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Abstract. We consider event-based Mixed-Integer Programming (MIP)
formulations for the Resource-Constrained Project Scheduling Problem
(RCPSP) that represent an alternative to the common time-indexed
model (DDT) of Pritsker et al. (1969) when the scheduling time horizon
is large or job processing times are subject to huge variations. In con-
trast to the time-indexed model, the size of event-based models does not
depend on the time horizon. For the two event-based models OOE and
SEE of Koné et al. (2011) we present new valid inequalities that dominate
the original formulation. Furthermore, we introduce a new event-based
mode:, the Interval Event-Based Model (IEE). We deduce linear transfor-
mations between all three models that yield the strict domination order
IEE > SEE > OOE for their linear programming (LP) relaxations,
meaning that the new IEE model has the strongest linear relaxation
among the event-based models. In addition, we show that the popular
DDT model can be retrieved from IEE by certain polyhedral operations,
thus giving a unifying view on a complete branch of MIP models for the
RCPSP. Finally, we analyze the computational performance of the pre-
sented models on test sets of the PSPLIB (Kolisch and Sprecher 1997).

1 Introduction

In the RCPSP we are given a set of jobs J = {1,...,n} with processing times
pj € Zxo for all j € J that are processed without interruption. In addition, we
are given a set of renewable resources R where each resource k € R is given a
capacity R, € Z~( and every job j € J allocates r;;, € Z > units of resource k
during its execution. Furthermore, there are precedence constraints P C J x J
where (7, j) € P indicates that job ¢ must finish before job j starts. The RCPSP
aims to compute start times S; > 0 for all jobs j € J that respect the precedence
constraints and such that the resource demand at any time does not exceed the
available capacities. The objective is to minimize the project completion time
Cinae = maxje7(S; + p;) where Cpoy is denoted as the makespan. Formally,



the RCPSP can also be stated as

min Chaz

Sj+pj < Chaz Yi€T (1)
> rik <R, Vte[0,T],keR (2)

JET:8;<t<S;+p;

Si+pi<S; V(i,j)€P (3)

S;>0 VjeJ

where T is an arbitrary upper bound on the makespan.

The RCPSP is a fundamental problem in discrete optimization since it con-
tains and combines several combinatorially hard problems into one optimization
problem such as partition, packing and graph coloring. It has extensive appli-
cations that are often located in project planning, production planning, supply
chain management, logistics and healthcare, see Artigues et al. (2013), Car-
doen (2010) and Weglarz (2012). The general RCPSP is studied since the late
1960s with a first work of Johnson (1967) but until today a large amount of re-
search has been invested into this problem, its variants and extensions (Brucker
et al. 1999; Hartmann and Briskorn 2010; Herroelen et al. 1998; Kolisch and
Hartmann 2006, Stork 2001). Nevertheless, it is still one of the computation-
ally most challenging problems and in general very hard to solve to optimality.
One branch of research studies exact Mixed-Integer Programming formulations
(MIP) for the RCPSP. These models can generally be subdivided into time-
indexed, disjunctive and event-based models. In the following we will give a brief
overview of the most common MIP formulations for each type.

Time-Indexed Model. One of the first mathematical programming formulations
for the RCPSP was introduced by Pritsker et al. (1969) which is commonly de-
noted as the time-indexed model (DDT). This model considers a discrete time
horizon 7 = {0,...,T} where decision variables determine for every job a fea-
sible start time in 7 such that additionally all resource and precedence con-
straints are satisfied. In its core, DDT is still very popular today for modeling
the RCPSP and related problems because it provides a decently strong lin-
ear relaxation and can be solved quickly on instances of moderate size (Bianco
and Caramia 2013; Naber and Kolisch 2014). Several special cases, extensions
and improvements of DDT have been studied, for example in Artigues (2017),
Christofides et al. (1984), Hardin et al. (2008), Mingozzi et al. (1998), M&hring
et al. (2003), Naber and Kolisch (2014), Zhu et al. (2006). The main drawback
of DDT is however that the number of variables and constraints depends on 7.
Hence, if T is large then DDT becomes computationally intractable. This moti-
vates to study compact models whose size is strongly polynomial in the number
of jobs.

Disjunctive Models. Alternatively, the RCPSP can be modeled by considering
the start time variables S; > 0 explicitly. In this case, resource conflicts are



settled by decision variables that enforce additional precedence disjunctions of
either S; +p; < S; or S; +p; < 5; for two jobs ¢, j. In particular, Alvarez et
al. (1993) study an exponential model that requires such a disjunction for at
least two jobs in every incompatible job subset, that is a set of jobs that cannot
all be scheduled in parallel. Artigues et al. (2003) overcome the exponential
number of inequalities by a continuous resource flow extension that implies the
precedences between the jobs and, in contrast, leads to a compact formulation.
In both models, disjunctions are formulated by so-called 'big-M’ inequalities that
lead to very weak linear relaxations in general. Therefore, disjunctive models are
generally not preferred for instances with many jobs.

FEvent-Based Models. Another possibility of modeling the RCPSP in a compact
manner was given by Koné et al. (2011) who propose an event-based modeling
concept. Events are considered as variable but sequential time points where jobs
can start and finish. Every job is assigned to a start and end event while the
resource and precedence constraints must be satisfied at every event. Since ev-
ery job starts and ends exactly once, at most 2n events (reducible to n events)
need to be considered which leads to a compact formulation. Moreover, event-
based models do not involve similarly large constants as the disjunctive models.
However, all known event-based models still suffer from weak linear relaxations
but they represent the overall best alternative to DDT when the time horizon
becomes large. Koné et al. examine two different event-based models OOE and
SEE. In this article, we will revisit OOE and SEE, study their polyhedral rela-
tionships and propose possible enhancements.

Other FEzxact Solving Methods. Several other exact solving approaches exist for
the RCPSP that are mainly based on branch-and-bound, see for example Brucker
et al. (1998), Christofides et al. (1987), Demeulemeester and Herroelen (1997),
Dorndorf et al. (2000), Heilmann (2003), De Reyck and Herroelen (1998), Sprecher
and Drexl (1998), Zhu et al. (2006) that mainly differ in their branching deci-
sions, branching order, dominance rules, domain propagation and considered
lower bounds. More recently, constraint programming (CP) is used to solve the
RCPSP, sce for example Baptiste et al. (2012), Schutt et al. (2013), Tesch (2016)
and Vilim (2011) whose techniques combine branch-and-bound with strong do-
main propagation and dynamic adding of logical constraints.

Contribution. For the models OOE and SEE of Koné et al. (2011) we propose
stronger valid inequalities and discuss their impact on the LP-relaxations. More-
over, we state the new Interval Event-Based Model (IEE) that generalizes the
modeling ideas of OOE and SEE. In particular, we reveal linear transformations
between all three models OOE, SEE and IEE from which we deduce the strict
domination order IEE >~ SEFE >~ OOE of their linear programming relaxations.
That means IEE has the strongest linear relaxation while SEE dominates OOE.
In general, however, we show that the integrality gap of IEE (thus for OOE and
SEE) is unbounded. We also investigate the relationship between the event-based
models and the time-indexed model DDT of Pristker et al. (1969) by showing



that DDT can be constructed from IEE by expansion and projection of its in-
duced polyhedron. From our constructions we conclude that DDT has a stronger
LP-relaxation than IEE. In total, this yields a unifying view on the whole class
of event-based and time-indexed models for the RCPSP. Finally, we propose
additional preprocessing steps to improve the computational performance of all
studied models on RCPSP instances of the well-established PSPLIB test library
(Kolisch and Sprecher 1997). With this work, we hope to shed some light on the
polyhedral properties and relationships between some of the many formulations
for the RCPSP that exist until now.

Outline. The paper is organized as follows. Sections 2-4 introduce the models
OOE, SEE, IEE and examine new valid inequalities as well as their mutual
polyhedral relationships. Additionally, Section 4 introduces the DDT model and
explores the polyhedral relationship to IEE. In Section 5, further preprocessing
steps are proposed to improve the computational performance of the models that
is finally analyzed in our computational results of Section 6. We conclude with
some final remarks in Section 7.

2 On-Off Event-Based Model

Koné et al. (2011) propose the event-based modeling concept for the RCPSP.
There we are given a discrete set of events £ = {1, ...,n} where each event e € £
represents a time variable ¢, > 0 at which jobs can start while all events appear
sequentially, that is t, < teyq for all e € £. The dummy event n + 1 models
the makespan where t¢,,41 equals the makespan value. For every job we have to
assign a start and an end event. If job j starts at event e then S; = t. holds and
if j ends at event f then S; 4 p; <ty holds. The latter implication allows us to
consider only start events. However, modeling the assignment of start and end
events to jobs can be done in several ways which leads to different event-based
formulations. In this section, we consider the first modeling variant that uses
on-off assignments.

The On-Off Event-Based Model (OOE) of Koné et al. (2011) determines
whether a job is active at an event (on) or not (off). In particular, a job j is
active at event e, if it is processed during the time interval [t.,t.41). Therefore,
we introduce decision variables uj. € {0,1} with uje = 1 if and only if job j
is active at event e and uje = 0 otherwise. For convenience, let us also define
Ujo = Ujn+1 = 0 for all j € J. Moreover, let

A={(e.f)eExEU{n+1}:e< f}



denote the set of consecutive event pairs that is used throughout the rest of the
paper. The OOE model states as follows:

min t'n,—',—l
ue>1 VjeJg (4)
ec&
erk'ujeSRk VkeR,ecé& (5)
jeT
te +pj - (Uje — Uje—1 T Ujf-1 — Ujf — 1) <ty

VieTJ, (e, f)eA (6)
Z Uje! < (6 — ].) . (]. — Uje +’UJje_1)
e'<e

VieJ,ecé& (7)
> wjer <(n—e+1)- (1+uje — uje 1)
e'>e

VieJ,ecé& (8)
> ujer <er(l-ui) V(ij)€Pect )
e’'<e
te <tey1 Vecé& (10)

te >0 VeecEU{n+1}
uje € {0,1} Vje J,ecé.

The objective function minimizes the makespan. Inequalities (4) ensure that
every job j € J is active for at least one event. Moreover, inequalities (5)
indicate that the total resource consumption at every event must not exceed the
resource capacities. Note that job j starts at event e if and only if uje —uje—1 =1
and j ends at event f if and only if w;_1 —u;; = 1. Hence, inequalities (6) imply
that if job j starts at event e and ends at event f then ¢, + p; <ty must hold.
Inequalities (7) and (8) model the non-preemption of the jobs, that means if job j
starts at event e then it cannot be active at an event e’ € {1,...,e—1}. Similarly,
if job j ends at event f then it cannot be active at an event e’ € {f,...,n}.
Inequalities (9) require for every precedence pair (i,j) € P, that if job i is
active at event e then job j cannot be active at an event ¢’ € {1, ..., e}. Finally,
inequalities (10) state that all events appear sequentially. In total, OOE has n?
binary variables and O(n - (|R| + |A| +|P])) constraints where |A| = ("31).

In the following we will introduce stronger inequalities for OOE and analyze
their impact on the LP lower bound.

2.1 Valid Inequalities

We will state stronger non-preemptive, start-end time and precedence inequali-
ties.



Non-Preemptive Inequalities Consider the following stronger version of in-
equalities (7) and (8) that model non-preemption.

Lemma 1. The following inequalities dominate the mon-preemptive inequali-

ties (7) and (8):

Uje = Ujf + Ujg < 1
VieJ,e,frge€e< f<yg. (11)

Proof. Inequalities (11) indicate that if job j is active at two events e and g
with e < ¢ then j must also be active at all events f with e < f < g, so
inequalities (11) are valid. Now consider a fixed job j € J and event g € £ and
let f = ¢ — 1. Summing up inequalities (11) for ¢’ =1,...,g — 2 and adding the
trivial inequality ujy = ujo—1 — ujo—1 +ujq < 1 yields

D e+ (g— 1) (g1 +uje) < (g—1)
e'<g

which is equivalent to (7). Furthermore, for a fixed event f € Elet e = f — 1
then summing up inequalities (11) for all g = f+1,...,n and adding the trivial
inequality u;r_1 = ujp —ujr +ujr_1 <1 yields

D g+ (n— fA1) - (—ujp+ujp) < (n— f+1)
g=>f

which is equivalent to (8). This shows the lemma. O

While there are 2n? inequalities of the form (7) and (8) there are n- () inequali-
ties of the stronger form (11), so the stronger form implies a factor of O(n?) addi-
tional constraints. However, one can see that even the stronger inequalities (11)
are weak in a polyhedral sense which already indicates that non-preemption in
OOE allows only weak linear relaxations.

Recently, Nattaf et al. (2017) propose the following generalization of inequal-

ities (11) by considering all event subsets of odd cardinality:

21

Z(_]‘)q *Uje, <1 v] € j, {607 "‘7€2l} - . (12)

q=0

Notably, they showed that inequalities (12) yield a complete description of the
integer polytope that restricts to the non-preemptive inequalities (7), (8) and
that the associated separation problem can be solved in strongly polynomial
time. Unfortunately, the efficient separation of inequalities (12) does not directly
transfer to improve solving OOE because the separation procedure would need
to be called at every node of the MIP search tree to solve the LP subproblems.
Hence, the number of generated inequalities during MIP solving can increase
drastically and, in turn, this would require a higher-level inequality management
of dynamically adding and deleting constraints to keep the LP subproblems at a



manageable size. Moreover, we will show that adding inequalities (12) does not
affect the LP lower bound, see Section 2.2. Therefore we propose the contrary,
that is to add as few non-preemptive inequalities as possible, for example by
taking only inequalities (7) that are already sufficient to model non-preemption.

Start Time Inequalities Next, we present a stronger version of the start time
inequalities (6).

Lemma 2. The following inequalities dominate the start time inequalities (6):

te +pj - (Wi = Uje — ujg) < g
VieJ, e, f,gefU{0n+1}:e< f<yg. (13)

Proof. Inequalities (13) state that if job j is active at event f but not at events e
and g with e < f < g then t. +p; < ¢, must hold which is valid. Since u;4—1 <1
we obtain

pj - (Ujg—1 — ujp—1 — ujg +ujp — 1)
(13)
< pj(ujpr —ujp—1 —ujg) < tg—tf

for all jobs j € J and events f,g € £ with f < g. The last inequality follows for
e=f—-1 O

Again, the stronger version has a factor of O(n) more inequalities and we observe
that the stronger inequalities are not very strong in a polyhedral sense. Since the
start time inequalities mainly affect the dual bound (¢,,41 is determined by these
inequalities), it suggests that the linear relaxation of OOE is weak in general. A
more detailed analysis on the dual bound of OOE is given in Section 2.2.

Precedence Inequalities In the following we propose a stronger alternative
for the precedence inequalities (9).

Lemma 3. The following inequalities dominate the precedence inequalities (9):
Ujer +uie <1 Y(i,j) €P, e,ec&:e <e. (14)

Proof. Inequalities (9) state that for every precedence pair (4, j) € P a conflicting
assignment of job j to an event earlier or equal to an active event of job i is
forbidden which is valid. For some fixed event e € £ summing up inequalities (14)
foralle’ =1,...,e we get Y ¢/, Ujer + € u;e < € which is equivalent to (9). This
shows the lemma. ad

The stable set structure of these inequalities suggests a generalization by
considering whole paths in the precedence graph. Therefore, define the prece-
dence digraph as G = (J,P) and let # = {j1,...,jm} be a directed path in G.



Moreover, let £ = {e1,...,en} C & be a subset of events with e, > 441 for all
1 < ¢ < m. By similar arguments, consider the inequality

§ :queq < 1
q=1
v{ela"'aem}gg:eq26q+l71§q<m (15)

which excludes any invalid assignment of jobs in 7 to events in {e1,...,en}.
Similar to Nattaf et al. (2017), we are able to state a separation algorithm for
inequalities (15). In order to compute a maximally violated inequality of (15)
for a given feasible LP solution u* € [0, 1]”2 of OOE, we need to find a path
T = {j1,...,Jm} in G and an event set {e1,...,e,} C & with eq11 > ¢4 for
q=1,...,m —1 such that 221:1 u;qeq > 1. We can do it as follows. Create a
node for every pair (j,e) of jobs j € J and events e € £. In addition, create arcs
from node (i, f) to node (j,e) of length u}, if and only if (i,j) € P and f > e.
Furthermore, create a source node and add an arc of length uj, from the source
to every other node (j, e). Similarly, create a sink node and add an arc of length
zero from every node (j,¢e) to the sink node. A maximally violated inequality
of (15) can be found by computing a longest path from the source node to the
sink node whose nodes (j,e) correspond to the variables uj, in the maximally
violated inequality. Since the underlying graph is acyclic, the algorithm is linear
in the number of edges which is O(|P| - n?).

Again, inequalities (15) face the same problem as inequalities (12) because
the separation algorithm would generally need to be called at every node of the
MIP search tree to compute the LP subproblems. In this case, the number of
inequalities can grow rigorously which would require an optimized inequality
management to keep the model at an appropriate size. Therefore, our computa-
tional results do not include these inequalities but mainly because they do not
contribute to LP lower bound, see the next section.

2.2 LP-Relaxation
In this section, we examine the quality of the LP-relaxation of OOE.

Proposition 1. The LP-relaxation of OOE has an optimal objective value of
zero, even if the stronger inequalities (12), (13) and (15) are included.

Proof. We will construct a feasible LP solution of OOE including inequali-
ties (12), (13) and (15) with objective value zero. Define the solution by u;e = +
forall j € J,e € £ and t. = 0 for all e € EU {n + 1}. All other variables are
zero. We show LP-feasibility for each constraint separately. For the assignment

constraints (4) we have

Zuje:1z1

ecé



for every job j € J. The resource constraints (5) satisfy

g Tik " Uje = E Tk

JjET JjeT

< Ry

S|

for all £k € R and e € £ where the last inequality holds because otherwise
rjk > Ry for at least one job j € J and resource k € R which is infeasible.
Moreover, for the stronger start time inequalities (13) we get

pj - (2if — zje — 2jg) S0 =1t5 —te

for every j € J and e, f,g € EU{0,n + 1} with e < f < g. The stronger
non-preemptive inequalities (12) satisfy

21

1
D (DT e, =~ <1

q=0

for every j € J and event set {eg,...,eq;} C £. Finally, for the stronger prece-
dence constraints (15) we obtain

i m
Uj e, = — < 1
Jq€q

n
q=1

for any path m = {41, ..., Jm } in the precedence graph G and any subset {e1, ...,e,} C
& with eq > eq41 for all g =1,...,m — 1. Hence, the solution is feasible and has
objective value ¢, 11 = 0 which shows the proposition. a

Corollary 1. The integrality gap of OOFE is unbounded.

Despite our strengthening efforts, we deduce that it is not possible to re-
markably improve the LP bound of OOE which indicates that OOE is weak
from a polyhedral perspective. Furthermore, it indicates that adding the stronger
inequalities will not substantially improve upon solving OOE because they in-
crease the number of some inequalities by additional factors that are polynomial
in n while the LP value does not improve. We believe that the benefit of OOE
lies in its small model size, not in the strength of the formulation. Therefore,
our computational results consider the sparsest possible variant of OOE given
by inequalities (4)-(7) and (9). Compared to the other models, OOE has the
smallest number of variables, so we can still hope to achieve good computational
results by applying a modern MIP solver who performs clever branching and
cutting plane generation, see Section 6

3 Start-End Event-Based Model

In this section, we examine the Start-End Fvent-Based Model (SEE) of Koné et
al. (2011). We will state it in a reduced form because a set of continuous variables



of the original formulation can be omitted. Again, we are given variables t, > 0
for each event e € EU{n+1} where ,,,1 denotes the makespan. The SEE model
considers decision variables xj. € {0,1} with z;. = 1 if and only if job j starts
at event e and z;. = 0 otherwise. Equivalently, there are decision variables
yje € {0,1} with y;y = 1 if and only if job j ends at event f and y;; = 0
otherwise. Let £t = {2,...,n + 1} denote the shifted event set at which jobs
are allowed to finish. Then SEE can be formulated as:

min 4
oze=1 VjeJ (16)
ecf
Y ye=1 VjieJ (17)
ee&t
ije/+2yje/§1 VieJ,e€é& (18)
e'>e e'<e
erk : Z Tjer — Z Yjer | < Ry
JjeT e'<e e'<e

VkeR,e€& (19)
te+pj'(mje+yjf71)§tf Vjej,(e,f)GA (20)
Z Tje! + Z Yie’ S 1 V(Za]) € P,@ €& (21)
e’'<e e'>e
te <tey1 Veel (22)

te>0 VeecEU{n+1}
zj.€{0,1} VjeJ,ecé
yje €{0,1} Vje J,e€ ™.

The objective function minimizes the makespan. Equations (16) and (17) state
that every job must start and end at exactly one event while the start event
must be prior to the end event (18). Moreover, inequalities (19) ensure that the
resource consumption of all jobs that are active at one event must not exceed the
resource capacities. Next, inequalities (20) require that if job j starts at event e
and ends at event f then t. 4+ p; < ¢y must hold. By inequalities (21), for each
precedence pair (i,j) € P the end event of job ¢ must be prior to the start event
of job j. In addition, the event times must be non-decreasing by (22). In total,
SEE has 2n? binary variables and O(n - (|R| + |A| + |P])) constraints.

In the next sections, we propose stronger valid inequalities for SEE and an-
alyze the quality of its LP-relaxation.

3.1 Start Time Inequalities

In the following we present a stronger variant of the start time inequalities (20).



Lemma 4. The following inequalities dominate the start time inequalities (20):

tetpj- | Y me+ D yip— 1] <ty
e'>e F<s

Vie J,(e f) € A (23)

Proof. Inequalities (23) state that if job j starts at an event €’ € {e,...,n} and
ends at an event f' € {2,..., f} withe < f then t.+p; < t; must hold. Thus, the
inequality is valid. Obviously, inequalities (23) are stronger than inequalities (20)
which proves the lemma. a

Since this strengthening comes with no expense of the model size, we will
always assume the stronger version of SEE throughout the rest of the paper.

3.2 LP-Relaxation

In the following we will analyze the quality of the linear relaxation of SEE. The
next result holds for the special case of no precedence constraints, so it also
applies for the general RCPSP.

Proposition 2. If P = () then the LP-relazation of SEE has an optimal objec-
tive value of Pmar = MaxX;ey Pj.

Proof. Considering inequalities (23) for (e, f) = (1,n + 1) imply ¢,41 > p; for
all j € J, hence ppqz is a lower bound on the optimal LP value. In the following
we will construct a feasible LP solution that yields p,,q. also as upper bound.
Hence, let a fractional solution of SEE be given by zje = yet1 = % for all j € 7,
e € & and te = Pmag - % for all e € £. All other variables are zero. We will
verify LP-feasibility for each constraint separately. Inequalities (16) and (17) are
satisfied since Y- e Tje = Y pcer Yjf = Sece L = Zf€5+% = 1 for every
j € J. For inequalities (18) we obtain

ije’+zyje’:n_:;—’—l‘i‘e;l:lgl

e'>e e'<e

for all j € J and e € €. Moreover, for inequalities (19) we have

erk' ije’_zyje’ erjk'

JjeT e'<e e'<e JET

< Ry

3=

for all K € R and e € & where the last inequality holds because otherwise
rjk > Ry for some job j € J and resource k € R what is infeasible. Next, the
start time inequalities (23) imply

Dj - Z Tjer + Z yip —1

e'>e F'<f
:pj'(f_e)Spmaw'(f_e):tf_te
n n



for all j € J and (e, f) € A. Consequently, all constraints of SEE are satisfied
for the given solution that has an objective value of ¢, 11 = Ppmas- Consequently,
the optimal LP value has a lower and upper bound of p,,q., which proves the
proposition. a

Corollary 2. The integrality gap of SEE can be arbitrarily large.

Note that if we apply the same LP solution from the proof of Proposition 2
to the precedence inequalities (21), we get

etn—e+1 n+1
S e+ X e = =t
e’'<e e'>e n n

for every (i,j) € P and e € £ which is not LP feasible. Loosely speaking, this
suggests that the precedence constraints must be considered differently from the
rest of the model because they allow a stronger modeling.

Since the LP bound of OOE equals zero, it follows that SEE has a strictly
stronger LP bound than OOE. It remains to check whether SEE dominates OOE
also on the whole LP-relaxation. This question is addressed in the next section.

3.3 Relationship to OOE

In this section, we study the polyhedral relationship between SEE and OOE.
According to Section 2.1, define

P(OOE) = {(t,u) € R%5" x [0,1]"" :
(t,u) satisfies (4), (5), (10), (12), (13), (15)}

as the polyhedron of the linear relaxation of OOE including all stronger inequal-
ities. Analogously, define

P(SEE) = {(t,z,y) € R%" x [0,1]*"" -
(t,z,y) satisfies (16)-(19) and (21)-(23)}

as the polyhedron of the linear relaxation of SEE including the stronger start
time inequalities. In the following we will study the polyhedral relationship be-
tween P(OOE) and P(SEE).

A first important observation is that we can express the u;. variables of OOE
in terms of the x;. and y;. variables of SEE by the linear transformation:

Uje:ZIje’fzyje’ Vj€j7€€5 (24)

e'<e e'<e

that says that job j is active at event e if and only if j starts at an event
e € {l,...,e} and ends at an event f' € {e+1,...,n + 1} what is certainly
true.

Let @ : P(SEE) — P(OOE) with (t,z,y) — (t,u) denote the linear transfor-
mation that is given by equations (24) and the identity map for the t.-variables.
We prove the following.



Theorem 1. §(P(SEE)) C P(OOE)

Proof. We will show that every inequality of P(OOFE) is implied by an inequality
of P(SEE) under the transformation @. First, for inequalities (4) we get

PRITEED B D SERED e

ecé ecf \e'<e e’'<e
= § E Tjer — E Yje + § Tje
ecf \e'<e e'<e ec&
(16) Z Z Z Z
= 1-— Tjer — Yje! + Tje
ecé e'>e e'<e ecf
(18) (16)
Z § xje =1
ecf

for every j € J. Moreover, for inequalities (5) we have

(19)

erk'ujezzrjk' Zﬂﬁje/—zyjef < Ry

JjeT jeT e'<e e'<e

for all k € R and e € £. Inequalities (10) are the same as for P(SEFE) and for
the stronger non-preemptive inequalities (12) it holds

21 21

DD e, = Y (DT Y we = Y yse

q=0 q=0 e'<eq e'<eq
(18) 21



for all j € J and all subsets {eg, ...,ea} C € of odd cardinality. Next, inequali-
ties (13) translate to

pj - (Ujf = tje — Uig)

= Dj- Z Ljer — Z Yjer — ije/ + Zyje'

e'<f e'<f e'<e e'<e
=D e+ ) vie
e’'<g e’'<g
< pje —Zl‘je'+zyje/
e'<e e'<g
(16) (23)
< pi | D we Y e — 1| <ty —te
e'>e e'<g

forall j € J and e, f,g € EU{0,n+ 1} with e < f < g. Furthermore, let 7
(J1,-.-» Jm) be a path in the precedence digraph G = (J,P) and let {ey, ..., em}
€ be a subset of events with e; > e4y; for ¢ = 1,...,m — 1. For the stronger
precedence inequalities (15) we get

Nl

m m

2 :ujqeq :z : z : Ljge’ — z : Yige’
g=1 qg=1 \e'<eq e'<eq
m—1

= E Tjyire! — E Yjge' | + Tjrer = Yimenm

q=1 e’'<eq e'<eq
m—1

(17)

= > i+ D Yige = 1| F Tiier — Y
qg=1 e'<eq e'>eq

S Tiier — Yjmem <1

Consequently, every inequality of P(OOFE) is implied by inequalities of P(SEFE)
under the linear transformation @. By Propositions 1 and 2, the LP value of
OOE is strictly smaller than the LP value of SEE. Since both LP values are
determined by ¢,,4+1 and ¢ maps ¢, under identity, we conclude that the strict
inclusion ¢(P(SEFE)) C P(OOE) holds. This completes the proof. O

It follows that SEE yields a strictly stronger formulation than OOE at the
expense of doubling the number of variables. In the next section, we will consider
a sparse reformulation of SEE that has useful properties, again by applying a
linear transformation.



3.4 TUnimodular Reformulation

In this section, we study a further linear transformation of SEE that yields an
equivalent model but the obtained constraint matrix is much sparser what can
be exploited by modern MIP solvers. Consider the linear transformation of SEE
that is given by the equations

Fie= Y Tjo VjEJ,e€& (25)
e’'<e

gje = Z Yje’ VieJ,ec EF (26)
e’'<e

which indicates that Z;. = 1 if and only if job j starts not later than event e and
¥je = 1 if and only if job j ends not later than event e. For convenience, assume
again that Z;0 = y;1 = 0. The transformed model uses the variables Z and 7 and
we will denote it as the Revised Start-End Fvent-Based Model (RSEE) which
reads as follows:

min tp41

Tin=1 VjeJ (27)
Jin1=1 VjeJ (28)
Tje < Tjer1 VjeT,e€c€:e<n (29)
Gie Sfjens Vi€ Je€fie<n+l (30)
Tjet1 < Tje VjET,e€& (31)
S i (@ge —Gje) SRe YhkER,e€& (32)
JjeET

te +pj - (Gjf = Tje—1) Sty Vi€ T (e, f) €A (33)
Fie <iie V(i,j)EP,ecE (34)
te <tey1 Vee€f& (35)

te>0 VeeEU{n+1}
Tje€{0,1} VjieJ,e€é&
gjee{071} Vj€j,€€g+.

The objective function minimizes the makespan. Equations (27) and (28) say
that every job starts or ends until event n or n + 1 respectively. Inequali-
ties (29) and (30) express that if job j starts/finishes until event e then it also
starts/finishes until event e + 1. Moreover, inequalities (31) require that if job
j finishes until event e + 1 then it must also start until event e. In addition,
inequalities (32) are the resource constraints where a job j is active at event e if
and only if j starts until e but does not finish until e. The time constraints (33)
indicate that if job j finishes until event f but does not start until event e — 1
then t. + p; <ty must hold. Finally, the precedence constraints (34) require for
each precedence pair (i,7) € P that if job j starts until event e then job ¢ must
also finish until e.



We observe that the induced constraint matrix of RSEE has much less non-
zero coefficients than SEE since most rows contain only O(1) entries. This prop-
erty is a rather technical improvement than a theoretical one because it primarily
improves the representation of the constraint set what affects the performance
of the used MIP solver. Furthermore, the constraint matrix of RSEE includes
substructures that are well-suited for variable propagations, see as follows.

A matrix A € RP*Y is called totally unimodular, if every non-singular square
submatrix A’ of A has determinant det(A’) € {—1, 1}. The importance of totally
unimodular matrices in integer programming is omnipresent, see Schrijver (2002)
for an overview. We will show some implications of total unimodularity in certain
substructures of RSEE.

Lemma 5. The transformation matric of equations (25) and (26) is totally uni-

modular.

Proof. Equations (25) and (26) can be written in matrix form as (g) =A- (fj)

Since the columns of A can easily be arranged such that A has only consecutive

ones in each row, we get a sufficient condition for A being totally unimodular.
O

Lemma 5 says that the transformation (25), (26) is unimodular which implies
that feasible integer solutions of SEE are mapped to feasible integer solutions
of RSEE. This shows the equivalence of integer solutions of SEE and RSEE.
Moreover, there are similar substructures within RSEE.

Lemma 6. The constraint matriz defined by inequalities (27)-(31) and (34) is
totally unimodular.

Proof. The constraint matrix associated with inequalities (27)-(31) and (34)
corresponds to a network matrix that is known to be totally unimodular, see
Schrijver (2002). O

It follows that if we consider RSEE only with inequalities (29)-(31) and (34)
then we already obtain integer solutions. An interesting direction will be to
combine the integral property with Lagrangian relaxation and flow computations
in the underlying job-event network, similar to Mohring et al. (2003) for the
time-indexed model, to compute or approximate feasible integer solutions of the
original formulation. The complexity will be to choose proper penalty weights
on the involved variables.

Our computational results reveal that the sparse formulation RSEE indeed
improves upon the solution quality compared to SEE, see Section 6.

4 Interval Event-Based Model

In this section, we present a new event-based model for the RCPSP, the Interval
Event-Based Model (IEE). This model considers decision variables z;er € {0,1}
for all j € J and (e, f) € A where zj.; = 1 if and only if job j starts at event



e and ends at event f, otherwise z;c.¢ = 1. This can also be interpreted as an
assignment of job j to the event interval [te,¢s] in which j must be processed.
Hence, IEE incorporates two decisions of SEE that determine a start and an end
event for each job into a single decision variable. The complete IEE model states
as:

min t,41

Y zes=1 VjieJd (36)
(e,f)eA
St Y zjep <R VkeRe€€ (37)
JjeT e/ <e<f’
te+pi- > ziep <ty Vi€T, (e, f) €A (38)

e<e'<f'<f
Z Zie' fr + Z Zjerpr <1

(e',f)EA:f >e (e, f)EA:e'<e

Y(i,j) € P,ec & (39)

te >0 VeeEU{n+1}
zjey €{0,1} Vi€ T, (e, f) € A

The objective function is to minimize the makespan. Equations (36) ensure that
every job has exactly one start and end event. Inequalities (37) require that the
resource constraints are satisfied at every event. In addition, inequalities (38)
indicate that if job j is scheduled between events e and f then t. +p; <ty must
hold. Next, inequalities (39) forbid for every precedence pair (i, j) € P that job
1 ends at an event later than the start event of job j. In total, IEE has n (";‘1)
binary variables and O(n - (|R| + |A| + |P])) inequalities.

Compared to OOE and SEE, the IEE model requires a factor of O(n) addi-
tional decision variables. In turn, the number of inequalities is slightly smaller
in practice and they do not involve any linearization techniques as used in in-
equalities (13) and (23) for OOE and SEE.

In the next sections, we examine the LP-relaxation of IEE and its polyhedral
relationship to OOE, SEE and the time-indexed model DDT.

4.1 LP-Relaxation

In this section we study the quality of the LP-relaxation of IEE. Similar to SEE,
the following result is stated for the case of no precedence constraints, therefore
it also applies for the general RCPSP.

Proposition 3. If P = () then the LP-relazation of IEE has an optimal objective
value of Pmaz = Maxje s pj.

Proof. Considering inequalities (38) for (e, f) = (1,n 4+ 1) we get t,,41 > p; for
all j € J. Hence, ppaz is a lower bound on the optimal LP value. Next, we



construct a feasible LP solution that yields p,,q; also as upper bound. Let a
fractional solution of IEE be given by zj; = & for all j € J and all (e, f) € A
with f = e+ 1. Moreover, let t. = Pmas - % for all e € EU {n + 1}. All other
variables are zero. To show LP-feasibility, we check each inequality separately.
For inequalities (36) we get

1
Z Zjef:Zg=1

(e./)EA ceE

for all j € J. Moreover, for inequalities (38) we get

pit Y. Zep
e<e’<f'<f
f—e

= p; < f=e 4y
= Dj T_pmaw'T— f — le

for all j € J and (e, f) € A. Inequalities (37) yield

erk' Z Zje’f’:Z%SRk

JET e/ <e<f’ Jj€ET

for all k € R and e € £ where the last inequality holds because otherwise there
exists a job j € J with rj;, > Rj, which would imply an infeasible problem. Since
tn+1 = Pmazx, the optimal LP value has a lower and upper bound of p,,q,. This
shows the proposition. a

Corollary 3. The integrality gap of IEE can be arbitrarily large.

If we insert the same LP solution into the precedence inequalities of IEE we
get a similar result as for SEE which indicates that the precedence constraints
are slightly stronger in a polyhedral context. Moreover, Proposition 3 shows that
the optimal LP value of IEE does not improve upon SEE. Therefore, it remains
to verify whether their LP-relaxations are equivalent or not. We will address this
question in the next section.

4.2 Relationship to SEE

In the following we compare the LP-relaxations of IEE and SEE. For this, recall
the polyhedron P(SEFE) as defined in Section 3.3 and define analogously

PUIEE) ={ (t,z) e RZ}" x [0,1]"M):
(t, z) satisfies (36)-(39)}

as the polyhedron of the linear relaxation of IEE. Again, we deduce a linear
transformation

xjezz:zjef VieJ,e€é& (40)
f>e
yjfZZZjef Vjej,f€5+ (41)

e<f



between SEE and IEE that reformulates the assignment of jobs to start and
end events. Moreover, let ¢ : P(IEE) — P(SEFE) with (¢,z) — (t,z,y) denote
the linear transformation given by (40), (41) and the identity map for the ¢.-
variables. First, we prove the weak inclusion under the transformation &.

Theorem 2. $(P(IEFE)) C P(SEE)

Proof. We will show that under the transformation @, every inequality of P(SEFE)
is dominated by an inequality of P(IEFE). For inequalities (16) and (17) we get

Z.Tje = ZZZjef (3:6) 1

ecé ecf f>e

(36)
D= DD e = 1
feet feEte<f

for every j € J. Moreover, for inequalities (18) we have

Z Tjer + Z Yifr = Z Z Zje'fr + Z Z cje' f!

e'>e f'<e e'>e fl>e! f<ee’ <f!
(36)
S Y e
(e, f")eA

for all j € J and e € €. Next, inequalities (23) imply

i | Dowie + D] vy — 1
e'>e fr<f
(36)
S p |20 D Emert D D e = Y ey
e'>e f'>e' fI<fe<f! (e/,f)eA
e pJ . Z Zje’f’ — Z Zje’f’
e<e/’<f'<f e/ <e< f<f’
(38)
< pjc Z Zjerpr <ty —te
e<e’<f'<f

for all j € J and (e, f) € A. Furthermore, for inequalities (19) we get

Dok | Do me = Y v

Jjeg e'<e f'<e
DS DD SRR ) e
jET e'<e f'>e! fl<ee' <f’

(37)

= ZTjk' Z Zjerpr < Ry

JjeJ e/<e<f!



for all resources k € R and e € £. Finally, for inequalities (21) we obtain

Z Tje + Z Yif

e’<e fl>e
- Z Z Zjerfr + Z Z Zie! f!
e’'<e f'>e’ fr>ee <f’
(39)
- Z Zjerfr + Z Zierp <1
(e/,f")eAe’<e (e f)EA:f>e

for every (i,7) € P and e € £. Therefore, every inequality of P(SEE) is implied
by inequalities of P(IEE) with respect to ¢ and this completes the proof. O

We can now combine the linear transformation @; given by (40), (41) from
IEE to SEE and the linear transformation @, given by (24) from SEE to OOE
in order to get a nested linear transformation @ = $5 0 P, from IEE to OOE. It
can be written as

Uie= > ziep Vi€Jec& (42)

e/ <e<f’

and states that job j is active at event e if and only if j starts at an event earlier
or equal to e and ends at an event later than e. By combining Theorems 1 and 2
it also implies the following.

Corollary 4. $(P(IEE)) C P(OOE)

Back to SEE, we have not distinguished yet whether §(P(IEE)) = P(SEE)
holds what can be assumed since the LP values of SEE and IEE are equal for
P = () by the same arguments. However, we will give a counterexample.

Proposition 4. ¢(P(IEE)) # P(SEE)

Proof. Consider two jobs J = {1, 2} with p; = 1 and one resource with capacity
R = 3 and resource demands r; = 2 for j = 1,2. Thus, the event sets are given
by & = {1,2} and £t = {2,3}. In addition, a feasible LP solution of SEE is
givenby 11 =y12=1,221 =722 =922 =¥y23=05and t; =0, {2 =t3 = L.
All other variables are zero. We now need to find variable values zj.; of IEE
such that &(t, z) = (¢, z,y). Since to = t3, we have z9 2 3 = 0 by inequalities (38).
In turn, this implies 2212 = 22,13 = 0.5. But since 21,32 = 1 the resource
constraints (37) of IEE at event e = 1 are violated because 2- (21,12 +21,1,3) +2-
(22.1,2+22.1,3) =4 > 3. It follows that for the constructed solution (¢, z, y) of SEE
there exists no solution (¢, z) of IEE such that @(¢, z) = (¢, x,y). Consequently,
&(P(IEE)) # P(SEE) which proves the proposition.

Combining Theorem 2 and Proposition 4 we get the following corollary.

Corollary 5. ¢(P(IEE)) C P(SEE)



Consequently, IEE strictly dominates SEE in the polyhedral setting which
makes IEE the strongest event-based formulation. This leads to the strict dom-
ination order of IEE = SEFE = OOF of their respective linear programming
relaxations which completes our polyhedral study of the event-based models.
Moving a model layer more general again, it remains to study the polyhedral re-
lationship of the event-based models to the time-indexed model DDT of Pritsker
et al. (1969). We will study their connection in the next section.

4.3 Relationship to DDT

In this section, we will first introduce the time-indexed model DDT of Pritsker
et al. (1969) and after that, we will investigate its polyhedral relationship to IEE.

Time-Indexed Model (DDT). Let T = {0, ..., T} be a discrete time horizon where
T is an upper bound on the makespan. For every job j € J and time t € T
there is a decision variable z;; € {0,1} with z;; = 1 if and only if job j starts
at time ¢ and x;;+ = 0 otherwise. For convenience in writing, we assume that for
all j € J we have z;; = 0 for all ¢t < 0 (even if not contained in the model) and
and z;; = 0 for all ¢ > T'— p;. Then the DDT model states as:

dap=1 VjeJ (43)
teT
t
> > rpewp <Ry VREREET (44)
JeJ t'=t—p;+1
Z T + Z Tt < 1 V(Z,j) € P,t eT (45)
t'>t—p;+1 <t

zj €{0,1} VjeJ,teT.

Equalities (43) say that every job gets assigned exactly one start time. In-
equalities (44) ensure that the resource capacities are never exceeded and in-
equalities (45) model the precedence constraints that are due to Christofides
et al. (1987). In total, DDT has O(n - T') variables and O(n + T - (|R| + |P|))
constraints. Since the number of variables and constraints scales with 7', DDT
quickly becomes intractable when T gets large. This explains the relevance for
stronger event-based models.

Note that we do not state the makespan objective for DDT because it requires
to introduce additional variables and precedence relations but here we are only
interested in the basic polyhedral structure of DDT. Define the polytope of the
linear relaxation of DDT by

P(DDT) = {z € [0,1]"T*Y . z satisfies (43)-(45)}.

For our polyhedral comparison between DDT and IEE we will assume that
|€] < |T|. In addition, let IEE(E) denote the IEE model according to the event
set £ ={1,...,n} as used in the paper before. The idea is to expand the event



set and to consider IEE(T) for the discrete time horizon 7. In particular, we
can show that an expansion of the event set yields equivalent solutions.

Proposition 5. Let £,&" be two event sets with |E] = n and |E] < |E'|. Any
fractional solution of P(IEE(E")) can be converted into an equivalent fractional
solution of P(IEE(E)) and vice versa.

Proof. Assume any solution (¢,z) € P(IEE(E)). Since |€] < |€'| we also have
(t,z) € P(IEE(E’)) by proper indexing of &’. Conversely, let (¢, z) € P(IEE(E")).
According to inequalities (38) we assume without loss of generality that t; =
maxjc7.e<f(te + pj - 2jef) holds for all f € £F. We give a strongly poly-
nomial algorithm to convert (¢,z) into a solution (t*,z*) of P(IEE(E)). Ini-
tially, let 27, = 0 for all j € J and (e, f) € A. The idea is to collapse re-
dundant events in £ until we arrive at an equivalent solution for the smaller
event set £. For this, let us consider all intervals (t./,¢s] for which there ex-
ists zjerpr > 0. From these intervals we construct the induced interval graph
Gr = (V,E) with nodes V = {(j,¢,f") € J x A : zjep > 0} and edges
E={(G¢e,f),G.e ") eV xV:(te,tp]N (ter, tp] # 0}. Next, we collect
all the maximal cliques C1, ..., C,, in G; that are uniquely ordered by their ap-
pearance from left to right in the interval graph. In particular, for interval graphs
we have m < n. If (j,€', f') is exclusively contained in the cliques Ck,...,Cf
then we increase 27, ;.1 by zjer . This is done for all job intervals. For the re-
maining variables we set t] = 0 and t} = maxjes e<f(tZ + p; - 27,;) for all
[ € ET. The resulting solution satisfies (t*,2*) € P(IEFE(E)) because none of
the constraints (36)-(39) is violated due to collapsing redundant events and by
constraints (38) we get that all 5 variables are feasible. This shows the propo-
sition. a

Now consider the expanded model IEE(T) according to the time horizon
T ={0,...,T}. If we take the re-indexed event set T then we may rewrite the
variables of IEE as z; . where j € J and (¢,t') € A with ¢,#' € T. Define the
subset of variables N = {z;, ¢+ : j € J, (t,t') € A:t'—t = p;} and the polytopes

P (IEE(T)) ={(2,2) : (t,2,2) € PUEE(T)),
z€N,z¢ N}
Pi.oyIEE(T)) ={(2,2) : (t,2,2) € PUEE(T)),
z€N,z¢ N,z=0}
By definition, we directly get the following corollary.
Corollary 6. P o(IEE(T)) C P »(IEE(T))

For the connection to DDT, consider the further projection onto the non-zero
variables of P, o)(IEE(T)) given by

P,(IEE(T))={z: (t,z2,2) € PUEE(T)),
z€ N,z¢ N,zZ=0}.



We now apply the transformation
Tjr = Zjtitrp, ViET, (L) e At —t=p;

in order to get a relation between P,(IEE(T)) and P(DDT). It turns out that
both polytopes are equal.

Theorem 3. P,(IEE(T)) = P(DDT)

Proof. We show that the inequalities that describe P(DDT) are equivalent to
those that describe P,(IEE(T)) or P(. o (IEE(T)) respectively. Since for all
j € J we have j; = 0 for all t < 0 and ¢ > T — pj;, we also assume that
Zjtt+p; = 0 for all £ <0 and ¢t > T — p; even if the variables are not contained
in ITEE(T). This will not affect the proof. First, equations (36) and (43) are
equivalent since

(36),(43)
E:ffjtzzzj,t,ij = Z Zig = 1

teT teT (t,t")EA

for all j € J. Furthermore, inequalities (37) and (44) are equal because

t t
Z Tjk - Z Ljr = Z Tjk - Z Zit! st +p;
jeg t'=t—p;+1 jeg t'=t—p;+1
(37),(44)
= erk' Z zZjpwr < Rg
JjET (t',t")e At <t<t”

for all k € R and ¢ € T. Finally, for inequalities (39) and (45) we get

Z Tip + Z Ty

' >t—pi+1 <t

E Zit! b/ 4p; T E Zj .t +p;

' >t—p;+1 <t

= E Z’L,t/,t” + E zj,t’,t’/

('t EAst! >t () e At/ <t

(39),(45)

for all (i,7) € P and ¢t € T. In particular, inequalities (38) do not affect the
polytope P,(IEE(T))) since for any vector z € P,(IEE(T))) we can always find
feasible values for the t.-variables that satisfy these inequalities. Consequently,
both polytopes are described by the same set of inequalities which proves the
theorem. a

Hence, lifting P(DDT) (by a zero vector) into the variable space of IEE(T)
we get the following consequence of Corollary 6 and Theorem 3.

Corollary 7. DDT is stronger than IEE(T).
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Fig. 1. Model hierarchy of event-based models and time indexed model for the RCPSP.
Stronger to weaker models from top to bottom.

Since by Proposition 5 the solutions of IEE(T) and IEE(E) are equivalent we
further deduce the following.

Corollary 8. DDT is stronger than IEE(E).

Note that Corollary 8 must be regarded with caution because the polytopes
P(DDT) and P,(IEE(E)) exist in different subspaces which makes both for-
mulations incomparable in general. However, since solutions to P,(IEE(E)) and
P.(IEE(T)) can be made equivalent by adding or deleting redundant events,
see Proposition 5, we deduce that P(DDT) yields a stronger polytope than
P,(IEE(E)). Furthermore, we have to remark that this holds only for the pro-
jection of the decision variables. Since in DDT, the objective function is modeled
via decision variables x;;, see Pritsker et al. (1969), and in IEE via the continu-
ous t,4+1 variable we get that their objective functions are expressed in disjoint
subspaces. In general, this makes it hard to compare the LP bounds of IEE and
DDT.

To summarize our results of the last sections, we have shown that DDT can
be obtained from IEE by expansion and restriction of its variable space from
which we derive a complete model hierarchy of the event-based models that also
draw the connection to the time-indexed model, see Figure 1.

5 Preprocessing

Before we turn to our computational results, we study preprocessing techniques
that further reduce the model sizes and improve the basic formulations of the
three models OOE (u-variables), SEE (z, y-variables) and IEE (z-variables).

5.1 Reducing the Number of Events

In general, not all events £ = {1,...,n} must have an allocated job in a feasible
integer solution to OOE, SEE or IEE. Thus, one approach to reduce the size of
the event-based models is to decrease the number of events. Therefore, we ask



if there exists an optimal solution to the RCPSP that uses at most k events or,
more generally, if there exists any solution to the RCPSP with at most & events.
Let us denote the latter decision problem as k-EP. We will show that k-EP is
already NP-complete by performing a reduction from the bin-packing problem
(BPP).

Bin Packing Problem. In the BPP we are given a set of items A where each
item j € NV has a weight w; > 0. Moreover, we are given a set of bins B where
each bin b € B has the same capacity C. The decision problem k-BPP of the
BPP asks if there exists an assignment of all items to at most k bins such that
the total item weight in every bin does not exceed the capacity C. The k-BPP
is a well-known NP-complete problem and contains the partition problem as a
special case, see Garey and Johnson (2002).

Proposition 6. k-EP is NP-complete.

Proof. Given a solution to the RCPSP, the number of used events can be re-
trieved in polynomial time, so k-EP is in NP. Assume an instance of k-BPP and
convert it into an instance of k-EP by setting J = N, p; = 1 for all j € J
and consider one resource with capacity R = C' and r;; = w; for all j € J.
Using this construction, there exists a feasible bin packing of size at most k if
and only if there exists a feasible RCPSP schedule that uses at most k events,
or has makespan at most k respectively. Hence, k-BPP yields a ’yes’ instance if
and only if k-EP yields a ’yes’ instance which shows the proposition. a

Proposition 6 reveals that reducing the number of events is a non-trivial issue.
In particular, the actual question of deciding whether there exists an optimal
schedule with at most k start events is NP-hard because checking whether a
given schedule is optimal cannot be done in polynomial time, unless P = NP.
Note that this does not prevent from finding polynomial-time certificates for a
smaller number of events. Since we focus on exact solutions to the RCPSP we
will use the complete event set £ = {1,...,n} for our computational results.

5.2 Eliminating Assignments from Precedence Constraints

As pointed out by Koné et al. (2011), the feasible event set of a job can be
reduced by integrating the precedence constraints. Let n; be the number of
predecessors and nj be the number of successors of job j including all transitive
precedence relations in the precedence graph G = (J,P). Since £ = {1,...,n}
we can assume that every predecessor or successor of a job j starts at its own
event, so we exclude any assignment of job j to a start event e € {1,...,n; }
and an end event f € {n— nj +1,...,n+1}. Hence, we perform the reductions
Uje = 0 Vj6J,ee«‘):eSn;,eZn—nj+
ZTje =0 Vjej,eeé':egnj_,ezn—nj'
yir=0 VieJ, fe&t:f-1<n;,f>n—-nf+1
Zjer =0 Vjej,(e,f)E.A:egnj_,on—nj—kl



for each of the models OOE, SEE and IEE respectively. Many current MIP
solvers can handle the above equations efficiently by deleting all implied redun-
dant variables and constraints in their preprocessing phase.

5.3 Time Bound Inequalities

In all three models OOE, SEE and IEE the event time inequalities (6), (23), (38)
contain the largest number of inequalities but they are also responsible for the
generally weak LP bounds. In the following we present two strengthening ap-
proaches.

Integrating Time Windows For every job j € J we compute a time window
[E;, L;] in which j must be scheduled. This is done as follows. We first compute
an upper bound T on the makespan by applying a list scheduling algorithm,
see Kolisch and Hartmann (1999), and perform constraint propagation on the
eligible time windows as done in Brucker et al. (2000). In particular, we perform
precedence propagations and energetic reasoning propagations, see Baptiste et
al. (1999) and Tesch (2016). Thus, the earliest start times respect at least the
inequalities E; + p; < Ej; for all (4, j) € P. Using the time windows [E;, L;], we
derive inequalities that basically require t. € [E;, L;] if job j starts at event e.
In particular, for OOE we get the inequalities

Ej-ujegte VjEJ,eEg (46)
te <T+(Lj—T) uje VjET, e€E (47)

which state that E; <t. < L; if job j is active at event e. Similarly, for SEE we
obtain the inequalities

Ej- Y mje <t VjeJec& (48)
e'<e
(Bj+pj)- Yy <ty VjieJec€" (49)
F<f
te <T+(Lj—pj—T)- > wjer VjET, €& (50)
e'>e
ty <T+(L;=T)- Y yjpr Vi€ T, ecE" (51)
I'=f

which imply that E; <t. < L; —p; and Ej +p; <ty < Lj if job j starts at
event e and ends at event f. Moreover, by applying the transformations (40)



and (41) from SEE to IEE we get equivalent inequalities

Ei- 3N zjep <t VjieJeck (52)
e’'<e f'>e’
(Bj+p)- Y, Y zjep <ty VjeJ,fe&t (53)
fr<fer<s
te <T+(Li—p;=T)- D> > zep
e'>e fl>e’
Vie T, ec& (54)
BETHE-T) Y Y sep
fr>fe<f
VieJ, feEt. (55)

for IEE that imply the same conditions as for SEE. The basic idea of these
inequalities was already proposed by Koné et al. (2011) but our inequalities

dominate the originally proposed ones. Adding these inequalities we get the
following LP bound for SEE and IEE.

Lemma 7. Let Lp denote the length of the longest path in the precedence graph
G = (J,P). Adding the time bound inequalities for SEE and IEE yields in both
models an optimal LP value of at least Lp.

Proof. From Lp < max;cy(E; + p;) after time window preprocessing and the
fact that the added inequalities imply E; + p; < t,41 for all j € J we get the
desired results. ad

In the next section, we add further inequalities that achieve an LP bound
equal to an energetic lower bound for the RCPSP.

Energetic Time Bounds Assume J.; C J contains all jobs that start not
earlier than event e and finish not later than event f. In this case, the energetic
inequality .7 7k - pj < Ri - (ty —te) must hold which means that the
consumed energy in the interval [t.,t;] must not exceed the available energy.
Hence, we add the following inequalities to SEE

Do | Do we+ Dy — 1| <Ry (ty—te)

JjeJ e'>e f'<f
VkeR,(e,f) e A (56)
while for IEE we get by (40) and (41) equivalently
Doriwepic Y ey < Ri-(tp—te)
jeg e<e'<f'<f
VkeR, (e, f) € A (57)

Due to the weak modeling possibilities, we do not achieve similarly strong in-
equalities for OOE, so we omit them.



Lemma 8. Let B = maxper (Zjej Tjk ~pj) /Ry denote the energetic lower

bound for the RCPSP. Adding the energetic inequalities for SEE and IEFE yields
and optimal LP value of at least B in both models.

Proof. For SEE and IEE consider the energetic inequality with (e, f) = (1,n+1)
which implies Zjej Tik - Pj < Ry -ty for every k € R. This proves the result.
O

Our computational experience showed that adding all energetic inequalities
does not substantially improve the solving performance of SEE (RSEE respec-
tively) and IEE. Therefore, we add inequalities (56) and (57) only for all k € R
and (e,n+1) € Ain order to focus on the LP bound that is determined by ¢,,.

5.4 Maximal Interval Event Length

The IEE model considers binary variables zj.¢ for every job j € J and every
pair of events (e, f) € A. Hence, it has a factor of O(n) more binary variables
compared to OOE and SEE which constitutes a potential bottleneck for solving
IEE. However, in most integer solutions of IEE where zj.y = 1 for some job
j € J the distance f — e between the start event e and the end event f is rather
small. Therefore, the idea is to compute an upper bound §; > f —e for every job
J € J such that there exists no feasible schedule with zjo; =1 and f —e > §;.
In this case, all variables zjer with f —e > §; can be eliminated.

Hence, consider a fixed job j € J. We denote d; as the maximum number of
different jobs that can start while job j is active. Thus, assume job j is processed
in the time interval [S;, S;+p;]. To compute J;, we maximize the number of jobs
that can simultaneously start in the time interval [S;, S; +p; — 1] (left knapsack)
and at time S;+p;—1 (right knapsack). In order to keep the computations simple,
the left knapsack takes energetic bounds, that means for every resource k € R it
has capacity (Ry — ;%) - (p; — 1) and every job i # j has weight 7 - p;. In turn,
the right knapsack takes one-dimensional bounds, that means for every resource
k € R it has capacity Ry — ;i and every job ¢ # j has weight 7;,. Moreover, we
allow only jobs ¢ with p; < p; —1 to be assigned to the left knapsack. Otherwise,
if p; > p; —1 then job ¢ is active at time S;+p; —1 and, without loss of generality,
we can shift ¢ to start at time S; + p; — 1 such that it is only contained in the
right knapsack. Let ‘Yjp and jjs be the set of predecessors and successors of job
j according to the precedence graph including all transitive precedence relations.
The set of jobs that can be assigned to the left and right knapsack is given by

JE={ieg i#ji¢ I’ VT’ p <p;—1},
JR={ieg i#ji¢ T VTF)

where T} C T, see Figure 2 for an example.
We model the combined knapsack problem as an integer program with binary
variables vl vF € {0,1} that are equal to one, if job i is assigned to the left or

AR )
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Fig. 2. Maximum number of jobs that can start while job j is active: the left knapsack
contains jobs i1,142,13 € .7]-1“ using energetic bounds and the right knapsack contains
the job i4 € ij using a one-dimensional knapsack bound.

the right knapsack respectively. Thus, we solve

5j:mavaiL+ ZUZ-R

ieTk USVE

vF+of <1 Vie gk (58)
Zrik~pi~viL§(karjk)(pjfl) VkeR (59)
SV

Z rikml-RSRk—rjk VkeR (60)
ieTH
viL + v,f <1

V(i,kj):ie%L,kexLHZS:pi+pk>pj—1 (61)
of ol <1 V(i k) ie I ke TfnT? (62)

vfe{0,1} Vie JF
vffe{0,1} vie N

The objective function maximizes the number of assigned jobs while every job
can be assigned to at most one knapsack by inequality (58). As introduced, the
left and right knapsack inequalities are given by (59) and (60). Furthermore,
inequalities (61) and (62) forbid the assignments of two invalid precedence-
constrained jobs to the same knapsack. Even though the stated problem is the-
oretically hard (contains the knapsack problem), it can be solved very quickly
by current MIP solvers. After computing the values §; for every job j € J, we
eliminate all variables z;.¢ with j € J and f — e > d;. On practical instances,
we observe that this reduction approach generally more than halves the number
of variables of IEE. However, note that the same approach cannot be used to
reduce the set A since this would cause inconsistencies between the t. variables
due to the time constraints (6), (23) and (38). In the next section, we will give
more detailed informations on the obtained computational results.



6 Computational Results

In this section, we analyze the computational performance of the presented mod-
els on the J30 and J60 test sets of the PSPLIB (Kolisch and Sprecher 1997) where
each consists of 480 instances with 30 jobs and 60 jobs respectively. Both test sets
consider four resources of different capacities, resource demands and individual
precedence constraints. In previous works, the instances have been distinguished
by different parameters such as: order strength, network complexity, resource
factor, resource strength, disjunction ratio and process range, see Artigues et
al. (2013) and Koné et al. (2011).

We implemented the models DDT, OOE, SEE, RSEE and IEE using the
C++ interface of the commercial MIP solver Gurobi 7.5.1 in default settings.
The tests are performed on an Intel Xeon E5-2680 CPU with 2.7 Ghz using 8
cores for each instance. The time limit of each instances was set to 600 seconds.

For each of the test sets J30 and J60 we compute two charts. The first
chart displays the number of instances where the optimality gap is below or
equal to the given value on the x-axis. The optimality gap is defined as 1 — %
where b is the computed dual bound and ub the computed primal bound after
solving each instance. Thus, the first chart shows the real performance of exact
solving the RCPSP. The second chart shows the number of instances in which

the min-primal-dual gap is below or equal to the given value on the z-axis.

ub”  1b
ub ? Tbx

defined as before while ub* and [b* are the best known upper and lower bound
of the considered instance. Hence, the second chart displays the approximation
quality to the lower or the upper bound. This is because we observed that in
the beginning of the solving process the MIP solver often decides to improve
either the primal or dual bound while the other bound is disregarded during the
remaining solving process. Hence, on many instances one criterion outperforms
the other one, especially on the J60 instances.

Before turning to our computational results, we mention that DDT should be
considered separately because event-based models are supposed to apply for the
case where the time horizon is large. On the J30 and J60 instances however the
time horizon has moderate size, so DDT has small size and therefore performs
quite well compared to the event-based models. However, one can easily scale
the time horizon and processing times of any instance by a large factor such that
DDT will always be outperformed by the event-based models as shown in Koné
et al. (2011). Nevertheless, to allow a comparison on commonly known RCPSP
instances we will also show the results of DDT.

For all event-based models we consider the full event set £ = {1,...,n} and
apply all preprocessing steps of Section 5. For DDT, we restrict the decision
variables of each job j € J to the time windows [E}, L;] as given in Section 5.3.

On the J30 test set, see Figure 3, all event-based models show an almost
equivalent performance for the optimality gap. The reason for this is mainly
due to the strong influence of the time window preprocessing on the J30 in-
stances that equals the solving behavior of the event-based models. Similarly,

The min-primal-dual gap is defined as 1 — max( ) where ub and (b are
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Fig. 3. J30 instances: optimality gap (left) and min-primal-dual gap (right).

DDT highly benefits from the time window preprocessing because the resulting
number of variables and constraints is sufficiently small such that it outperforms
the event-based models. Considering the min-primal-dual gap, we see that RSEE
dominates all other event-based models models. That means RSEE is superior
to all other event-based models in the primal or the dual bound. Furthermore,
this shows that the sparse representation of RSEE has a positive impact on the
MIP solving performance. Moreover, RSEE closes the gap to DDT which shows
that the event-based models can compete with DDT in the primal or dual bound

approximation on instances where DDT should be highly superior.
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J60 instances: optimality gap (left) and min-primal-dual gap (right).



On the J60 test set, see Figure 4, the influence of the time window preprocess-
ing decreases and the more model-specific solving performance comes to light.
For the optimality gap we observe again that RSEE solves as many instances to
optimality as its polyhedrally equivalent counterpart SEE but highly dominates
all other event-based models on the overall scale. This shows that the sparsity of
RSEE has a high impact on the solving performance. Moreover, it replaces DDT
as the best model from an optimality gap of 30% where DDT is not able to make
progress on a couple of hard instances. Despite the stronger formulation and ad-
ditional preprocessing, the new IEE model underlies SEE in direct comparison.
The main reason is the still large number of variables an its seemingly complex
polyhedral structure that causes expensive LP solving. In contrast to the other
models, IEE barely exited the root node of the search tree such which lets us be-
lieve that IEE has remaining potential if the LP subproblems can be solved more
efficiently. Reversely, OOE reflects its proven theoretical strength and is clearly
inferior to all other models. For the min-primal-dual criterion, we observe again
that RSEE dominates all other event-based models while SEE and IEE perform
almost identically. The models RSEE, SEE and IEE are even almost as strong
as DDT in the primal or dual bound. Again, OOE has the worst performance
since it is not able to close both primal and dual gap because of its weak linear
relaxation. Remarkably, the event-based models SEE, RSEE and IEE achieve
the best known dual or primal bound on about 62% of the instances.

In the following we will give a quick summary of each model:

— OOQE: fast on small instances; poor performance on large instances; weak
linear relaxation

— SEE: decent overall performance; small model size; decent LP bound

— RSEE: best event-based model; benefits sparse constraint matrix; decent
LP bound

— IEE: strongest event-based model in theory; average performance; large
number of variables; expensive LP solving

— (DDT): best model when time horizon is small; good LP bounds; inferior
to all event-based models for large time horizon

Comparing our results to Koné et al. (2011), we are able to considerably im-
prove upon the computational performance of all event-based models. In Koné
et al. (2011), OOE was declared as the best performing model while SEE was
considerably outperformed. Our theoretical and computational results show the
opposite. While in Koné et al. (2011), SEE solved 2.9% of all J30 instances to
optimality, we achieve 53.5% and 82.5% where lower or upper bound is optimal
(RSEE). We believe that the main reason is the stronger event time inequali-
ties (23) that have high impact on the dual bound during MIP solving. For the
J60 test set we can even solve about 44% of the instances to optimality and for
RSEE almost about 95% of all J60 instances are solved within 35% of optimal-
ity. Hence, being able to approach the J60 test set with compact formulations
constitutes a clear improvement. Naturally, one has to incorporate current de-
velopments in MIP solving and computation power but our main improvements
are of theoretical nature.
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Conclusion

We studied the class of event-based models for the RCPSP and gave a complete
characterization of their mutual polyhedral relationships and their connection
to the common time-indexed model of Pritsker et al. (1969). Our proposed im-
provements made it possible to approach more difficult test sets of the PSPLIB
using event-based models. For the future it will be of interest to further improve
the solving performance of event-based models, for example by incorporating
more complex on-top algorithms, such as Lagrangian relaxation, in order to use
integer substructures (as stated for RSEE) for solving relaxed subproblems by
fast combinatorial algorithms.
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