
Supervised Classification of
Microtubule Ends: An Evaluation
of Machine Learning Approaches

Master’s Thesis by
Felix Herter

1. Reviewer: Prof. Dr. Tim Conrad
2. Reviewer: Prof. Dr. Knut Reinert
Supervisors: Dr. Daniel Baum,

Dr. Norbert Lindow

22nd February, 2018

carried out at
Zuse Institute Berlin (ZIB)

Department of Computer Science
Freie Universität Berlin
Takustraße 9
14195 Berlin, Germany

Danksagung

Ich möchte mich an dieser Stelle herzlich bei denen bedanken, die diese Arbeit ermöglicht

haben. Durch sie hat es auch in anstrengenden Zeiten immer Spaß gemacht.

Zuerst möchte ich mich bei Daniel Baum und Norbert Lindow bedanken. Ohne Daniels

geduldige Betreuung und seinen kompromisslosen Einsatz wäre diese Arbeit schlicht

nicht zustande gekommen. Norbert danke ich für die ästhetische sowie konzeptionelle

Inspiration und seine Hilfe speziell bei der Softwaregestaltung.

Tim Conrad und Knut Reinert danke ich für die Bereitschaft, die Arbeit zu begutach-

ten. Tim Conrad danke ich darüber hinaus für die wertvollen Tipps und Hinweise zur

Gestaltung der Arbeit.

Eine datenbasierte Arbeit kann ohne Daten nicht entstehen. Dies wurde durch unsere

Projektpartner der Core Facility Cellular Imaging an der TU Dresden unter der Lei-

tung von Thomas Müller Reichert ermöglicht. Insbesondere möchte ich mich bei Anna

Schwarz, Gunar Fabig, Marcel Kirchner, Robert Kiewisz und Stefanie Redemann bedan-

ken. Sie klassifizierten in mühseliger Handarbeit tausende von Mikrotubulienden.

Meinen Eltern danke ich für ihre bedingungslose Unterstützung und ihr anhaltendes

Vertrauen in mich.

Anne danke ich dafür, dass sie während der Entstehung der Arbeit immer für mich da
war.

iii

Declaration of Authorship

I hereby confirm that I have written this thesis on my own and that I have not used any
other materials than the ones referred to. This thesis has not been submitted, either in
part or whole, for a degree at this or any other university.

Ich versichere hiermit an Eides statt, dass diese Arbeit von niemand anderem als meiner
Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher, Inter-
netseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate aus fremden
Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder
ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Berlin, 22nd of February, 2018

Felix Herter

Abstract

Aim of this thesis was to evaluate the performance of three popular machine learning
methods – decision trees, support vector machines, and neural networks – on a supervised
image classification task from the domain of cell biology. Specifically, the task was to
classify microtubule ends in electron tomography images as open or closed. Microtubules
are filamentous macromolecules of the cytoskeleton. Distribution of their end types is of
interest to cell biologists as it allows to analyze microtubule nucleation sites. Currently
classification is done manually by domain experts, which is a difficult task due to the
low signal-to-noise ratio and the abundance of microtubules in a single cell. Automating
this tedious and error prone task would be beneficial to both efficiency and consistency.

Images of microtubule ends were obtained from electron tomography reconstructions
of mitotic spindles. As ground truth data for training and testing four independent
expert classifications for the same samples from different tomograms were used. Im-
age information around microtubule ends was extracted in various formats for further
processing.

For all classifiers we considered how the performance varies when different prepro-
cessing techniques (per-feature and per-image standardization) are applied. For decision
trees and support vector machines we also evaluated the effect of training on a) imbal-
anced versus under- and over-sampled data and b) image-based vs feature-based input
for specifically designed features.

The results show that for decision trees and support vector machines classification
on features outperforms classification on images. Both methods give most equalized
per-class accuracies when the training data was undersampled and when preprocessed
with per-image standardization prior to features extraction. Neural networks gave the
best results when no preprocessing was applied.

The final decision tree, support vector machine, and neural network obtained accura-
cies on the test set for (open,closed) samples of (62%, 72%), (66%, 70%), and (61%, 78%)
respectively, when considering all samples where at least one expert assigned a label. Re-
stricting the test set to samples with at least three agreeing expert labels raised these
to (78%, 84%), (74%, 92%), and (82%, 88%). It can be observed that many samples
misclassified by the algorithms were also difficult to classify for the experts.

vi

Zusammenfassung

Ziel dieser Arbeit war es, die Leistungsfähigkeit aktueller Supervised-Learning-Methoden
anhand einer Bildklassifikationsaufgabe aus der Zellbiologie zu evaluieren. Insbeson-
dere sollten Entscheidungsbäume, Support-Vector-Maschinen und Neuronale Netze un-
tersucht werden. Die Aufgabe bestand darin, Mikrotubulienden aufgrund von Elek-
tronentomographieaufnahmen als offen oder geschlossen zu klassifizieren. Mikrotubuli
sind filamentartige Makromoleküle des Zellskeletts. Zellbiologen sind unter anderem
an der Verteilung ihrer Endtypen interessiert, da dies Rückschlüsse auf die Orte der
Selbstassemblierung zulässt. Im Augenblick wird die Klassifikation der Enden manuell
von Experten durchgeführt. Diese Aufgabe wird insbesondere durch die verrauschten
Bilddaten und die hohe Anzahl an Mikrotubuli in einer einzelnen Zelle stark erschwert.
Sie zu automatisieren, würde die Klassifizierung sowohl effizienter machen als auch zu
konsistenteren Ergebnissen führen.

Die Bilddaten der Mikrotubulienden stammen von Zellen im Stadium der Mitose,
aufgenommen mittels Elektronentomographie. Als Ground-Truth-Daten wurden Klassi-
fizierungen von je vier Experten verwendet, die alle von denselben Daten erzeugt wurden,
die aus verschiedenen Tomographieaufnahmen zusammengestellt wurden. Für die Weit-
erverarbeitung wurde die Bildinformation um die Mikrotubulienden in verschiedenen
Formaten aus den Tomogrammen herausgeschnitten.

Bei allen Klassifizierern wurde der Einfluss der Vorverarbeitung (Standardisierung pro
Komponente oder Standardisierung pro Bild) auf die Qualität der Ergebnisse getestet.
Für Entscheidungsbäume und Support-Vector-Maschinen wurden ebenfalls die Einflüsse
durch unbalancierte und balancierte Daten untersucht. Letzteres wurde einmal durch
Verwerfen von Überschussdaten und einmal durch das Einfügen von Kopien erreicht. Für
diese zwei Klassifizierer wurde ebenfalls ihre Leistungfähigkeit bei bildbasierten Eingaben
mit der von merkmalbasierten Eingaben verglichen. Die verwendeten Bildmerkmale
wurden dabei eigens für diese Aufgabe entwickelt.

Die Ergebnisse zeigen, dass die Qualität der Klassifizierung von Entscheidungsbäumen
und Support-Vector-Maschinen auf merkmalsbasierten Eingaben besser ist als auf bild-
basierten Eingaben. Beide Klassifizierer behandeln die Endtypen am ausgewogensten
und lieferten die besten Ergebnisse, wenn die Trainingsdaten durch Verwerfen der Über-
schussdaten ausbalanciert und vor der Merkmalsextraktion bildweise standardisiert wur-
den. Die verwendete Architektur der Neuronalen Netzes lieferte die besten Ergebnisse,
wenn die Bilddaten nicht vorverarbeitet wurden.

Die finalen Ergebnisse der trainierten Entscheidungsbäume, Support-Vector-Maschi-
nen und Neuronalen Netze erreichten auf den (offenen, geschlossenen) Endtypen die
folgenden Genauigkeiten, wenn sämtliche Enden zum Testen verwendet wurden bei de-
nen wenigstens ein Experte den Endtypen zuordnen konnte: (62%, 72%), (66%, 70%)
und (61%, 78%). Beschränken wir uns auf Enden, bei denen wenigstens drei Experten
die gleichen Endtypen zuordnen konnten, so steigen die Genauigkeiten auf (78%, 84%),
(74%, 92%) und (82%, 88%). Bei Betrachtung der falsch klassifizierten Enden können
wir feststellen, dass viele von den Algorithmen falsch klassifizierten Enden auch für die
Experten schwer zu klassifizieren waren.

vii

Conventions

We use the term ‘we’ to refer to the author and the reader. This pronoun is kept
throughout the thesis including sections were ‘I’ would be more appropriate.
When referring to the training set, it is possible that duplicate samples are included.
More formally we should refer to it as the training hyperset. Treating the set as a
sequence also alleviates this problem but introduces an order to the elements. We use
both training set and training sequence and allow duplicate elements when using the
first and assume an arbitrary ordering when using the second. The word significant is
used in its qualitative, informal sense and does not refer to statistical significance as in
hypothesis testing. We write vectors in bold font and refer to its components by a lower
index. For example, xj is the j-th component of x. The term [n] stands for the first n
nonnegative integers, {1, 2, . . . , n}.

ix

Contents

1 Introduction 1

2 Data Acquisition, Preprocessing, and Preliminaries 4

2.1 Initial Datasets . 4

2.2 Two New Tools . 6

2.3 Getting Labeled Data . 10

2.3.1 Extracting Endpoint Data . 12

2.4 Data Preprocessing . 14

2.4.1 Feature Extraction . 16

2.5 General Preliminaries . 18

2.5.1 Performance Measure . 18

2.5.2 Class Imbalance . 18

3 Decision Trees 20

3.1 Basic Principles . 20

3.1.1 Software . 25

3.2 Parameter Exploration and Insights . 25

3.2.1 Addressing the class imbalance . 25

3.2.2 Preprocessing . 27

3.2.3 Remaining Parameters . 30

3.2.4 Adding principal components . 33

3.3 Final Training and Results . 33

xi

4 Support Vector Machines 37

4.1 Basic Principles . 37

4.1.1 Hard Margin – The Separable Case 38

4.1.2 Soft Margin – The Non-Separable Case 41

4.1.3 Kernel Methods . 44

4.1.4 Software . 47

4.2 Parameter Exploration and Insights . 47

4.2.1 Addressing the class imbalance . 47

4.2.2 Preprocessing . 47

4.2.3 Where does the performance variation come from? 50

4.2.4 Remaining Parameters . 52

4.2.5 Adding Principle Components . 56

4.3 Final training and Results . 56

5 Neural Networks 58

5.1 Basic Principles . 58

5.1.1 Feedforward Neural Networks . 58

5.1.2 Convolutional Neural Networks . 61

5.1.3 Training Neural Networks . 65

5.1.4 Software . 67

5.2 Parameter Exploration and Insights . 67

5.2.1 Network architecture and training set-up 68

5.2.2 Addressing the class imbalance . 69

5.2.3 Input format, size, weight decay, and preprocessing 70

5.3 Final Training and Results . 73

6 Comparison of the Results for the Different Classifiers 78

7 Discussion and Conclusion 82

xii

1 Introduction

In this thesis, we investigate a supervised image classification task from the domain of
cell biology. Our main reference for cell biology is the seminal work by Alberts et al. [55].
Eukaryotic cells, that is cells having a nucleus, contain a multitude of various molecules
and organelles, which are made up of various different molecules. The target of cell
biology is to understand how local interactions between individual molecules, happening
at the scale of a few nanometres, can cause behavioral and structural changes of the
whole cell at the scale of several tens of micrometers [16]. Such local interactions are,
for example, what enables white blood cells to move towards hostile microorganisms,
muscles to contract, and cells to perform the complex cycle of cell division.

A major component that enables and organizes these interactions is the cyto- or
cell-skeleton. This structural component serves a variety of purposes. It forms the
shape of the cell, builds an internal network that serves as infrastructure for associated
motor proteins, and enables the application of mechanical intra- and inter-cellular forces.
During cell division, it forms the spindle apparatus which is responsible of pulling sister
chromatids to opposite ends of the cell.

Opposed to its name, the cytoskeleton is not a fixed structure. It can be highly
dynamic and is capable of reassembling within minutes. It is able to answer to stimuli
like external forces or a rise in concentration of certain proteins. Three different types
of filaments constitute this structure:

• microfilaments consisting of actin polymers,

• intermediate filaments with cell specific building blocks,

• microtubules consisting of tubulin dimers that assemble into a stiff cylindrical tube.

A cell structure that shows different behavior at opposing ends is said the be polarized.
Microfilaments and microtubules are polarized. Both have a preferred end for assembly
and disassembly. The end that grows and shrinks faster is called (+)-end, the other is
called (−)-end. Goal of this thesis is the automatic classification of microtubule ends.
In the following we give a short description of these filaments.

Tubulin dimers, the building blocks of microtubules, are already polarized. They
consist of an α-tubulin protein bound to a β-tubulin. Several tubulin dimers can bind
to one another, placing α-tubulin always next to β-tubulin forming a chain that is called
protofilament. The regular pattern and the dimer’s polarization cause these chains to be
polarized as well. Microtubules consist of 13 laterally attached protofilaments that form
a tube-like macromolecule. All protofilaments are arranged with (−)-ends at one side
and (+)-ends at the other. Therefore, the whole microtubule again is polarized and has
one end exposing only α-tubulin (the (−)-end) and the other only β-tubulin (the (+)-
end). Current research in cell biology analyzes the distribution of microtubule nucleation
sites [45]. This can be done by looking at the distribution of microtubules with a closed
end morphology. These ends are capped by a protein to hinder (diss-)assembly, thus,
create a stable end. While open ends can indicate both (+)-ends and (−)-ends, closed
ends are believed to indicate (−)-ends. Electron tomography reconstructions have just

1

enough resolution to show the end morphologies. But the low signal-to-noise ratio due
to the reconstruction process and the abundance of other proteins in the cell render
the classification on these images a hard task, even for experts in the field. Figure 1.1
illustrates the wide quality range that can occur. The top row shows ends with clear
end morphology. In the bottom row we see examples that are harder or impossible to
classify. Some specimen show indicators of both classes, others suffer from too much
noise to be recognized as ends at all.

open closed

? ? ? ?

Figure 1.1: Images of microtubule ends obtained by electron tomograpy.

Currently, classification is done manually. Considering that there can be several tens of
thousands microtubules in a single cell, this is a lengthy and error prone task and the
results vary greatly between different experts. Automating this task would be beneficial
to both efficiency and consistency. Therefore, in this thesis we explore the performance
of three popular supervised machine learning methods, decision trees, support vector
machines, and neural networks, on the task of microtubule end classification.

In this context, we design tools that ease the manual classification process and allow
to gather and extract image information from 3D electron tomography data for further
processing. Training and test data is collected by having multiple experts classify the
same datasets comprising data from different tomograms. The dissimilar frequencies
of distributions of end types lead to imbalanced training data. We account for this by
comparing the performance on under- and oversampled datasets to the imbalanced case.
Decision trees and support vector machines were not particularly designed to classify
in the image space, as they rely on input components to hold the same semantic. We
give arguments that, in the present case, it still might be interesting to test classification
on images. Additionally, we design features that were extracted from the images and
compare the performance of feature- and image-based learning. For the feature-based
input we also check whether supplying projections onto the training set’s most dominant
principle components improves performance. For these classifiers we also inspect the re-
sults from training on smaller, resampled images. When exploring the parameters for
each classifier, we systematically search for the most promising training set-up. While
doing so, we address performance fluctuations by executing multiple runs for every con-
figuration and considering the average values as well as the spread. We conclude with a
comparison of the performance of all three final classifiers on the test set.

2

In summary, we made the following contributions:

1. To obtain ground truth data, we designed and implemented a tool to ease the
manual classification process.

2. To obtain training data, we designed and implemented a tool to gather and extract
image information around microtubule ends from tomography reconstructions.

3. We prepared training and test data that was classified by four domain experts.

4. We thoroughly reviewed the theoretical basis for the three machine learning meth-
ods decision tree, support vector machine, and neural networks.

5. We applied the three methods to the task of image classification. During the search
for well performing parameter configurations, we did the following.

• We accounted for the statistical variation by performing several runs for each
parameter configuration.

• We systematically explored the effect for each tested parameter, such as the
class imbalance, preprocessing technique, input format, or those specific to
the algorithms.

6. We designed three image based on the difference of per class averages.

7. Additionally to resampled images, decision trees and support vector machines were
also trained on this feature-based input. Neural networks were only applied to
images.

8. We thoroughly analyzed the results of all three types of classifiers and compared
them with respect to the image classification task investigated in this thesis.

This thesis is structured as follows. In Section 2, we introduce the preliminary ne-
cessities. These include the classification and extraction tools, ground truth data, pre-
processing and extracted features. Afterwards we start with the actual classification.
Decision trees are handled in Section 3, support vector machines in Section 4, and neu-
ral networks in Section 5. Each section for a classifier follows the same pattern. We start
with an introduction in which we review the theoretical foundations. This is followed by
the methods section in which we explain and evaluate the search for a well performing
set-up. Lastly, we train the final classifier and report the results. We finish this thesis
with a comparison of the performances of all classifiers in Section 6 and a discussion of
the findings in Section 7.

3

2 Data Acquisition, Preprocessing, and
Preliminaries

In this section we describe the process of data acquisition and preprocessing. We describe
the start set-up of this thesis in Section 2.1. In Section 2.2, we introduce the two tools
that were developed to support the manual classification and allow the extraction of
image information. Afterwards, in Section 2.3, we look at the expert classification that
constitutes our ground truth data. In 2.4 we explain the applied preprocessing techniques
and the features we came up with for the decision tree and the support vector machine.
Finally, we introduce the performance measure and sampling strategies to handle the
class imbalance in Section 2.5.

2.1 Initial Datasets

Starting point of this thesis is a collection of datasets. Each collection contains two
elements. One is a 3D scalar field T containing the image data obtained by electron
tomography the other is a graph embedded into 3D space tracing the microtubules
detected in T . We will give a short description of both.

Figure 2.1: Left: Side view a stack of individually reconstructed tomography sections
that were stitched together. Right: Embedded microtubule graph that traces
the detected structures.

Tomography Data: The tomography data is given by a 3D scalar field and shows sec-
tions of an embryonic cell of the worm C. elegans during cell division. Some records
show a complete spindle apparatus. The datasets were generated by the Müller-
Reichert Lab from the Core Facility Cellular Imaging at Technische Universität
Dresden.

In serial section electron tomography, the object of interest is cut into several thin
slices each of which is reconstructed individually. The reconstruction is computed
from a set of projection images obtained by transmission electron microscopy (see
Fig. 2.2). The images are taken from different directions which is achieved by

4

ϑ

electron beam

slice

ϑmax = 60◦

ϑmin = −60◦

Figure 2.2: Left: In (tilted) electron tomography, a slice of the specimen is reconstructed
from several images taken while tilting the object under consideration around
a fixed axis. Thus, the images show projections from different perspectives.
Right: Usually, the magnitude of the tilting angle ϑ will not surpass 60◦ deg
as the increasing path length to fully penetrate the slice requires electron
beams with destructive energy.

tilting the slice around a fixed axis relative to the direction of the electron beam.
Tilting angles in which the angles between slice normal and the electron beam
surpass a given threshold (usually 60◦) are avoided since the necessary penetra-
tion depth increases and eventually requires electron beams with enough energy to
destroy the specimen. The missing orientations cause a loss of information in the
reconstruction. It can be shown that this loss has the form of missing frequency
information in the Fourier transform of the reconstruction. The area without fre-
quency information has a wedge like shape and is known as missing wedge effect.
This effect results in non-isotropic effects (missing information) in the reconstruc-
tion. We denote the direction which suffers the most under this as the z-direction
of the tomography data. As an illustration, the left image below shows the cross-
section perpendicular to the z-axis of an endpoint; the right image shows the same
endpoint from a cross-section parallel to the z-axis.

For more information on electron tomography see the collective work edited by
Frank [18]; in particular chapter 10 by Penczek and Frank, for the missing wedge
effect.

The datasets under consideration consist of a stack of reconstructed slices that
were stitched together (see Fig. 2.1, left). Further information on how the slices
were joined can be found in the work of Weber et al. [59].

Microtubule Graph: The microtubule graph is a graph embedded into 3D space. Each
vertex is mapped to a point in 3D space, and each edge is mapped to a polygonal
chain (see Fig. 2.1, right). The endpoints of the polygonal chain coincide with
the images of the corresponding edge vertices. When we overlay the tomography
data with the microtubule graph, the latter traces the center-lines of all detected
microtubules. Due to the structure of an isolated microtubule, the abstract graph
is a union of paths, and the embedding of the vertex set locates the microtubule
endpoints that we are interested in.
For more information on the tracing, see the work of Weber et al. [58].

Prior to the start of this thesis, there were about 2000 endpoints that had been labelled

5

as being open (label open) or closed (label closed), by experts in the field. This set was
intended to form the labelled data for the supervised learning approach taken in this
work. Further analysis of the data revealed some issues:

• Some detected and labelled endpoints revealed to be artificially created micro-
tubules ends that were caused by the physical slicing and virtual reassembly of
the specimen. From a different perspective the different tomography slices and the
seam between them can easily be recognized.

critical perspective: side view:

• Some endpoints turned out to be unusually bent microtubules that left the visu-
alized plane. Again, an different perspective reveals this phenomenon.

critical perspective: side view:

• Some endpoints appeared to be in the wrong class.

These problems indicated that it was necessary to improve the manual classification
process. The old procedure restricted the expert to a single perspective. A mental 3D
image of the endpoint morphology had to be created in mind by sliding through a stack
of 2D images

2.2 Two New Tools

Figure 2.3: Snapshot of the classification tool implemented in the Amira software. The
top viewer window shows four different cross-sections of an endpoint that is
eligible for classification. The bottom window shows a 3D volume around
the endpoint.

6

Supervised learning requires labeled ground truth data that can be fed to the learning
algorithm during the training phase. To allow and efficient manual classification of
microtubule ends, we developed a new classification tool. It was implemented as a
compute module, called EndpointClassifier, in the visualization software Amira1 [54].
Figure 2.3 shows a snapshot. The module is attached to a microtubule graph and the
corresponding tomography data. The tool automatically filters microtubule endpoints
that are too close to the border of the scalar field or to seams of adjacent tomography
slices (see Fig. 2.4).

Figure 2.4: Examples of microtubule endpoints that are filtered out automatically. Left:
Microtubule end that is caused by reaching the border of the tomography
data. Right: Microtubule end that is caused by a seam between adjacent
slices.

The remaining endpoints are traversed in order of their enumeration. For each, the
tool extracts two datasets from the tomography data – an image that shows four different
cross-sections of the endpoint and a 3D sub-volume centered at it. Both datasets are
aligned with the end part of the microtubule. Further explanation is given in Figure 2.5.

Figure 2.5: The two datasets that are extracted and displayed for every endpoint that is
eligible for classification. The exact generation is described in the section for
the second tool. Left: One half of the sub-volume centered at the microtubule
end. The color planes indicate the orientation of the cross-section that form
the second dataset. Right: The second dataset consists of four different
cross-sections. The color indicates their orientation compared to the sub-
volume. The cross-section at the bottom right usually suffers the most from
the missing wedge effect.

A user interface allows to assign one of the two labels open or closed to the endpoint.
Alternatively the endpoint can be skipped in which case the label undefined is set im-
plicitly. Further, the user is allowed to navigate through endpoints that were classified
in the current session and to assign a new labels. When navigating through already clas-
sified endpoints, the currently assigned labels are not shown, and any new assignment

1Amira is a registered trademark owned by Thermo Fisher Scientific. It was originally developed at
Zuse Institue Berlin, where an internal research version is still collaboratively developed and allows the
implementation of new packages.

7

has to be done based on the image information alone.

Figure 2.6: Snapshot of the extraction module applied in the Amira software. The viewer
window shows parts of a microtubule graph and an aligned 3D box around
a microtubule endpoint. One mode of the tool allows the extraction of these
aligned boxes.

The second tool, EndpointExtraction, was also implemented in Amira. For a snapshot,
see Figure 2.6. Similar to the classification tool, it is attached to a microtubule graph
and the corresponding tomography data. It allows the automatic extraction of image
information from the tomography data around microtubule ends. The specific extraction
format can be chosen from the three following modes.

3D data: In this mode a box shaped 3D sub-volume will be extracted that is centered
at the microtubule endpoint. The number of voxels in the box can be set by hand.
The orientation is found as follows (see Fig. 2.7 for an illustration). The three axes
of the box follow the right-hand-rule. The first axis points into the same direction
as the end part of the microtubule. This direction is defined by the difference
vector (y−x) of two points of the embedded microtubule graph. The target point
y is the endpoint of the corresponding microtubule and the starting point x is
at the intersection of the polygonal chain that represents the microtubule and a
ball around y with radius equal to half the length of the first side of the box.
The second axis is perpendicular to the first and to the z-axis of the tomography
data. Remember that the z-axis suffers the most from the missing wedge effect,
hence, slices from the sub-volume that are parallel to the first and second axis
will show the least noise. The third axis is fully defined by the first two and the
right-hand-rule.

The output voxel will have cubic shape with a side length that can be either selected
by hand or computed automatically. In the latter case, cube shaped voxel with
the same volume as the voxel in the original dataset will be used. The tomography
data is sampled once for each output voxel, at its center location.

Single 2D image: In this mode a single image is extracted. It is identical to a slice of

8

direction of 1st axis:
y − x

x y
z direction

1st2nd

3rd

1st

2nd

3rd

Figure 2.7: Orientation of the extracted 3D box. Left: The direction of the first axis
is defined by the location of the endpoint and the intersection of the mi-
crotubule with a ball of radius equal to the radius of the box along the first
dimension. Right: the second axis is chosen to be perpendicular to the z-axis
of the tomography data and the first axis. The third axis is perpendicular
to the first and follows the right-hand-rule.

the box in the previous mode, that is perpendicular to the third axis of the box
and intersects the center (see Fig. 2.8).

1st2nd

3rd

Figure 2.8: Extraction of a single 2D image corresponds to extraction of the grey slice.

Multiple 2D images: This mode allows the user to specify a power of two as the number
of 2D images that will be extracted. If a single image is requested, it will be
arranged as in the mode above. The arrangement for 2i images can be obtained
by taking the arrangement of 2i−1 images, copying it, and rotating the copies by
an angle π/2i−1 around an axis A that has the same direction as the microtubule
end and runs through it. In other words, all images share one intersection axis,
and when we look along this axis into the microtubule, images and microtubule
end are arranged as , , , . . . , for i = 0, 1, 2,

Opposed to the previous extraction modes, each output pixel shows the average
value of a set of sample values taken from the tomography data. The number n of
sample values can be specified manually. For each output pixel v, the n samples
will be taken from an arc of the circle c centered at A, perpendicular to it, that
runs through the center of v (see Fig. 2.9). The circle will intersect centers of 2i+1

pixels simultaneously, and the corresponding n2i+1 sample values are arranged
evenly spaced on it. For odd n, one sample value will lay at the center of the pixel,
and for n = 1, this mode returns cross-sections of the tomography data. In fact,
the four different cross-sections of the classification tool can be obtained by the
setting i = 2 and n = 1.

The tool allows the extraction of either all endpoints, only those that share a specific
label (set by the user), or a single endpoint.

9

microtubule 2D images

samples per voxel: n = 1 n = 2 n = 3

v
c

number of images: 2i = 2

Figure 2.9: Computation of a pixel value in the last extraction mode. Sketched is the
top view along axis A, into a microtubule. This view is parallel to the image
planes which appear as line segments. An output pixel shows the average of
n sample values arranges on a circular arc, that is, the red (blue) image will
give an average of the red (blue) region. Illustrated are the settings i = 1 (2
output images) and n = 1, 2, 3.

2.3 Getting Labeled Data

The labeled data was obtained with the classification tool described in the previous
section. To gain insights on the deviation between different experts, we asked four cell
biologists to classify identical datasets. We shuffled the endpoint enumeration prior to
the classification since this defines the order in which the classification tool selects the
endpoints. The intention was to prevent any effects that could be caused by a systematic
traversal of areas in the microtubule graph. One example scenario is that closed ends
might appear clustered in the original microtubule graph. The occurrence of a closed
end might than increase the willingness of a human classifier to assign the same label to
the next endpoint e, while, if e had occurred in a series of open endpoints, the tendency
might have been for the open label. To prevent the use of such context information and
enforce that everything that led to a decision can be found in the images alone.

The final label of an endpoint. We have multiple labels for every endpoint, one by
each expert. We treated the labelling as a vote on the final class. An endpoint with at
least one vote for open and one vote for closed is labelled contradictory and excluded.
For the remaining endpoints the final label is obtained by majority vote.

The datasets were obtained in two sessions. Results from the first session were used as
training data. Results from the second session were used as test data. In the second
session, the focus was on variation in quality of the tomography data.

Training data. In the first session, three datasets ds1, ds2, and ds3, with approxi-
mately 4100, 2300, and 1000 endpoints (prior to the filtering of the classification tool),
respectively, were selected. The experts were asked to classify the first half of every
dataset, and, if time permits, continue with the second halves (from ds3 down to ds1).
This resulted in 982, 230, and 128 endpoints in the respective datasets that were labelled
by each of the experts as either open, closed , or undefined .

Table 2.1 shows the number of endpoints in each category and dataset. Table 2.2 lists
the number of endpoints in the union of ds1, ds2, and ds3 for all possible assignments
of four votes in {open, closed , undefined}. The left chart in Figure 2.10 shows statistics
on the labelling behaviour for every expert and dataset.

10

dataset #open #closed #undefined #contradictions

ds1 982 230 308 143
ds2 148 39 79 52
ds3 89 12 27 22

total 1219 281 414 217

Table 2.1: Number of endpoints per label and dataset obtained by majority vote of four
experts.

#votes for closed

#votes for open 0 1 2 3 4

0 197 110 72 59 40
1 255 130 31 7
2 409 39 4
3 320 6
4 235

Table 2.2: The number of endpoints in the union of ds1, ds2, and ds3 for every possible
combination of votes. The entry at (0, 0) gives the number of undefined end-
points. The entries at (0, 4) and (4, 0) are the unanimously voted endpoints.
Entries at (i, j) with i, j > 1 are contradictory.

Restriction to endpoints that were unanimously voted open or closed would have reduced
the number of usable samples to 235 and 40, respectively. Considering all endpoints that
were not labelled contradictory increases these numbers to 1219 and 281 (see Table 2.1
or, equivalently, the sum of all entries (i, 0) and (0, i) in Table 2.2, for i = 1, 2, 3, 4).
Since this is still little data for some algorithms, we further relaxed the restrictions by
considering all endpoints that were labelled by at least one expert. If only a subset
of the experts participated in the labelling of a specific endpoint, the label undefined
was assumed for the remaining experts. The results can be seen in Tables 2.3 and 2.4.
As is to be expected, the number of unanimously labelled endpoints remains the same,
but considering all non-contradictory labels further increases usable samples to 1650
(#open) and 424 (#closed).

dataset #open #closed #contradictions

ds1 1310 340 145
ds2 217 64 52
ds3 123 20 27

total 1650 424 224

Table 2.3: Number of endpoints per label and dataset obtained by majority vote of
at least one expert. The number of undefined endpoints are not listed we
artificially increased them (see text).

Test data. In the second session, four datasets qs1, . . . , qs4 (for tomography quality

11

#votes for closed

#votes for open 0 1 2 3 4

0 5158 236 88 60 40
1 593 136 32 7
2 495 39 4
3 327 6
4 235

Table 2.4: The number of endpoints in the union of ds1, ds2, and ds3 for every possible
combination of votes. Here, all endpoints are considered that were seen by at
least one expert.

sample) were prepared analogously to the training data. The dataset selection was
intended to cover a broad range of tomogram qualities based on the self assessment
of the person that performed the tomography and a test classification of the author.
Again, four experts were asked to classify ∼500 endpoints in every dataset. In this
section every endpoint under consideration was labelled by each of the four experts,
thus, has exactly four votes. The results can be seen in Tables 2.5 and 2.6. It turned
out that an ambitious experts classified slightly more than was necessary. We indicated
these additional endpoints by with a plus sign to prevent inconsistencies when we later
evaluate the classifier performances. The right chart in Figure 2.10 gives summarizing
statistics on the labelling behaviour for every expert and dataset for the second session,
similar to the chart on the left.

dataset #open #closed #undefined #contradictions

qs1 302 77 121 53
qs2 280 98 122 31
qs3 176 83 241 10
qs4 252 70 156 26

total 1010 +15 328+8 640 120

Table 2.5: Number of endpoints per label and dataset obtained by majority vote of four
experts. In brackets, we added the number of endpoints that were obtained by
a single expert surpassing the agreed number of total endpoints to classify. We
accompany these numbers to prevent inconsistencies during the test phase.

2.3.1 Extracting Endpoint Data

The input data for the learning algorithms was generated with the second tool. We
extracted image information around every endpoint in five different formats, resulting in
five different input versions. Later, the most promising input format is chosen for every
algorithm. The 3d format was dropped quickly due to the high dimensionality of the
input vectors (81 · 41 · 41 = 136161).

12

#votes for closed

#votes for open 0 1 2 3 4

0 520 205+8 74 29 20
1 528+13 77 20 4
2 249+1 15
3 138+1 4
4 95

Table 2.6: The number of endpoints in qs1,. . . , qs4 combined for every possible combi-
nation of votes. In brackets, we added the number of endpoints that were
obtained by a single expert surpassing the agreed number of total endpoints
to classify. We accompany these numbers to prevent inconsistencies during
the test phase.

e′ 0 e′ 1 e′ 2 e′ 3
expert

0

200

400

600

1000

1200

1400

1600

n
u

m
b

er
of

en
d

p
oi

n
ts

Classification Counts In Totals (Second Session)

e 0 e 1 e 2 e 3
expert

Classification Counts In Total (First Session)

0

200

400

800

1000

1200

1400

800
600

open
closed
undefined

Figure 2.10: For each expert the number of votes for open, closed , or undefined per
dataset (datasets ds1, ds2, and ds3 on the left, qs1, qs2, qs3, and qs4 on
the right). Both charts only consider those endpoints that were labelled by
four experts. Brighter versions of the same color indicate the next dataset.
The strong deviations in the labelling counts could be indicators of the
difficulty of the labelling process. For example, the first two experts in the
left chart skipped significantly fewer endpoints, and in the right chart the
fourth expert labelled more than twice as many endpoints than each of the
others.

13

identifier description

3d A sub-volume with dimension 81×41×41.
2d slice1 sample 1 Single 2D cross-section image with dimension 81×41.
2d slice4 sample 1 Four 2D cross-section images each with dimension 81×41.
2d slice1 sample 64 Single 2D image with dimension 81×41 that shows the aver-

age of a cylindrical volume around the end.
2d slice4 sample 16 Four 2D images each with dimension 81×41 that show aver-

ages of segments a cylindrical volume around the end.

Table 2.7: The five different input formats.

2.4 Data Preprocessing

Before we feed data to a learning algorithm, it is advisable to perform some kind of nor-
malization to circumvent effects that might result from variations in the data generation
process. For example, the average brightness might differ from tomogram to tomogram
or between different areas of the same tomogram. Other normalization techniques might
scale feature ranges so that each feature displays similar distributions. Here, the inten-
tion is to equalize the importance of distinct features. Without such preprocessing, it
might occur that the range of one feature is several orders of magnitude larger than the
range of other features. For many distance-based learning algorithms this single feature
would exclusively steer the learners behaviour, as the distance of two samples would only
insignificantly depend on the remaining feature values. In this thesis, we compare two
normalization techniques.

First, we arrange the input samples in a matrix X, and store the individual samples
as rows. If we have n input samples, each comprising m features, then X will have
shape n×m with entry xi,j denoting the j-th feature value of the i-th sample. The
first technique normalizes the features, we call it per-feature standardization; the second
normalizes the samples, hence, we call it per-image standardization. As the name sug-
gests, both perform standardizations on the corresponding values, that is, we interpret
the values in a row (or column) as instantiations of a random variable that we transform
such that it has zero mean and unit standard deviation.

Formally, the per-feature standardization can be described by m transformations
(ϕj)j=1..m, defined as

ϕj(x) =
x− µj
σj

,

where µj =
1

n

n∑
i=1

xi,j and σj =

√√√√ 1

n

n∑
i=1

(xi,j − µj)2.

We obtain the per-feature standardization of X by applying ϕj to the j-th column of X.
The effect of this technique is illustrated in Figure 2.11. A technicality we need to keep
in mind is that the m transformations ϕj will have to be computed on the training set
exclusively, that is, above, n referred to the number of training samples. These ϕj will
then be applied to both the validation and test set.

The per-image standardization is obtained by exchanging the columns for rows in the
definition above. An advantage of the second technique is that it can be readily applied
to any input sample regardless whether it belongs to the training, validation or test set.

14

−10 −5 0 5 10 15

−5.0

0.0

5.0

10.0

15.0

f1

f2

Figure 2.11: The effect of applying per-feature standardization. Both features f1, f2 of
a set of 2-dimensional samples (blue) are transformed. In the resulting set
(green), both features have zero mean and a standard deviation of one.

Opposed to this, performing per-feature standardization on the whole set of labelled
data would introduce validation and test information to the algorithm at training time.
For an illustration of the effects of per-image standardization consider the two endpoint
images x1 (left) and x2 (right) from different tomograms.

Figure 2.12 shows the histograms for both images prior to the transformation and after.
We see that the mean of both images was shifted to the origin. Moreover, the standard
deviations of both images are now close to one resulting in a change of the overall shape
of the histogram.

−3 −2 −1 0 1 250 75 100 125 150 175 200 225
0

100

200

300

400
x1

x2

Figure 2.12: The effect of per-image standardization. Left: Histograms of two input
samples x1, x2 prior to the preprocessing. Both samples have individual
mean and standard deviation. Right: Histograms after preprocessing. Both
samples share the same mean and standard deviation.

Independent of these two transformations we evaluate the performance of some algo-
rithms on downsampled versions of the original image data. A motivation is given in
the next section. As suggested in chapter 4 of the book by Forsyth and Ponce [17] we

15

smooth the image prior to the resampling with a Gaussian filter2

2.4.1 Feature Extraction

Most machine learning algorithms were not specifically designed for image data as input.
Instead, they operate on feature vectors and rely on foxed feature dimensions to hold
consistent information across all samples. If for one input vector the j-th feature de-
scribes, for example, the weight of the corresponding sample, then it should not describe
the height for another. The learning algorithm would interpret it as having the same
semantic (unless there exists another feature that indicates how the j-th component
should be interpreted). In general, we do not have this kind of semantic consistency of
input components for images. A pixel could describe the foreground in one image and
the background in the next. Even if we can safely assume that a pixel shows part of the
foreground, as is often the case for pixels in the center of an image, we still could not
say which part of the object of interest is captured.

The usual approach for images, thus, is to extract features from them, combine the
features in a fixed order to a vector, and feed this feature vector to a learning algorithm.
Natural images usually contain recognizable gradient structures like edges or corners,
and popular feature descriptors (for example the histogram of oriented gradients or shift
invariant feature transform) exploit this. The tomography data lacks the necessary
resolution for this kind of structures. The images usually have a ’washed out’ look and
most images show no recognizable edge or corner structures. Additionally, noise inherent
in the tomography reconstruction process and from the unwanted recording of ubiquitous
cell structures further complicate the design of reliable image features. We came up with
two (similar) features whose performance will be tested for learning algorithms that are
not natively designed for images. A description follows further below.

Notwithstanding the exposition above, the specific images we are dealing with here
might be suited as input even for feature vector based algorithms. The way we extract
the endpoint information from the tomogram leads to registered images. Depending
on the quality of the microtubule tracing, the endpoint is in close proximity of the
image center, and the extraction tool aligns the first image axis with the microtubule
direction. Moreover, the structural similarity of all microtubules causes a fixed diameter
of the filament wall. This can be interpreted as a weak version of semantic consistency
of input components. The meaning (for example, interior of the filament) of a pixel p
in one image must not correspond to the meaning of the exact same pixel in another
image, but it is likely that it corresponds to a pixel in the neighbourhood of p. This
motivates downsampling as a preprocessing step. We meld local neighbourhoods to a
single representative value.

Feature description

We now describe the two features that we designed. Both are based on the average image
of a class. Let X be defined as above and y ∈ {0, 1}n be the corresponding class vector,
with yi = 1 iff the i-th row vector xi of X belongs to the class open. (We implicitly
assumed that the images, usually given in matrix or tensor form, are flattened into an
m-dimensional vector.) The average open image o and the average closed image c are

2In Ref. [17] an image is resampled to produce a result with half the side length of the original image.

16

then defined as

o =

∑n
i=1 yixi∑n
i=1 yi

and c =

∑n
i=1(1− yi)xi∑n
i=1(1− yi)

. (2.1)

Again, xi refers to the i-th row vector in X. Equation (2.1) allows us to define the first
feature f1(x) of a sample image x as the similarity to o or c, expressed by the scalar
product. We can condense the two similarities into a single number by introducing the
difference of the averages d = o − c. The scalar product of x and d indicates whether
x closer resembles o or c:

f1(x) = xd = x(o− c) = xo− xc. (2.2)

That is, the more x resembles o, the larger f1(x) becomes, and the more it resembles
c, the smaller f1(x) becomes. When this is performed on images that were per-image-
standardized, then we can interpret f1 as a comparison between the Pearson correlations
of the sample image and the two class averages. Figure 2.13 shows examples for o, c,
and d generated from a subset of dataset ds1.

o c d

Figure 2.13: Average images o and c of each class for a training subset of dataset ds1
and the difference image d = o− c. The image o was generated from 1210
samples, c was generated from 240 samples.

The plot in Figure 2.13 visualizes the effect described in Equation (2.2). It shows the
distribution of samples over the value of feature f1 for an evaluation subset of ds1
comprising 100 samples per class. It also visualizes that the naive threshold of f1(x) = 0
that could be derived from Equation (2.2) does not perform optimally since the two
classes do not behave symmetrically with respect to the feature. The mean of the closed
evaluation samples is further away from the origin than the mean of the open evaluation
samples (-207 vs. 81). Further, the open samples seem to have a slightly larger standard
deviation than the closed samples (165 vs 160). Therefore, even for a single feature, it
might be beneficial to learn the threshold, at which to separate the classes.

The second feature is computed similar to the first, but after projecting the input
along its first axis onto its second (for 2-dimensional images) or onto the plane spanned
by second and third axis. This can be thought of as looking from the top into the
microtubule and merging the values from all pixels (voxels) that lie on top of each other,
with a merging function ϕ. There are several possibilities to chose ϕ. We chose the
minimum function and the mean. A 3-dimensional image x = (xijk) with i ∈ [n1],
j ∈ [n2], and k ∈ [n3], hence, will be mapped to a 2-dimensional image x′ with shape
n2 × n3, by

x′j,k = ϕ(x1jk, x2jk, . . . , xn1jk), for j ∈ [n2], k ∈ [n3], (2.3)

with ϕ(·) = min(·) or ϕ(·) = mean(·). (2.4)

17

open

closed

0.0

0.001

0.002

0.003

value of feature f1

−800 −600 −400 −200 0 200 400 600

d
is
tr
ib
u
ti
o
n
o
f
sa
m
p
le
s

Figure 2.14: Density of open and closed samples for values of the first feature f1, as
estimated on an evaluation subset of ds1.

Every image will be processed this way, and, subsequently, we continue as for feature
f1. Figure 2.15 shows the resulting average images for projections, for both choices of
ϕ. The images were generated on a training subset of ds1 (analogously to the previous
average images). We call the resulting features f2 (for ϕ = min) and f3 (for ϕ = mean).

Figure 2.15: Average images after projecting the input samples along the first axis. From
left to right, we have the average open and closed images for ϕ = min, and
the average open and closed images for ϕ = mean.

2.5 General Preliminaries

Before we start with the actual classification we need to introduce a few more general
things.

2.5.1 Performance Measure

We have to consider the accuracies in two classes, but often it is handy to reduce them to
a single number. Our interest is in classifiers with strong performances in both classes,
and we want to avoid any inherent preference of one class over the other. Therefore, we
simply stick to the smaller of the per-class accuracies as our measure, whenever we want
a single number. We call this the min-accuracy.

2.5.2 Class Imbalance

As described in Table 2.3, the ratio of open to closed elements is roughly 4 : 1 for the
training set. A classifier trained on such imbalanced datasets is likely to favour the

18

majority class. In the given problem setting, we try to achieve a balanced performance
on both classes. Therefore, the initial phase of the exploration for each classification will
consist of examining the behaviour with respect to the three following strategies.

(imbalance) Ignore the imbalance and use all the data at hand.

(undersampling) Replace the majority class with a sample of it, the same size as mi-
nority class, and drawn uniformly at random without replacement.

(oversampling) Increase the size of the minority class by repeatedly duplicating elements
in it, until the size of the majority class is matched. Assuming that the number
of open and closed elements is given by o and c, respectively, we copy the whole
set of closed elements bo/cc times and sample the remaining o− bo/cc · c elements
uniformly at random without replacement.

19

3 Decision Trees

3.1 Basic Principles

Decision trees are classifiers that allow for a high level of interpretability. In their basic
form they try to learn a set of binary decision rules in order to categorize all elements from
the feature space. Depending on the final category into which a new sample falls, the
decision tree outputs its prediction. Here, we only consider simple decision rules which
boil down to projecting all data elements to a single feature space axis and checking to
which side of some learned threshold a data element lies.

In this description, we follow the book by Friedman, Hastie and Tibshirani [19] which
base their description on the seminal work of Breiman, Friedman, Stone, and Olshen
[11]. Earlier work can be dated back to at least 1963 by Morgan and Sonquist [37]. For
a historical overview, see Loh’s survey [35].

Given is a training sequence T = (xi, yi)i=1..n of elements from X × Y, where X
denotes the feature space and Y the set of possible labels, that were sampled according
to some distribution D over X ×Y. We assume that X is a p dimensional feature space
and Y = {0, 1}. Let fB be the Bayes hypothesis of the joint distribution D, that is, out
of all functions in {X → Y} the one that best approximates1 D.

The decision tree learning algorithm tries to find a piecewise constant function to
approximate fB. The returned estimator DT : X → Y partitions the feature space into
axis-aligned rectangular regions Ri and returns a constant ci for each x in Ri. See Figure
3.1 for an example of a possible feature space partition.

f2

f1

R1

R2

R3

R4

R5

Figure 3.1: Illustration of a possible feature space partition due to decision tree. For
each sample in region Ri, the tree will predict the value ci.

This partition can be implemented in form of a binary tree, hence, we call the estimator
the decision tree. We will use DT to refer to both, the estimator and the implementing
tree structure. If we traverse this tree from the root to the leaves, each node further
subdivides X until we have reached the final partition class. Specifically, each node
v is associated with an axis-aligned rectangular region Rv ⊆ X and an axis-aligned
hyperplane Sv ⊆ X that divides Rv into two nonempty subregions Rv≤ , Rv> ; these will
be the regions associated with the children v≤, v> of v. The root node is associated with

1Formally, fB minimizes E(x,y)∼D [err(f(x), y)] for err : Y × Y → {0, 1}, with (y, y′) 7→ 1, iff y 6= y′.

20

the whole feature space. We introduce two parameters f and t to specify the hyperplane
for v. Parameter f selects the feature dimension and t the value along dimension f :

Sv(f, t) = {x ∈ X | xf = t} . (3.1)

We call Sv(j, t) the decision or splitting rule, or just split of v. A hyperplane separates
the space into two half-spaces and we will refer to them with

X≤
(
Sv(f, t)

)
= {x ∈ X | xf ≤ t} ,

X>
(
Sv(f, t)

)
= {x ∈ X | xf > t} .

We omit the parameters to Sv if they are not of interest. The two subregions of Rv can
then be written as

Rv≤ = Rv ∩ X≤(Sv),

Rv> = Rv ∩ X>(Sv).

Each region is further divided, until some stopping criterion is fulfilled; this creates a
leaf in DT . If `1, `2, . . . , `m denote the leaves of DT , than the regions R` with ` =
`1, `2, . . . , `m represent the final partition classes. For each x ∈ R`, the decision tree
returns the same value c`. Figure 3.2 illustrates one possible decision tree for a given
training sequence and the corresponding feature space partition.

f2

f1

S2 S2

f2

f1

S1 S3

S2 S4

R1

R2

R4

R5R3

v1

v2 v3

v4

`5`4

`3`2`1

Figure 3.2: Left: A training set and a partition of the feature space into rectangular
axis-aligned regions Ri. Also indicated are the slitting rules Sj of the corre-
sponding decision tree. Right: A decision tree that implements the partition
to the left.

Given a new element x, it is now straightforward to compute DT (x). We start at the
root v and check to which side of Sv the element x lies. This determines the child node
v′ of v at which the next check is to be performed, namely, the one whose associated
region Rv′ contains x. We iterate this process until we reach a leaf node ` and return c`.

We have yet to explain how the best tree topology and decision rules are found,
and which values c` to return. It turns out that finding the optimal decision tree is
computationally hard in several variants (see the work of Hancock, Jiang, Li, and Tromp
[22] or Hyafil and Rivest [28]). No version of the algorithm we describe here would have
found the optimal tree for the partition as depicted in Figure 3.3 of the same training
data as in Figure 3.2.

In practice, finding a well performing decision tree is performed by a greedy approach.
Below we describe the CART (from Classification And Regression Trees) approach from
Breiman et al. [11] as described in Ref. [19]. Alternative algorithms were developed, for

21

f2

f1

Figure 3.3: This partition has the least number of axis aligned splits and regions but
requires an initial horizontal split that cannot be found with the naive greedy
approach described here.

example, by Quinlan [43][44].

The Learning Process

During the learning phase we try to grow a tree that performs well on the training
sequence T . Every vertex v will only consider the elements (xi, yi) in T with xi ∈ Rv;
we will call this subsequence Tv. The root will have to consider all elements. We will
iteratively select a leaf ` in the current tree and assign a splitting rule to it that best
divides T`. This will create two new child nodes attached to `. There is an infinite
number of possible splits, even if we fix the feature space dimension f . Luckily, since
the training set is finite, the actual number of splits that need to be considered can be
reduced to a number polynomial in the size of the training sequence. This is due to the
fact that all axis aligned splits in-between the same two neighboring training samples
will perform identically. Therefore, for each feature space dimension we only need to
consider the n + 1 splits; (n − 1) in-between neighboring samples plus the two to the
very left and right. Doing this creates p(n+ 1) splits in total.

To select the best split, we first need to define an impurity criterion impurity(T̃) for
a given sequence T̃ = (xi, yi)i=1..ñ. The impurity should be smallest for sequences in
which all elements belong to the same class, and the more the class ratio approaches 1/2
the larger the impurity should grow. We will give three popular criteria. For y ∈ Y let
Pr(y) be the probability of choosing an element with class y when sampling the elements
in T̃ uniformly at random, that is, Pr(y) =

∣∣{i ∈ [ñ] | yi = y}
∣∣/ñ.

Training/Missclassification error: impurity(T̃) = min
y∈Y

Pr(y) (3.2)

Cross-entropy: impurity(T̃) = −
∑
y∈Y

Pr(y) log Pr(y) (3.3)

Gini index: impurity(T̃) = 2 min
y∈Y

Pr(y)(1− Pr(y)) (3.4)

Figure 3.4 shows plots of the three criteria (scaled to the same maximum value). As can
be seen, they are very similar and all show the desired behavior.

Given impurity(·), we can define the quality of a split S by the purity gain gain(S) it
produces. This will simply be the reduction of impurity if we were to perform S. To
define it formally, let T̃≤ be the subsequence of all elements (xi, yi) in T̃ with xi in

X≤(S); let T̃> be defined analogously. With ñ≤ and ñ> as the number of elements in

22

Pr(y) (defined by T̃)0.0 1.00.5

0.5

impurity(T̃)

Cross-entropy

Gini index

Training error

Figure 3.4: Plots of the three impurity criteria (scaled to the same maximum value).

T̃≤ and T̃>, respectively, we set

gain(S) = impurity(T̃)− ñ≤
ñ

impurity(T̃≤)− ñ>
ñ

impurity(T̃>).

We could continue to split every leaf that considers a training sequence with nonzero
impurity, that is, has a split with nonzero purity gain. This way we grow a large tree with
a potentially complex decision region that eventually will classify all training samples
correctly. We would believe that such a tree is very likely to overfit the training data.
This motivates a stopping criterion that terminates the growing phase, or parts of it,
although there are still splits remaining that would decrease the training error. Some
possible stopping criteria are

• split a leaf only if the resulting purity gain exceeds some threshold,

• only consider leaves that exceed some impurity threshold,

• only consider leaves that contain a minimum number of training samples,

• specify the maximal allowed depth of the tree,

• any combination of the above.

Once the tree is finished, the final set of leaves `1, `2, . . . , `m and the corresponding
regions R`, with ` = `1, `2, . . . , `m are determined. For each ` we define

c` = arg max
y∈Y

∣∣{(xi, yi) | xi ∈ R`, yi = y}
∣∣

as the value to return if a new sample x falls into the region R`. The full training
algorithm is described by the following pseudocode.

function make tree(T = [(x1, y1), (x2, y2), . . . , (xn, yn)])
if stop criterion fulfilled(T) then

c←compute estimate(T)
return new leaf(c)

else
(f, t)← best axis-aligned split(T) . j is the feature, t the threshold
T≤ ← [(xi, yi) in T with xf ≤ t]
T> ← [(xi, yi) in T with xf > t]
left child ← make tree(T≤)
right child ← make tree(T>)
return new node((f, t), left child, right child)

23

end if
end function

function stop criterion fulfilled(T = [(x1, y1), (x2, y2), . . . , (xn, yn)])
Returns true if T fulfills the chosen criterion,
else returns false.

end function

function compute estimate(T = [(x1, y1), (x2, y2), . . . , (xn, yn)])
Returns the majority class in T .

end function

function new leaf(c)
Returns a new leaf with c stored as estimate for the corresponding region.

end function

function best axis-aligned split(T = [(x1, y1), (x2, y2), . . . , (xn, yn)])
Returns index of feature dimension f and threshold t for the best split on T .

end function

function new node((f, t), left child, right child)
Returns a tree where the left and right children of the root are given by
left child and right child, and the split at the root is defined by
feature dimension f and threshold t.

end function

An extension that can yield superior results to the early stopping approach above
is to grow a large, probably overfitting tree and prune it afterwards. Several pruning
variants have been proposed, see Mingers [36] for a survey. We mention this only for
completeness, as, at the time of this writing, it was not implemented in the chosen
library.

Random Forests

This section itroduces random forests and serves as an outlook on how to improve the
decision tree method.

Random forests were introduced by Ho [26] and can be seen as a special case of
ensemble methods. In these, several classifiers are gathered to form a single predictor
whose output is determined by some form of vote of the constituent classifiers. The
hope is that in regions where a few classifiers have overfitted and adjusted to noise in
the data, the majority has not and, hence, will vote for the true label. Especially for
classifiers with high variance, like decision trees, this might improve the generalization
performance.

In random forests, all classifiers in the ensemble are decision trees. To improve upon
the performance of a single tree classifier that was trained on the whole training data,
randomization is introduced. Each decision tree instance is trained on its own random
sample of the training data. The sample is drawn uniformly at random with replace-
ment, which is known as bootstrapping. The idea of unifying several classifiers trained
on bootstrap samples was introduced as bagging (short for bootstrap aggregating) by
Breiman [9]. An additional source of randomness is introduced when growing the trees,
as introduced by Ho [27]. When considering a leaf for a split, a random subset of the

24

feature dimensions is selected. The split is then performed with respect to this subset
only. For each split, a new subset can be chosen. For other options on how to create the
decision trees, see the seminal work by Breiman [10].

3.1.1 Software

We have used the Scikit-learn package [41] of the SciPy library [29]. For decision trees
the DecisionTreeClassifier implementation was used. The description states that it im-
plements an optimized version of the CART algorithm.

3.2 Parameter Exploration and Insights

We need to consider various parameters when trying to find a well performing decision
tree. We have to decide on

• how to tackle the class imbalance,

• what kind of preprocessing to apply,

• what kind of format to choose
(single or multiple images, averaged or not, original size or resampled),

• whether images or extracted features perform better,

• and how deep the tree should be.

We will address some of the issues in isolation and others combined, depending on how
universal we assume the effects to be. The performance of images and features will be
explored in parallel.

3.2.1 Addressing the class imbalance

We will first examine the behaviour of the decision tree learning algorithm to the three
strategies to tackle the class balance, introduced in section 2.5.2: train on imbalanced
classes, undersampling, and oversampling. We conjecture that the behaviour of the
decision tree learning algorithm with respect to these strategies is rather general, that
is, it is independent of the other parameters listed above. Therefore, we fix a setting of
the remaining parameters.

We restrict the maximal tree depth to 5. For each strategy, we train 100 trees and
evaluate their performance on a validation set that was split-off from the training set and
contains 100 elements per class. Training and evaluation sets are re-sampled for each of
the 100 trees (Monte Carlo cross-validation). Moreover, in the under- and over-sampling
cases, the total set of elements under consideration is sampled new for each tree. To
keep it simple, we use only ds1. The chosen format is 2d slice1 sample 64, and the
only preprocessing is performed by resampling the images to a third of their size in both
dimensions. The number of elements for every strategy is listed in Table 3.1.

Results of this experiment are plotted in Figure 3.5.

Table 3.2 shows the median validation accuracies in numbers. It turns out that under-
sampling seems to be the most promising strategy to continue.

25

strategy size of training set size of validation set

undersampling 240 per class 200 per class
imbalanced 1210 open, 240 closed 200 per class
oversampling 1210 per class 200 per class

Table 3.1: Training and validation set composition per strategy.

undersampling imbalanced oversamping

strategy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
cc
u
ra
cy

open
closed

Figure 3.5: Kernel density estimations (KDEs) of the classification accuracy on the val-
idation set for each class and strategy, generated from 100 runs. The solid
lines indicate the median accuracy, dotted lines the quartiles. The plot
shows that the decision tree reflects the imbalanced classes in the evalua-
tion performance.

strategy class acc.

undersampling open 0.71
closed 0.73

imbalanced open 0.92
closed 0.39

oversampling open 0.75
closed 0.69

Table 3.2: For each strategy and class, the median validation accuracies. Emphasized is
the pair that maximizes the median min-accuracy.

26

3.2.2 Preprocessing

Next, we analyze the impact of different preprocessing techniques. In particular, we
compare the performance of per-feature-standardization to per-image-standardization.
As baseline, we show the performance on the raw data without any preprocessing. A
subsequent PCA transformation might prove beneficial if the distances between instances
of different classes are large compared to the inter-class distances after the preprocessing.
Therefore, we also compare each preprocessing version to itself with the additional step
of a PCA transformation.

As before, we conjecture that the effect of preprocessing is rather general, at least
inside the two input formats ‘image’ and ‘feature’, and can be explored in isolation while
fixing the other parameters. Just to be sure, we perform the analysis on two different
formats with opposite characteristics and check whether the results are consistent. The
two formats are:

1. 2d slice1 sample 64 small Representing the most condensed information. An
image in this format is obtained by averaging all voxel intensities in a cylindrical
region in the tomography data. Subsequently it was resampled to half its size along
both dimensions, which involves a Gaussian smoothing prior to it.

2. 2d slice4 sample 1 represents the input with most information, but also most
noise. It consists of 4 different cross-sections of the endpoint.

We also use these two formats to obtain a feature representation for each. The whole
process of preprocessing, extracting features, and PCA transformation is ordered as

x
preprocessing−−−−−−−−→ x∗

extract features−−−−−−−−−→
(
f1(x

∗), f2(x
∗), f3(x

∗)
) PCA−−−→ (z1, z2, z3).

Again, we train 100 trees for each setting and restrict the tree depth to five. Following
the results of the first section, we undersample the labelled data form ds1, and split-off
a validation set. Both, undersampling and separation of the validation set is redone for
each tree. In total we run four experiments (two formats, each format either as image
or as features). The results are plotted in Figure 3.6. First of all, we note that the plots
in the first column are consistent with the plots in the second column. This strengthens
our assumption about the independence of the preprocessing technique on the format,
and we will not perform any tests for the remaining formats.

Secondly, if we focus our attention on the image-based input, we see that the perfor-
mance deteriorated for all techniques when they were followed by PCA transformation.
Opposed to this, performance on the feature-based input mostly seems to improve or
remain constant.

On average, the best performance is observed when the input is per-image-standardized.
This holds for both image- and feature-based inputs. For features, a subsequent PCA
transformation should be considered.

27

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
o
n
e

n
on

e+
P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
ge

p
er
-i
m
ag
e+

P
C
A

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
o
n
e

n
on

e+
P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
ge

p
er
-i
m
ag
e+

P
C
A

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
on

e

n
on

e+
P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
ag
e

p
er
-i
m
ag
e+

P
C
A

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
on

e

n
on

e+
P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
ag
e

p
er
-i
m
ag
e+

P
C
A

open
closed

open
closed

open
closed

open
closed

preprocessing

im
ag
e-
b
a
se
d

fe
at
u
re
-b
as
ed

2d slice1 sample64 small 2d slice4 sample1

Figure 3.6: KDEs of the classification accuracy on the validation set for each class and
preprocessing technique, generated from 100 runs per pair of open-closed
KDEs. The first row shows plots for decision trees trained on images, the
second shows plots for trees that were trained on features extracted form
images. Plots in the same column were trained on input from the same
format. Solid lines indicate the median accuracy, dotted lines the quartiles.

28

image-based:

2d slice1 sample 64 small 2d slice4 sample 1

preprocessing class acc. acc. w/ PCA acc. acc. w/ PCA

none open 0.700 0.620 0.700 0.610
closed 0.720 0.655 0.700 0.660

per-feature open 0.700 0.590 0.700 0.580
closed 0.720 0.645 0.700 0.655

per-image open 0.750 0.680 0.740 0.680
closed 0.720 0.635 0.690 0.620

feature-based:

2d slice1 sample 64 small 2d slice4 sample 1

preprocessing class acc. acc. w/ PCA acc. acc. w/ PCA

none open 0.615 0.660 0.665 0.665
closed 0.710 0.720 0.695 0.740

per-feature open 0.590 0.615 0.625 0.625
closed 0.720 0.730 0.715 0.750

per-image open 0.730 0.730 0.735 0.735
closed 0.760 0.770 0.780 0.770

Table 3.3: Median accuracies for each preprocessing technique with and without sub-
sequent PCA transformation. Empathized are the pairs that maximize the
median min-accuracy. PCA does not seem have a beneficial effect for trees
that learned on images. Trees that learned on feature representations seemed
to benefit from PCA transformation.

29

3.2.3 Remaining Parameters

The previous sections suggest that the training data should be balanced by undersam-
pling and preprocessed with per-image-standardization. For feature-based input, a PCA
transformation after feature extraction might benefit the performance.

In this section we decide on which format to use. Including the images that were
resampled to half the size along each dimension, this leaves eight formats. It is possible
that trees trained with different input format perform best at different depths. For
example, a tree that is trained with small images might perform better when looking
at fewer pixels than a tree that has to consider 16 times that many input features.
Additionally, the pixels in some images show averages of tomogram regions which results
in less high-frequent information when compared to pixels in images that show actual
cross-sections. Therefore, we cannot test formats independently of the tree depth, and
the number of cases to be considered has to be multiplied with the number of possible
maximal decision tree depths, which we allow to be any number from 1 to 10. A decision
tree with depth 10 could theoretically partition the feature space into 1024 regions (more
than there are training samples), but this number implies a perfect binary tree which
is not guaranteed by the algorithm. We still expect the best validation performance for
trees with significantly smaller depth.

For feature-based input, we consider the performance behaviour with and without
PCA transformation after feature extraction, which gives another factor of two to the
number of possible configurations.

In contrast to the previous sections, we have to ensure that training and validation
sets are not too similar if we reliably want to detect when overfitting sets in. We do this
be taking training and validation samples from distinct datasets.

Training will be done on a balanced subset of ds1 comprising 340 endpoints per class;
validation will be performed on the union of balanced subsets of ds2 and ds3 comprising
64 and 20 endpoints per class, respectively. We train 20 trees for every combination of
input format and depth for both, image-based and feature-based input. For the latter, we
also consider the application of PCA transformation prior to the learning. For each tree,
the training and validation subsets are newly sampled, which introduces randomness
to the choice of open endpoints (we take all closed endpoints). The accuracy measure
that we consider is the minimum of the two per class accuracies (min-accuracy). Figure
3.7 shows the median of the min-accuracies for 20 trees per depth. For an easier visual
reception, the plot shows lines interpolating between the discrete values. Upon visual
inspection, both of the feature-based approaches seem to surpass the image-based by
roughly 5% on average. At the same time, the training curves have less inclination. At
depth 10, no feature-based approach was able to perfectly learn the training set, while
the trees learned on images perfectly separated the training set, some already at depth
8.

We see that the rich feature set of the image input contains too much too specific
information, which allows for a fast learning of the training set, but does not generalize
well to new samples. This is supported by the difference in depth at which overfitting
sets in, and the algorithm starts to adapt to training set specificities and noise. For
images this starts at depth 2-3 while most feature-based results start to overfit at depth
4, theoretically, allowing twice to four times as many regions in sample space.

Inside each approach, the performance of different formats is rather coherent, without
any one format standing out significantly, when plotting the full accuracy range. We see
that there is only little improvement prior to depth 4 for the feature-based approach,

30

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10
0.50

0.55

0.60

0.65

0.70

2 4 6 8 10

depth

2 4 6 8 10

va
li
d
a
ti
o
n
&

tr
a
in
in
g
a
cc
.

va
li
d
a
ti
o
n
a
cc
.

2d slice1 sample1

2d slice1 sample1 small

2d slice1 sample64

2d slice1 sample64 small

2d slice4 sample1

2d slice4 sample1 small

2d slice4 sample16 small

2d slice4 sample16

train
train train

val.

val. val.

image-based feature-based feature-based + PCA

Figure 3.7: Median validation and training min-accuracies for 100 classifiers per input
format, and tree depth. The discrete values are linear interplated.

which indicates that a single hyperplane and a single feature already achieve similar
performance to a tree of depth 4. This is no surprise, considering the similarity of the
three features. The bottom row in Figure 3.7 shows the magnification of the validation
accuracies. Some formats seem to be more promising than others, and the difference
of best medians between input formats is in the 5% range. The best results for each
approach are listed in Table 3.4. These values correspond to the topmost peaks in the
three magnified plots.

There is recognizable difference in the performance between images-based and feature-
based input. We try to gain more insights from looking at the two approaches separately.
The left column in Figure 3.8 shows isolated min-accuracies for each original format
and its resampled version in the image-based approach. It could be argued the best
performance is consistently achieved for smaller image formats, but the differences seem
to be rather insignificant. The center and right columns show the performance of each
format with its PCA transformed counterpart. More than before, it appears that there
is no systematic connection to the performance.

31

0.45

0.50

0.55

0.60

0.65

0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.45

0.50

0.55

0.60

0.65

0.70

2 4 6 8 10

0.45

0.50

0.55

0.60

0.65

0.70

2 4 6 8 10 2 4 6 8 10

depth

m
ed

ia
n
o
f
m
in
.
va
li
d
a
ti
o
n
a
cc
.

image-based feature-based

resampled

2d slice1 sample1 pca
2d slice1 sample1

2d slice1 sample64 pca
2d slice1 sample64

2d slice4 sample1 pca
2d slice4 sample1

2d slice4 sample16
2d slice4 sample16 small

2d slice4 sample1
2d slice4 sample1 small

2d slice4 sample16 pca
2d slice4 sample16

2d slice1 sample1
2d slice1 sample1 small

2d slice1 sample64
2d slice1 sample64 small

2d slice1 sample1 small pca
2d slice1 sample1 small

2d slice1 sample64 small pca
2d slice1 sample64 small

2d slice4 sample16 small pca
2d slice4 sample16 small

2d slice4 sample1 small pca
2d slice4 sample1 small

Figure 3.8: Isolated plots of median validation min-accuracies. Transparent bands indi-
cate the 50% confidence intervals.

32

approach format depth acc.

image-based 2d slice1 sample1 small 2 0.630952
feature-based 2d slice4 sample1 4 0.702381
feature-based PCA 2d slice4 sample1 4 0.678571

Table 3.4: Best maximum median min-accuracy values over (in this order) input format,
depth, run, and class. That is, the acc. value is obtained by first computing
the min-accuracy over all trees, taking the median for the 20 trees for each
depth, chosing the best depth for each input format, and, finally, choosing the
best input format for each approach. Highlighted is the best performance.

3.2.4 Adding principal components

Realizing that the feature based approach outperforms the image-based one, it is natural
to ask which features can be added to further increase the accuracy. It is obvious that the
three extracted features are highly redundant and any new features should be designed
to complement the existing ones. This would require further analysis of the misclassified
samples.

Here, we take a more general approach and consider what happens, when we add the
projections along the c most dominant principle components of the training set. This
gives us c new features, and we can write the resulting feature map of an image x as

x 7→
(
f1(x), f2(x), f3(x), p1(x), . . . , pc(x)

)
,

where pi(x) is computed by taking the scalar product of x shifted by the negative mean
training image (centralization) and the direction of the i-th most dominant principle
component of the training set. Reducing an image to its projection along the c most
dominant principle components can be regarded as lossy information compression, and,
if it turns out that the lost information is non-informative for the classification task, as
a denoising strategy.

For an effective denoising, we have to set c small enough. At the same time we
want enough components to reconstruct the endpoint morphology. Figure 3.9 shows
reconstructed endpoints for various choices of c; we settle for c = 25. The results of
experiments with the same setting as in the tree selection section and format
2d slice4 sample 1 are shown in the plot in Figure 3.9. Adding principle components
actually has a negative effect on the validation performance. We see similar behaviour
as when we compared image-based and feature-based input. The steeper training curve
indicates that the additional information does help in the discrimination of the training
set where the principle components were computed on but does not generalize well to
data from new tomograms. It seems that they are too specific to a single tomogram.

3.3 Final Training and Results

In conclusion, we choose to train the final decision tree on feature-based inputs with-
out PCA transformation, obtained from per-image-standardized images with format
2d slice4 sample 1, on a balanced subset of the available training data.

The training set is given by the union of three sets, one from each of ds1, ds2, and
ds3. We take all available closed endpoints, and a subset of the available open endpoints
(randomly chosen without replacement) with matching size. This leads to 424 endpoints

33

5 10 25 50 100c :

1 2 3 4 5 6 7 8 9 10

depth

0.6

0.7

0.8

0.9

1.0

va
li
d
a
ti
o
n
&

tr
a
in

a
cc
u
ra
cy

2d slice4 sample1
2d slice4 sample1 25pcs

train

val.

Figure 3.9: Left: Reconstructions for ten microtubule ends from projections onto the c
most dominant principle components. Right: Median training and validation
min-accuracies for feature-based inputs with additional principal components
(green) and without (blue).

per class. On the training set, it achieves per-class accuracies of

0.80 (open)

0.82 (closed).

After training, the final tree was tested on the test set comprising all non-contradictory
labeled endpoints from qs1,. . . ,qs4. This set contains 1025 open and 336 closed samples.
The final tree is shown in Figure 3.10. It achieves per-class accuracies of

0.62 (open)

0.72 (closed).

Figure 3.11 lists the first 10 elements of each class, where the decision tree failed.

34

T
ru
e

F
alsef

1 ≤
620.204

en
trop

y
=

0.7149
sam

p
les

=
402

valu
e
=

[79,
323]

class
=

op
en

f
1
≤

−
6.5592

en
trop

y
=

1.0
sam

p
les

=
848

valu
e
=

[424,
424]

class
=

n
on

e

f
3 ≤

−
0.8045

en
trop

y
=

0.7718
sam

p
les

=
446

valu
e
=

[345,
101]

class
=

closed

f
1 ≤

−
750.1287

en
trop

y
=

0.9549
sam

p
les

=
189

valu
e
=

[118,
71]

class
=

closed

f
1 ≤

−
1312.2437

en
trop

y
=

0.5199
sam

p
les

=
257

valu
e
=

[227,
30]

class
=

closed

en
trop

y
=

0.0
sam

p
les

=
31

valu
e
=

[31,
0]

class
=

closed

f
2 ≤

−
10.1012

en
trop

y
=

0.5649
sam

p
les

=
226

valu
e
=

[196,
30]

class
=

closed

en
trop

y
=

0.0
sam

p
les

=
2

valu
e
=

[0,
2]

class
=

op
en

en
trop

y
=

0.5436
sam

p
les

=
224

valu
e
=

[196,
28]

class
=

closed

en
trop

y
=

0.0
sam

p
les

=
1

valu
e
=

[0,
1]

class
=

op
en

en
trop

y
=

0.9601
sam

p
les

=
141

valu
e
=

[87,
54]

class
=

closed

f
2 ≤

−
6.1615

en
trop

y
=

0.2352
sam

p
les

=
26

valu
e
=

[25,
1]

class
=

closed

f
3 ≤

8.1103
en
trop

y
=

0.9856
sam

p
les

=
163

valu
e
=

[93,
70]

class
=

closed

en
trop

y
=

0.8454
sam

p
les

=
22

valu
e
=

[6,
16]

class
=

op
en

en
trop

y
=

0.9852
sam

p
les

=
7

valu
e
=

[3,
4]

class
=

op
en

en
trop

y
=

0.469
sam

p
les

=
10

valu
e
=

[9,
1]

class
=

closed

en
trop

y
=

0.8997
sam

p
les

=
114

valu
e
=

[36,
78]

class
=

op
en

en
trop

y
=

0.6805
sam

p
les

=
111

valu
e
=

[20,
91]

class
=

op
en

en
trop

y
=

0.5643
sam

p
les

=
83

valu
e
=

[11,
72]

class
=

op
en

en
trop

y
=

0.0
sam

p
les

=
30

valu
e
=

[0,
30]

class
=

op
en

en
trop

y
=

0.0
sam

p
les

=
47

valu
e
=

[0,
47]

class
=

op
en

f
3 ≤

9.781
en
trop

y
=

0.4605
sam

p
les

=
113

valu
e
=

[11,
102]

class
=

op
en

f
1 ≤

1098.3823
en
trop

y
=

0.3612
sam

p
les

=
160

valu
e
=

[11,
149]

class
=

op
en

f
1 ≤

251.9178
en
trop

y
=

0.8095
sam

p
les

=
225

valu
e
=

[56,
169]

class
=

op
en

f
2 ≤

−
4.8499

en
trop

y
=

0.874
sam

p
les

=
17

valu
e
=

[12,
5]

class
=

closed f
3 ≤

−
5.6346

en
trop

y
=

0.8568
sam

p
les

=
242

valu
e
=

[68,
174]

class
=

op
en

en
trop

y
=

0.0
sam

p
les

=
25

valu
e
=

[25,
0]

class
=

closed

Figure 3.10: The final classification tree trained to depth 4. The first and third leaves
contain rather few open elements and would probably be removed in an
implementation that allows an subsequent trimming of the tree. We see
that both subtrees of the root are already quite pure.

35

open, predicted closed closed, predicted open

Figure 3.11: Examples of misclassified elements. Left: Samples were experts labeled
open and the tree predicted closed . Right: Samples were experts labeled
closed and the tree predicted open.

36

4 Support Vector Machines

4.1 Basic Principles

Support Vector Machines (SVM s)[6][14] are, in their basic form, linear separators. They
try to find a hyperplane that well separates a given training sequence. What distinguishes
them from other linear separators is that, of all possible separating hyperplanes, they
try to find the one that maximizes the minimal distance to any training sample. The
left image in Figure 4.1 shows training samples with possible separating hyperplanes.
Although each of these perfectly separates the training samples, they run very close to
them and we would expect that newly generated samples are likely to appear on the
wrong side of the plane. In the image to the right we see the hyperplane chosen by the
SVM. This choice will probably better generalize to new samples. The area around the
hyperplane that does not contain any training samples is called the margin, hence, we
call the SVM classifier a maximum margin classifier.

Figure 4.1: Left: Possible separating hyperplanes, each of which has optimal training
error although they approach the training samples rather closely. Right:
The maximum margin hyperplane that will be chosen by the SVM.

Often there is no guarantee that the problem under consideration will produce samples
that are linearly separable. In such a case the approach above can be relaxed to allow
for samples to violate the margin and enter the wrong side of the hyperplane, hence,
introducing some non-zero training error (see Figure 4.3). We call this the soft-margin
approach while referring to the previous case as the hard-margin approach.

Finally, SVMs allow for a generalization – so called kernel methods – to nonlinear
separation boundaries in feature space X . This is based on the general idea of applying
a non-linear map ϕ : X → X ′ to the training sequence and performing the SVM technique
in X ′ instead of X . Exploiting some special properties of SVMs will allow for the kernel
trick, an efficient implementation of this idea.

In the subsequent parts, we follow the expositions in the Support Vector Machine and
Kernel Methods part of Abu-Mostafa’s lectures [4] and the Support Vector Machines part
of Ng’s lecture notes [38], with some insertions from books by Shalev-Shwartz and Ben-
David [52] and Friedman, Hastie, and Tibshirani [19]. For an in-depth discussion see
the work of Vapnik [56], one of the originators of this technique, or the tutorial by
Burges [13]. An exposition of Kernel Methods can be found in the book by Schölkopf
and Smola [51].

37

4.1.1 Hard Margin – The Separable Case

We are given a training sequence T = (xi, yi)i=1..n with xi ∈ X = Rp and yi ∈ Y =
{+1,−1}. The specific choice of Y will be clear in a moment. In this first part, we will
assume that T is linearly separable, that is, there exists a unit vector ŵ and distance d
that describe a hyperplane g, such that for all i:

〈xi, ŵ〉+ d =

{
> 0 if yi = +1,

< 0 if yi = −1.

The choice of Y allows us to multiply with yi and express both cases by the single
condition

yi(〈xi, ŵ〉+ d) > 0.

Due to the strict inequality we can set ε as the minimal distance of any point xi to the
separating plane and write

yi(〈xi, ŵ〉+ d) ≥ ε, where ε = min
i∈[n]
|〈xi, ŵ〉+ d| . (4.1)

That is, 2ε is the width of the largest margin we could place around g such that no point
xi lies inside of it. We call such a separating hyperplane a hard-margin classifier, as any
penetration of the margin is prohibited. In the left of Figure 4.2 we give an example.
Note how shifting g to the right would allow for a larger margin. A different orientation
like g′ in the right image would lead to further improvements. We can divide Equation

ε ε
ε′

g g′

ε′

Figure 4.2: Illustration of a training sequence that is linearly separable and separating
hyperplanes g and g′. The gray lines indicate the boundary of the largest
margins (with width ε and ε′, respectively) that are permitted.

(4.1) by ε to obtain the equivalent description

yi(〈xi,w〉+ b) ≥ 1, where w =
ŵ

ε
and b =

d

ε
(4.2)

We are looking for a hyperplane that allows the widest margin without violating
these restrictions. In Equation (4.2) we see that the width of the margin 2ε = 2/||w|| is
inversely proportional to the size of w. Thus, we can formulate our goal in form of a
constraint optimization problem, where we put the constraints in their zero-form:

max
w,b

1

||w||
, such that ∀i : yi(〈xi,w〉+ b)− 1 ≥ 0.

Instead of maximizing the inverse, we might as well minimize ||w|| which is equivalent to

38

minimizing ||w||2/2. This leads to

min
w,b

1

2
||w||2, such that ∀i : yi(〈xi,w〉+ b)− 1 ≥ 0. (4.3)

This is a quadratic minimization problem with affine inequality constraints and can be
solved efficiently with optimization techniques. The usual approach here is to form the
Lagrangian of Problem (4.3) and solve its dual. We will not go into much detail here
but present enough information to explain the origin of the support vector part of the
name.

First, we reformulate Problem (4.3) while introducing some notational simplifications.
We want to find the argument of the solution to the minimization problem

min
w,b

1

2
〈w,w〉, such that ∀i : gi(w, b) ≥ 0, (4.4)

where gi(w, b) := yi(〈xi,w〉 + b) − 1. We build the corresponding Lagrangian L by
introducing a multiplier αi for every inequality constraint gi and adding the product to
the main objective:

L(w, b,α) =
1

2
〈w,w〉 −

n∑
i=1

αigi(w, b). (4.5)

The negative sign is due to the fact that the Lagrange multiplier formalism requires
inequality constraints of the form g(w, b) ≤ 0, hence, we multiplied the gi by −1. We
find the solution to our initial problem by the primal or dual formulation,

primal: min
w,b

max
α

L(w, b,α) (4.6)

dual: max
α

min
w,b

L(w, b,α). (4.7)

We have a convex objective function 〈w,w〉/2 and affine constraints gi. This guarantees
that both formulations yield the same result, as long as our training set is linearly
separable, see for example Ref. [8, p. 226f.].

Let us consider the dual problem and try to find a stationary point with respect to the
inner minimization, that is , we search for a point with∇wL(w, b,α) = ∂/∂bL(w, b,α) =
0. With ∇wgi(w, b) = yixi, we get

∇wL(w, b,α) = ∇w
1

2
〈w,w〉 − ∇w

n∑
i+1

αigi(w, b)

= w −
n∑
i+1

αi∇wgi(w, b)

= w −
n∑
i+1

αiyixi

!
= 0.

=⇒ w =
n∑
i+1

αiyixi (4.8)

39

That is, the orientation of the optimal hyperplane and the width of the correspond-
ing margin are given by a linear sum of the position vectors of the training samples.
The αi give us the influence of the corresponding training sample xi. Further, with
∂/∂b gi(w, b) = yi and omitting all terms that do not depend on b, we get

∂

∂b
L(w, b,α) =

∂

∂b

(
−

n∑
i=1

αigi(w, b)

)

= −
n∑
i=1

αi
∂

∂b
gi(w, b)

= −
n∑
i=1

αiyi

!
= 0.

Therefore,

n∑
i=1

αiyi = 0. (4.9)

⇐⇒
∑

i∈{j|yj=+1}

αi =
∑

i∈{j|yj=−1}

αi (4.10)

Together, Equation (4.10) and (4.8) tell us that there will be a balance between positive
and negative samples in the choice of w. Plugging expression (4.8) for w back into the
Lagrangian (4.5) and exploiting Equation (4.10) will lead to a quadratic optimization
problem which only depends on α:

max
α

(n∑
i+1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉
)
, (4.11)

with 0 ≤ αi, for i = 1, . . . , n,

and

n∑
i=1

αiyi = 0.

We will derive this further below in the section dealing with the soft-margin case. Equa-
tion (4.11) can be solved with standard numerical optimization techniques, as proposed
in [7]. In practice, we are likely to encounter problems comprising many thousands or
more training samples. In these cases, the quadratic size of the problem in the number
of input samples might render this approach too inefficient. This has motivated the
development of more specialized methods [40] [42].

Another consequence of only having affine inequality constraints is that the argument
of the minimum (w∗, b∗,α∗) of Problem (4.7) satisfies the Karush-Kuhn-Tucker (KKT)
conditions [33]. One of these – the dual complementary condition – is of particular
interest. It states that

∀i : α∗i gi(w
∗, b∗) = 0. (4.12)

This encodes the origin of the name Support Vector Machine. The condition says that
for each point xi of the training sequence, either gi(w

∗, b∗) = yi(〈xi,w〉 + b) − 1 = 0,

40

that is, the point xi is precisely on the boundary of the margin, or αi = 0 meaning that
xi will not play a role in the choice of w, as indicated by Equation (4.8). We call all x
in {xi | αi > 0} the support vectors, since they support the decision boundary. All other
points do not play a role in its selection.

Knowing the support vectors allows us to compute the optimal b∗, once we have found
α∗. We compute w∗ with Equation (4.8) and b∗ by solving yi(〈x,w〉+ b)− 1 = 0 for b,
for any support vector x.

Then we can classify a new sample x with

class(x) = sign (〈x,w∗〉+ b∗) . (4.13)

4.1.2 Soft Margin – The Non-Separable Case

In general, we cannot assume that a given training sequence is linearly separable (see
Figure 4.3, left) and even if this is the case there might be outliers that force the hard
margin SVM to an unfortunate decision boundary (see Figure 4.3, right). We can resolve

Figure 4.3: Left: An arrangement that is not linearly separable. Right: A linearly sepa-
rable arrangement with solid lines indicating the hard margin classifier. Al-
lowing the outlier (red) to violate the margin – even up to misclassification
– would yield a more promising separation and margin (dashed lines).

this by introducing a slack variable ξi ≥ 0 for every training sample xi. Its purpose is
to relax the margin condition in Equation (4.2):

yi(〈xi,w〉+ b) ≥ 1− ξi.

Each variable is now allowed to violate the margin by a value proportional to ξi. To keep
these violations low, we introduce a small addition to the optimization problem (4.3):

min
w,b

1

2
||w||2 + C

l∑
i=1

ξi, such that ∀i : gi(w, b, ξi) ≥ 0, (4.14)

ξi ≥ 0,

where gi(w, b, ξi) := yi(〈xi,w〉+ b)−1 + ξi. So we are still trying to maximize the width
of the margin but at the same time we try to keep the sum of all margin violations low.
The trade-off parameter C will be set independently and adjusts how much we value one
goal over the other. With growing C we increase the penalty of a margin violation and
eventually approach the hard margin SVM. In the scope of the optimization problem it
simply acts as a constant.

Similarly to the hard-margin case, we can set up the Lagrangian and formulate the
primal and dual tasks. We only need to slightly modify the objective and introduce new
Lagrange multipliers βi for the additional inequality constraints ξi ≥ 0.

L(w, b, ξ,α,β) =
1

2
〈w,w〉+ C

n∑
i=1

ξi −
n∑
i=1

αigi(w, b, ξi)−
n∑
i=1

βiξi (4.15)

41

primal: min
w,b,ξ

max
α,β

L(w, b, ξ,α,β) (4.16)

dual: max
α,β

min
w,b,ξ

L(w, b, ξ,α,β) (4.17)

Again, we want to find stationary points with respect to the inner minimization
in the dual problem (4.17). The gradient ∇wL(w, b, ξ,α,β) and the partial derivative
∂
∂bL(w, b, ξ,α,β) are identical to the hard-margin case. Therefore, we still have the
same implications as in Equations (4.8) and (4.9):

∇wL(w, b, ξ,α,β)
!

= 0 =⇒ w =
n∑
i+1

αiyixi (4.18)

∂

∂b
L(w, b, ξ,α,β)

!
= 0 =⇒

n∑
i=1

αiyi = 0. (4.19)

The minimization with respect to ξi is new. With the partial derivative ∂/∂ξi gi(w, b, ξi) =
1, we get:

∂

∂ξi
L(w, b, ξ,α,β) =

∂

∂ξi

(
C

n∑
i=1

ξi

)
− ∂

∂ξi

(n∑
i=1

αigi(w, b, ξi)

)
− ∂

∂ξi

(n∑
i=1

βiξi

)
= C − αi − βi
!

= 0

=⇒ βi = C − αi (4.20)

This gives us a new constraint.

We will now substitute w by Equation (4.18) and βi by Equation (4.20) in the La-
grangian (4.15) and derive a minimization problem that only depends on αi. We will
do it one term at a time and start by plugging w into the first term of (4.15). In the
following part we will make use of the distributivity and linearity of the scalar product.

1

2
〈w,w〉 =

1

2

〈 n∑
i=1

αiyixi,
n∑
j=1

αjyjxj

〉

=
1

2

n∑
i=1

〈
αiyixi,

n∑
j=1

αjyjxj

〉

=
1

2

n∑
i=1

αiyi

〈
xi,

n∑
j=1

αjyjxj

〉

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉 (4.21)

Next, we fully expand the third term:

n∑
i=1

αi
(
yi(〈xi,w〉+ b)− 1 + ξi

)
=

n∑
i=1

αiyi(〈xi,w〉+ b)−
n∑
i=1

αi +
n∑
i=1

αiξj

=

n∑
i=1

αiyi〈xi,w〉+

n∑
i=1

αiyib−
n∑
i=1

αi +

n∑
i=1

αiξj

42

and insert w:

=

n∑
i=1

αiyi

〈
xi,

n∑
j=1

αjyjxj

〉
+

n∑
i=1

αiyib−
n∑
i=1

αi +

n∑
i=1

αiξj

=
n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉+ b
n∑
i=1

αiyi −
n∑
i=1

αi +
n∑
i=1

αiξi. (4.22)

There is nothing to do in the third term and plugging the expression for βi into the
fourth term gives

n∑
i=1

βiξi =

n∑
i=1

(C − αi)ξi

= C

n∑
i=1

ξi −
n∑
i=1

αiξi. (4.23)

All that is left to do is to replace the left hand sides of Equations (4.21), (4.22), and
(4.23) in the Lagrangian with the right hand sides. After erasing complementary terms
and exploiting Equation (4.31), the formula will emerge in its final form.

L(w, b, ξ,α,β) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉

+ C
n∑
i=1

ξi

−
n∑
i=1

n∑
j=1

αiαjyiyj(〈xi,xj〉)− b
n∑
i=1

αiyi +
n∑
i=1

αi −
n∑
i=1

αiξi

− C
n∑
i=1

ξi +
n∑
i=1

αiξi.

=

n∑
i+1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉 (4.24)

This allows us to rewrite the dual problem (4.17) equivalently as

max
α

(n∑
i+1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉
)
, (4.25)

with 0 ≤ αi ≤ C, for i = 1, . . . , n, (4.26)

and
n∑
i=1

αiyi = 0. (4.27)

This is remarkably close to the hard-margin Problem (4.5). The only difference is the
upper bound C on αi which is due to Equation (4.20) and the restriction βi ≤ 0, for
i = 1, . . . , n, on Lagrange multipliers for inequality constraints.

Analogously to the hard-margin case, this poses a quadratic optimization problem in
α with linear inequality constraints (Constraint (4.27) can be rewritten appropriately;
we can simply express an equality a = b by the two inequalities a ≤ b and a ≥ b) which

43

can be solved efficiently. One algorithm designed specifically for this problem is the
Sequential Minimal Optimization algorithm [42] (SMO). The SMO algorithm iteratively
selects two components αi, αj of α (heuristically) and maximizes (4.25) with respect to
them. (The necessity to pick at least two components results from constraint (4.27).) The
maximization with respect to two components can be done analytically, which reduces
the numerical error in the computation. Fortunately, the algorithm also computes the
value of b, as the slack variables make is unclear how the hard-margin approach should
be translated to the soft-margin case.

Having found the optimal values (α∗, b∗), we can compute w∗ as in the hard-margin
case and classify a new sample x, also as in the hard-margin case, with

class(x) = sign (〈x,w∗〉+ b∗) . (4.28)

4.1.3 Kernel Methods

This section introduces a generalization of support vector machines and only serves as
an outlook.

Kernel methods are a generalization of the SVM principle. They allow nonlinear classifi-
cation boundaries in the feature space with minute alteration of the already introduced
SVM principle. Here, we will only consider the (more general) problem of soft margin
SVMs. Remember that the optimization problem to find the parameters w and b of
the best separating hyperplane could be stated by the dual Lagrangian (repetition of
Formula (4.17)),

max
α,β

min
w,b,ξ

L(w, b, ξ,α,β). (4.29)

When looking for stationary points with respect to the inner minimization, we found

∇wL(w, b, ξ,α,β) = 0 =⇒ w =

n∑
i=1

αiyixi (4.30)

∂

∂b
L(w, b, ξ,α,β) = 0 =⇒

n∑
i=1

αiyi = 0 (4.31)

∀i : ∂

∂ξi
L(w, b, ξ,α,β) = 0 =⇒ βi = C − αi (4.32)

Plugging this back into the Lagrangian led to the optimization problem

max
α

(n∑
i+1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉
)
, (4.33)

with 0 ≤ αi ≤ C, for i = 1, . . . , n,

and

n∑
i=1

αiyi = 0,

a quadratic optimization problem which can be solved efficiently, for example with the
Sequential Minimal Optimization algorithm which also takes care of computing b.

Once we have the αi and b, we can compute w by Equation (4.30) and classify a new

44

sample x ∈ X by

class(x) = sign (〈x,w〉+ b)

= sign

(〈
x,

n∑
i=0

αiyixi

〉
+ b

)

= sign

(n∑
i=0

αiyi〈x,xi〉+ b

)
. (4.34)

The interesting realization is that in the optimization problem (4.33) only depends
on the training samples xi in form of inner products 〈xi,xj〉. When we apply Equation
(4.34) to classify a new previously unseen element x then, again, all we need are inner
products 〈x,xi〉 of elements from feature space X . This is the key property behind kernel
methods.

A general strategy, which can be applied by any classification method that is not
restricted to one fixed dimensional input, is to use embeddings into feature spaces. The
idea is to find a map ϕ : X → X ′ with some usually higher-dimensional feature space
X ′ that conveniently spreads the training data. We call the target space X ′ the in-
termediate space. If the training sequence T = ((x1, y1), (x2, y2), . . . , (xn, yn)) does
not allow for a clean separation by the chosen algorithm, then maybe its embedding
T ′ = ((ϕ(x1), y1), (ϕ(x2), y2), . . . , (ϕ(xn), yn)) does. Assume that classifyϕ(·) is a classi-
fication algorithm that was successfully trained on T ′. How would we use classifyϕ(·) to
label a new element x? Since the classifier lives in the intermediate space, we would call
it with ϕ(x) and assign the label classifyϕ(ϕ(x)) to x.

One problem of this approach is that if the intermediate space has very high dimen-
sionality, computation of ϕ(x) might become inefficient, even infeasible. Kernel methods
avoid this problem by the realization that the SVM method never actually needs any
isolated samples. Only inner products of pairs of samples and these are just single num-
bers. If we know how to compute 〈ϕ(x), ϕ(x′)〉 directly from x and x′, that is, if we know
a function κ : X × X → R such that for all x, x′ in X we have κ(x,x′) = 〈ϕ(x), ϕ(x′)〉,
then we never need to actually apply ϕ, and we never need to actually handle any ele-
ment in X ′. We can go one step further. There is no need to know how X ′ looks like.
As long as we know that there exists some intermediate (Hilbert) space such that the
chosen function κ corresponds to the inner product in this space, we can apply κ. This is
called the kernel trick and κ is called a kernel. All we need to adjust is the minimization
problem (4.33):

max
α

(n∑
i+1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjκ(xi,xj)

)
, (4.35)

with 0 ≤ αi ≤ C, for i = 1, . . . , n,

and

n∑
i=1

αiyi = 0,

and the classification (4.34):

class(x) = sign

(n∑
i=0

αiyiκ(xi,xj) + b

)
. (4.36)

45

But effectively, we have now created a classifier in some, possibly infinite-dimensional, in-
termediate space. One example for this is the Radial Basis Function (RBF) or Gaussian
kernel,

κRBF (x,x′) = e−γ(x−x′)2 . (4.37)

For small difference vectors x − x′, the RBF kernel approaches 1 and is identical to 1
iff x = x′. For more and more dissimilar vectors, ||x − x′|| grows and the RBF kernel
approaches zero. Therefore, it can be interpreted as an isotropic similarity measure. A
tedious but necessary task is to confirm that there exists a map ϕ to an intermediate
space such that κ(x,x′) = 〈ϕ(x), ϕ(x′)〉. Here, we will simply describe the map ϕ,
following an exercise in Ref. [52, p. 221]. In the following part, we will make use of the
identity ex =

∑∞
n=0 x

n/n! and the fact that for every x, x′ ∈ Rp:

〈x,x′〉n =
∑

J∈{1,2,...,p}n

n∏
i=0

xJix
′
Ji . (4.38)

Assume that ϕ is a map such that for every n ∈ N and every J ∈ {1, 2, . . . , p}n there
exists a component, say the c(n, J)-th component, such that

ϕ(x)c(n,J) =
1√
n!
e−
||x||2
2

n∏
i=0

xJi . (4.39)

Then,

〈ϕ(x), ϕ(x′)〉 =
∑
n∈N

J∈{1,..,p}n

ϕ(x)c(n,J)ϕ(x′)c(n,J)

=
∑
n∈N

J∈{1,..,p}n

(
1√
n!
e−
||x||2
2

n∏
i=0

xJi

)(
1√
n!
e−
||x′||2

2

n∏
i=0

x′Ji

)

=
∑
n∈N

∑
J∈{1,..,p}n

(
1√
n!
e−
||x||2
2

n∏
i=0

xJi

)(
1√
n!
e−
||x′||2

2

n∏
i=0

x′Ji

)

= e−
||x||2+||x′||2

2

∑
n∈N

1

n!

∑
J∈{1,..,p}n

(n∏
i=0

xJi

)(n∏
i=0

x′Ji

)

= e−
||x||2+||x′||2

2

∑
n∈N

1

n!

∑
J∈{1,..,p}n

n∏
i=0

xJix
′
Ji︸ ︷︷ ︸

Eq.(4.38)
= 〈x,x′〉n

= e−
||x||2+||x′||2

2

∑
n∈N

〈x,x′〉n

n!

= e−
||x||2+||x′||2

2 e〈x,x
′〉

= e−
1
2
(||x||2+||x′||2−2〈x,x′〉)

= e−
(x−x′)2

2 . (4.40)

46

If we want to find the map ϕ for e−γ(x−x′)2 we adjust the component in Equation (4.39)
to

ϕ(x)c(n,J) =
1√
n!
e−
||x||2γ

2

n∏
i=0

xJi
√

2γ, (4.41)

and carry out the same computation as above. Thus, we have shown that the RBF
kernel is a valid kernel function.

A characterization of valid kernels is given in Ref. [52, p. 222], which is described as
a simplification of Mercers condition (see for example Ref. [13]). The book by Schölkopf
and Smola [51, 405ff.] gives practical tips on how to create valid kernels.

4.1.4 Software

We have used the Scikit-learn package [41] of the SciPy library [29]. For SVMs without
kernel, the LinearSVC class was used which relies on liblinear [15] to solve the inner
optimizations.

4.2 Parameter Exploration and Insights

The experiments in each section of this part are similar in setup and purpose to those
in the decision tree part (Section 3.2). To reduce redundancy, we will not re-motivate
each experiment but only those parts that differ from the previous ones. Any detail not
listed, such as the training set used or the particular sample sizes, is the same as in the
corresponding decision tree experiments. We will make sure to mention any deviation
explicitly.

4.2.1 Addressing the class imbalance

First, we analyze the sensitivity of support vector machine classifiers to imbalanced
inputs and compare the results to under- and oversampled training sets. Figure 4.4 shows
the results of training 100 classifiers for each of the strategies to tackle the imbalance
(see Section 2.5.2). The KDE plots to the left show significantly wider distributions than
in the decision tree setting. We see that in case of imbalanced training sets the majority
class is likely to be preferred. Under- and oversampling seem to perform similarly. The
box plots to the right show median and quartiles of the classifiers’ min-accuracies. We
get the following median min-accuracy values:

strategy min-acc.

oversampling 0.575
imbalanced 0.305
undersampling 0.570

The difference between over- and under-sampling seems to be insignificant if we consider
the width of the confidence intervals in Figure 4.4. Thus, we will consider both strategies
in the first experiment of the next section.

4.2.2 Preprocessing

This section compares the different preprocessing techniques. We consider no prepro-
cessing, per-feature standardization, and per-image standardization. Each technique will

47

imbalanced

method

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

open
closed

0.0

0.2

0.4

0.6

0.8

a
cc
u
ra
cy

oversampling undersampling oversampling imbalanced undersampling

method

1.0

Figure 4.4: Accuracy values for 100 trained classifiers per input strategy. Left: KDEs
for per-class accuracies. The plot make the amount of variation inside each
strategy apparent. Right: Box plots of the min-accuracy values showing
median and quartiles. The actual min-accuracy values are drawn as dots on
top.

be tested with and without subsequent PCA transformation, thus we have six techniques
to compare. We will do this for both image- and feature-based input. Again, we consider
the two input-formats,

1. 2d slice1 sample 64 small, and

2. 2d slice4 sample 1.

For the experiments in this section, we fix the trade-off parameter at C = 1. The
previous section indicated that imbalanced inputs lead to imbalanced performance in
the per-class accuracy but was inconclusive regarding the question whether over- or
under-sampling should be preferred. For further analysis we ran the first experiment
with both sampling strategies. We trained 100 image-based classifiers for each of the six
preprocessing techniques on format 1, listed above. Figure 4.5 shows the results. The
application of preprocessing reveals substantial performance imbalances when training
is performed oversampled input. Although oversampling significantly equalizes the per-
class accuracies when compared with imbalanced inputs (see Fig. 4.4), the minority
class is still under-represented.

This result matches the intuition: A slight amount of equalization can be explained
by the increased penalty of falsely classifying an element x from the minority class. The
penalty is proportional to the number of duplicates of x that exist in the oversampled
set. This might prevent the classifier from letting the decision region invade the area
claimed by minority samples, that is, its convex hull. But the actual area itself in
feature space still remains the same. The majority class, on the other hand, might claim
a larger area due to its independent samples which results, out of the two classes, in
better generalization performance.

Therefore, we chose to balance the training sets for subsequent support vector ma-
chine classifiers by undersampling. Figure 4.6 shows the results of training 100 classifiers
for each of the six preprocessing techniques and both input formats, trained on image-
based input. We consistently find the poorest performance when we do not apply any
preprocessing at all. PCA transformation alone is the second worst technique for format

48

n
o
n
e

p
ca

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

preprocessing

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
o
n
e

p
ca

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

open
closed

open
closed

Figure 4.5: KDEs of per-class accuracies for the six different preprocessing techniques
obtained from 100 classifiers trained on image-based input. Solid lines show
the median, dotted lines the quartile accuracies. Left: Results for undersam-
pling. Right: Results for oversampling.

n
o
n
e

p
ca

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
o
n
e

p
ca

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

preprocessing

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

Figure 4.6: Min-accuracies for 100 support vector machine classifiers per preprocess-
ing technique trained on image-based input. Left: Trained and vali-
dated on format2d slice1 sample 64 small. Right: Trained on format
2d slice4 sample 1.

2d slice1 sample 64 small and (slightly) the best for format 2d slice4 sample 1. In
general, apart from not applying any preprocessing, the techniques seem to give simi-
lar results. The noticeably weaker performance of pure PCA transformation on format
2d slice1 sample 64 small excludes it from further consideration. Both, per-feature
and per-image standardization seem to perform similar, regardless of whether it is fol-

49

lowed by PCA transformation or not. We choose to continue with per-feature standard-
ization, as its median min-accuracy is slightly in the lead and the confidence intervals
show slightly less variance, but the difference seems to be negligible and we might as
well have decided for per-image standardization.

Results for the feature-based approach are shown in Figure 4.7, where we changed the
plotting style to account for the increased variation. The plots show that there is no-

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

n
o
n
e

n
o
n
e+

P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

preprocessing

n
o
n
e

n
o
n
e+

P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

Figure 4.7: Min-accuracies for 100 support vector machine classifiers per preprocessing
technique; classifiers were trained on extracted features. Left: Trained and
validated on format2d slice1 sample 64 small. Right: Trained on format
2d slice4 sample 1.

tably more performance variation when the classifiers are trained on the feature-based
input compared with those trained on the image-based input. This holds for the median
min-accuracy among different preprocessing techniques but, as indicated by the wide
confidence intervals, also for min-accuracies inside one technique. For most configura-
tions a second mode exist indicating imbalanced performance.

Not performing any preprocessing gives by far the worst results. All min-accuracies
are zero or close to it, indicating a heavily imbalanced per-class performance. Here, PCA
transformation alone already lifts the performance to a level competitive to per-feature
standardization.

Features computed from per-image standardized images appear to give the best per-
formance. They show some of the most extreme outliers but apart from that the main
bulk of min-accuracies lies relatively close. Moreover, subsequent PCA transformation
seems to further reduce the variance slightly.

4.2.3 Where does the performance variation come from?

The great amount of performance variation, especially in the feature-based experiments,
poses the question of its origin. There are two sources of randomness.

50

1. Data selection: For each classifier, we select a random subset of labeled data to
use, and randomly split off a validation set.

2. Optimization: The SMO-algorithm to solve the Lagrangian optimization in the
support vector machine learning method randomly chooses pairs of Lagrange mul-
tipliers for joint optimization. This leads to different computation paths and,
possibly, to decision boundaries with different generalization performances.

We assume that the variation is mainly a product of the first source. To gain more
insights, we ran a new series of experiments with setup identical to the previous sec-
tion but fixed the random seeds for a) none of the two sources, b) the support vec-
tor machine function call, hence, the internal optimization, and c) the data selec-
tion. For these experiments, we restrict to feature-based input computed from format
2d slice1 sample 64 small. Figure 4.8 shows the resulting min-accuracies. The plots
labeled a) reproduce the results of the left plot in Figure 4.7. The plots labeled with
b) show that fixing the internal optimization does not seem to reduce the performance
variation at all if the subsets for training and validation are still chosen randomly. For
comparison, the plots labeled c) show significant reduction in performance variation,
except for when no preprocessing is applied. Interestingly there still remains a wide
performance range.

Although we identify the main contributor to be the random data selection, we see
that the randomness in the internal optimization has non-negligible effect on the quality
of the resulting classifier. The left plot in Figure 4.9 shows the resulting min-accuracies
when we fix the random seeds for both sources across different training sessions. There
is no performance variation anymore and we conclude that the two mentioned sources
are indeed the only sources.

none none+PCA per-feature per-feature+PCA per-image per-image+PCA

0.0

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

a) b) c) a) b) c) a) b) c) a) b) c) a) b) c) a) b) c)

Figure 4.8: Min-accuracies for 100 classifiers per preprocessing technique. Fixed are
random seeds to a) not fixed b) the support vector machine function call c)
the training and validation set generation.

Having detected the data selection as main source of performance fluctuation, it would
be interesting to see whether there are subsets that are generally non-representative
performance regardless of the preprocessing technique or if every technique has its own
weak subsets. In case of the still relevant optimization algorithm, it would be interesting
if some computation paths generally perform better than others.

In the right part of Figure 4.9 we show the per-class accuracies of the classifiers whose
min-accuracies were shown in Figure 4.8 b),c). We connected dots that got identical

51

random seeds for the source of randomness that we did not fix. For the top row we
fixed the training and validation sets. Connected dots got the same random seeds in the
support vector machine function call. For the bottom row it is the other was around.

Generally badly performing subsets or computational paths would result in an ac-
cumulation of lines, with their endpoints in the same relative performance level across
different preprocessing techniques. It seems that each technique has its own weak sub-
sets. For every technique we find points among the weakest performances that were
generated by a data-optimization pair of random seeds that worked well for the neigh-
bouring techniques or vice versa. The same statement holds for the plots in the top
row.

Thus, deterministically selecting well performing data subsets and computational
paths in the optimization to control the observed variation would require further inves-
tigation.

0.0

0.0

n
o
n
e

n
o
n
e+

P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

n
o
n
e

n
o
n
e+

P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

0.0

0.2

0.4

0.6

0.8

1.0

n
o
n
e

n
o
n
e+

P
C
A

p
er
-f
ea
tu
re

p
er
-f
ea
tu
re
+
P
C
A

p
er
-i
m
a
g
e

p
er
-i
m
a
g
e+

P
C
A

0.4

0.8

0.4

0.8

preprocessing

(m
in
-)

a
cc
u
ra
cy

open closed

Figure 4.9: Left: Min-accuracies for 100 classifiers per preprocessing technique when
random seeds for both sources are fixed. Right: Performance variation for
100 classifiers when random seeds for one source is fixed. Connected dots
got the same seeds for the other sourcea. Top: Fixed datasets, variation due
to optimization. Bottom: Fixed optimization, variation due to datasets.

4.2.4 Remaining Parameters

The first experiments revealed that we should balance the data by undersampling, pre-
process image-based input by per-feature standardization, and compute the features
for feature-based input from per-image standardized images, possibly followed by PCA
transformation. In this chapter, we will fix the remaining parameters, that is, which
input format to chose (eight possibilities), whether the input should be image-based,

52

feature-based or feature-based with PCA transformation, and what value the trade-off
variable C should take. We do not have any bounds for the latter, hence, we scan a
wide range with an exponentially increasing step width. For image-based inputs, we
try C = 1 · 10−8, 5 · 10−8, 1 · 10−7, 5 · 10−7, . . . , 1, 5; for feature-based inputs, we use the
same pattern but start at 1 · 10−5. These ranges were found to include the interesting
C values.

Some of the following results show effects that directly correlate with the number
of input dimensions they were obtained from. The following table orders the available
input formats according to their dimensionality.

dim. input format

861 2d slice1 sample X small
3321 2d slice1 sample X
3444 2d slice4 sample X small

13284 2d slice4 sample X

Figure 4.10 shows the median min-accuracies obtained from training 100 classifiers for
both image- and feature-based inputs for all input formats as well as C values. The
latter is shown with and without additional PCA transformation. Also, note that the
x-axis is scaled logarithmically.

Similar to the decision tree case, the best feature-based approaches surpass the best
image-based ones by roughly 5%.

First, we focus on the image-based results. As expected, increasing the C value, that
is, the penalty for margin violations in the training data, leads to an increase in the
training performance. For smaller values than 5 · 10−7, a performance increase is not
detected.

The training curves show four distinct clusters. Each cluster contains two formats
with identical dimensionality. Some curves are steeper an lie above others, thus, show
better training performance per fixed C. When arranged according to slope, we see that
those with better training performance belong to classifiers trained on higher dimensional
inputs. The training training performance take-off itself appears to start earlier, as well.
For large enough C values – at least for classifiers trained on higher dimensional inputs
– the training data is separated perfectly. These phenomenon agrees with the intuition
of higher dimensional input being better separated, especially in our case considering
the large amount of noise in the data. Unfortunately, separation due to noise does
not generalize well. This is illustrated by the validation performance. After an initial
increase, the earliest start to stagnate or drop-off at C = 5 · 10−6. For a fixed C value,
the validation curves do not show the same clustering as the training curves.

Next, we focus on the feature-based results. Here, for the 3-dimensional inputs,
training and validation performance is noticeably closer than in the high dimensional
images-based setting. Even the best training curves do not surpass a min-accuracy of
0.8.

Comparing the two feature-based approaches, we see that the most prominent differ-
ence occurs at small C values, where subsequent PCA transformation seems to equalize
both training and validation performance for all input formats. In general, the feature-
based approaches show less performance dynamics paired with superior results. Inter-
estingly, for C values larger than 0.1 without PCA transformation or 0.001 with PCA
transformation the training curves start do decrease again. Since we are only looking at
the worse of the two per-class accuracies, it is likely that this is compensated for by the
accuracy on the other class.

53

10−7 10−5 10−3 10−1 101
0.0

0.2

0.4

0.6

0.8

1.0

10−410−310−210−1 100 10−510−410−310−210−1 100

10−8 10−6 10−4 10−2 100
0.50

0.55

0.60

0.65

0.70

0.75

10−4 10−3 10−2 10−1 100 10−4 10−3 10−2 10−1 100

C

feature-basedimage-based feature-based + PCA

va
li
d
a
ti
o
n
&

tr
a
in
in
g
a
cc
.

va
li
d
a
ti
o
n
a
cc
.

2d slice1 sample1

2d slice1 sample1 small

2d slice1 sample64

2d slice1 sample64 small

2d slice4 sample1

2d slice4 sample1 small

2d slice4 sample16 small

2d slice4 sample16

Figure 4.10: Median validation and training min-accuracies for 100 classifiers per input
format, and C value. The x axis is scaled logarithmically. The discrete
values are linearly interpolated for an easier visual comprehension.

Figure 4.11 gives a more detailed view on the validation min-accuracies. We see
that the large performance variation we witnessed earlier, for feature-based input from
formats 2d slice1 sample 64small and 2d slice4 sample 1 with C = 1, only occurs
in the feature-based approach and for large C values. All other scenarios show only little
performance variation. PCA transformation after feature extraction appears to increase
the performance for small C values in all tested cases.

54

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.40

0.45

0.50

0.55

0.60

0.65

0.70

10−5 10−3 10−1

0.40

0.45

0.50

0.55

0.60

0.65

0.70

10−5 10−3 10−1 10−5 10−3 10−1

2d slice4 sample1
2d slice4 sample1 small

2d slice4 sample16 pca
2d slice4 sample16

2d slice4 sample1 small pca
2d slice4 sample1 small

2d slice4 sample16 small pca
2d slice4 sample16 small

2d slice4 sample16
2d slice4 sample16 small

2d slice4 sample1 pca
2d slice4 sample1

2d slice1 sample1
2d slice1 sample1 small

2d slice1 sample1 pca
2d slice1 sample1

2d slice1 sample1 small pca
2d slice1 sample1 small

2d slice1 sample64
2d slice1 sample64 small

2d slice1 sample64 pca
2d slice1 sample64

2d slice1 sample64 small pca
2d slice1 sample64 small

C

m
ed

ia
n
o
f
va
l.

m
in
-a
cc
u
ra
cy

image-based feature-based

resampled

Figure 4.11: Isolated plots of median validation min-accuracies. Transparent bands in-
dicate the 50% confidence intervals. The discrete points are linearly inter-
polated, and the axis is logarithmically scaled.

55

The best performing configurations for the image- and feature-based approaches (the
latter with and without PCA transformation) are listed in Table 4.1. Similar to the
decision tree, we see that the feature-based approach gives the best results.

origin format C accuracy count

image-based 2d slice1 sample 1 small 5 · 10−5 0.64 2
feature-based 2d slice4 sample 16 small 0.005 0.71 1
feature-based+PCA 2d slice1 sample 1 0.05 0.71 1
feature-based+PCA 2d slice1 sample 64 0.0005-0.005 0.71 3
feature-based+PCA 2d slice1 sample 64 small 0.005 0.71 1

Table 4.1: Best performing configurations for image- and feature-based approaches. Col-
umn ’accuray’ shows the best median min-accuracy, column ’count’ lists how
often the best value was reached while varying the C value.

4.2.5 Adding Principle Components

Adding projections along the 25 most dominant principle components of the training
data in an attempt to further separate the data showed similar results to the decision
tree: An increase in training performance but a decrease in validation performance.

4.3 Final training and Results

The final support vector machine classifier was trained on the union of balanced un-
dersampled subset of datasets ds1, ds2, and ds3, comprising all closed endpoints. The
inputs took the form of features extracted from per-image standardized images of format
2d slice1 sample 64 with subsequent PCA transformation. The final value for C was
0.0005. On the training set, the achieved per-class accuracies are

0.79 (open)

0.79 (closed).

The resulting normalized weight vector w and threshold b are

w ≈ (−0.062,−0.991, 0.121)T , b ≈ −5 · 104.

For an easier comprehension, we normalized w and multiplied b by ||w|| to prevent shifting
the decision boundary. We see that the decision boundary is almost perpendicular to
the second feature axis, thus, relies almost exclusively on the second feature. The value
for b is close to the theoretical threshold of 0.

On the test set comprising all non-contradictory samples from qs1, qs2, qs3, and qs4
(in total 1025 open and 336 closed elements), the per class accuracies obtained are

0.66 (open)

0.70 (closed).

Figure 4.12 shows the first 10 samples per class that were misclassified by the support
vector machine.

56

open, predicted closed closed, predicted open

Figure 4.12: Examples of elements misclassified by the final support vector machine.

57

5 Neural Networks

5.1 Basic Principles

Neural networks, or neural nets for short, are implementations of nested functions. The
input will be transformed in one or more steps to the final output. This transformation
can be visualized by a computation graph, a directed graph in which every edge and
every vertex stands for the application of a mathematical operation. We will say that
the graph structure stores the corresponding operation. Input to the neural net starts
at designated input vertices of the computational graph and moves along the edges
from vertex to vertex until a designated output vertex is reached. The values at all
output vertices form the output of the neural net. While moving through the graph,
the input values are transformed according to the operations stored in the visited edges
and vertices. These operations can be elementary, like an addition or multiplication
with a predefined value, but they might as well encapsulate the application of more
complicated functions. Sometimes it might be illustrative to replace a graph structure
that corresponds to a more intricate mathematical operation by a sub-graph that makes
the composite steps of the operation more apparent. In other cases, unifying a sub-graph
to a single node that represents the same transformation might assist the clarity of the
exposition.

While this visual interpretation greatly helps in the understanding of neural networks,
the actual implementation can be done highly efficient and condensed in form of vector,
matrix, and tensor operations. Main resource for the topic in this chapter is the book
by Goodfellow, Bengio, and Courville [21]. For a historical overview of neural network
research and (probably one of the most complete reference lists) we refer to the article
by Schmidhuber [50].

5.1.1 Feedforward Neural Networks

In this first part we describe the basic form of a fully-connected feedforward neural
network. Here, the vertices of the computational graph can be arranged in layers
L1, L2, . . . , Ld such that all edges are directed from one layer to the next. This ex-
plains the feedforward part of the name. All input vertices form the first layer L0, and
there are as many input vertices as there are components in a single input vector. The
last layer Ld comprises all output vertices of which there can be as many as needed.
Each vertex of layer Li, for i = 0, 1, . . . , d − 1, has an outgoing edge to every vertex of
layer Li+1, that is, if we set aside the edge orientation, layers Li and Li+1 form a fully
connected bipartite graph. This explains the fully-connected part of the name. Layers
L1, . . . , Ld−1 are called the hidden layers. Opposed to the input and output layers, they
would not need to be exposed in a black box model of the network. The depth of a
network refers to either the number of total computational layers (which excludes the
input layer) or the number of hidden layers; unfortunately there is no general consensus
on this in the literature. In this thesis we will refer to d as the depth of a network, that
is, the number of computational layers including the output layer. An example graph
for a fully-connected feedforward neural net is given in Figure 5.1. The sub-graph drawn

58

in red is called a neuron, and was introduced under the name perceptron, a historically
important predecessor of neural networks, by Rosenblatt in 1957 [48].

L0 L1 L2 L3 L4

Figure 5.1: Example topology of a fully-connected feedforward neural network of depth
d = 4.

We use the perceptron to introduce the different operations that will be encountered
when feeding an input to the neural net. An example perceptron is given in Figure 5.2.

w1

w2

wn

+

x1

xn

x2 perceptron(x)

b

Figure 5.2: Computational graph of a perceptron. Each edge stores a weight that will
be multiplied by the value that traverses it. The single computational node
is the only output node and takes the sum over all incoming values and an
implicit bias term b.

Again, there are as many input vertices as there are components in the input vector,
but there will only be a single output vertex. Thus, for an n-dimensional input, the
perceptron realizes a map Rn → R. Each edge stores a weight wi that will be multiplied
by the value that traverses it. The first vertex takes the sum over all incoming values
and one implicit additional value b. The next vertex applies a threshold function and
produces the output. This defines the function perceptron as

perceptron(x) =

{
0 if 〈x,w〉+ b < 0,

1 if 〈x,w〉+ b ≥ 0,
where w = (w1, w2, . . . , wn). (5.1)

Equation (5.1) describes a classifier that separates the two sides of a hyperplane defined
by w and b.

In a neuron, we allow arbitrary nonlinear functions σ in place of the threshold func-
tion. We call it the activation function, as illustrated in Figure 5.3.

The function performed by a neuron is then

neuron(x) = σ
(
〈x,w〉+ b

)
, where w = (w1, w2, . . . , wn). (5.2)

59

w1

w2

wn

+ σ

xn

x1

x2 neuron(x)

w1

w2

wn

xn

x1

x2 N neuron(x)

∑
xiwi + b

= σ
(∑

xiwi + b
)

= σ
(∑

xiwi + b
)

Figure 5.3: Computational graph of a neuron, the building block of a neural network.
Left: The summation is followed by a nonlinear activation function σ : R→
R. Right: The summation and activation function are often condensed into
a single vertex, here, labeled N .

A popular choice for the activation function is the rectifying linear unit (ReLU), a
piecewise linear unit defined by

ReLU (x) = max(0, x).

Glorot, Bordes, and Bengio [20] showed that it outperformed the previously most popular
activations like the sigmoid and tanh functions and greatly improved the training speed.
A practical consideration is that the ReLU function does not have a derivative at 0,
as can be seen in Figure 5.4. In case the derivative at 0 is required, it is common to
arbitrarily return the left or right derivative, that is, 0 or 1.

x

ReLU (x)

tanh(x)
sigmoid(x)

σ(x)

1

−1

Figure 5.4: Sketches of different activation functions.

Each layer of a fully-connected feedforward neural network can be interpreted as a
stack of neurons. Usually, they all have their individual weights and bias terms but
perform the same kind of activation. It is notationally convenient to think of the input
and output of layers in terms of vectors: a layer L` gets an input vector o`−1 from the
previous layer and creates an output vector o`; each neuron creates one component of
its layer’s output vector. We can think of the order of the components as arbitrary but
fixed and denote the j-th neuron in layer L`, that is, the neuron computing o`j , as N `

j .

For every pair of neurons N `−1
i , N `

j of adjacent layers we have a connecting edge, and

its weight will be w`ij . This allows us to write the output value of N `
j as

o`j = σ

(n∑
i=1

o`−1i w`ij + b`j

)
= σ

(〈
o`−1,w`

j

〉
+ b`j

)
, (5.3)

where n is the number of neurons in layer L`−1 and w`
j = (w`1j , w

`
2j , . . . , w

`
nj)

T .

60

We want to describe the whole output vector of a layer in terms of the output of the
previous layer. A convention that we will follow here is to assume that every vector is
given as row vector unless stated otherwise. The way we index the weights allows us to
define the weight matrix and bias vector

W ` =
(
w`ij
)
i=1..n
j=1..m

b` = (b`1, b
`
2, . . . , b

`
m),

where n and m are the number of neurons in layers L`−1 and L`, respectively. The j-th
column vector in W ` is just w`

j , as defined is Equation (5.3). Let σ be the function

that applies activation σ element wise to its input. The output of layer L` can then be
written shortly as

L`(o`−1) := σ(o`−1W ` + b`) = o`. (5.4)

To further thin out the notation, we introduced the layer function L`. Figure 5.5 sum-
marizes the notation. With this, the output of a fully-connected feedforward neural

N `−1
1

N `−1
n N `

m

N `
1w`

11

w`
nm

w`
n1

w`
1m

o`−1
n

o`1 = σ
(∑n

i=1 o
`−1
i w`

i1 + b`1
)o`−1

1 w`
11

o`−1
n w`

n1

o`−1
n w`

nm

o`m = σ
(∑n

i=1 o
`−1
i w`

im + b`m
)

o`−1
1

L`−1 L`o`−1 o` = σ(o`−1W ` + b`) = L`(o`−1)

o`−1
1 w`

1m

W ` o`−1W `

Figure 5.5: Illustration of the introduced notation.

network with layers L1, L2, . . . , Ld upon receiving input x is the composition of all layer
functions

NN(x) =
(
Ld ◦ Ld−1 ◦ · · · ◦ L1

)
(x). (5.5)

5.1.2 Convolutional Neural Networks

Convolutional neural networks are a special type of neural nets that perform well when
the input has the form of images. LeCun et al. [34] were among the first to successfully
train a convolutional neural network for the task of handwritten digit recognition. The
difference to fully-connected feedforward neural networks is the presence of at least one
convolutional layer which, instead of the usual matrix multiplication as in Equation
(5.4), performs a convolution operation between an input image and a kernel image.

We start by describing the discrete convolution operation of the 2-dimensional input
image I and a kernel image K, also called filter mask. Both images are given as matrices;
the kernel is restricted to have an odd number of pixels in both dimensions so that there

61

is a center pixel,

I = (ixy)x=1..n
y=1..m

, K = (kxy) x=−nk,..,0,..,nk
y=−mk,..,0,..,mk

.

Note that we indexed the kernel symmetrically around its center pixel at (0, 0). The
convolution of the two matrices creates a matrix where pixel p, q is given by1

(I ∗ ∗K)pq =
∑

−nk≤x≤nk

∑
−mk≤y≤mk

ip+x,q+y kxy. (5.6)

For pixels that are close to the boundary, for example if we want to compute (I ∗ ∗K)1,q
with nk ≥ 1, we need to extend the image region beyond its boundary. This can be
done by padding it with zeros or other appropriate values (we could also pad with the
mean value of the image or simply repeat the value of the closest pixel in the image
region). Alternatively we could center the kernel exclusively at pixels that will not let
it stick out of the image region, resulting in a smaller output image with dimension
(n− 2nk)× (m− 2mk).

Figure 5.6 visualizes what happens in Equation (5.6). We get pixel (p, q) of I ∗ ∗K by
centering K at pixel (p, q) of I and summing over the product of overlapping pairs of
elements of K and I. This can be considered as an inner product of the flattened kernel
and the flattened patch of I. We call I ∗∗K a feature map, as every pixel in it gives us a
similarity information of the corresponding image patch to the kernel; we could consider
the kernel as a feature that we search for in the image.

p

q q

p

I

K

I ∗ ∗K
padding

no padding

Figure 5.6: Visualization of the convolution operation. The kernel K is centered around
pixel (p, q) of image I. The pairs of image and kernel pixels that lie in top
of each other are multiplied and resulting products summed up. This gives
the value of pixel (p, q) of I ∗ ∗K. If we do not pad the image, the resulting
image will be smaller and the corresponding pixel coordinates in I ∗ ∗K are
(p− nk, q −mk).

A convolutional layer applies this operation to an input image and optionally adds
a bias term to the result. Similarly to the fully-connected layer the operation might be
followed by application of a nonlinear activation function. The kernel can be learned,
taken from another task or designed by hand. In case it should be learned it produces
far fewer parameters than a fully-connected layer with the same number of outputs.

1We follow the convention of referring to the operation in Equation (5.6) as convolution. In the signal
processing community this operation is known as correlation. The (discrete) convolution is given by

(I ∗ ∗K)pq =
∑
x

∑
y

ip−x,q−y kxy.

62

While the fully-connected layer has parameters in the order of the product of input and
output dimensions, the convolutional layer has a constant number of parameters for the
kernel plus possibly a linear number (in the number of output pixels) of parameters for
the biases. The left image in Figure 5.7 shows a visualization of a simple convolutional
layer. In practice, however, usually both the input and output are in the form of tensors
with depth > 1. The is the result of taking more than one kernel per layer. Each kernel
is then assumed to cover the whole depth of the input tensor and creates one slice of
the output tensor, as illustrated in the right image of Figure 5.7. To account for this,
we could simply interpret the input tensors and kernels as 2D matrices of vectors and
replace ip+x,q+y kxy in Equation (5.6) by 〈ip+x,q+y,kxy〉.

I K I ∗ ∗K I K1, . . . ,Kk I ∗ ∗K1, . . . , I ∗ ∗Kk

Figure 5.7: Left: Visualization of a convolutional layer. Right: In practical applications
the input image is often a tensor with depth > 1, and more than one kernel
is applied. When performing a 2D convolution, each kernel is assumed to
cover the full depth of the input tensor and produces one slice of the output
tensor.

A convolutional layer can also be modeled by a fully-connected layer as is shown in the
left image of Figure 5.8. We arranged the convolution implementing fully-connected layer
Li in a rectangular shape and did the same for its input and output vectors oi−1, oi. This
is only for a cleaner illustration; in the actual network all mentioned entities would be
flattened out. Each neuron creates exactly one output, hence, we need as many neurons
as there are pixels in the feature map, which is roughly the size of the input. Every
neuron will focus on one pixel p in the input vector and use its weights to imitate the
desired kernel around p. All weights of edges that are outside this kernel region around
p will be set to zero. Therefore every neuron has the same weights, only the particular
edges to which these weights are assigned differ to account for the different pixels that
are focused on. The right image in Figure 5.8 sketches how the corresponding matrix
W i, that operates on the row-wise flattened image, would look like. The horizontal lines
indicate where the next row in the input image starts.

Residual Networks

Residual networks were first introduced by He et al. [24] and gained attention by winning
the 2015 ImageNet classification challenge (among other challenges). Their work was
motivated by the phenomenon that at some point adding more layers to a neural network
does not further improve the performance. Instead, they witnessed a degradation of
validation and even training performance. Unintuitive about this effect is that, in theory,
a deeper net should be able to simulate a shallower one by simply letting the excess layers
perform identity maps, essentially doing nothing to the input. They conjectured that,
by making it easier for the network to learn identity maps, it should be able to produce

63

0

0

neurons

pixels

W i

oi−1 Li oi = Li(oi−1)

Figure 5.8: Left: Illustration of a fully-connected layer modeling a convolution layer.
Right: The corresponding matrix.

results at least on par with those of shallower ones.
To accomplish this, they came up with the residual block. A network component,

whose original design is illustrated in Figure 5.9 (they also introduced an alternative
design for deeper networks in Ref. [24] and a refinement in Ref. [25]). The idea is to

b
a
tc
h
n
o
rm

.

co
n
v

R
eL

U

b
a
tc
h
n
o
rm

.

co
n
v

+

x

f(x) g(x)

f

x

R
eL

U
shortcut

g(x) = f(x) + x,

∀x, f(x) = 0 =⇒ g ≡ id

therefore

Figure 5.9: Original design of the residual block. The shortcut connection allows the
block to perform an identity map by pushing all weights inside the gray area
(realizing the function f) to zero.

introduce a shortcut connection. We group a set of consecutive convolutional layers
(including possible batch normalization and activation layers) to a unit and express the
function they perform on an input x fed to the unit as f . A shortcut connection simply
adds x element wise to the output f(x). We denote the function this new unit performs
as g. Since g(x) = f(x) + x, an identity map can easily be accomplished by pushing all
weights in f to zero, thus, letting f approach the constant zero function.

The element wise addition operation requires g(x) to have the same dimensionality
as x. After a fixed number of residual block repetitions, the tensors will be downsampled
to half the size along width and height and twice the depth. This is accomplished by
doubling the number of kernels for the convolutional layers inside the residual block and
performing strided convolution with step size two in one the convolutional layers. There
are several proposals how the tensor x that is send along the shortcut connection could
be modified to match the size. In the simplest case, width and height are downsampled
by 2 × 2 average pooling (partition an images into 2 × 2 fields, and for each field keep
only the average of its four contained values) and the missing depth is filled up with zero
padding.

64

It turned out that a network build from residual blocks not only matched but sur-
passed the performance of shallower ones. The winning architecture had more than
hundred layers.

5.1.3 Training Neural Networks

This description of the training process is loosely based on the book by Rojas[47]. For
a beautiful, less technical explanation we refer to the online book by Nielsen [39].

To start explaining the training process, we first need to introduce a differentiable
loss function L(NN,T) that measures the performance of a neural network NN(x; Ω)
on a training sequence T = (xi, yi)i=1..n. Here, the parameter vector Ω comprises all
parameters that adjust the behaviour of NN. In case of the fully-connected feedforward
neural network, this includes the weights and biases of all layers. The loss function is
designed to decrease with improving performance of NN on T . Further it is necessary
to restrict loss functions to those that can be written as averages over per-sample losses
`(NN(x), y):

L(NN,T) =
1

n

n∑
i=1

`(NN(xi), yi). (5.7)

In a regression task, a popular choice for the loss function is the is the quadratic error
`(NN(x), y) = (NN(x)− y)2 leading to the mean squared error loss

L(NN,T) =
1

n

n∑
i=1

(NN(xi)− yi)2.

For classification tasks the neural network is often designed to return a vector that can
be interpreted as a (discrete) conditional probability distribution, that is NN(x) is a
vector valued function and for the y-th component we have NN(x)y = Pr(y | x). In this
case, a popular choice for the loss function is the information content `(NN(x), y)) =
− logNN(x)y leading to the cross-entropy loss

L(NN,T) = − 1

n

n∑
i=1

logNN(xi)yi .

The particular choice of the loss function needs to be coordinated with the task that is
to be performed by the network.

Once we have decided on a loss function L, we can train the neural network by gradient
descent. This technique strives to find a sequence of parameter vectors Ω0,Ω1, . . . that
successively improves the performance of the neural network. The most basic idea is to
start with a random parameter vector and improve by moving a step into the negative
direction of the gradient of the loss function with respect to the current parameter vector:

Ωt+1 = Ωt + γ∆Ω, with ∆Ω = −∇ΩL. (5.8)

Note that L depends on Ω through NN. The update rule in Equation (5.8) works since
the vector −∇ΩL points into the direction of the highest rate of decrease of L. The new
parameter γ is called the learning rate. In Equation (5.8) the magnitude by which Ωt and
Ωt+1 differ also depends on |∇ΩL|. If this is not desired, the gradient can be normalized
before its application in the update rule. In this case, γ would be the total step width

65

of the descent step. There are several refinements on how to update the gradient. The
most popular ones use a momentum term that is added to the gradient and reflects a
decaying history of previous gradients. Gradient descent can then be summarized by
iterating the two steps

1. estimate the gradient ∇ΩL,

2. according to the gradient, update the parameter vector Ω→ Ω + ∆Ω.

Computing the gradient with respect to parameters Ω is done with an automatic differ-
entiation technique called backpropagation. It has a long history, and Ref. [21] attributes
its origin to work in the field of operations research in the early 1960s, particularly by
Kelly [30] and Bryson [12]. The idea of applying it to train neural networks is accredited
to Werbos [60] in 1974 and was rediscovered by Rumelhart, Hinton, and Williams in
1985 [49].

This technique exploits that the function a neural network computes can be expressed
as a composition of layer functions NN(x) = (Ld ◦Ld−1 ◦ · · · ◦L1

)
(x) and, hence, allows

the application of the chain rule for multivariable (vector-valued) functions.
In the following description, we compute the gradien with respect to the loss caused

by a single input. According to Equation (5.7), for several inputs we will need to sum
up the element-wise gradients. In practical settings, usually only a few elements of the
inputs are used to compute an approximation of the true gradient. This is called batch
gradient descent and the batch size is another meta-parameter to tune.

We want to find the partial derivatives with respect to the parameters in Ω. Exem-
plarily we will derive this for a fully-connected feedforward neural network where we are
interested in finding ∂L/∂w`ij and ∂L/∂b` for all `, i, and j. We will focus on deriving
the partial derivatives with respect to the weights; the partial derivatives with respect
to the bias term can be obtained analogously. As introduced in Equation 5.4, we set
o` = L`(o`−1), for ` = 1, . . . , d and o0 equal to the input x fed to the network. The
layer function was given by Equation (5.4). A weight w`ij is only contributing in the

computation of o` = L`(o`−1), and even there, it only takes part in the computation of
the j-th component o`j (see Fig. 5.10).

L`−1 L`

Nj

Ni

w`
ij

o`j
o`−1
i

Figure 5.10: The weight w`ij only contributes to the copmutation of the j-th component

of o`.

Applying the chain rule for computing the derivatives gives

∂L
∂w`ij

=
∂L
∂o`j

∂o`j

∂w`ij
.

66

First we look at the second term of the right hand side. From Equation (5.4) we see
that

o`j = σ
(〈

o`−1,w`
j

〉
+ b`j

)
, (5.9)

where we have written w`
j for the j-th column vector of W `. Therefore, if we denote the

derivative of σ with σ′, we have

∂o`j

∂w`ij
= σ′

(〈
o`−1,w`

j

〉
+ b`j

)
o`−1j ,

where, again, we made use of the chain rule.

Next, we look at the first component. The partial derivative ∂L/∂o`j is just the j-
th component of the gradient ∇o`L. It follows that we can compute the gradient with
respect to all weights if we can show how to compute the gradients with respect to all
o`. This will be done by a dynamic programming approach. Usually, when we apply
dynamic programming, the sub-problems serve the only purpose of finding a solution to
the main problem. Here, the solutions to the sub-problems will be of interest on their
own. We want to find the gradients ∇o`L for ` = 1, 2, . . . , d.

The sub-problem for finding ∇o`−1L is to find ∇o`L (that is, we work from d down to
1). The starting point ∇odL needs to be computed explicitely. If we have ∇o`L, we can
compute ∇o`−1L by application of the chain rule

∇o`−1L = ∇o`L · JL` , where JL` :=

(
∂L`

∂o`−1i

)
ij

is the Jacobian matrix of L`.

Note that we can write the entry ∂L`/∂o`−1i of the Jacobian as ∂o`j/∂o
`−1
i . We already

computed an expression similar to this in Equation (5.9). The only difference is that
there we took the derivative with respect to weight w`ij . But since w`ij and o`−1i only

appear in form of the product w`ijo
`−1
i , that is, have symmetric roles, we can simply

exchange them. Thus,

∂L`

∂o`−1i

= σ′
(〈

o`−1,w`
j

〉
+ b`j

)
w`ij .

5.1.4 Software

The neural networks used were implemented in tflearn [1], a high-level API ontop on the
deep learning framework Tensorflow [3].

5.2 Parameter Exploration and Insights

From the selection of classifiers in this theses, neural network are the most intricate to
work with. Firstly, they have the largest set of parameters to deal with. Even with a
fixed network architecture, we have to decide on the optimizer to use, its learning rate
(and possibly other optimizer specific parameters), the batch size for stochastic gradient
descent, and what kind of regularization to apply as well as its amount. These factors
are joined by the already introduced questions on how the data imbalance should be
handled, what input format to use, its size (originally sized images or resampled to half

67

the size along each dimension), and what preprocessing to apply. Secondly, they require
the longest time to train, in our case, from seconds to hours depending the specific
parameter configuration.

Due to time limitations, it is not possible to explore the parameter space as systematic
and thorough as in previous sections. Instead, we focus on the effect of tweaking a
subset of parameters and simply fix the remaining ones. In many situations, when
several possible continuations arise, we decide in favor of the simplest, most efficient, or
(subjectively) most interesting one.

Previous classifiers showed significant performance variation when trained multiple
times with identical configurations. Neural networks do not appear to be an exception.
Unfortunately, performing a multitude of runs with identical configurations gravely re-
stricts the width of possible parameter configurations to explore. Performing only a
single run per configuration without any idea of the underlying variation, on the other
hand, hardly allow for any comparison between configurations at all. As a compromise,
we perform five runs for every configuration that we wish to explore. For visualization,
we introduce the median line. For n sequences C1, . . . , Cn with Ci = (ci1, . . . , c

i
m), we

denote with the median line the sequence

C = (c1, . . . , cm), where cj = median({cij | i ∈ [n]}).

The median line is unlikely to be identical to any Cij and can hide a lot of the variation
of the underlying sequences. Therefore we will accompany it with the maximal distance
line D. For the same setting as above, we set

D = (d1, . . . , dm), where

dj = max
(

max({cij | i ∈ [n]})− cj , cj −min({cij | i ∈ [n]})
)
.

5.2.1 Network architecture and training set-up

The following experiments were performed with a tflearn implementation [2] of a resid-
ual network. The tflearn implementation of a residual block (see Fig. 5.11) follows the
refinement proposal in Ref. [25]. All convolutions are performed with 3× 3 kernels, and,

b
a
tc
h
n
o
rm

.

co
n
v

R
eL

U

b
a
tc
h
n
o
rm

.

co
n
v

ff

b
a
tc
h
n
o
rm

.

R
eL

U

co
n
v

b
a
tc
h
n
o
rm

.

R
eL

U

co
n
v

+

Figure 5.11: Residual block implementation in tflearn.

if downsampling is required, it is performed in the first convolutional layer. Figure 5.12
shows the whole network architecture. It starts with a single convolutional layer produc-
ing an output tensor with depth 16. It is followed by 3 groups of residual blocks, each

68

comprising 5 residual blocks. The initial residual block of the second and third group
downsample the input. After a final batch normalization and the ReLU activation layer,
global average pooling is performed. The resulting 64 values are fed to a fully connected
layer with two output nodes. Finally, a softmax activation molds the output of the two
nodes to a two-categorical distribution.

co
n
v
1
6

5 res 16

1
re
s
32

4 res 32

1
re
s
64

4 res 64

b
a
tc
h
n
.

R
eL

U

G
A
P

so
ft
m
a
x

FC

Figure 5.12: The network architecture used for the following experiments. All convo-
lutional layers apply kernels with width and height 3; conv n stands for
a convolutional layer with output depth n; m res n stands for m residual
blocks, with output depth n. A residual block with more output- than
input-depth performs downsampling along width and height. In total, this
architecture has 31 convolutional and one fully connected layer (FC). A
global average pooling layer is arranged prior to the fully connected layer.

We chose the cross-entropy loss function and used the Adam optimizer [31] for gradi-
ent descent. We The two moving window parameters were left at their default β1 = 0.9,
β2 = 0.999. By manual searching, the learning rate was adjusted to 5 · 10−5, a value
that allowed for learning and showed the dynamics of the training curve. We fixed the
batch size initially to 10.

The relatively small number of training samples suggests that regularization will play
a fundamental role in increasing the network performance. Following Ref. [24], we apply
weight decay to every convolutional layer.

For finding a well performing set of parameters, Bergstra and Bengio recommend [5]
to search randomly. Beyond the mere number of possible parameter configurations,
there are other obvious drawbacks to grid search. For example, it is likely that, out
of the many possible parameters P , there will be a subset U ⊆ P of non-informative
parameters that only contribute negligibly to the observed performance. Changing these
parameters will not affect the outcome in any detectable manner. If, for every p ∈ P , np
is the number of values p can take, then the factor of non-informative runs is

∏
p∈U np.

Even if there is just a single non-informative parameter among all tested ones, and it is
only tested for two different values, half of the runs will be non-informative.

If, instead, we perform every run with a random parameter setting, chances are that
at least one informative parameter changes.

But there is also a major drawback to random search. If not only the best perfor-
mance of the resulting classifier, but insight into the effect (and its extent) of different
parameters is desired, random search complicates the analysis significantly.

Therefore, we nevertheless decided to apply grid search, while considering only se-
lected parameter subspaces.

5.2.2 Addressing the class imbalance

Preliminary experiments with a smaller convolutional architecture showed the same bi-
ased behavior when trained on imbalanced classes. We tried to adjust the cost function
so that an error of a sample contributed proportional to the inverse of its class frequency,
but results were inferior to under- and over-sampling. The best results were achieved on
oversampled datasets, which is the applied balancing strategy for the remaining part.

69

5.2.3 Input format, size, weight decay, and preprocessing

In this first set of experiments, we explore the interplay of different input formats, im-
age sizes, and the degree of regularization. To reduce the number of possibilities and
computational cost, we stick to single-image input formats 2d slice2 sample 1 and
2d slice2 sample 64. We check the performance on originally sized (41× 81 pixels)
and resampled (21×41 pixels) images. As before, we consider the three preprocessing
techniques no preprocessing, per-feature standardization, and per-image standardiza-
tion. We test the weight decay parameter in an exponential pattern and let it take
values in {0.0001, 0.001, 0.01, 0.1}.

Training and validation is performed on oversampled subsets of dataset ds1. First
a validation set of 100 samples per class is separated. The remaining elements are
oversampled, resulting in 1210 training samples per class.

We perform five training sessions for each of the 48 configurations. In order to read
anything out of the resulting curves, we have to order them appropriately. We conjecture
that the two image formats will behave similarly and gather them in the same plot.
The five training and validation curves will be represented by their median lines. The
resulting arrangement is shown in Figure 5.13.

As described, the chosen learning rate keeps the network from immediately overfitting
the training data. We can draw the following conclusions.

• Best performances are surprisingly achieved when no preprocessing is applied. Per-
feature and per-image standardization stay behind in top validation accuracy by
roughly 10%.

• The two image formats indeed behave similarly.

• Increasing weight decay noticeably slowed down the training process. This is il-
lustrated by the decreasing training curve slopes and the delay in overfitting. Al-
though this is not accompanied by a significant validation increase, it appears
that, in the case of no preprocessing, the range of iterations during which the best
validation results are achieved is prolonged.

• For most of the validation curves, systematic validation performance increase dur-
ing learning can only be observed for the highest weight decay settings. It is likely
that for smaller settings all relevant learning already happened during the first
epoch.

• Smaller image formats mimic the learning dynamics of their larger counterparts
on a shorter time frame, in case of no preprocessing without decrease in top per-
formance.

Based on these insights, we decide to continue with small images without prepro-
cessing and of format 2d slice1 sample 1. We check whether an even larger weight
decay setting further prolongs the top performance phase for small images and got the
most promising curves at a weight decay parameter of 4 (see below). This large value
results from the few available training images compared with the large hypothesis space
of the neural network. For comparison, in Ref. [24] a weight decay parameter of 0.0001
is chosen. Later, when we apply methods to increase the number of input samples, we
will readjust this value. We also need to consider whether the strong results without
preprocessing can also be achieved on new tomograms, since in the previous experiments
both training and validation sets came from the same tomogram.

70

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

re
sa
m
p
le
d

re
sa
m
p
le
d

re
sa
m
p
le
d

0 2k 4k 6k 8k 0 2k 4k 6k 8k 0 2k 4k 6k 8k 0 2k 4k 6k 8k

n
o
n
e

p
er
-i
m
ag
e

p
er
-f
ea
tu
re

wd: 0.0001 wd: 0.001 wd: 0.01 wd: 0.1

2d slice1 sample64 val.
2d slice1 sample1 val. 2d slice1 sample1 train

2d slice1 sample64 train

Figure 5.13: Median lines for validation and training accuracy from five training sessions,
for three preprocessing techniques (none, per-feature standardization, per-
image-standardization), two image formats (cross-sections, cylindrical aver-
age), two image sizes, and four weight decay values. Training and validation
was performed on data from dataset ds1.

71

We refine the setup and train on all non-contradictory labeled samples from dataset
ds1, balanced by oversampling, while validating on all non-contradictory labeled samples
from dataset ds2, and ds3. Figure 5.14 shows the median lines from five runs of this
setting with a weight decay parameter of 0.1 and 0.4. The left plot can be compared

0.0

0.2

0.4

0.6

0.8

1.0
weight decay :0.1 weight decay :4

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K

steps

a
cc
u
ra
cy

validation
max. dist.

training

0.7

Figure 5.14: Median lines for validation and training curves and maximal distance lines
for the validation performances from five training sessions. Training was
performed on data from dataset ds1, validation on data from datasets ds2
and ds3.

to the top- and right-most plot in Figure 5.13. The only difference is in the training
and validation data. While validation on the same tomogram achieved accuracies past
85%, the top performance on an unseen tomogram drops below 75%. The right plot
shows that the large weight decay setting of 4 again prolongs the range in which the
best performances are achieved and successfully reduces overfitting.

Next, we explore the effect of introducing more training data. We replace the previous
training data by the separated single images from input formats 2d slice4 sample 1

and 2d slice4 sample 64. This increases the number of input samples by a factor of
8. The validation set remains the same. Since validation was applied after each epoch,
which would now take eight times as long and introduces the risk of overfitting during the
first epoch, we increased the batch size also by a factor of eight to 80. We also introduced
on-line data augmentation in which the training samples were randomly rotated by ±30◦,
flipped horizontally, translated by up to 5 pixels, and blurred with a Gaussian (σ = 2).
To check whether this new adjustments would profit from a new learning rate, we also
scanned it in the range

{
10−5, 2 · 10−5, . . . , 5 · 10−5

}
. Figure 5.15 shows the resulting

curves for the new setting. The smoother training curves are an effect from the larger
batch size. The bottommost plot on the left corresponds to the settings in the right plot
of Figure 5.14. We see that the enlarged training set does not show significant validation
improvements, neither does the additional data augmentation.

It appears as if the validation curves for the smaller learning rates have not reached
their maximum, but experience and extrapolation from the larger learning rates showed
that the ultimate upper bound is unlikely to be raised. More interestingly, we witness
the large impact data augmentation has on overfitting. Distances between training an

72

validation curves frequently stay below 10% during the whole training phase. Without
data augmentation these distances are over 20%, sometimes approaching 40%. This
motivates readjusting of the weight decay parameter in hope that the recovering training
performance is able to also increase validation performance. We re-scanned the weight
decay parameter in the range

{
10−4, 5 · 10−3, 10−3, 5 · 10−2, . . . , 5

}
with the learning rate

set to 4 · 10−5.

We detected a minor performance increase for weight decay values as small as 0.1.
Below that, the curves reproduced the behavior we saw before; for decreasing weight
decay parameters, the phases during which the validation performance peaked became
shorter. We never tested whether going without any preprocessing diminishes gener-
alization performance on new tomograms. Ref. [24] applied per-feature centralization,
which can be obtained from per-feature standardization by omitting the transformation
to unit variance. We tested both per-feature standardization and per-feature centraliza-
tion. The top performances decreased also for validation data from unseen tomograms.
Exemplarily, we show plots for weight decay settings of 0.1 and 1 for no preprocessing
and per-feature centralization in Figure 5.16.

5.3 Final Training and Results

The final training was performed on all non-contradictory labelled endpoints from datasets
ds1, ds2, and ds3. We took all image orientations from input formats 2d slice4 sample 1

and 2d slice4 sample 64. The minority class was oversampled which led to a total of
13200 images per class. We also applied on-line augmentation as described above. The
batch size was kept at 80, the learning rate initially at 4 ·10−5. We observed the training
process in TensoBoard and trained without validation set until the training curve dis-
played roughly 80% accuracy. Afterwards the learning rate was reduced by a power of 10
and the training continued until a training performance of roughly 85% was displayed.
When applied to the training set afterwards, the actual per-class accuracies were

0.8 (open)

0.9 (closed).

On the test set comprising all non-contradictory labeled samples from datasets qs1, . . . ,qs4
(1025 open and 336 closed samples) the network achieved per-class accuracies of

0.61 (open)

0.78 (closed).

The network was designed to output class-probabilities. The classes are obtained
by applying a threshold to these probabilities. We can consider only labels that were
obtained from a network probability ≥ 0.9. This can be interpreted as the network
being sure of the assigned class. On 512 of the 1361 test samples (375 out of 1025 open,
and 127 out of 336 closed) the network gave predictions above 0.9. For this subset, the
obtained per-class accuracies are

0.83 (open)

0.8 (closed).

Figure 5.18 shows the first 10 samples where the network gave probabilities above 0.9

73

for the wrong label.
After testing the final network, we evaluated balanced subsets of datasets qs1, . . . ,qs4

on all intermediate checkpoints to see how the network decisions evolved through the
learning phase. The left image in Figure 5.18 shows class probabilities output next to the
true labels. The right images show the resulting classification decision after applying
a threshold at 0.5. We see that most of the final labels are already found after the
first half of the training process. Moreover the first test dataset appears to pose the
biggest challenge. Notice in particular the thick black area at the top left of the images
indicating that during this phase most of the samples in the dataset would be classified
as closed.

74

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

no augmentation augmentation

lr: 10−5

lr: 5 · 10−5

lr: 4 · 10−5

lr: 3 · 10−5

lr: 2 · 10−5

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K

training
validation
max. dist.

training steps

Figure 5.15: Median lines for validation and training curves and maximal distance lines
for the validation performances from five training sessions. Training was
performed on single images taken from input formats 2d slice4 sample 1

and 2d slice4 sample 64 of dataset ds1, validation on data from datasets
ds2 and ds3.

75

0.7

0.0

0.2

0.4

0.6

0.8

1.0

weight decay: 0.1 weight decay: 1

a
cc
u
ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K

a
cc
u
ra
cy

training
validation
max. dist.

p
er
-f
ea
tu
re

ce
n
tr
a
li
za
ti
o
n

n
o
n
e

step

0.7

Figure 5.16: Median lines for validation and training curves and maximal distance lines
for the validation performances from five training sessions. Training was
performed on single images (on-line augmented) taken from input formats
2d slice4 sample 1 and 2d slice4 sample 64 of dataset ds1, validation
data was taken from datasets ds2 and ds3. A slight performance degrada-
tion occurred when training and validation was performed on per-feature
centralized images.

76

open, predicted closed closed, predicted open

Figure 5.17: Samples that had network probabilities ≥ 0.9 but were predicted falsely.

0

100

200

300

400

500

600

0 20 40 60 80

0

100

200

300

400

500

600

0 20 40 60 80

training epochs

te
st

sa
m
p
le

n
r.

probabilities hard labels

Figure 5.18: Evolution of classification decisions throughout the training phase on bal-
anced subsets of datasets qs1, . . . ,qs4. The bars to the left indicate the true
label, where white stands for open and black for closed. The four pairs
of consecutive open and closed elements correspond to the four datasets.
Left: Network probabilities. Right: Hard labels after applying a threshold
at probability 0.5.

77

6 Comparison of the Results for the
Different Classifiers

We introduce the abbreviations DT, SVM, RN to refer to the final decision tree, support
vector machine, and neural network (residual network) classifiers, respectively. Table
6.1 lists the confusion matrices for each classifier on the same balanced test set T1. As
a reminder, T1 is obtained by taking all samples from datasets qs1, . . . , qs4 for which at
least one expert voted open or closed and no two experts voted contradictory. In total,
T1 contains 1025 open and 336 closed samples.

DT SVM RN

ground truth open closed open closed open closed

open 638 (62%) 387 (38%) 673 (66%) 352 (34%) 630 (61%) 395 (39%)
closed 94 (28%) 242 (72%) 101 (30%) 235 (70%) 74 (22%) 262 (78%)

Table 6.1: Confusion matrices for the final classifiers on test set T1. Percentages are
obtained by normalizing on the number of samples in each class of the ground
truth (#open = 1025, #closed = 336) in the test set.

Compared with RN, classifiers DT and SVM achieve more balanced per class accu-
racies. But no classifier breaks the 70% accuracy on both classes.

For each classifier c ∈ C = {DT, SVM,RN} and set of labeled elements S, we intro-
duce the failure set F S

c of c on S as the set of all samples in S misclassified by c. We
will omit the high index S when the set under consideration is given by context.

We want to study similarities between the failure sets on T1. For all non-trivial subsets
S ⊆ C, Table 6.2 lists the number of elements in the failure set intersection,

⋂
c∈S Fc.

S FDT FSVM FRN FDT ∩ FSVM FDT ∩ FRN FSVM ∩ FRN FDT ∩ FSVM ∩ FRN

|S| 481 453 469 400 265 257 238

Table 6.2: Sizes for intersections of failure sets on T1.

The Venn diagram in Figure 6.1 gives finer detail on how many elements are in- and
excluded in which failure sets. The numbers were derived from Table 6.2. Note that the
areas in the Venn diagram do not reflect the actual size ratios. In a more representative
illustration, the circles representing FDT and FSVM would almost completely overlap
and FRN could be represented by an hour glass shape with half its area enclosed by the
intersection of the other two and the other half outside of their union.

There is a large number of elements that no classifier gets right. The similarity of
FDT and FSVM can be explained by the similar input representations they were trained
on and the fact that DT achieved the main separation in the first split; that is, DT is not
far from being a linear separator like SVM. More surprising is the ratio of samples that
also lie in FRN considering the different input- and hypothesis-spaces of RN and, say,

78

FDT
∩FSVM
∩FRN

FSVM
∩FRN
\FDT

FDT
∩FRN
\FSVM

FDT
∩FSVM
\FRN

FDT
\FRN
\FSVM

FSVM
\FRN
\FDT

FRN
\FDT
\FSVM

54 24162

185

238
27 19

DT SVM

RN

Figure 6.1: All possible failure set inclusion-exclusion configurations and the correspond-
ing numbers of contained elements for failure sets on T1.

SVM. For each classifier, almost half of the misclassified samples are also misclassified
by the other two.

Inner test sets
The above observation motivates a closer look at the test samples. Figure 6.2 shows
open and closed samples from FSVM ∩ FSVM ∩ FRN. We see that for many samples the

open, predicted closed closed, predicted open

Figure 6.2: Samples in T1 that no classifier got right.

actual class is hard to guess and it appears likely that even experts would argue on some
cases. Therefore, we introduce an inner test set T2 by taking all elements from T1 that
got at least two votes for open or closed . The test set melds down to 484 open and
123 closed samples. Table 6.3 lists the resulting confusion matrices. Apart from a 1%
accuracy drop for DT on closed samples, all classifiers improved their performance on
both classes. The min-accuracies improve for all classifiers while there is no dramatic
exchange of sensitivity for specificity. Specifically, the min-accuracy improvements are
DT: 9%, SVM: 3%, and RN: 15%. Gaps between the two per-class accuracies became

79

DT SVM RN

ground truth open closed open closed open closed

open 357 (74%) 127 (26%) 335 (69%) 149 (31%) 368 (76%) 116 (24%)
closed 36 (29%) 87 (71%) 15 (12%) 108 (88%) 19 (15%) 104 (85%)

Table 6.3: Confusion matrices for the final classifiers on the inner test set T2. Percentages
are obtained by normalizing on the number of samples per class (#open = 484,
#closed = 123) in the inner test set.

inverted for DT, widened for SVM and became narrower for RN.
Again, we compute the failure set intersections on T2. They are listed in Table 6.4.

S FDT FSVM FRN FDT ∩ FSVM FDT ∩ FRN FSVM ∩ FRN FDT ∩ FSVM ∩ FRN

|S| 163 164 135 119 64 74 53

Table 6.4: Sizes for intersections of failure sets on T2.

The left image in Figure 6.3 shows the annotated Venn diagram derived from Table 6.4.

33 2466

50

53
11 21

DT SVM

RN

11 1730

25

17
2 5

DT SVM

RN

5 511

7

3
1 2

DT SVM

RN

T2: T3: T4:

Figure 6.3: All possible failure set inclusion-exclusion configurations and corresponding
number contained elements for failure sets on T2, T3, and T4.

We also introduce the inner test sets T3 and T4, where we further reduce the con-
sidered endpoints to those seen by three and all four experts, respectively. Test set T3
comprises 234 open and 49 closed samples and in test set T4 there are 95 open and 20
closed elements left. Tables 6.5 and 6.6 show the confusion matrices and intersection
set sizes. The center and right images in Figure 6.3 show the resulting annotated Venn
diagrams obtained from the values in Table 6.6.

We see that the per-class accuracies for T3 are significantly higher than for T1. RN
achieves accuracies past 80% in both classes. The small number of closed samples in T4
diminishes the representative power of the closed accuracies, but the open accuracies on
this subset reached at least 80% for all classifiers.

For two classifiers c and c′, we can compute the ratios |Fc∩Fc′ | / |Fc∪Fc′ | as a measure
of how similar the two classifier predictions are. We call it the classifiers’ resemblance.
Computing the resemblance for each pair of classifiers and every test (sub-)set T1, ..., T4
gives Table 6.7. We see that while moving from T1 to T4, the resemblance decreases
consistently for RN paired with each of the remaining classifiers. For DT and SVM we
see an initial drop from T1 to T2 followed by a comparably high plateau.

80

DT SVM RN

ground truth open closed open closed open closed

T3:
open 182 (78%) 52 (22%) 172 (74%) 62 (26%) 191 (82%) 43 (18%)
closed 8 (16%) 41 (84%) 4 (8%) 45 (92%) 6 (12%) 43 (88%)
T4:
open 80 (84%) 15 (16%) 76 (80%) 19 (20%) 84 (88%) 11 (12%)
closed 5 (25%) 15 (75%) 2 (10%) 18 (90%) 2 (10%) 18 (90%)

Table 6.5: Confusion matrices for the final classifiers on inner test sets T3 and T4. Per-
centages are obtained by normalizing on the number of samples per class (T3:
#open = 234, #closed = 49, T4: #open = 95, #closed = 20,) in the inner
test sets.

S FDT FSVM FRN FDT ∩ FSVM FDT ∩ FRN FSVM ∩ FRN FDT ∩ FSVM ∩ FRN

T3:
|S| 60 69 49 47 19 22 17
T4:
|S| 20 21 13 14 4 5 3

Table 6.6: Sizes for intersections of failure sets on T3 and T4.

c, c′ T1 T2 T3 T4

DT,SVM 0.75 0.57 0.59 0.52
DT,RN 0.39 0.27 0.2 0.14
SVM,RN 0.39 0.33 0.24 0.17

Table 6.7: Ratios |Fc ∩ Fc′ | / |Fc ∪ Fc′ | for all pairs of classifiers and all test (sub-)sets.

81

7 Discussion and Conclusion

The aim of this thesis was to evaluate the performances of the three machine learning
methods decision tree, support vector machine, and neural networks on a specific image
classification task. The images under consideration were extracted from electron tomog-
raphy reconstructions of cells and show ends of microtubules. Based on the morphology,
these had to be classified as either open or closed .

Decision Tree

On test set T1 comprising all non-contradictory labeled elements from datasets qs1, . . . ,qs4,
the final decision tree classifier obtained per-class accuracies of

0.62 (open)

0.72 (closed).

The per-class accuracies on the training set of undersampled, balanced subsets of datasets
ds1, ds2, and ds3 are

0.80 (open)

0.82 (closed).

This means that the generalization drop-offs are 18% and 10%, respectively, where open
elements pose the bigger generalization challenge. This can be explained by the greater
variation in morphology they exhibit. While closed ends are mostly similar, open ends
can be blunt with an even or uneven cut-off, rolled to the sides, or anything in-between.
The tree classifies on a 3-dimensional feature space, where features along each dimension
are based on the element-wise difference of the per-class average images. For open
ends, the single average image does not sufficiently represent all variations. Instead,
the different end structures are averaged out and the resulting difference image boils
down to a detector sensitive to pixels in the general center of the image. We see this
phenomenon when we look at some of the misclassified samples (see Fig 3.11). Elements
falsely labeled closed tend to be long and reach into the sensitive area while many of the
elements falsely labeled open are rather short.

In Section 3.2.1 we saw that unbalanced input classes lead to prioritizing the majority
class and that undersampling yields more balanced results than oversampling. On the
downside, this reduces the number of usable training samples. It would be interesting
to see whether more sophisticated oversampling techniques (see for example Ref. [23])
allow to use all available data while maintaining a balanced prediction performance.

Preprocessing also had a significant influence on prediction performance (Section 3.2.2).
We saw that the right choice of preprocessing technique can benefit the performance.
We applied decision trees with axis aligned splitting planes. In this setting, a natural
preprocessing technique is PCA transformation of the input data. For images, this did
not show systematic classification improvement (see Fig. 3.6). It can be concluded that,
here, the main direction of sample variation does not correspond to the endpoint mor-

82

phology but is overshadowed by noise. For feature-based inputs, a slight improvement
was detected, but the major benefit was obtained by per-image standardizing the images
prior to feature extraction.

Main improvement for this classifier can be expected from the introduction of more
independent features that better separate the inputs. Simply adding principle compo-
nents from the training set did allow for a better classification on the training set but did
not generalize well to new samples from different tomograms. An unsupervised approach
could be to extract principle components of a dataset comprising microtubule ends from a
variety of different tomograms in the hope that this allows for more dataset-independent
features.

We did not apply an automatic feature extraction algorithm from the SIFT/HOG
family. These rely on sharper defined image structures such as edges and corners that,
while abundant in natural images, were not present consistently in the tomography
data. A more promising approach would be to refine the applied features. Seeing that
open ends are harder to classify with our features, a natural enhancement would be to
cluster the training samples in each class based on a distance metric such as the Pearson
correlation. If o and c denote the number of open and closed clusters, respectively, o · c
difference images could be computed generating a set of features with finer resolution
and improved separation.

Classifying in image space lead to early overfitting of the training set (see Fig. 3.7).
This can be explained by the small ratio of samples to input dimensions. The images
contain enough noise to allow perfect separation of the training samples while barely
learning anything about the underlying distribution of end morphologies.

Random forests could improve the performance on this input space in two ways.
Firstly, they allow to utilize more of the available training data; each tree in the forest
could be trained on an independently selected, balanced subset of all available training
data. Secondly, selecting a random subset of pixels for each decision tree in the random
forest would reduce the available feature space for each classifier, reducing the chances
that noisy pixels systematically dominate the learning process.

Support Vector Machine

The final support vector machine classifier obtained per-class accuracies of

0.66 (open)

0.70 (closed),

on test set T1, and

0.79 (open)

0.79 (closed)

on the balanced, undersampled training set of elements from datasets ds1, ds2, and ds3.
The generalization drop-offs, thus, are 13% and 9%, respectively. As for the decision
tree, the support vector machine classifier performs weaker on the open class. This is not
surprising since both classifiers were trained on similar feature spaces and the shortcom-
ing mentioned above also hold in the current case. The final decision boundary is given
in form of a linear plane in feature space with normal w ≈ (−0.062,−0.991, 0.121)T and
offset b ≈ −5 ·104. We saw that the classification decision is based mainly on the second
feature and that the offset is close to zero. Therefore, a similar performance can be

83

expected from a linear model that makes it prediction based on the sign of the second
feature. We expect the major performance increase from the same ideas as in the section
above regarding the increase of relevant features to allow for a better sample separation.

When we searched for a well-performing set-up (Section 4.2.1 and 4.2.2), we saw that
support vector machines also perform imbalanced when trained on imbalanced classes.
Here, again, the most balanced results were obtained from undersampling the dataset.
Ref. [23] discusses oversampling techniques that particularly try to generate samples at
the border to neighboring classes. These techniques would be of special interest for fur-
ther improving the support vector machine results. A central prerequisite for applying
these oversampling techniques is the existence of a reasonable distance metric between
samples. A simple start could be given by the image correlation, but ultimately the
measure should be able to reflect similarities between samples of the same class and
differences to samples of other classes. Simple image correlations could be too sensitive
to noise to achieve this. Applying PCA transformation after feature extraction did not
show any systematic improvements.

In Section 4.2.3 we saw that large values for the trade-off parameter C, correspond-
ing to little regularization, caused a great amount of performance variation. This phe-
nomenon only occurred when training on features (compare Fig. 4.6 and 4.7) and it is
likely to be connected to the dense clustering of samples from both classes. Significant
variation remained after we had fixed everything but the random seeds for the sup-
port vector training (Section 4.2.3). We can conclude that different decision boundaries
were found. This is surprising, as the support vector machine optimization problem is
quadratic, thus, has a global minimum. It would be interesting to investigate the source
of this variation.

Further resemblance to decision trees occurred when we tried to classify in image
space. The learning algorithm overfitted the training data, while the best validation
performances stopped to increase at least 5% below the best feature-based results. Here,
support vector machines allow for a powerful generalization in form of kernel methods.
Given an appropriate inner product between samples, they are capable of dealing ef-
ficiently with high-dimensional data. Choosing the scalar product between flattened,
per-feature standardized images as inner product results in the Pearson correlation. An-
other alternative is given by choosing a Gaussian kernel. If such an approach does not
hold the desired generalization performance, the inputs could be replaced by taking only
representatives, such as the o and c cluster averages described above.

Neural Network

The final neural network classifier with residual network architecture reached per-class
accuracies of

0.61 (open)

0.78 (closed),

on test set T1 with training performances of

0.8 (open)

0.9 (closed),

84

on an oversampled, balanced training set of elements from in ds1, ds2, and ds3. The
number of input images was increased by taking cross-sections and cylindrical average
images from four different orientations. The generalization drop-offs are 19% and 12%,
respectively.

Considering only those inputs on which the network was sure of the predicted class
(probability > 0.9) reduced the test set to 375 open and 127 closed samples. Here, the
obtained class-accuracies are

0.83 (open)

0.8 (closed).

This increases the accuracy on open elements by 22%. We see that for many of the
network’s errors on open elements the accompanied prediction probabilities are low.
Under the applied training set the network was capable to learn a reasonable class
probability distribution. The relaxation of allowing the network to choose a third label,
undefined, when the probability is too low noticeably improves the accuracy. This could
be further harnessed by letting the network learn a class probability that reflects the
number of experts that agreed on the label of a sample.

Looking at the samples that were misclassified despite the restriction to high predic-
tion probability (see Fig 5.17) shows that many of the errors performed are reasonable.
Many of the endpoints falsely classified as closed show features characteristic to both
classes. Some images contain spreading microtubule walls indicating open ends as well
as dark areas around the end as is typical for closed ends. For such images it would be
interesting to analyze, how consistent the expert votes were. If the labeling is consistent
and based on additional detail information contained in the images, fine-tuning the net-
work could be attempted by augmenting more images to show such detail. Nonetheless,
there were also ends falsely predicted as open that show clear characteristics of closed
ends. It requires further investigation to see what led the network to such a prediction.
We conjecture that it might be due to the thin lines that emanate from the end of closed
microtubules that resemble the spreading walls of open ends.

During the search for a good training set-up, we saw that combining cross-sections and
cylindrical averages from several orientations did not improve the training performance
when compared with training on cross-sections from a single orientation (compare left-
bottommost plot in Fig. 5.15 and right plot in Fig 5.14). It is possible that this step
introduces misleading training samples as some closed microtubule ends can appear open
when seen from an unfortunate angle. This requires further investigation, and possibly
cleaning, of the increased training set. The best images are taken at an orientation close
to being perpendicular to the tomogram z-direction. Tilting this plane increases the
missing-wedge noise inherent in the tomography process, thus, the chance for misleading
images might also increase.

Data augmentation showed the strongest effect on network performance when search-
ing for means to improve network prediction (see Fig 5.15). Overfitting of the training
set was significantly reduced; the training accuracy curves approached the validation
accuracy curves by roughly 20% at the end of the training phases. Improvement of the
validation curves was insignificant. We conclude that, while data augmentation has the
potential to enhance network prediction, care has to be taken to find image manipula-
tions that realistically reflect the sample variation. Simple geometric transformations
and Gaussian blurring did not suffice in the present case. One approach to reproduce
realistic noise could be to cut random image patches from different tomograms and

85

combine them with the training samples.
Increasing the weight decay parameter did not significantly improve generalization

performance but prolonged the range in which the network showed its best validation
performance (see the top rows in Fig. 5.13 and Fig. 5.14). The parameter value of 0.5
used to train the final network is unusually high which results from the small number of
available training samples. It would be interesting to see whether additional regulariza-
tion techniques, such as dropout [53], can improve validation performance.

The abundance of unlabeled microtubule ends also suggests trying an un-/semi-
supervised approach to training neural networks by exploring the performance that can
be obtained from training an autoencoder variant (see for example Ref. [57][46][32]).

Comparing the Results and Inner Test Sets

When we compared the results from the three classifiers (Section 6), we saw that there
was a large set of test samples that were predicted falsely by all classifiers. This motivated
the introduction of inner test sets T2, T3, T4 of samples where at least 2, 3, 4 experts agreed
on the class. This can be interpreted as creating class probabilities from the expert votes
with higher probability when more experts agreed on the label. The resulting confusion
matrices for all test subsets are shown in Table 7.1. We mostly see a consistent rise of

DT SVM RN

ground truth open closed open closed open closed

T1:
open 638 (62%) 387 (38%) 673 (66%) 352 (34%) 630 (61%) 395 (39%)
closed 94 (28%) 242 (72%) 101 (30%) 235 (70%) 74 (22%) 262 (78%)
T2:
open 357 (74%) 127 (26%) 335 (69%) 149 (31%) 368 (76%) 116 (24%)
closed 36 (29%) 87 (71%) 15 (12%) 108 (88%) 19 (15%) 104 (85%)
T3:
open 182 (78%) 52 (22%) 172 (74%) 62 (26%) 191 (82%) 43 (18%)
closed 8 (16%) 41 (84%) 4 (8%) 45 (92%) 6 (12%) 43 (88%)
T4:
open 80 (84%) 15 (16%) 76 (80%) 19 (20%) 84 (88%) 11 (12%)
closed 5 (25%) 15 (75%) 2 (10%) 18 (90%) 2 (10%) 18 (90%)

Table 7.1: Confusion matrices for the final classifiers on test sets T1, . . . , T4. Percentages
are obtained by normalizing on the number of samples in each class of the
ground truth in the test sets.

per-class accuracies while moving from T1 to T4 although the accuracy on closed samples
in T4 should be treated with care due to the small number of elements. Samples that
were easier to classify for experts also were easier to classify by the algorithms.

When we looked at the ratios of failure set intersections to failure set unions for each
test subset (Tab. 6.7), we saw that the decision tree and the support vector machine
often made the same errors. This is reasonable since both were trained on similar input
representations. Going from T1 to T4, the set of samples that were hard to classify for
the neural network deviated more and more from the set of samples that were hard to
classify for any of the other two classifiers. We see that the classifier start to make more
individual errors in the inner subsets.

In conclusion, the neural network gave the most promising results. The performance
of the other two classifiers relies substantially on the existence of an informative features.

86

The ability to successfully train on images without having to design features fundamen-
tally eases the classification task. Furthermore, we saw that the neural network learned
a reasonable class probability despite being trained on hard labels. We conjecture that
treating the expert classification as a probability further increases the resemblance be-
tween the network output and the expert classification. Nevertheless, it is impressive
how well the other two classifiers could keep up, considering their comparatively simple
hypothesis space and the greatly condensed inputs they performed on.

Personal Conclusion

Upon the first glance at this task I thought that per-class accuracies of 80% should be
within the realms of possibility. The actual results stay well behind. I believe that this is
mainly due to the image noise and class imbalance which turned out to be a greater factor
than anticipated, and so was the varying quality between tomograms. I had conjectured
that neural networks would outpace the other methods by a considerable margin and I
am surprised to see how well the other two performed. Especially, when considering the
highly reduced feature space they were working on. Probably, all three classifiers can
likely be improved, at least to some small extend: the feature-based methods most prob-
ably by enhancing the feature set and the network by further data collection or specific
data augmentation. Especially the last technique is intriguing. Firstly, it increases the
effective number of training samples without having to further conduct the tedious task
of data collection. Secondly, it should allow for well-guided fine tuning of the network
while treating it as a black box. If, for example, further analysis of the misclassified
samples from one class shows that the network puts too much attention to irrelevant
image features, samples from the other class could be augmented to also show more of
these features.

In this thesis, the opportunity was given to acknowledge, explore, and tackle the many
challenges that can occur when working on an interdisciplinary research problem. I am
grateful that I was given the opportunity to work on such an interesting project and
to gain practical insight into the field of machine learning applied to a very challenging
real-world problem.

87

Bibliography

[1] tflearn. http://tflearn.org, 2017. [Online; accessed 11-February-2018].

[2] tflearn – resnet implementation. https://github.com/tflearn/tflearn/blob/

master/examples/images/residual_network_cifar10.py, 2017. [Online; ac-
cessed 11-February-2018].

[3] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[4] Yaser S. Abu-Mostafa. Learning from data. https://work.caltech.edu/

library/, 2012. [Online; accessed 15-December-2017].

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[6] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, COLT ’92, pages 144–152, New York, NY,
USA, 1992. ACM.

[7] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 144–152. ACM, 1992.

[8] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[9] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[10] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[11] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifi-
cation and regression trees. CRC press, 1984.

[12] Arthur E Bryson. A gradient method for optimizing multi-stage allocation processes.
In Proc. Harvard Univ. Symposium on digital computers and their applications,
page 72, 1961.

89

http://tflearn.org
https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py
https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py
https://work.caltech.edu/library/
https://work.caltech.edu/library/

[13] Christopher JC Burges. A tutorial on support vector machines for pattern recogni-
tion. Data mining and knowledge discovery, 2(2):121–167, 1998.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[15] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. Journal of machine learning
research, 9(Aug):1871–1874, 2008.

[16] Daniel A Fletcher and R Dyche Mullins. Cell mechanics and the cytoskeleton.
Nature, 463(7280):485, 2010.

[17] David A. Forsyth and Jean Ponce. Computer Vision - A Modern Approach, Second
Edition. Pitman, 2012.

[18] Joachim Frank. Electron tomography: methods for three-dimensional visualization
of structures in the cell. Springer, 2008.

[19] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning: data mining, inference and prediction. Springer New York Inc., 2 edition,
2009.

[20] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 315–323, 2011.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[22] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning
decision lists and trees. Information and Computation, 126(2):114–122, 1996.

[23] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transac-
tions on knowledge and data engineering, 21(9):1263–1284, 2009.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European Conference on Computer Vision, pages 630–
645. Springer, 2016.

[26] Tin Kam Ho. Random decision forest. In Proc. of the 3rd Int’l Conf. on Document
Analysis and Recognition, Montreal, Canada, August, pages 14–18, 1995.

[27] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[28] Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees is
np-complete. Information processing letters, 5(1):15–17, 1976.

[29] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed 18-December-2017].

90

[30] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–
954, 1960.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[33] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481–
492, Berkeley, Calif., 1951. University of California Press.

[34] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[35] Wei-Yin Loh. Fifty years of classification and regression trees. International Sta-
tistical Review, 82(3):329–348, 2014.

[36] John Mingers. An empirical comparison of pruning methods for decision tree in-
duction. Machine learning, 4(2):227–243, 1989.

[37] James N Morgan and John A Sonquist. Problems in the analysis of survey data,
and a proposal. Journal of the American statistical association, 58(302):415–434,
1963.

[38] Andrew Ng. Cs229 lecture notes, support vector machines. http://cs229.

stanford.edu/notes/cs229-notes3.pdf, 2017. [Online; accessed 15-December-
2017].

[39] Michael Nielsen. Neural networks and deep learning. http://

neuralnetworksanddeeplearning.com/, 2017. [Online; accessed 3-January-
2018].

[40] Edgar Osuna, Robert Freund, and Federico Girosi. An improved training algorithm
for support vector machines. In Neural Networks for Signal Processing [1997] VII.
Proceedings of the 1997 IEEE Workshop, pages 276–285. IEEE, 1997.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12(Oct):2825–2830, 2011.

[42] John Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. 1998.

[43] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[44] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[45] Stefanie Redemann, Johannes Baumgart, Norbert Lindow, Michael Shelley, Ehssan
Nazockdast, Andrea Kratz, Steffen Prohaska, Jan Brugués, Sebastian Fürthauer,
and Thomas Müller-Reichert. C. elegans chromosomes connect to centrosomes by
anchoring into the spindle network. Nature Communications, 8(15288), 2017.

91

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

[46] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Con-
tractive auto-encoders: Explicit invariance during feature extraction. In Proceed-
ings of the 28th International Conference on International Conference on Machine
Learning, ICML’11, pages 833–840, USA, 2011. Omnipress.

[47] Raúl Rojas. Neural networks: a systematic introduction. Springer Science & Busi-
ness Media, 2013.

[48] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[49] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[50] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[51] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[52] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[53] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[54] Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. Amira: A highly
interactive system for visual data analysis. In Charles Hansen and Christopher
Johnson, editors, The Visualization Handbook, pages 749 – 767. 2005.

[55] Akif Uzman. Molecular biology of the cell (4th ed.): Alberts, b., johnson, a.,
lewis, j., raff, m., roberts, k., and walter, p. Biochemistry and Molecular Biology
Education, 31(4):212–214, 2003.

[56] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2 edition, 2013.

[57] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of Machine Learning
Research, 11(Dec):3371–3408, 2010.

[58] Britta Weber, Garrett Greenan, Steffen Prohaska, Daniel Baum, Hans-Christian
Hege, Thomas Müller-Reichert, Anthony Hyman, and Jean-Marc Verbavatz. Auto-
mated tracing of microtubules in electron tomograms of plastic embedded samples
of caenorhabditis elegans embryos. Journal of Structural Biology, 178(2):129 – 138,
2012.

[59] Britta Weber, Erin M. Tranfield, Johanna L. Höög, Daniel Baum, Claude Antony,
Tony Hyman, Jean-Marc Verbavatz, and Steffen Prohaska. Automated stitching of
microtubule centerlines across serial electron tomograms. PLoS ONE, page e113222,
2014.

92

[60] Paul John Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Doctoral Dissertation, Applied Mathematics, Harvard Univer-
sity, MA, 1974.

93

	Introduction
	Data Acquisition, Preprocessing, and Preliminaries
	Initial Datasets
	Two New Tools
	Getting Labeled Data
	Extracting Endpoint Data

	Data Preprocessing
	Feature Extraction

	General Preliminaries
	Performance Measure
	Class Imbalance

	Decision Trees
	Basic Principles
	Software

	Parameter Exploration and Insights
	Addressing the class imbalance
	Preprocessing
	Remaining Parameters
	Adding principal components

	Final Training and Results

	Support Vector Machines
	Basic Principles
	Hard Margin – The Separable Case
	Soft Margin – The Non-Separable Case
	Kernel Methods
	Software

	Parameter Exploration and Insights
	Addressing the class imbalance
	Preprocessing
	Where does the performance variation come from?
	Remaining Parameters
	Adding Principle Components

	Final training and Results

	Neural Networks
	Basic Principles
	Feedforward Neural Networks
	Convolutional Neural Networks
	Training Neural Networks
	Software

	Parameter Exploration and Insights
	Network architecture and training set-up
	Addressing the class imbalance
	Input format, size, weight decay, and preprocessing

	Final Training and Results

	Comparison of the Results for the Different Classifiers
	Discussion and Conclusion

