−4−3 −2 −1 0 1 2

y
−3−2

−10
1 2

3

z

0
1
2
3
4
5
6

T
(1)
F
(x,y)

x
−4−3 −2 −1 0 1 2

y
−3−2

−10
1 2

3

z

0
1
2
3
4

T
(2)
F
(x,y)

x
−4−3 −2 −1 0 1 2

y
−3−2

−10
1 2

3

z

0
2
4
6
8

T
(3)
F
(x,y)

x
−4−3 −2 −1 0 1 2

y
−3−2

−10
1 2

3

z

01
23
45
6

T
(4)
F
(x,y)

x
−4−3 −2 −1 0 1 2

y
−3−2

−10
1 2

3

z

01
23
45
6

T
(5)
F
(x,y)

y= 0 y= exp(x) −y= exp(x) y= 0 y= T
(1)
exp(x) −y= T

(1)
exp(x)

y= 0 y= T
(2)
exp(x) −y= T

(2)
exp(x) y= 0 y= T

(3)
exp(x) −y= T

(3)
exp(x)

y= 0 y= T
(4)
exp(x) −y= T

(4)
exp(x) y= 0 y= T

(5)
exp(x) −y= T

(5)
exp(x)

Fig. 1 plots of F an its expansions T
(i)

F ranging from order 1 to order 5

The solid and dashed lines in figure 1 in the x-y-planes are Taylor polynomial ex-
pansions of y =±exp(x) and y = 0. The manifolds of non-differentiabilities of the
generalized expansions coincide with those of the polynomial expansions.

3 The Generalization of Taylor’s Theorem

In this section we will prove that the propagation rules given in section 2 generate
an approximating expansion in the sense of equation (1). Due to the concept of
propagation introduced in the same section we only have to give a proof for any
elementary instruction of table 1.
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However most of the binary operations can be represented in terms of unary opera-
tions. The propagation by linear combinations v = α ·u±β ·w, for u,w intermediate
variables with generalized Taylor expansions (induction hypothesis) and α,β ∈ R
combines the sum v= u+w, the difference v= u−w and unary scalar multiplication
v = α ·u into one rule. The scalar multiplication alike the variable and constant ini-
tialization can be proven straight forward. The difference can be expressed in terms
of a sum followed by a scalar multiplication by −1 as v = u+w = u+((−1) ·w).

For the sum v = u+w we can deduce from the generalized expansions of u and w:

∀1≤ m≤ d : v(x̊+∆x)− v̊ = u(x̊+∆x)− ů+w(x̊+∆x)− ẘ

=

[
m

∑
i=1

∆
(i)u+O(‖∆x‖m+1)

]
+

[
m

∑
i=1

∆
(i)w+O(‖∆x‖m+1)

]

=
m

∑
i=1

∆
(i)v+2O(‖∆x‖m+1), where ∆

(i)v = ∆
(i)u+∆

(i)w

The division can be expressed in terms of a multiplication and an univariate inver-
sion inv(w) = w−1 as v = u

w = u · inv(w).

The multiplication can be represented by the so called Apollonius identity:

v = u ·w =
1
4
[(u+w)2− (u−w)2]

an by that we’ve discussed any binary operation already. For the absolute value we
can also immediately deduce:

∀1≤ m≤ d : v(x̊+∆x) = |u(x̊+∆x)|

=

∣∣∣∣∣u(x̊)+ m

∑
i=1

∆
(i)u+O(‖∆x‖m+1)

∣∣∣∣∣=
∣∣∣∣∣u(x̊)+ m

∑
i=1

∆
(i)u

∣∣∣∣∣+O(‖∆x‖m+1)

= v(x̊)+
m

∑
i=1

∆
(i)v+O(‖∆x‖m+1), where ∆

(i)v =

∣∣∣∣∣ i

∑
j=0

∆
( j)u

∣∣∣∣∣− i−1

∑
j=0

∆
( j)v

Finally unary operations are left. Corresponding to the propagation rules defined
in section 2 it is sufficient to prove that Faà di Bruno’s formula still applies in the
context of piecewise polynomial expansions. To that end the following identity will
be useful and is carried out by applying the multinomial expansion twice. Suppose
values a1,a2, . . . ,ai,b ∈R and let A≡ ∑

i
j=1 a j, then
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i

∑
j=1

a j +b

)i

= (A+b)i =
i

∑
l=0

(
i
l

)
Albi−l =

i

∑
l=0

(
i
l

)[ i

∑
j=1

a j

]l

bi−l

=
i

∑
l=0

i!
l!

[
∑

k1+···+ki=l

(
l

(k1, . . . ,ki)

) i

∏
j=1

a
k j
j

]
bi−l

(i− l)!

=
i

∑
l=0

i!

 ∑
k1+···+ki=l

i

∏
j=1

a
k j
j

k j!

 bi−l

(i− l)!
. (3)

Theorem 1 (formula of Faà di Bruno).
Let u be some intermediate variable with a generalized Taylor expansion at x̊ ∈Rn,
i.e. there is and an ordered list (∆ (i)u(x̊;∆x))d

i=0 of Lipschitz-continuous functions:

u : {ů≡ ∆
(0)u, [∆ (1)u,∆ (2)u, . . . ,∆ (d)u]}

that satisfies the following statement (which is identical to equation (1)):

∀1≤ m≤ d : u(x̊+∆x)− ů =
m

∑
i=1

∆
(i)u(x̊;∆x)+O(‖∆x‖m+1). (4)

Furthermore let ϕ ∈ Φ1 be some unary function ϕ : R→ R, which complies to
assumption (ED), i.e. it is d-times Lipschitz-continuously differentiable. Note that ϕ

has a polynomial Taylor expansion:

ϕ(µ) = ϕ(µ̊)+
m

∑
i=1

ϕ(i)(µ̊)

i!
(µ− µ̊)i +O(‖µ− µ̊‖m+1).

Then the composition v = ϕ(u) has a generalized Taylor expansion, i.e. an ordered
list of Lipschitz-continuous functions generated by the formula of Faà di Bruno:

∀1≤ m≤ d : ∆
(m)v(x̊;∆x) = ∑

(k1,...,km)∈Tm

ϕ
(k1+...+km)(ů) ·

m

∏
i=1

1
ki!
·∆ (i)uki ,

such that the same statement holds true for v:

∀1≤ m≤ d : v(x̊+∆x)− v(x̊) =
m

∑
i=1

∆
(i)v(x̊;∆x)+O(‖∆x‖m+1). (5)

Proof. This proof is similar to a proof of the polynomial of Faà di Bruno’s formula
and can be found as Theorem 2.3 in [16].

Let 1≤ m≤ d, due to the sufficient differentiability of ϕ ∈Φ1 a Taylor polynomial
expansion ofϕ exists. Also u is assumed to have a generalized Taylor expansion,
i.e.:
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ϕ(µ) = ϕ(µ̊)+
m

∑
i=1

ϕ(i)(µ̊)

i!
(µ− µ̊)i +O(‖µ− µ̊‖m+1), (6)

as well as: u(x̊+∆x) = u(x̊)+
m

∑
i=1

∆
(i)u(x̊;∆x)+O(‖∆x‖m+1). (7)

By choosing µ ≡ u(x̊+∆x) and µ̊ = ů equation (7) can be substituted into (6):

ϕ(u(x̊+∆x))−ϕ(ů)

=
m

∑
i=1

ϕ(i)(ů)
i!

[
m

∑
k=1

∆
(k)u+O(‖∆x‖m+1)

]i

+O(‖u(x̊+∆x)− ů‖m+1) (8)

and applying identity (3) to equation (8) the latter extends to:

=
m

∑
i=1

ϕ
(i)(ů)

[
i

∑
l=0

(
∑

k1+···+ki=l

i

∏
j=1

∆ ( j)uk j

k j!

)
O(‖∆x‖m+1)i−l

(i− l)!

]
+O(‖∆x‖m+1). (9)

Consider the term within outer brackets in line (9) closer for which we can deduce:

∀l < i :

(
∑

k1+···+ki=l

i

∏
j=1

∆ ( j)uk j

k j!

)
O(‖∆x‖m+1)i−l

(i− l)!
= O(‖∆x‖m+1) (10)

since for the summands within the round brackets in line (10) holds true:

o(k1, . . . ,ki)≡
i

∑
j=1

j · k j ≥ m+1 =⇒
i

∏
j=1

∆ ( j)uk j

k j!
= O(‖∆x‖m+1).

The last deduction is a consequence of equation (4). and so equation (9) becomes:

ϕ(u(x̊+∆x))−ϕ(ů) =
m

∑
i=1

∑
o(k1,...,ki)≤m
k1+···+ki=i

ϕ
(i)(ů)

i

∏
j=1

∆ ( j)uk j

k j!
+O(‖∆x‖m+1) (11)

=
m

∑
i=1

∑
(k1,...,ki)∈Ti

ϕ
(k1+···+ki)(ů)

i

∏
j=1

∆ ( j)uk j

k j!
+O(‖∆x‖m+1) (12)

=
m

∑
i=1

∆
(i)[ϕ ◦u](x̊;∆x)+O(‖∆x‖m+1) (13)

For the transformations from line (11) to (12) so following identities have been used:

k1 + · · ·+ ki = i =⇒ o(k1, . . . ,ki)≥ i

o(k1, . . . ,ki) = i+1 =⇒ (k1, . . . ,ki,0) ∈ Ti+1.

All together the recursive property (5) holds true for the composition v = ϕ(u)



Generalization of Taylor Expansions and Faà di Bruno’s Formula 11

∀m≤ n : ϕ(u(x̊+∆x))−ϕ(ů) =
m

∑
i=1

∆
(i)[ϕ ◦u](x̊;∆x)+O(‖∆x‖m+1)

and this completes the proof. ut

4 A Generalized Integrator for Semi Explicit DAEs

In this section an implicit k-step integration method for differential equations will be
derived, using a combined approach of polynomial interpolation similar to Adams-
Multon methods and generalized Taylor expansions. First of all a definition of the
problem is required and thus we define semi explicit systems of differential algebraic
equations similar as in [15].
Definition 2 (partially nonsmooth semi explicit DAE). A semi explicit system of
differential algebraic equations with potentially nonsmooth differential equations
(DAE) is a system of equations of the form:

ẋ1(t)≡ d
dt x1(t) = f1(x1(t),x2(t), t), (14a)

0 = f2(x1(t),x2(t), t), (14b)

where x1 : [0,T ]→ Rn, x2 : [0,T ]→ Rm, f1 : Rn×Rm× [0,T ]→ Rn the system
function of differential equations (14a) and f2 : Rn×Rm× [0,T ]→Rm the system
function of algebraic equations (14b), for some time horizon T > 0. In advance let
f1 ∈ span(Φabs ) be a nonsmooth evaluation procedure and f2 ∈ C 1,1 at least once
Lipschitz-continuously differentiable.

Systems such as (14) are mostly not symbolically solvable or the symbolic solution
formulas are numerically unstable or the algebraic transformations are very expen-
sive to carry out computationally. E.g. one approach is the inital transformation of
a DAE into a system of ordinary differentiable equations. This can be achieved e.g.
by a sequential series of differentiations. However symbolic differentiations usually
extends the number of symbolic operations of the original algebraic representation
exponentially in the number of differentiations necessary (for further details see
[7]). Algorithmic differentiation derives functions exactly within machine precision
of a computer system and the costs of calculating a directional derivative is bounded
linearly by the costs of one single primal function evaluation (for further details see
also [7]).

Instead a numeric approximation approach is an alternative. The goal is to generate
a table of data points

t0 = 0 t1 = h . . . ti = i ·h . . . tϑ = ϑ ·h
(x0

1,x
0
2) (x1

1,x
1
2) . . . (xi

1,x
i
2) . . . (xϑ

1 ,x
ϑ
2 )
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where 0 < h� T and ϑ ∈ N such that (ϑ − 1) · h < T ≤ ϑ · h. The first pair is
assumed to be a consistent initial value in that it satisfies x0

1 = x1(0) and x0
2 = x2(0)

for some analytical solution x1 : [0,T ]→Rn, x2 : [0,T ]→Rm of system (14). Any
other data point 1 ≤ i ≤ m is an approximation xi

1 ≈ x1(ti) and xi
2 ≈ x2(ti) of the

same solution. However interpolation polynomials of order k ∈N in Newton base
representation can be used to interpolate the data on each subinterval [i ·h,(i+1) ·h]
for k ≤ i < ϑ :

pl (ti; t)≡
k

∑
j=0

∇
( j)
k xl

j!

j

∏
m=0

(t− ti−m),

where l ∈ {1,2} and ∇( j) the backward finite difference operator defined as:

∇
(0)
i xl ≡ xi

l , ∇
( j)
i xl ≡

∇
( j−1)
i xl−∇

( j−1)
i−1 xl

h
.

Using the constant time-discretization scheme and polynomial interpolation con-
sider the integrated differential equations of system (14) on the same subinterval:∫ h

0
ẋ1(ti + t)dt = h

∫ 1

0
f1(x1(ti +hτ),x2(ti +hτ), ti +hτ)dτ

≈ h
∫ 1

0
f1(p1(ti+1; ti +hτ), p2(ti+1; ti +hτ), ti +hτ)dτ.

Henceforth we use an alias y(τ) ≡ f1(p1(ti+1; ti + hτ), p2(ti+1; ti + hτ), ti + hτ).
Clearly yi ∈ span(Φabs ) since f1, p1 and p2 do so as well and thus we can apply
a generalized Taylor expansion:

∫ h

0
ẋ1(ti + t)dt = x1(ti +h)− x1(ti)≈ h

∫ 1

0
y(1)+

k

∑
m=1

∆
(m)y(h;τ)dτ.

The generalized Taylor expansion defines piecewise polynomial approximations of
f1, which can be integrated exactly within machiene precision. This motivates the
pseudo-algorithm 1 for a single numerical integration step. Let x̌1 ≡ xi

1 and x̌2 ≡
xi

2 the pseudo-algorithm 1 calculates the first iterates x̂( j)
1 and x̂( j)

2 of a converging
sequence towards xi+1

1 and xi+1
2 .

Pseudo-Algorithm 1 (generalized order k+1 combined Newton-Taylor method).

• guess a starting value (x̂(0)1 , x̂(0)2 ) ∈Rn+m, e.g. with some other predictor method

• iterate over j = 0,1,2, . . . and terminate at J ∈N when ‖x̂(J)l − x̂(J−1)
l ‖< toll , for

both l ∈ {1,2}, is met:

– generate interpolation polynomials l ∈ {1,2} : p( j)
l of x̂( j)

l , x̌l ,xi−1
l , . . . ,xi−k

l

– define y j(τ)≡ f1(p( j)
1 (ti+1; ti +hτ), p( j)

2 (ti+1; ti +hτ), ti +hτ)
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– calculate generalized quadrature1: b j ≡ h
∫ 1

0 ∑
k
m=1 ∆ (m)y j(h;τ)dτ

– calculate next iterate (x̂( j+1)
1 , x̂( j+1)

2 ) ∈Rn+m as result of:

solve
x̂( j+1)
1 ∈Rn

x̂( j+1)
2 ∈Rm

[
x̂( j+1)

1 − x̌1−h · f1(x̂
( j+1)
1 , x̂( j+1)

2 , ti+1)

f2(x̂
( j+1)
1 , x̂( j+1)

2 , ti+1)

]
=

[
b j
0

]

• set xi+1
1 ≡ x̂(J)1 , xi+1

2 ≡ x̂(J)2 and the numerical integration step is finished.

If the generalized expansion will be replaced by a Taylor polynomial expansion in
the sense of definition 1, pseudo-algorithm 1 turns into a linear k-step method in the
classical sense as defined e.g. in [13]. The same happens whenever f1 ∈ span(Φ) =
span(Φabs \ {abs}) is satisfying assumption (ED), since the generalized and the
Taylor polynomial expansion coincide for such functions. On the othjer hand when
the generalized quadrature rule will be substituted by the simplified rule b j ≡ 0
in every step, pseudo-algorithm 1 transforms into the well-known implicit Euler
method which is of order 1.

The following conjecture guesses the consistency error for the differential variables
x1 based on observations from different numerical experiments and thus remains
unproven for the time being.

Conjecture 1 (error of the generalized order k+1 combined Newton-Taylor method).
Consider some DAE in the sense of definition 2. Suppose there is an analytical so-
lution of that system in terms of functions x1 : [0,T ]→Rn and x2 : [0,T ]→Rm on
the time interval [0,T ]. Then the consistency error of pseudo-algorithm 1 is:

x1(ti+1)− x1(ti)−h · f (i+1)
1 = h

[∫ 1

0

k

∑
j=1

∆
( j)ỹi(h;τ)dτ

]
+O(|h|γ),

where ỹi(τ)≡ f1(p̃1(ti+1; ti +hτ), p̃2(ti+1; ti +hτ), ti +hτ),

f (i+1)
1 ≡ f1(x1(ti+1),x2(ti+1), ti+1)

and p̃l are polynomial interpolations of exact data xl(ti+1),xl(ti), . . . ,xl(ti−k), for
both components l ∈ {1,2}.

The order of the consistency error is γ = min(ν + 2,k + 2), where 0 ≤ ν ≤ ∞ is
the largest integer or infinity such that yi ∈ C ν ,1([0,1],Rn) and f2 ∈ C ν ,1(Rn ×
Rm× [0,T ],Rm). Thus ν is the degree of smoothness of f1 ∈ span(φabs ) inherited
by yi ∈ span(φabs ) and of f2. Note k is still the order of interpolation by Newton
polynomials and the genrealized Taylor expansion.

1 where b j = h
∫ 1

0 y j(1)+∑
k
m=1 ∆ (m)y j(h;τ)dτ−h f (x̂( j)

1 , x̂( j)
2 , ti+1) holds true
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5 Conclusion & Outlook

We’ve derived and presented a Taylor expansion in terms of piecewise polynomi-
als for piecewise smooth functions incorporating absolute value operations in their
evaluations graph. In advance we’ve proven the residuum to be of O(‖x− x̊‖d+1),
where x is the point of evaluation, x̊ the reference point of expansion and d a user
definable order, assuming certain parts of the underlying evaluations procedure to
be sufficiently smooth. Applications in optimization, root solving and numerical in-
tegration are possible and their derivation and analysis seem to be logical next steps.
The presented expansion concept allows the generalization of already existing meth-
ods in such a way that the original functionality remains unchanged for elementary
differentiable objective functions or systems. A generalized integration method for
semi explicit DAEs based on Newton interpolations generalized Taylor expansions
was derived for the purpose of demonstration. One concrete next step is the exten-
sion of the presented method for semi explicit DAEs with non-smooth algebraic
equations f2 ∈ span(Φabs ) which was excluded from our considerations so far. Fur-
thermore the Newton polynomial interpolation can and should be replaced by some
generalized Hermite interpolation scheme. This would also relax the expected order
of the consistency error from cenjecture 1. Of course the conjecture itself need to be
proven as well.

As mentioned in the last paragraph the underlying concept can be adapted for the
propagation of Hermite interpolations through an evaluation graph of some non-
smooth function f . By doing so we can calculate higher order approximations in
one or several reference points x̊0, x̊1, · · · ∈ Rn satisfying f (x)−H f [x̊0, . . . ](x) =
O(‖x− x̊0‖θ0 · ‖x− x̊1‖θ1 . . .), where the exponents θ0,θ1, . . . are natural numbers
and H denotes such a generalized Hermite interpolation of f .

Another possible starting point is the generalization of the multivariate formula of
Faà di Bruno. The restriction onto mostly unary elementary operations would no
longer be necessary and allows the generalized Taylor expansion of multivariate
functions f : Rn→Rn in a so called Abs-Normal Form (ANF):[

z
f (x)

]
=

[
G(x, |z|)
F(x, |z|)

]
,

where the functions F : Rn+s → Rn and G : Rn+s → Rs are assumed to be suf-
ficiently smooth and the partial derivative matrix ∂

∂ |z|G(x, |z|) is of strictly lower
triangular form, everywhere. The latter condition allows the explicit computation of
all the switching variables z = (zi)

s−1
i=0 one by one. More precisely F and G may be

black-box functions and not necessarily evaluations procedures in that context. I.e.
providing arbitrarily designed computation routines for the point evaluation of F , G
and their Taylor polynomial expansions would be sufficient, because the propaga-
tion process can be applied on a higher abstractation level by taking components of
them as new elementary operations.
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