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Abstract

Computational drug design studies molecular recognition in the vir-

tual lab. The arising Hamiltonian dynamics is known to be chaotic and
ill-conditioned already after picoseconds (= 10−12 seconds), whereas
times of pharmaceutical interest are in the milliseconds (= 10−3 sec-
onds) up to minutes. Classical molecular dynamics with long term
trajectory computation gives, at best, information about time and
statistical ensemble averages. The present paper surveys a recent new
modelling approach called conformational dynamics, which is due to
Deuflhard and Schütte. This approach achieves information about the
dynamics on longer time scales by telescoping a short term determin-
istic model with a statistical model. Examples of small biomolecules
are included.
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Introduction

The design of pharmaceuticals, briefly called drug design, is a pyramidal
multistage process, from a broad basis to an extremely narrow tip:

• molecular recognition studies

• intracellular impact studies

• physiological investigations

• animal experiments

• clinical tests

• market introduction

The basis level “molecular recognition studies”, in turn, consists of two parts:
studies in the chemical lab and studies in the virtual lab by means of the
computer, often named as computational drug design. The impact of this
rather new scientific field cannot be overestimated: The cost of identifying
a marketable drug out of a huge set of promising chemical substances is
commonly estimated as 500 million Euro. If, at the basis level, the number
of promising drug candidates could be halved, then the cost per successful
marketable pharmaceutical would also roughly be halved, not to mention the
reduction of “time to market”.

In computational biotechnology, algorithms from discrete mathematics or
computer science already play a publicly visible role – for example, multiple
alignment in the decoding of the human genome. These approaches primarily
aim at a clarification of the geometric form of molecular systems. In view
of the biological function, however, the dynamics of molecular systems need
to be studied in detail. Here the situation is characterized by the fact that
real times of pharmaceutical interest are in the region of msec up to min,
whereas simulation times are presently in the region of psec up to nsec with
fsec timesteps. Therefore some computational scientists advocate that the
available computer power is the essential limiting factor for gaining insight
into the dynamics of molecular systems.

Even though the dynamics of molecules is well recognized in its importance,
its mathematical treatment seems to be still at an early phase of involve-
ment. Up to now, classical numerical analysis essentially only enters via
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fast multipole methods (see Greengard and Rokhlin [?]) or via symplectic
discretizations (cf. Sanz-Serna et al. [?]). However, the computation of
molecular dynamics has a mathematical limitation, even stricter than the
limitation by computer power: the arising trajectories are Hamiltonian and
as such chaotic. Consequently, the traditional trajectory simulations give, at
best, only information about time averages. Under some ergodic hypothesis,
often carelessly a priori assumed, these averages are equivalent to statistical
ensemble averages. Therefore an investigation of the dynamics of molecular
systems over the time scales of interest will require a different mathematical
approach.

In recent years the present author and Ch. Schütte have created some new
mathematical model based on concepts of nonlinear dynamics (for early pa-
pers see, e.g., [?, ?, ?, ?]). This approach, now called conformational dynam-
ics, will be worked out here together with its algorithmic implications and
its scientific perspectives.

1 Classical Molecular Dynamics

In classical molecular dynamics the simplifying assumption is made that the
motion of atoms and molecules can be described by Newtonian differential
equations just as in classical mechanics, replacing mechanical potentials by
special molecular potentials. Such an assumption obviously ignores the role
of quantum mechanics, which actually provides the correct physical frame-
work for these microscopic processes. Some part of the quantum-mechanical
effects, at least, are introduced into the classical formalism via a parametriza-
tion of the potentials.

Hamiltonian differential equations. Let N atoms of a molecular system
be specified in terms of their spatial coordinates (position variables) qj ∈ R

3,
j = 1, . . . , N , and their corresponding N generalized moments (momenta
variables) pj ∈ R

3. Then the Hamilton function H has the form

H(q, p) =
1

2
pT M−1p + V (q).

The first, quadratic term, involving the symmetric, positive definite mass
matrix M , is the kinetic energy, the second term is the potential energy or
just potential, which is often highly nonlinear in the molecular context. From
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given H, the Hamiltonian differential equations are defined as

q′i =
∂H

∂pi

, p′i = −∂H

∂qi

, i = 1, . . . , N.

Of course, the quality of any molecular dynamics calculation is strongly de-
pendent on the quality of the available potential data (we mostly use MMFF
due to [?]). These potentials have the general form

V (q) =
∑
k,l

Vbond(qk, ql) +
∑
k,l,j

Vangle(qk, ql, qj)

+
∑

k,l,j,m

Vout−of−plane(qk, ql, qj, qm) +
∑

k,l,j,m

Vdihedral(qk, ql, qj, qm)

+
∑
k,l

VLennard−Jones(qk, ql) +
∑
k,l

VCoulomb(qk, ql)

or, in abbreviation,

V = VB + VA + VT + VLJ + VQ ,

where VB describes the bond deformation, VA the angle deformation, VT the
torsion angle deformation (two parts), VLJ the van-der-Waals interaction in
terms of the Lennard-Jones potential, and VQ the electrostatic interaction in
terms of Coulomb forces between charges Q.

The numerical solution of the initial value problem for these differential equa-
tions first requires the selection of an efficient nonstiff discretization scheme
– consult, e.g., the specialized textbook of Sanz-Serna [?] or Section 4.3.4 in
the more recent textbook [?, ?]. In the context of numerical integration an
efficient evaluation of the right sides is needed. The above potential terms
VB, VA, VT , and VLJ contribute a cost of order O(N) operations. The direct
evaluation of the long-range Coulomb potential VQ appears to require O(N2)
operations and hence constitutes a problem of its own, at least for realistic
molecules. An efficient algorithm requiring only O(N) operations is the fast
multipole method of L. Greengard and V. Rokhlin [?].

In order to speed up the numerical computations, T. Schlick and followers
suggested to skip the adaptive control of the numerical integrators and just
run them with step sizes at the border of stability of the numerical schemes.
Such an approach has an interpretation only in terms of some sampling based
on the ergodic theorem – see, e.g., [?].
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Condition of molecular initial value problems. Formally speaking, the
above solution of the initial value problem is unique, which can be written
in terms of the flow Φ as

x(t) = (q(t), p(t)) = Φtx0 .

For the purpose of numerical analysis, we additionally have to study the
corresponding condition number κ, which characterizes the sensitivity of the
unique solution under perturbation of the initial values. By virtue of first
order perturbation theory such a quantity can be defined as (cf. Section 3.1.2
in [?, ?])

‖δx(t)‖≤̇κ(t)‖δx0‖ , κ(t) = ‖∂Φt/∂x0‖ .

As already discovered by H. Poincaré, Hamiltonian systems are chaotic. In
general mathematical terms, this means a characterization of the asymptotic
behavior – in the present notation κ(∞) = ∞. In the context of numerical
analysis, this means that an ever so slight perturbation of the initial values
will induce a resulting perturbed trajectory deviating markedly from the
unperturbed trajectory after some characteristic critical time. The question
is: How long is that “critical time”? Detailed examination shows that for
the subclass of integrable Hamiltonian systems (such as the popular Kepler
problem) the condition number grows linearly – see, e.g. V. I. Arnold [?]. In
real life molecular dynamics problems, however, the growth is exponential,
i.e.

κ(t) ∼ exp(t/tcrit) , (1.1)

where the critical times tcrit are typically no longer than a few ps.

Example: Trinucleotide ACC. We illustrate the effect for the small
biomolecule ACC – compare Section 1.2 in [?, ?]. This molecule is a short
RNA segment consisting of 94 atoms; the genetic letters in its acronym stand
for adenine (A) and cytosine (C). Figure ?? shows simulation snapshots at the
times t = 0.0 ps, t = 0.5 ps, and t = 20 ps (picoseconds: 1 ps = 10−12 sec).

As can be seen, the two molecular configurations are almost identical at the
start, but differ completely after only 20 ps. The resulting configurations (left
a spherical shape, right a stretched shape) remain essentially the same over
quite long time spans. They are therefore called metastable conformations.
These mathematical objects typically occur in nearly all molecular systems
and should be directly computed as such.
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0.0 ps

5.0 ps

20.0 ps

Figure 1: ACC molecule: Development of distinct conformations from nearly
identical initial configurations
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2 Metastable Conformations as Almost In-

variant Sets

The observations of the preceding section force severe changes in the math-
ematical modelling of molecular dynamics. Instead of the point concept of
classical mechanics based on deterministic trajectories we need to derive a
set concept based on the above mentioned metastable conformations. This is
the key idea of conformational analysis to be presented here.

Perron–Frobenius operator. Starting point for the new approach was
the pioneering work of Dellnitz and co-workers [?, ?] based on the Perron–
Frobenius operator U . This operator (dating back to Ulam) is defined via
measures in phase space x = (p, q) ∈ Γ ⊂ R

6N as

Uµ(B) = µ(Φ−τ (B)) , B ⊂ Γ

An invariant measure µ̄ and the corresponding invariant set B̄ are character-
ized by

µ̄(B) = µ̄(Φ−τ (B)) , B̄ = Φ−τ (B̄) ,

which lead to the eigenvalue problem

Uµ̄(B̄) = µ̄(B̄) (2.1)

for the Perron eigenvalue λ = 1. On this basis, these authors computed
(relatively) global attractors by some adaptive multilevel box discretization.
Moreover they found that (a) eigenvalues λ 6= 1 on the unit circle permit an
interpretation in terms of cyclic dynamics, and (b) eigenvalues close to the
Perron eigenvalue inside the unit cicle (due to discretization effects) seem to
have an interpretation in terms of almost invariant sets.

The success of that approach was intimately linked to hyperbolic dynam-
ics which is known to collapse asymptotically to some dynamics on a low-
dimensional manifold. Being well aware of this restriction, the present author
nevertheless risked to extend that basic scheme to Hamiltonian dynamics
known not to collapse, but to remain on some high-dimensional energy sur-
face. A first attempt in this direction, as published in [?], suffered from two
important disadvantages. First, for a deterministic Hamiltonian system, the
operator U is unitary in L2(Γ) so that real eigenvalues inside the unit circle
cannot exist. But such eigenvalues had been computed and could be inter-
preted in detail within the model! The reason for that has been that the
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discretization had allowed for stochastic perturbations of the deterministic
system so that such eigenvalues could, in fact, occur and did contain infor-
mation about almost invariant sets. Second, the subdivision technique caused
some curse of dimension that restricted the applicability of the method to a
domain far from realistic molecules.

Stochastic transition operator. In the above situation Ch. Schütte [?, ?]
constructed a new self-adjoint stochastic operator T. Starting point of his
construction is the fact that in a chemical lab with constant temperature
and constant volume the deterministic model should be embedded into a
canonical or Boltzmann distribution f0. With β the inverse temperature
and for separable Hamiltonian H = 1

2
pT M−1p + V (q) we may factorize this

distribution according to

f0 =
1

Z
exp(−βH) , Z =

∫
exp(−βH)dq dp

=
1

Zp

exp(−β

2
pT M−1p)

1

Zq

exp(−V (q))

f0 = PQ, Z = ZpZq,

∫
P(p)dp =

∫
Q(q)dq = 1

(2.2)

The key idea is now that the mathematical objects of interest, the metastable
conformations, are objects in position space q ∈ Ω ⊂ R

3N rather than in the
whole phase space Γ = Ω × R

3N . Let A, B ⊂ Ω be subsets in the position
space and define cylinders Γ(A) := A × R

3N – see Fig. ??. Let χ(A) denote
the characteristic function of a set A (a function which is 1 inside A and
0 outside). In this setting the probability for the dynamical system to be
within A can be written as

π(A) =

∫

Γ(A)

f0(p, q)dq dp =

∫

A

Q(q)dq =

∫

Ω

χ2
AQ(q)dq =: 〈χA, χA〉Q , (2.3)

where we introduced some inner product with weighting Q.

The operator T is then constructed as the restriction of the Perron-Frobenius
operator U to position space via averaging over the momentum part of the
canonical distribution, which means integrating U over the cylinders Γ(·).
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A Ω

Γ(A)

p

Figure 2: Position space fibre (here: cylinder) Γ(A) in phase space

The conditional probability for the system to move during time τ from A to
B during time τ can then be defined by virtue of the new operator T as

w(A, B, τ) =
〈χA, TχB〉Q
〈χA, χA〉Q

. (2.4)

In the same manner, the probability for the system to stay in A during time
τ comes out as

w(A, A, τ) =
〈χA, TχA〉Q
〈χA, χA〉Q

. (2.5)

The operator T is defined over the weighted spaces

Lr
Q(Ω) = {u : Ω → C,

∫
Ω

|u(q)|rQ dq < ∞}, r = 1, 2 .

Obviously, the Hilbert space L2
Q(Ω) is associated with the above introduced

weighted inner product 〈·, ·〉Q. With this notation, the properties of T can
be listed as follows (due to Schütte [?]):

1. T is bounded in Lr
Q(Ω): ‖Tu‖Q ≤ ‖u‖Q , for r = 1, 2.

2. T is a Markov operator on L1
Q(Ω).

3. T is self-adjoint in L2
Q(Ω). Hence, the spectrum σ(T) is real-valued

and bounded: σ(T) ⊂ [−1, 1].

4. There exists a cluster of eigenvalues close to the Perron eigenvalue well-
separated from the remaining (continuous) part of the spectrum.
We call it the Perron cluster.
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In summary, the operator T arises as the transition operator of a reversible
Markov chain. We will use this basic structure for the discretization of the
operator – see the subsequent Section ??. As a result of this kind of dis-
cretization we will obtain a stochastic and sparse matrix T which, due to the
reversibility of the Markov chain, is also symmetric in a generalized sense.

Perron cluster analysis (PCCA). The newly introduced name “Perron
cluster analysis” characterizes a cluster analysis technique based on some
analysis of the arising Perron cluster of eigenvalues of the transition matrix
of a Markov chain. For this reason it should more correctly be named Perron
Cluster Cluster Analysis, possibly abbreviated PCCA to distinguish it clear
enough from the principal component analysis (PCA).

The PCCA method requires an input in terms of a stochastic (general sym-
metric) matrix T = TN of dimension N . The method analyzes the spectrum
of such a matrix with respect to the possible existence of a Perron cluster of
eigenvalues, say λ1 = 1, λ2 ≈ 1, . . . , λk ≈ 1. The task is to identify k almost
invariant sets corresponding to k metastable chemical conformations. Note
that the number k is unknown in advance and must be identified as well.
Here we will only sketch the main ideas behind the algorithm. For a broader
introduction into the topic we refer to Section 5.5 in the recent editions of
the textbook [?, ?], for more details to the original paper [?].

Just as in (??), we here obtain the (discrete) eigenvalue problem

πT T = πT , T e = e , πT e = 1 , (2.6)

where the left eigenvector πT = (π1, . . . , πN) represents the discrete invariant
measure and the right eigenvector eT = (1, . . . , 1) is the discrete invariant set
– each corresponding to the Perron eigenvalue λ1 = 1. Assume now that the
total index set S = {1, 2, . . . , N} can be decomposed into k disjoint index
subsets

S = S1 ⊕ · · · ⊕ Sk

such that there exist k uncoupled Markov chains, each of which is running “in-
finitely long” within one of the index subsets. Then, for a reversible Markov
chain, the total transition matrix T is strictly block diagonal with block sub-
matrices {T1, . . . , Tk} – see, e.g., [?]. Each of these submatrices is stochastic
and gives rise to a single Perron eigenvalue λ(Ti) = 1, i = 1, . . . , k. Let
the submatrices be primitive. Then, due to the Perron-Frobenius theorem,
each block Ti possesses a unique right eigenvector ei = (1, . . . , 1)T of length
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Figure 3: Uncoupled Markov chain over k = 3 disjoint index subsets. The state space
S = {s1, . . . , s90} divides into the subsets S1 = {s1, . . . , s29}, S2 = {s30, . . . , s49} and
S3 = {s50, . . . , s90}. Left: Characteristic function χS2

. Right: Eigenbasis corresponding
to the 3-fold eigenvalue λ = 1. Observe that each eigenvector is constant on each subset.
The sign structure for state s69, for example, is (+,−, 0) in the sense of Lemma ??.

dim(Ti) corresponding to its Perron root. Therefore, in terms of the total
transition matrix T , the eigenvalue λ = 1 is k–fold and the corresponding
eigenspace is spanned by the vectors

χSi
= (0, . . . , 0, ei

T , 0, . . . , 0)T , i = 1, . . . , k .

In view of the identification problem to be treated, our notation deliberately
emphasizes that these eigenvectors can be interpreted as characteristic func-
tions of the invariant index subsets (see Fig. ??, left). In general, any basis
{Xi}i=1,...,k of the eigenspace corresponding to λ = 1 can be written as a lin-
ear combination of the characteristic functions χSi

with coefficients αij ∈ R

such that

Xi =
k∑

j=1

αij χSj
, i = 1, . . . k .

As a consequence, eigenvectors corresponding to λ = 1 are constant on each
index subset (see Fig. ??, right).

In reality, the block diagonal form will not be apparent due to unknown
index permutations. We therefore need some elementwise criterion that is
independent of any index permutation.
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Lemma 2.1 [?] Given a block-diagonal transition matrix T consisting of
reversible, primitive blocks, a left eigenvector π > 0 and a basis {Xi}i=1,...,k

of its eigenspace corresponding to λ = 1. Associate with every state si its
sign structure

si 7−→ (sign((X1)i), . . . , sign((Xk)i)).

Then

1. invariant index subsets are collections of states with common sign struc-
ture,

2. different index subsets exhibit different sign structures.

Next suppose that we have k nearly uncoupled Markov chains, each of which
is staying “for a long time” in one of the index subsets Si. For the transition
probabilities (??) and (??) this means that

w(Si,Si, τ) = 1 − O(ǫ), w(Si,Sj, τ) = O(ǫ), i 6= j (2.7)

in terms of some not further specified perturbation parameter that indicates
the metastability of the index subsets. In this case the transition matrix T is
(after some unknown permutation) block diagonally dominant. Moreover, a
Perron cluster

λ1 = 1, λ2 = 1 − O(ǫ), . . . , λk = 1 − O(ǫ)

arises as a perturbation of the k-fold Perron root in the uncoupled case ǫ = 0.
Upon applying Kato’s perturbation theory [?] we obtain the following results
for the corresponding eigenvectors:

Theorem 2.2 [?] Let T (ǫ) be a family of matrices satisfying certain regu-
larity conditions not specified here (for details see [?]). Let Πj denote the
projection on the eigenspace spanned by the eigenvector Xj of the unper-
turbed transition matrix T (0). Then, for real ǫ, there exist π–orthonormal
eigenvectors X1(ǫ), . . . , Xk(ǫ) of the following form:

(i) An eigenvector corresponding to the Perron root λ1(ǫ) ≡ 1 given by

X1(ǫ) ≡ e,
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(ii) A set of k − 1 eigenvectors corresponding to the eigenvalue cluster
λ2(ǫ), . . . , λk(ǫ) close to λ = 1 of the form

Xi(ǫ) =
k∑

j=1

(αij + ǫβij) χSj
+ ǫ

n∑
j=k+1

1

1 − λj

ΠjT
(1)Xi + O(ǫ2)

for appropriate coefficients αij, βij ∈ R and index subsets S1, . . . ,Sk

corresponding to the block-diagonal form of T (0).

The theorem nicely indicates that we can essentially use the tools from the
unperturbed case also for the perturbed case. As an illustration, see Fig.
?? where the locally constant pattern over each of the index subsets is still
visible even under perturbation. Upon applying Lemma ?? and carefully
observing perturbations of the strict zero, we again have an elementwise
criterion independent of any permutation.
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3

Figure 4: Eigenbasis X1, X2, X3 corresponding to Perron cluster λ = 1, 0.75, 0.52 of the
transition matrix associated with k = 3 nearly uncoupled Markov chains. Observe the
nearly constant level pattern on each of the index subsets S1,S2 and S3 – to be compared
with Fig. ?? for the uncoupled case.

Summarizing, we finally have the desired k metastable chemical conforma-
tions (in spatial box discretization) as the k almost invariant subsets S1, . . . ,Sk.
In the true spirit of scientific computing these objects must be appropriately
visualized – a scientific topic of its own right, which, however, cannot be
touched upon here. For these conformations the algorithm supplies the fol-
lowing information:

12



• the probabilities π(Si) for the system to be within the subset Si, as
defined in (??),

• the probabilities wii = w(Si,Si, τ) for the system to stay during time τ
in the subset Si, as defined in (??), and

• the probabilities wij = w(Si,Sj, τ) , i 6= j, for the system to move from
the subset Si to the subset Sj, as defined in (??).

In other words: The Perron cluster analysis supplies the number, the life
times, and the decay pattern of the metastable chemical conformations. As
for the parameter ǫ used above without specification, we naturally arrive at
the definition

ǫ = max
i=1,...,k

(1 − wii) = 1 − min
i=1,...,k

wii (2.8)

For each of the Si the characteristic life times are roughly found to be

τSi
≈ τ

1 − wii

.

The blow-up from τ ≪ tcrit, the deterministic time scale as defined in (??),
to the time scales τSi

of the metastable conformations is significant. This
relation documents in a nutshell the telescoping of the deterministic model,
based on short term trajectories, and the statistical model, based on the
eigenvalue problem for the (discretized) transition operator, to obtain a long
term model.

Above all it is clear that the whole Perron cluster analysis will only work, if
the stochastic transition operator T can be discretized avoiding the curse of
dimension – which is the topic of the next section.

3 Approximation of the Transition Operator

The spatial stochastic transition operator T as discussed in Section ?? is as-
sociated with an underlying Markov chain. Upon introducing the projection
π on the position variables via π(q, p) = q, we may write this Markov chain
as

qk+1 = π Φτ (qk, pk) , pk : P − distributed . (3.1)

As shown schematically in Fig. ??, it combines a short term deterministic
model, characterized by the flow Φτ , with a statistical model, characterized
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by the P-distribution, the momentum part of the Boltzmann distribution –
see (??).

deterministic

dynamics

statistical

     distributionP−

p

qq2q0 q3 q1

Figure 5: Hybrid Monte Carlo process and Markov chain (??)

Hybrid Monte Carlo method. Given a discretization of the position
space Ω in terms of boxes {B1, . . . , BN}, the elements of the transition matrix
T = (Tij) can be computed by virtue of

Tij =
#{qk+1 ∈ Bj ∧ qk ∈ Bi}

#{qk ∈ Bi}
i, j = 1, . . . N .

By construction, the evaluation of the matrix elements thus leads to some
hybrid Monte Carlo process – see again Fig. ??. If we run M samples within
such a process, then we obtain an approximation T (M) with an approximation
error

|T − T (M)| ≤ γ/
√

M .

As in all Monte Carlo type processes, trapping within local minima will oc-
cur, unless we take special precautions. In particular, if the spectral gap at
the Perron root approaches 0, then the above constant γ blows up to ∞.
However, this is just the case treated here, since we want to analyze Perron
clusters! In this situation a technique of temperature embedding has been
developed, which circumvents critical slowing down of the MC process in the
case under consideration. Unlike simulated annealing this method can “heat”
the momenta of the system separately in a nonphysical fashion – compare the
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factorization in (??). First results have been published in the early paper
[?] by A. Fischer et al., an improvement in the direction of a hierarchical
coupling-uncoupling method can be found in [?].

Spatial box discretization. The number N of spatial boxes is also the
dimension of the arising transition matrix T . In order to avoid the curse of
dimension we must assure that N remains of moderate size even for larger
molecular systems.

0 120 240 360

torsion angle

0

1

2

3

po
te

nt
ia

l

Figure 6: Molecular torsion potential with triple well (s = 3)

From chemical insight into the problem, different conformations are caused
by the double or triple well structure in the torsion potentials – see Fig. ??.
Let s be the number of minima in the torsion potential (s = 2 or s = 3) and
m the number of torsion angles (m ≈ 7 per nucleotide), then we obtain a
number

N ≈ sm

of boxes. For the above example molecule ACC we have m = 37 and would
therefore arrive at some N > 1011 – which is certainly intolerable for such a
small system!

As a first remedy we adopted the technique of identification of essential
degrees of freedom originally suggested by Berendsen et al. [?]. Generally
speaking, this method is based on a principal component analysis (PCA) of
fluctuations of the time series obtained by molecular dynamics calculations.
We modified the method such that it only works on the torsion angles, i.e.
on a preassigned subset of the variables – see [?]. Note that in this case
the cylinder Γ(A) reduces to a fibre associated with this subset – see Fig.
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Figure 7: Results of cluster analysis. Left: SOM. Right: SOM combined with
new Perron cluster analysis

??. For the ACC molecule, which was just mentioned above, the method
suggests only mess = 4 generalized torsion coordinates and a number of

Ness = 36

of boxes. For a while we were quite content with this approach, until we found
out experimentally that it is also not efficient enough for larger molecules.

In a further step of the development the MD group at ZIB recurred to neural
networks, especially to self-organizing maps (SOM) as suggested by Kohonen
[?]. Upon combining SOM with the Perron cluster analysis as discussed in
Section ??, T. Galliat et al. managed to develop some much more efficient
tool for box discretization – see [?]. In Fig. ?? we illustrate the improvement
achieved by the addition of the Perron cluster analysis to SOM using a typical
SOM representation in terms of hexagonal topology. The result on the right
in the figure was obtained a lot faster than the result on the left (a quarter of
an hour on a work station as compared to about a week). In [?, ?] the idea
has been further developed toward an adaptive multilevel box discretization
called self-organizing box maps (SOBM) extending techniques from numerical
partial differential equations to neural networks.

Example: Tri–nucleotide ACC. This example has been used several times
before for illustration purposes. From the neural network approach to box
discretization we obtain N = 54 boxes. In Fig. ?? the sparse pattern of
the associated (54, 54)-matrix is given, representing the discretization of the
stochastic transition operator over the given 54 boxes.

In Table ?? we list the first eigenvalues of the transition matrix (ordered
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Figure 8: ACC: sparse transition matrix of dimension N = 54

k 1 2 3 4 5 6 7 8 9 · · ·
λk 1.000 0.999 0.995 0.993 0.980 0.972 0.961 0.930 0.874 · · ·

Table 1: ACC: eigenvalues of transition matrix

according to modulus). As can be observed, there are gaps at k = 2 and at
k = 8, which can both be analyzed. Note that by construction via Lemma ??
a larger value of k just leads to some substructuring of the conformations: the
extended sign structure of the eigenvectors just adds more sign information
to the already existing one. In Table ?? we list the computed probabilities
π(Si) to be within and wii = w(Si,Si, τ) to stay for τ = 50 fsec within one
of the conformations Si for i = 1, . . . , 8. All elements wii in the second row
are close below 1, which indicates that the computed conformations are in

conformations S1 S2 S3 S4 S5 S6 S7 S8

π(Si) 0.325 0.097 0.009 0.037 0.107 0.105 0.273 0.046

wii 0.995 0.992 0.919 0.966 0.964 0.991 0.987 0.969

Table 2: ACC: probabilities for metastable conformations
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fact metastable. Moreover, the numbers in the first row clearly indicate that
the conformations S1 and S7 dominate the dynamics, which explains the first
eigenvalue gap at k = 2. From the numbers wii and definition (??) we here
obtain the perturbation parameter ǫ = 0.081.

Example: HIV protease inhibitor VX-478. This molecule is the basis
for the anti-AIDS drug Agenerase distributed by Glaxo Wellcome. Generally
speaking, the HIV is hard to attack directly by drugs, since it is a so-called
retrovirus that mutates faster than any molecular recognition can take place.
As a consequence, any HIV pharmaceutical will attack the supporting en-
zymes. One of them is the HIV protease, which regulates the passage of HIV
through the cell membrane. The here selected molecule has been exactly
designed (by Vertex) to inhibit this passage. The molecular data were taken
from the public domain Protein Data Bank (PDB).

We started the conformational analysis at a virtual temperature of 1400K
(to avoid trapping in the HMC process, see above). At this level there arose
k = 3 metastable conformations. At the next lower level (1000K), these
conformations could be analyzed in terms of substructures. In Fig. ?? two
out of these substructures are shown. In view of drug design it is important
to understand which of the conformations (of the same molecule!) actually
exhibits the desired pharmaceutical effect. Questions of this kind can be
studied in terms of the probabilities as exemplified above in the tables for
the ACC molecule – assuming, of course, that the input potentials give a
reliable description of the physics of the molecule.

Perspectives

Conformational analysis opens the door to an understanding of molecular
dynamics on time scales of pharmaceutical interest. Even though the es-
sential structure of the mathematical model and its algorithmic realization
seem to be quite clear at this time, further progress is needed to allow for the
successful analysis of larger biomolecules. In the opinion of the author, the
new mathematical concepts of conformational dynamics have a real chance
to play an important role in drug design in the near future.
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Figure 9: HIV protease inhibitor: T-bone and double T conformations
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almost invariant aggregates in reversible nearly uncoupled Markov chains.
Lin. Alg. Appl. 315, pp. 39–59 (2000).

[12] A. Fischer, F. Cordes, and C. Schütte. Hybrid Monte Carlo with adap-
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