Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

Takustral3e 7
D-14195 Berlin-Dahlem

Germany

JORG RAMBAU

TOPCOM:
Triangulations of Point Configurations
and
Oriented Matroids

ZIB-Report 02-17 (April 2002)

TOPCOM:
TRIANGULATIONS OF POINT CONFIGURATIONS AND
ORIENTED MATROIDS

JORG RAMBAU

ABSTRACT. TOPCOM is a package for computing triangulations of point configurations
and oriented matroids. For example, for a point configuration one can compute the chiro-
tope, components of the flip graph of triangulations, enumerate all triangulations. The core
algorithms implemented in TOPCOM are described, and implentation issues are discussed.

1. INTRODUCTION

TOPCOM[1] uses a combinatorial model of point configurations in order to compute
their triangulations in arbitrary dimensions: the oriented matroid.[2, 3, 4] This allows to
avoid round-off errors in all calculations once the oriented matroid of the point configu-
ration has been computed. If the point configuration is has rational coordinates then its
oriented matroid can be computed with exact arithmetics. The number of operations in
exact arithmetics necessary to compute the relevant oriented matroid data for a particular
problem is minimal in the sense that any coordinate-based method achieving the same goal
needs at least as many operations in exact arithmetidgeMaordinate-based approaches
like checking intersections of simplices by linear programming need usually a lot more.

2. MATHEMATICAL BACKGROUND

The basic idea utilized in TOPCOM is the following combinatorial characterization of
triangulations:[5]

Theorem 2.1. Let A be a full-dimensional point configuration iR¢. A setT of full-
dimensional d 4 1)-subsets (simplices) of is a triangulation ofA iff
(IP) For every pairS, S’ of simplices i, there exists no circuitZ*,Z~) in A with
Zt C SandZ~ C S’ (Intersection Property).
(UP) For each facet of a simplekin T there is another simple%’ # S havingF as a
facet, orF is contained in a facet ofl (Union Property).

With the following characterization, we only need the chirotope representation of the
oriented matroid of4 in order to check a triangulation:[6]

Theorem 2.2. Let A be a full-dimensional point configuration iR¢. A setT of full-
dimensionald + 1)-subsets (simplices) of is a triangulation fo.A iff

(CP) For every interior facet, there are exactly two simplicésJs andFUs’ in T such
thats ands’ have different signs in the cocircuit definedio§Cocircuit-Property).

(EP) A contains a simplicial facet or there is an extension in the relative interiof of
general position that is contained in the interior of exactly one simplex (Extension
Property).

2 JORG RAMBAU

3. MAIN ALGORITHMS

We present the main algorithms implemented in TOPCOM together with rough esti-
mates for the asymptotic run-time complexty.

We denote byn the number of points ind, by r the rank of. 4, which equals the
dimension (denoted by) plus one, and by := n — r the corank ofA. In all practically
solvable cases you may think afandr as small numbers compared to the total number
of triangulations ofA.

3.1. Compute the Chirotope. First, we describe how we compute the interface from geo-
metric information in the coordinates of the points to purely combinatorial data. The chi-
rotopey is a function assigning a sign {8, +, —} to eachr-subset of4; this describes the
orientation of the corresponding sequence of points.

1) x:{ o W) 2 o
(i1,i2,...,1a41) — sign(deta;,,ai,,...,aiy,,))

Naively, we have to computér‘) determinants of size, each requiring (3) steps if
we proceed by an elimination algorithm (unit cost per arithmetic operation assumed).

If we organize the computation in a certain tree we can reuse some elimination opera-
tions. The nodes at levklof the computation tree are matridet, in column normal form
corresponding to a subsat. of k columns ofA. A child Ay of a node is produced by
adding a column to the right @ty to My and performing elimination steps until we arrive
at a matrixMy 1 in column normal form. The leaves of the tree are all posdible r)-
submatrices of4 in equivalent triangular form, and their determinant can be computed
easily.

Counting nodes and operations in the tree, we get that the number of operations per
determinant is essentially (¢ T+C r2). Why? We first count the nodes in the levels of the

computation tree as follows: Lgt(k,)) (k 1) be the number of submatrices Afwith

k columns and rightmost column at indgxThen the number of nodes in levelof the

tree is equal toZn Tk g(k,j). We estimate the number of operations in each node of
level k by rk because of the following considerations. We have to elimikatel values

in the kth column. We start the elimination in roWand proceed from top to bottom. If

the mth row, 1T < m < k, of themth column is non-zero we can eliminate (i.e., set to
zero) the non-zero in thewth row of the newly adde#lth column by computing—m < r

new numbers. lin is the smallest index such that theth row of columnm is zero, we
swap columrk and columnm. The firstk — T columns of the resulting matrix are again in
column normal form, and rown of columnk is zero now. Therefore, and we can proceed
with the nextm. The total number of operations is therefore at mstThe total number

of nodes in the tree is given lﬂk 1 Z“ Tk g(k,j). Hence, the number of operations is

at mostG(n,r) Zk 1 Z“ Tk g(k,j)kr. The number of operations per determinant

is thenG(n, T)/(r)' The analysis of this expression can be done most easily in a computer
algebra program to get the res@tn,r) = %
claimed growth.

This proves that the computation tree yields savings of argder determinant whenever
the codimension is not much smaller than the dimension.

which asymptotically has the

LIn particular algorithms, these estimates can be improved by using custom-made data structures, but TOP-
COM does not exploit this, since these data structures would perform worse in other algorithms.

TOPCOM: TRIANGULATIONS OF POINT CONFIGURATIONS AND ORIENTED MATROIDS 3

The chirotope values are stored in a hash table so that they can be retrieved in amortized
constant time. Alternatively, one could compute the lexicographic index of each simplex
and store its value in an array, yielding access to each chirotope value constant times com-
puting the lexicographic index.

3.2. Check a Potential Triangulation. From now on, we assume that the chirotopedof

has been preprocessed. Given the combinatorial characterizations of triangulations, check-
ing the correctness of a triangulation is, in principle, straight-forward. The only issue is
efficiency. TOPCOM uses characterization 2.2 for checking the correctness of triangula-
tions:

e (CP) requires checking the link of allfacets inT. The computation of all links
can be accomplished i@ (r|T|) operations by scanning all the simplicesTimnd
collecting their contributions to the links of their facets in a hash map (supporting
unique insert in amortized constant time). If the link of some faazintains only
one point, we need to check whetlés in the boundary afd. This can be done by
retrieving at most chirotope values. In case the link has more than two elements,
we output ‘invalid’ immediately. In the case that there are two elements in the
link of a facet, the orientations of the two points in the corresponding cocircuit
can be checked by retrieving two chirotope values. Summarizing, the number of
operations needed to check (CPDiscr|T]).

e The existence of a simplicial facet is not checked. Instead, (EP) is always checked
by utilizing a lexicographic extensiop in the interior of a some simplex im.
The formula for the chirotope values involvimgrequires the retrieval of at most
r other chirotope values (only one.f is in general position).[4] For all simplices
in T we need to check whetheris in its interior. This can be done by retrieving
r chirotope values involving. Thus, for the whole procedure, we need at most
O(r?|T|) steps.

Thus, in at mosO (maxc, r}r|T|) we can check the validity of a triangulation.

3.3. Construct a Placing Triangulation. The construction of a placing triangulation is
an incremental process. During the process, we maintain in eack step

o the set of pointsd, that is currently triangulated
e a placing triangulatiofy, of Ay
e a setFy of all boundary facets ofy that are interior in4, i.e., those facets
— that are facets of exactly one simplexTin
— that are not in the boundary g, i.e., the corresponding cocircuits are neither
positive nor negative it.

The firstr points to be added have to form a valid (i.e., full-dimensional) simplex.
Finding such a simplex can be integrated in the computation of the chirotope at the cost of
storing a simplex$ with non-zero chirotope. Consequently, equalsS, T, consists of the
simplexS, andF,. contains those facets 6fthat are not in the boundary of.

Adding a new pointi 7 to Ay, yielding Ay 1, for somek > r will add all simplices
F U axy1 to 7y for which F € Fy is visible from ay 1, i.e., the sign ofay; in the
cocircuit defined by is opposite to those signs of the pointsdn that are non-zero: this
yields Ty 1. (There are points il with non-zero sign sincely is full-dimensional for all
k > r.) The visible facets iy are removed and the new non-boundary facets of the new
simplices are added t6,: this yieldsFy ;1.

The process stops as soonjgsis empty for somé > r. This happens at the latest
whenk = n, but maybe earlier, in which case not all points are used for the placing

4 JORG RAMBAU

triangulation. If one wants a triangulation that uses all the points the missing points are
added one by one by performing stellar subdivisions inside existing simplices: the points
are “flipped-in”.

The number of operations on the sg&fsis bounded by the number of &l — 1)-faces
of the resulting placing triagulatiom, which is at mostO(r|T|). The use of universal
hashing facilitates unique insert and deletion in amortized constant time. For one visibilty
check we need to retrieve at mesthirotope values (if4 is in general position two values
suffice). Each facet occuring in sonie may have to be checked for visibility in each but
one step of the construction.

Thus, in total we need at mo€t(rc?|T|) operations (resg)(rc|T|) operations ifA is
in general position) for all visibility checks. This dominates the computation of a placing
triangulation.

3.4. Explore a Flip-Graph Component. Flips are stored in TOPCOM as pairs of out-
going and incoming simplices (flip-out sets and flip-in sets). TOPCOM uses a standard
Breadth-First-Search (BFS) procedure to explore the flip graph.[7] Since the graph is not
given explicitely, we need to construct edges dynamically during the exploration. To this
end, we maintain for each triangulation a node containing its set of flips, i.e., a set of edges
leading out of this node. Given a flip in a triangulation we can compute the resulting tri-
angulation in amortized tim@(r) by using a special data structure for triangulations that
allows for unique insert and deletion in amortized constant time (e.g., hash tables with
universal hashing or something derived thereof).

New flips are found using the chirotope as follows: Assu®és the set of flips inT,
and we have used one of those flips S to discover a new triangulatioR’. Then the set
S’ of flips of T’ inherits all those flips i§ whose flip-out sets are disjoint frofis flip-out
set. Finding these flips takes tindgr|S]).

Moreover, there are some new flips. Their flip-out sets have always non-empty inter-
section with the flip-in set of. Thus, for finding new flips we can restrict ourselves to
potential flips containing simplices ¢k flip-in set. To this end, we first build all potential
supports (sets of involved vertices) of flips by collecting(alt- 1)-supersets of simplices
in the flip-in set that might support a flip. This can be don®im|T’|) by finding adjacent
simplices inT’; alternatively one can do this i@ (rn) by adding all possible points to an
in-flip simplex, which results, however, in more non-flippable supports. Since checking
whether or not a support is actually flippable is the expensive operation, TOPCOM uses
the first method. The maximal number of possible supports returned by this procedure is
bounded from above by the number of boundary facets of the flip-in Setbich isO(r).

To check the flippability of arir + 1)-set, we first compute its circuit signatufe=
(Z*,Z7) by retrievingr + 1 chirotope values. The two possible triangulatidn's(Z)
andT~ (Z) can be computed from this data in tirdér). Then we need to check whether
one, sayl *(Z), of the two possible circuit triangulations is a sub-compleX oflf Z is in
general position (no chirotope value is zero) then we need to check containnmiéfirall
the at mostO(r) simplices inT*(Z). This can be done in amortized tinyr) by using
a special data structure for triangulations that allows for membership test in amortized
constant time. I is not in general position we need to compute the links of all (maximal)
simplices inT* in T’. This takes at most tim@®(r|T’|). If all simplices inT* have the
same non-empty link thed is indeed flippable, and the flip-out and flips-in sets are the
unions of the simplices ifi* (Z) resp.T—(Z) with the common link; they can therefore be
deduced in time(r?) (rank of A times corank of).

TOPCOM: TRIANGULATIONS OF POINT CONFIGURATIONS AND ORIENTED MATROIDS 5

Summarizing, we need tim®(r2|T’|) for finding new flips inT’; this reduces to
O(r|T’| + r?) when A is in general position. Thus, generating the new flipSetakes
time O(r2[T’| + 7|S|), which is inO(r2(|T'| + |T|)).

Note that computing flips from scratch for each node would yield a time complexity of
Q(r|T’|?)—assuming the same algorithm is used for checking flippability of a potential
support of a flip.

Using a data structure for triangulations that allows to retrieve an adjacent simplex
in constant time (the adjacency graph[8]) can reduce the time complexity in the non-
general-position case. This, however, would result in a higher complexity when computing
an adjacent node, a higher complexity for equality checks for triangulations, and—most
important—in a substantially higher memory consumption. Moreover, the sizes of prob-
lems for which an asymptotically superior data structure returns the result faster is out
of reach memory-wise anyway because for small problems the TOPCOM data structures
facilitate very small constants in the computing time bounds. This, however, has to be
carefully monitored in the future as the computers are getting more and more powerful.

3.5. Explore the Partial Order of Partial Triangulations. Here, TOPCOM employs

a standard Depth-First-Search (DFS) in the Hasse-diagram of all partial triangulations,
partially ordered by inclusion. Partial triangulations are sets of simplices satisfying (IP).
Every node in the DFS-tree contains a partial triangulafipra set of simpliceA (T)
(admissibles) of simplices that can be added twithout violating (IP), and a the set

F(T) of facets of simplices in the boundary ®fthat are in the interior ofA. The leaves

in the DFS-tree are the non-extendable partial triangulations, and some of them are in
fact triangulations, namely those with F(T) = (). This is essentially the method of
enumerating maximal independet sets[8] in the intersection graph of all simplices, except
that, first, we don’t proceed via adjacent simplices only and, second, we use the chirotope
for checking proper intersections of simplices. The basic method goes back to 1980.[9]

Edges (i.e., new simplices) are explored in lexicographic order. Consider a hédd))
and add a simple& € A(T) to T in order to discover nodel’, A(T’). ThenA(T) is up-
dated toA(T) \ S, so that the none of the other branches aldya (T) can ever reach a
partial triangulation with subcomplek’ = T U S.

This way, we only need the memory to store one complete branch in the DFS-tkée. If
is the maximal number of simplices in a triangulation4fthen storingd (M) simplices
on a stack for the partial triangulations plus stor(hg\/l(?)) simplices in the admissibles
fields suffice. Important is the fact that the memory requirements do not depend on the
number of triangulations ofl.

TOPCOM uses a preprocessed hash map with all pos@jl)leimplices as keys. The
value A(S) of a simplexS is the set of all simplice§’ such thatS andS’ form an ad-
missible pair, i.e.{S, S’} satisfies (IP). This preprocessing takes ti@\(e{‘r‘)z). The table
allows for the following fast update algorithm: T is discovered by adding simplek
to T thenA(T’) = A(T)NA(S). This step can be accomplished in ti@¢/A(T)|), which
is—crudely estimated—i®((7")).

The set of all interior facets od is also preprocessed by checking for each1)-subset
the facet property. This needs tirmr(rfl)). The seff(T) can be updated by adding the
interior boundary facets & to F(T) modulo2. These are can be done in tirdér|F(T)|),
which is inO(r*M).

6 JORG RAMBAU

In total, we need tim@((;‘)z) preprocessing time and tin@(r(‘:)) per ouput node.
The time needed per triangulation is way higher because there are a lot more proper partial
triangulations than triangulations.

3.6. Check Regularity (Requires External LP Solver with Exact Arithmetics). Check-
ing regularity of a triangulationi requires checking the feasibility of a linear program with
a constraint for each interior facétin T. The constraint induced bl adjacent to the
simplicesS andS’ in T expresses th& andS’ can be “folded” af such that the resulting
signed volume spanned BByandS’ is positive.

This is a condition that can be expressed as a condition on the determinant of the ho-
mogeneous coordinate vectors of the point$ id S’. This determinant develops into a
linear constraint in the height variables for each point. The coefficients turn out to be the
same determinants that specify the signs for the chirotope values on all sulfsets’oflf
we therefore save the determinants rather than the signs in the chirotope then we can form
each constraint in tim@(r), resulting in a time complexity ab (+2|T|) for setting up the
complete linear program.

This effort is currently dominated by actually solving the linear program in exact arith-
metics. TOPCOM employs for this task the cdd package.[10]

3.7. Symmetry-Handling. TOPCOM can exploit symmetries that are given by the user

in form of generating permutations. The main savings using symmetries can be imple-
mented in the flip graph exploration. In the BFS procedure there are always three kinds
of nodes:[7] unknown nodes (white nodes), nodes that have been discovered but may have
unknown neighbors (gray nodes), and discovered nodes all of whose neighbors have also
been discovered (black nodes). Black nodes can be removed from memory.

The BFS procedure behaves friendly w.r.t. symmetries. That means itis possible (by an
equivalent-edge marking procedure) to store only one representative per symmetry class
and to remove the black nodes from memory. This works without ever discovering a white
node equivalent to a black one.[3] Using the symmetries that leave a triangulation un-
changed one can reduce the effort of finding flips.

Symmtries are also observed in checking (CP) in a potential triangulation. In contrast
to this, (EP) has to be checked for all simplices—not only for all symmetry classes of
simplices.

4. DATA STRUCTURES ANDIMPLEMENTATION DETAILS

4.1. Simplicial Complexes. Simplicial complexes are regarded as the sets of their maxi-
mal simplices. TOPCOM aims at using set data structures that perform fast on the follow-
ing tasks: equality check, membership test, unique insert, deletion, intersection, union.

Simplices are implemented as dynamic bitsets. The largest number of points ever han-
dled in TOPCOM was24 in dimension six (the Santos triangulation). This still requires
only 41 Bytes per simplex, as opposed®o 4 = 28 Bytes for an array representation.

For all potentially accessible enumeration problems the number of points must be much
smaller: in most applicationd bits suffice, in which case also the memory consumption
is superior.

Equality check needgn/32] integer equality checks. Membership test, unique insert,
and deletion just need a single (very fast) bit operation each. Intersections and unions
are linear ilm; however, on a normal PG bits can be processed at a time, thus this is
practically very fast for reasonable valuesof

TOPCOM: TRIANGULATIONS OF POINT CONFIGURATIONS AND ORIENTED MATROIDS 7

Simplicial complexes are based on dynamic bitsets where each bit represents a simplex.
The assignment of bit positions to simpleces remains fixed during one complete run of
the program. When a simplex occurs for the first time it gets the next free bit assigned;
this assignment is stored in a dictionary. Retrieving the simplex corresponding to a bit
is implemented via an array indexed by integers; getting the bit position of a simplex is
accomplished by a hash table look-up. Both can be done (theoretically and practically) in
amortized constant time.

This way, operations on simplicial complexes can work fast via bitset operations. An-
other advantage is the excellent behaviour in terms of memory cache misses (a main bottle-
neck on nowaday’s computers): retrieving even a long bitstring from memory is very fast
whenever the bits are stored consecutively. If we enumerate a flip graph component then
for each possible simplex there is at least one triangulation (usually many) that contains
that simplex. Thus, we need to store each possible simplex at least once, whence the use
of the TOPCOM data structure does not harm memory-wise.

The main draw-back of this structure is that equality checks take @m(é)) with
small constants, though. The plausible observation is that for dense simplicial complexes
(number of simplices is of orde(f;)), the structure is performing very well; for very sparse
complexes, one should use an ordinary representation.

When the sizes of accessible problems grow, TOPCOM will probably switch to an
asymptotically faster date structure. For (most) instances solvable on nowaday’s comput-
ers, the bitstring technique works fastest.

4.2. Chirotopes. The chirotope values for simplices are stored in a hash map, allowing
for amortized constant time retrieval. If the problem is very large, the table can be assigned
a fixed size and works as a cache with random evict.

4.3. Node in the Flip-Graph. TOPCOM stores the triangulatiohas a simplicial com-
plex and the flips off as a hashmap assigning marked or unmarked to the representation
of the flip.

A flip’s internal representation is simply a dependent set with 1 points, which is
stored as a simplex. By deleting+ 1 bits and retrievingr + 1 chirotope values, one
can obtain from this a flip represented by a pair of simplicial complexes: the flip-in and
the flip-out simplices. Thus, deleting the flip-out set from and adding the flip-in set to a
triangulation works on bitset level. Marking of a particular flip would work in amortized
constant time in hash maps. Because the set of flips assigned to one triangulation is not
that large, TOPCOM now rather uses sorted maps for flips (logarithmic time for marking,
but less overhead).

4.4. Node in the Tree of Partial Triangulations. The triangulationTl, the setA(T) of
admissible simplices, and the set of uncovered interior fagdty are all stored as sim-
plicial complexes. This way the computing the intersection of admissible sets is a bitset
operation. Moreover, adding interior facets modulo two means an xor-operation on bitset
level, which is also very fast in practice.

4.5. Symmetries. Symmetries are stored as arraysf integers, where([i] is the image

of vertexi under the symmetrg. The images of simplices and simplicial complexes are
computed vertex by vertex. Here is certainly potential for improvement by using more
sophisticated structures.

8 JORG RAMBAU

5. COMPUTATIONAL EXPERIMENTS

We present some results of experiments with the data structures used in TOPCOM-
0.10.0in Table 1. In Table 2, we reproduce a table from [3] containing some large enumer-
ation problems solved by TOPCOM for the first time (to the best of our knowledge).

data structure representing a simplicial complex
operation STL set(vec(int))| STL set(bitstr.)] TOPCOM
insert99 simplices 100% 51% 62%
assignment 100% 48% 0.2%
delete89 simplices 100% 79% 75%
intersect £ 50 simplices) 100% 52% 4.5%
lex. compare+{ 50 simplices) 100% 53% 108%
equality false £ 50 simplices) 100% 100% 700%
equality true (w.r.t. line above 84700% 44950% 933%

TABLE 1. Operations in simplicial complexes (1.8GHz Pentium IV,
1GByte RAM, simplices chosen randomly) using three different data
structures for simplicial complexes: STL (=C++ Standard Template Li-
brary) set(vec(int))=STL set, based on red-black trees, of arrays of inte-
gers; STL set(bitstr.)=STL set of TOPCOM's dynamic bitstrings; TOP-
COM= TOPCOM’s bitstrings specifying simplex indices w.r.t. a table of
essentially all possible simplices; parameters comparable to a triangula-
tions of the4-cube; note that equality checks in STL sets are fast when
the cardinalities of the operands differ, as was the case in the equality-
false test instances above; the genuin equality checks for TOPCOM'’s
simplicial complexes are much faster but cannot take advantage of the
cardinality function

[what | configuration | description | result |
triangulations C(12,5) cyclic polytope 5,049,932
triangulations C(13,7) cyclic polytope 6,429,428
fine triangulations (4 x 5)-lattice two-dim. lattice 20 points) 2,822,648
flip graph component Az x A3 product of tetrahedra 4,533,408
flip graph component C* four-dimensional cube 92,487,256
check (IP") & (UP’) Santos triang. six-dimensional construction okay
flips Santos triangulatiorn six-dimensional constructior 0

TABLE 2. Some figures computed by TOPCOM for the first time; cyclic
polytopes have connected flip graphs;[5] so have two-dimensional point
sets; fine triangulations use all the vertices

REFERENCES

[1] J. Rambau. TOPCOM—Triangulations of Point Configurations and Oriented Matroids. Software under the
Gnu Public Licence, available undeitp://www.zib.de/rambau/TOPCOM.html , 1999.

[2] J.A. de Loera.Triangulations of Polytopes and Computational AlgebiPaD thesis, Cornell University,
1995.

[3] J. Pfeifle and J. Rambau. Computing triangulations using oriented matroids. ZIB-Report 02-02, Konrad-
Zuse-Zentrumiir Informationstechnik Berlin, 2002.

TOPCOM: TRIANGULATIONS OF POINT CONFIGURATIONS AND ORIENTED MATROIDS 9

[4] A. Bjorner, M, Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegiiented matroidsvolume 46 of
Encyclopedia of Mathematic€ambridge University Press, Cambridge, 1993.

[5] J. Rambau. Triangulations of cyclic polytopes and higher Bruhat orttathematika44:162-194, 1997.

[6] J.A. de Loera, S. Hosten, F. Santos, and B. Sturmfels. The polytope of all triangulations of a point configu-
ration.Documenta Mathematikd:103-119, 1996.

[7] T.H. Cormen, C.E. Leiserson, and R. L. Rivdstroduction to AlgorithmsMIT Press, 1990.

[8] F. Takeuchi and H. Imai. Enumerating triangulations for products of two simplices and for arbitrary config-
urations of points. IlComputing and Combinatoricpages 470-481, 1997.

[9] E. Lawler, J. Lenstra, and A.H. G. Rinnooy Kan. Generating all maximal independent sets: Np-hardness
and polynomial-time algorithm&IAM Journal on Computin®:558-565, 1980.

[10] K. Fukuda. cdd—an implementation of the double description methtg://www.ifor.math.

ethz.ch/"fukuda/cdd_home/cdd.html

ZUSE-INSTITUT BERLIN, TAKUSTR. 7, 14195 BRLIN, GERMANY

