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Abstract

Mixed integer programming is a versatile and valuable optimization
tool. However, solving specific problem instances can be computationally
demanding even for cutting-edge solvers. Such long running times are often
significantly reduced by an appropriate change of the solver’s parameters.
In this paper we investigate “algorithm selection”, the task of choosing
among a set of algorithms the ones that are likely to perform best for a
particular instance.

In our case, we treat different parameter settings of the MIP solver SCIP
as different algorithms to choose from. Two peculiarities of the MIP solving
process have our special attention. We address the well-known problem of
performance variability by using multiple random seeds. Besides solving
time, primal dual integrals are recorded as a second performance measure
in order to distinguish solvers that timed out.

We collected feature and performance data for a large set of publicly
available MIP instances. The algorithm selection problem is addressed by
several popular, feature-based methods, which have been partly extended
for our purpose. Finally, an analysis of the feature space and performance
results of the selected algorithms are presented.

1 Introduction

1.1 Mixed Integer Programming

Throughout this paper we present results derived from instances of mixed in-
teger programming (MIP). For our purposes, a mixed integer program can be
represented as:

argmin
x

{
cTx

∣∣∣ b1 ≤ Ax ≤ b2, l ≤ x ≤ u, xi ∈ Z ∀i ∈ I
}

. (1)

Here, the variables xi are constrained to take integer values for all i in the
variable subset I 6= ∅. An integer variable is called a binary variable if, li = 0
and ui = 1.
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Solving a MIP instance (or even determining if a solution exists) is NP-
hard in general, and there are a variety of competitive solvers available that use
different methods and approaches. These solvers are generally used as stand-alone
applications and permit the user to specify a large number of parameters which
influence the method/approach that the solver uses. For instance, parameters
may affect the time spent in presolving, the aggressiveness with which cutting
planes are used or the amount of reliance on branch and bound techniques.
In their work, Hutter et al [1] describe one of the leading commercial solvers
(CPLEX) as having more than 1045 distinct combinations of parameter settings
possible (this number has likely changed since the paper was released).

This leads to a number of questions, perhaps the most important of which
is what combination of parameters should be used to solve a MIP instance.
Arguably, one should use the parameter settings that have the best mean per-
formance on some benchmark set. However, the results that one can achieve in
this manner have a limit to their effectiveness, and to overcome this limit one
must pay more attention to the properties (features) of an individual instance
and allow these features to guide the parameter selection, which is commonly
addressed as Algorithm Selection.

1.2 Algorithm Selection

The underlying nature of MIPs remains an area of open research, and so is
not fully understood in terms of complexity. There is no solver that is optimal
for a wide class of problems. While it is possible to choose an algorithm with
the best average performance on a representative benchmark set, being able
to select from a portfolio of algorithms has been shown to be better in cases
where complementary, i.e. fundamentally different strategies are available [2]. In
algorithm selection, this idea is taken one step further by constructing custom
portfolios using instance-specific features [3]. To this end, we use features specific
to the problem instance to select an algorithm (or a portfolio of algorithms) that
are likely to perform well on the given instance.

Algorithm selection has been gaining attention in the artificial intelligence
community. To aid in this task, recent libraries have been established that compile
and organize data for a wide range of NP-hard tasks [4]. While approaches to
the algorithm selection problem have been effective for the satisfiability problem,
algorithm selection for mixed integer programming has still produced only modest
results [3]. It is on this last point that our research is focused.

In the present work, we focus on the algorithm selection problem using various
algorithms contained in the SCIP Optimization Suite [5], which is one of the
leading non-commercial software packages that can solve MIP instances. We
use 14 different combinations of parameters supplied by SCIP. These parameter
combinations serve as the algorithms that we will be selecting from. While we
restrict ourselves to the collection of parameter settings suggested by SCIP, we
note that due to the highly parameterizable nature of the solver, the number of
considered algorithms can be easily increased.

We test the different algorithms on two different benchmark sets, one homo-
geneous and one heterogeneous. General features of the benchmark instances
are obtained from the MIP representation (1) to inform our selections and com-
pare the predictive results of different machine learning engines trained on the
benchmark runtime data.
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The MIP instances within our benchmark sets are supplied in MPS format.
We use the SCIP interface to load them and then extract the features, which
will be described in Section 2 and in full detail in Appendix A of this document.

1.3 Related Work

Algorithm configuration of MIP solvers has been widely discussed and researched
(see [1, 6] and references therein), the main task being to produce solvers that
have good average performance on a particular benchmark set. These solvers
should then be good predictors of algorithms to use for instances that are similar
to those within the benchmark.

Leyton et al. [2] demonstrate the effectiveness of using a portfolio approach
in which several algorithms are used either by a schedule or in parallel rather
than restricting the solving process to only a single algorithm. This approach
has since become commonplace as seen in [3, 7, 8]. We will also use a portfolio
approach in our work, selecting more than one algorithm in order to improve
performance when the average-best solver does not perform well on a specific
instance.

Algorithm selection has proven effective for SAT instances (in particular, for
SAT competitions), but has not yet had the same success for MIP instances [8].
Why this is the case is still an open question.

In [6, 9], combinatorial auction problems are used as the benchmark set for
testing solver efficiency. Some previous literature has explored the feature space
[1] as well as an attempt to use features to select algorithms. However, we desire
to understand the problem in the context of a wider benchmark set with a wider
representation of possible features. We also implement the algorithm described
in [7] together with some variants of the approach.

2 Method

2.1 Description of Data

Every MIP is characterized by a vector of numeric properties, so-called features.
The complete feature data is represented as an n × m matrix F , where n is
the number of MIP instances under consideration and m is the total number of
features extracted from each problem instance. The performance data (referred
to as P) consists of an 5n×s matrix, where s is the total number of settings used.
The factor 5 here comes from running each solver on every instance 5 times,
each with a different random seed specified on the run. The random seed serves
as a final tie-breaker for numerous algorithmic components within SCIP. The
intention behind seeded runs is to make the performance evaluation between
settings more robust in the light of the phenomenon of performance variability
[10, 11]. We take the arithmetic mean of results over these random seeds to
smooth out statistical fluctuations produced by each run.

What is more, the data comes from two distinct sets: Regions which is a
collection of 2000 combinatorial auction instances [9], and a general MIP testset
called M&C with 713 instances compiled from the publicly available libraries
MIPLIB 3 [12], MIPLIB 2003 [13], MIPLIB 2010 [14], and COR@L [15]. Each
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of these sets has their own performance data which was computed on an HPC
cluster, and we compute feature data independently for each of these sets.

While each instance from the Regions set was feasible and reasonably sized,
it was necessary to exclude some instances from the M&C set. For our pour-
pose, and in particular for our desired experiments with the primal-dual integral
(which does not have substantial qualitative meaning for infeasible instances),
we excluded the 93 infeasible instances from the M&C library. We also excluded
eight instances for which features could not be extracted without exceeding the
amount of memory available on a desktop computer. This leaves 612 feasible
instances in the M&C benchmark set with which we conduct our experiments.

The M&C library seems to be more challenging for the machine learning
methods as it is a hetoregenous set of problems and in addition, it contains fewer
instances than the Regions library.

2.1.1 Feature Data

The idea of using features from MIPs for algorithm selection was first explored
in [3]. As an example, features can be statistical summaries of the coefficients of
the objective function, “right-hand side” vectors and the constraint matrix itself.
Features extracted in such a way are generally called ‘static’ features since they
can be extracted without invoking the operant functions of the solver. We use
some static features introduced in [3] as a basis for our static feature calculation.

We extract 133 static features for each problem instance. The list of all static
features that we extract can be found in Appendix A along with a description.
Since presolving can significantly improve the performance of the solving process,
we also extract static features after presolving the problem instance with SCIP’s
default and fast presolve settings, which leads to a total number of 399 static
features for each problem instance.

With our benchmark instances, we also extract “dynamic” features which
include information extracted from the log files of running SCIP with default
settings on a particular instance. We limit such extraction to features that are
available up to and including the solving of the root node relaxation. In the
larger context of algorithm selection, it is our expectation that this dynamic
feature extraction at the root involves only a minimal time commitment relative
to the time involved to solve a difficult instance to completion.

2.1.2 Performance Data

For each instance in our benchmark sets, and for each of the 14 different algo-
rithms, we have the following data listed below. To increase robustness, we have
averaged the data over five runs for each instance/algorithm. If any run for a
particular instance/algorithm takes longer than 600 seconds, we terminate the
run early and report the information accumulated up to that point.

• Timing Data
The solving time is the most important performance data for instances
on which the solver did not run into the time limit. For the homogeneous
Regions benchmark set, with few exceptions, SCIP was able to solve the
instances within the given time limit. For the more heterogeneous set
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M&C, the timing data is much more varied, with a much larger number of
timeouts, and in fact, some instances timed out regardless of the algorithm
chosen.

• PD-Integral
As a second measure of performance, the integral of the primal-dual gap
was used. Herein referred to as the primal-dual integral, this measures
jointly the quality of solutions found during the solving process as well as
the efficiency with which these solutions are found. Particularly it is the
percent gap between the best known upper and lower bounds on the true
solution found in the branch and bound tree, integrated over time. This
measure was introduced in [16] and does not require any prior knowledge of
the ground truth solution for an instance. In our research, we investigated
this value and its usefulness as a suitable proxy for runtime when the
runtime information was not available (for instance, if a particular run was
cut off early by timing out). For further information on how this integral
is explicitly calculated, we refer the reader to [16].

• Completion Codes
As a final categorical measure of performance, we have the exit codes pro-
vided by SCIP corresponding to various forms of success/failure of the
solver on a particular instance/algorithm attempt. We have aggregated
these completion codes into the three coarser categories of ‘ok’, ‘timelimit’,
and ‘fail’ (details of this aggregation are given in Appendix B). ‘Ok’ cor-
responds to a successful run of the algorithm and no data adjustment is
necessary. ‘Timelimit’ corresponds to an algorithm that went beyond its
allotted time, in which case we take the execution time to be 600s. ‘Fail’
corresponds to a situation in which either the solver failed to complete (e.g.
due to memory limits), or delivered an answer that was not satisfactory
(e.g. claiming optimality of a suboptimal solution). If the solver failed, we
take the execution time to be 600s and the PD Integral to being 60,000
(corresponding to 600s of 100% gap).

2.2 Upper Bounds/Well-Defined Features

Within the benchmark set, there can be instances for which numeric data is not
well-defined. For instance, if an instance has no left bounds in its constraints,
then no average value of the left bounds can be found. In such cases, we use
zero.

Additionally, within the timing data, it is possible for an algorithm to com-
plete an instance early but incorrectly (e.g. exceeding the available memory).
In such cases, we set the numeric time to completion as 600 seconds (which is
our time limit) and the PDI to 60,000 (which is the maximum possible PDI).
We note that this presents a challenge for our regression engines because such
values are not chosen quantitatively but qualitatively, and it is likely that this
choice favors certain classes of machine learning techniques that utilize branching
and decision boundaries over continuous techniques that function primarily on
regression.
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3 Feature Analysis

As stated previously, we currently extract 399 static features and 103 dynamic
features. The static and dynamic features can be considered independently from
one another or simultaneously. Since the dimensionality of the feature space is
relatively large in either case, a few natural questions that arise are:

Q1 Which features are the most important?

Q2 Which features are the least important?

Q3 Is there a lower dimensional representation of the feature space that accu-
rately encapsulates most of the information.1

We devote the majority of our attention in answering Q1 and Q3 by using
Pearson correlation coefficients, principal component analysis, and multidimen-
sional scaling.

3.1 Pearson Correlation Coefficients

Pearson correlation coefficients are normalized values of the covariance matrix,
and they take on values between +1 and −1. A score of +1 indicates that two
variables are positively linearly correlated, and a score of −1 indicates they are
negatively linearly correlated. We compute this via:

ρ(x, y) =
cov(x, y)

σxσy

Here, cov(x, y) denotes the covariance between x and y, which are features in
F . Also, σx and σy denote the standard deviation in x and y, respectively. We
plot a heatmap of these correlation coefficients, which allows us to qualitatively
answer a few questions:

• Are there any features which can be removed from the feature space? Fea-
tures which have many correlations, whether they are positive or negative,
have their information more or less encoded in other features. These highly
correlated features can be removed from the space because of this, thus
answering Q2.

• What features are important and why? This is most useful when used in
conjunction with another approach. For instance, we utilize various tech-
niques that predict which features are the most important. The heatmap
can be a useful tool in answering why are they the most important, thus
answering Q1.

• Are there any issues in the features themselves? For instance, does a
particular feature fail to vary within our benchmark set?

As an explicit example, we produce the correlation heatmap using the first
20 dimensions in the feature space (Figure 1). In this case, the feature with zero
correlation turns out to be a feature which can be removed from the features
space as it renders no useful information. Specifically, this feature was zero across
all instances.

1This is defined in more detail in a later section
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Figure 1: A Pearson correlation coefficient heatmap computed using the first 20
dimensions in the feature space. The diagonal and upper triangular elements
have been removed since this heatmap is a symmetric plot.

3.2 Principal Component Analysis

Principal Component Analysis (“PCA”) is a method that constructs a new
coordinate system to represent data. This new coordinate system is constructed
to maximize the variance in data amongst the axes, under the constraint that
each axis is orthogonal. The data represented in the first principal component, or
first new axis in the coordinate system, has the largest variance. Each additional
axis describes less variance of the data. PCA can be used as a dimensional
reduction tool owing to this decrease in descriptive power.

We use PCA to map from the original feature space to the new PCA space:
F → F̂ . We vary the dimension of F̂ and calculate the percentage of variance
described by this space to study the information dynamic of projecting to lower
dimensional spaces. We compute the “information” retained by F̂ as:

I(d) =

d∑
i=1

σ̂2
i /

m∑
i=1

σ̂2
i (2)

Where m is the dimension of F , d is the dimension of F̂ , and σ̂2
i is the variance

of the data represented by the i-th axis in F̂ . Since this equation represents a
percentage value, it is in the range of [0, 1] and monotonically increases with d.
Additionally, I(0) = 0 and I(m) = 1. See Figure 2 for a plot of the information
as a function of d.

PCA additionally allows us to answer the question of “what features are
the most important?” The components of F̂ are constructed through linear
combinations of features in F . By determining which features are the highest
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Figure 2: The PCA retained information as a function of dimension given by
Equation (2). The input data is the static+dynamic feature space. The various
horizontal lines are 70%, 90% and 95% thresholds. The 95% threshold occurs
at d = 71.

weighted across all linear combinations, we are able to select a list of individual
features which PCA relied most heavily on to construct F̂ . By keeping 95% of
the PCA information2, we select 71 features.3 Thus, we answer both Q1 and
Q3 using PCA.

We note a peculiar clustering that occurs in d = 2 when we consider just the
dynamic features (refer to Figure 3). When we consider all features, or just the
static features, we obtain no similar clustering (Figure 4).

3.3 Multidimensional Scaling

Similar to PCA, multidimensional scaling (“MDS”) is a dimensional reduction
technique, but it fundamentally differs in that it does so nonlinearly. Rather
than attempting to maximize the variances as PCA does, MDS tries to preserve
pairwise distances as well as possible in a lower dimensional space. How well the
method does can be quantified through an error4 function which depends on the
dimension being mapped to:

err(d) =
∑
i 6=j

|dij − d̂ij(d)|2

Here, dij is the pairwise distance between the i-th and j-th points in the

original space, d̂ij is the pairwise distance in the lower dimensional space and d
is the dimension being mapped to. The goal in MDS is to minimize err(d) by

2i.e. setting I(d) = 0.95
3We point out that although d = 71 refers to 71 dimensions in PCA space, and not in the

original feature space, we nonetheless use this as motivation to select 71 features from the
original space.

4The loss function used in MDS is typically referred to as the “stress”
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Figure 3: PCA components 1 and 2, for just the dynamic features for M&C. Notice
the distinct 2 clusters that emerge.
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Figure 4: PCA components 1 and 2, for static and dynamic features for M&C.
Notice, the cluster information is washed away.

choosing an appropriate d̂ij . Similar to PCA, we also define a measure of the
retained information when mapping to a lower dimension:

I(d) = 1− err(d)/err(2) (3)

This form was chosen so that the information is constrained to [0, 1] and
so that it monotonically increases with respect to the dimension. Additionally,
I(2) = 0 and I(m) = 1. Setting a 95% threshold on the retained information
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results in d = 19 (refer to Figure 5). Using this technique we are also able to
answer Q3.
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Figure 5: The MDS retained information as a function of dimension given by
equation (3). The input data is the static+dynamic feature space. The 95%
threshold occurs at d = 19.

Similarly, we note a peculiar clustering that occurs for just the dynamic
features when the MDS projection is done for d = 2. See Figures 6 and 7. We
aim to identify the source of these clusters in future work. Currently, we posit
that each cluster will correspond roughly to two classes of problem difficulties.
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Figure 6: MDS projection to d = 2, for just the dynamic features for M&C. Notice
the distinct 2 clusters that emerge.
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Figure 7: MDS projection to d = 2, for static and dynamic features for M&C.
Notice, the cluster information is washed away.

3.4 Feature Investigation Conclusions

We summarize a few key observations and results to answer our original questions
about the feature space.

We break up our first question (Q1) about the feature space into two ques-
tions: Q1a which features are the most important to a specific model and Q1b
which features are the most important in general? The answer to Q1a simply
depends on the model. For instance, the heuristic for selecting the top features
for PCA has already been addressed. The heuristic for selecting the top features
for a Random Forest Regressor or Classifier depends on which features result in
the best tree splits. More specifically, each feature results in a split with a certain
amount of information gain (in the case of a decision tree) or error reduction (in
the case of a regression tree). The splits with the most5 information gain or the
least error over the entire forest become the top features.

To answer question Q1b, we take the intersection of all the model dependent
results to construct a more model independent result:

Top Features =
⋂
i

Top Featuresmodeli

The models we currently use that go into this intersection are: a random
forest regressor, random forest classifier that utilizes Hydra (see below), decision
tree classifier that utilizes Hydra (see below), and PCA. The full list of model
independent top features for the M&C library is available in Appendix A.

To answer Q3 (i.e. the question of the true dimensionality of the feature
space), we look at the number of each model dependent top features list and
the information content of PCA and MDS (refer to Figures 2, 5). The true

5Here, “most” can be set in various ways, but it more or less means higher than some
multiple of the average
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dimensionality of the feature space appears to be, on average, around 15% of
the dimensionality of the total feature space.

4 Algorithm Selection Methods

Three distinct methods have been used extensively in the algorithm selection
community to predict which algorithms might be the most successful: those
based on classification, regression, and clustering. We consider machine learning
methods that are based on all these approaches. However, we note the success of
random forest regressors for the task of algorithm selection [8]. More specifically,
we apply random forest regressors, random forest classifiers, support vector ma-
chine classifiers, k-nearest neighbours, and logistic regressors. In Section 5, we
present the best performing methods only.

For some of the learning methods, we choose to implement additional boosting
methods: Adaptive Boosting (AdaBoost) [17] or Hydra [7]. Each of these methods
trains on a set of weak learners, the output of which is a weighted sum of these
weak learners. Additionally, we tune various parameters independently for each
method in order to minimize the testing error. To reach maximal performance, a
future investigation may be to tune these parameters without this independence
assumption. Again, we only present methods that were the highest performing.

4.1 AdaBoost

AdaBoost [17] learns a weighted combination of weak learners in multiple iter-
ations. In each iteration, it selects a weak learner that minimizes the weighted
error on the training data. The weights of misclassified samples in the training
data increase in the next iteration. In the end, weights of the selected learners
themselves are adjusted to minimize the total error of the ensemble’s prediction.
We use AdaBoost in conjunction with random forest regressors, and we compare
these boosted random forests to the non-boosted versions.

4.2 Hydra

Hydra is a learner voting approach which was originally described by Xu et
al. [7]. Their approach uses cost-sensitive decision forests as a decision mechanism
and a voting schema that summarizes the results. The experiments here were
conducted using a reimplementation of the algorithm as described in the original
article. Additionally the algorithm was extended to use other decision-making
mechanisms within the general voting part. Particularly decision trees, k-nearest
neighbours, support vector classifiers, and logistic regression algorithms were
implemented and evaluated.

For the set of algorithms {s1, ..., sm} Hydra constructs a set of m(m− 1)/2
pairwise decision-making mechanisms. For a pair of algorithms i, j a mechanism
DM(i, j) is trained to decide whether algorithm i or j is ranked higher on a
given instance. To perform the algorithm selection for an instance, each DM(i, j)
decides which algorithm is better and grants one vote to it, so in the end,
m(m− 1)/2 votes are distributed. Since a larger number of learners is trained
for each run of Hydra, the computational effort is higher than for the other
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approaches presented here. Also Hydra does not predict actual running times
but only a ranking of the algorithms.

4.3 Selecting a Portfolio vs selecting an algorithm

Often, there exist subsets of MIP instances for which a single algorithm per-
forms particularly good or bad. It has been shown in [2, 7, 8] that identifying
several algorithms (called a ‘portfolio’) which are used to solve the instance
simultaneously, increases the likelihood to conclude in a short amount of time.
Following this trend, we also predict not only one best algorithm but a portfolio
of algorithms that covers the entire test bed better than any single algorithm.

4.4 Performance Metric

With our performance data, we want to compare a series of values which can
be somewhat disparate or irregular in their distribution. Using the arithmetic
mean would over-emphasize outliers, and using the geometric mean would over-
emphasize the ratios between small numbers. In [18], Achterberg identified the
shifted geometric mean as a suitable compromise between the two approaches,
and so it provides a more robust measure of performance for algorithm selection.
For a vector ~x = (x1, x2, ..., xn), the shifted geometric mean is given by

σs(x) =

 n

√√√√ n∏
i=1

(xi + s)

− s
where the shift value s reduces the influence of observations close to 0.

In order to calculate the performance of the algorithm selection mechanism
on a test set, we calculate the shifted geometric mean of the best performing
algorithm in the portfolio predicted by the mechanism. The mean is taken over
all of the test instances. The values of xi are taken from the real performance
data (Primal-Dual integral or solving time as it is described further) and then
compared with other algorithm selection mechanisms. In our work we take s = 10
for time data and s = 1000 for PD-Integral data.

Additionally, since we are also making predictions on portfolios of algorithms,
in the case that more than one algorithm is selected, we use the value that
corresponds to the best of the portfolio. The best number for each instance is
taken to be the value of the portfolio, and then the shifted geometric mean over
the instances is calculated. As a basis for comparison, we use a portfolio which
is constructed without using the feature data. Using the timing data available,
we place algorithms into the portfolio preferentially based upon their shifted
geometric means over the instances. We refer to this as featureless algorithm
selection.

In order to compare the performance of two algorithms to each other, we
calculate the shifted geometric mean over the instances separately for each
algorithm, and then compute the following performance metric6:

ps(f, g) = 1− σs(f(X))

σs(g(X))
(4)

6The performance metric, which we use to measure the quality of our predictions, is not to
be confused with performance data!
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This formula gives us the relative improvement of portfolio producer f versus
portfolio producer g. In our results, we take f to be predictions made from our
various machine learning methods (i.e. predictions based on both performance
and feature data) and g to be the portfolio produced by featureless algorithm
selection.

5 Results

5.1 Performance

We present the highest performing prediction engines we found for the M&C

benchmark. Recall that this benchmark set is heterogeneous, and while this
makes prediction more difficult, we feel that this makes the results more readily
generalizable, unlike the Regions library which is a homogeneous benchmark
and should not be expected to represent the vastly larger MIP instance space.
The diagrams we present here are generated using the M&C set, as the results
from the Regions set were quite similar and so for conciseness we present the
sole benchmark.

Going into each of these methods is a choice in: the input data, the machine
learning method, and whether to boost the learning or not. Random forests were
the highest performing methods and inherent to these is a random seed that is
used for training. Additionally, a random seed is used for the test/training split
(20%/80% in our case). Since there are these sources of randomness, we submit
100 independent runs, where each run is trained on a different seed (i.e. we
produce 100 different portfolio predictions for each learning method we utilize).
For each run, we compute the performance ps(random forest prediction, default)
of our prediction, cf. Equation (4).

We compare the portfolio predictions produced from the random forest to
the portfolio produced by always selecting the default solver. We also produce a
portfolio from a featureless approach in which we rank each solver by the shifted
geometric mean, and iteratively select the best performing solvers (i.e. with the
lowest shifted geometric mean). This featureless approach is also compared to
always selecting the default solver. In either case, the quantity ps can then be
thought of as the percent improvement over always choosing the default solver.
For example, a value of ps = 0.05 means that the random forest is choosing a
portfolio, the solvers of which will run 5% faster than choosing the default solver.

We present our results by taking the arithmetic mean of the 100 different ps
values coming from the independent runs over seeds, and we plot the standard
deviation to show the variance of the performance. Using our machine learning
methods, we are able to select algorithms that outperform the choice of always
selecting the default solver and outperform the featureless approach (refer to
Figures 8 and 9). We note that when the size of the portfolio is 14, which is the
total number of solvers to choose from, the value of the performance is equal
to the value of the virtual best performing portfolio selector (i.e. no selection
method will be able to exceed this value).
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Figure 8: Portfolio performance on the M&C data set. Selectors were trained and
tested on Primal-Dual integral values.

5.2 Primal-Dual Integrals as a Proxy for Time

One of the questions we sought to answer was whether or not the PDI values
will act as a proxy for time information in training, since PDI values provide
more information about the progress of the solver than does the timing data,
especially in the case that many (or all) algorithms simply reach the time limit.

From Figure 9 we show that in circumstances where time data is not available
for training, it is still possible to meaningfully train using primal-dual integral
data. The reader will note that this is not automatic – some of our predictor
engines performed worse than the featureless approaches, notably for portfolios
of size one (attempting to predict only the best algorithm).

Since we are predicting not just a single algorithm but a portfolio of many
algorithms, Figure 9 also highlights an important point: competitive methods
that work well for choosing a portfolio may not appear competitive when they
are used to select only a single algorithm. This itself provides strong evidence
that some of the previous research on single algorithm selection could behave
very differently if revisited in the context of portfolio selection.

5.3 Software package

We developed a Python software package named “Algorithm Predictor” to sup-
port our methodology. All results and plots in this work were produced with
this package. Our package supports:

• Feature Investigation using various techniques (currently Pearson cor-
relations, MDS and PCA) as well as machine learning methods (currently
random regression forest). Each of these software modules produces plots
and depending on the method, a list of features that it finds to be the most
important.
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Figure 9: Portfolio performance on the M&C data set. Selectors were trained on
Primal-Dual integral values and tested on their time performance.

• Algorithm Selection such as random regression forests, random for-
est classifiers and others combined with AdaBoost and Hydra boosting
techniques. Currently, the Algorithm Predictor package supports training
models based on input features and performance data for single or multi-
ple seeds by splitting training data into 80:20 train to test ratio. Trained
models can be serialized to a file, but using trained models for predicting
on a single problem instance is not implemented yet.

• Performance Measurement for a single model or set of models using
shifted geometric mean (SGM) explained in Section 4.4. Additionally, these
results can be plotted with variance and/or standard error overlaid.

• Centralized Configuration System that controls many parameters of
our package.

We also produced documentation where the reader can find more details
about our package, as well as tutorials for each point described above. To access
the documentation, navigate to the docs/build directory and open index.html

in any web browser. The package has been made publicly available under
https://github.com/GregorCH/algoselection/.

In addition to this package, the feature computation was implemented using
SCIP as a callable library. We also created various Python scripts used for data
cleaning and curation that we didn’t include in our package because we found
them very specific to our problem.

6 Conclusion

Random forests seem to be the clear winner, which is a result consistent with the
findings in [8]. We believe random forests somewhat get around this difficulty
owing to their ability to locally segment off subspaces, and train on these spaces.
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Other methods seem to be more affected globally by various subspaces, which
throws off the general predictive power of the machine learning method. Addi-
tionally, this is an indication of how homogeneous the M&C dataset actually is.
We have demonstrated that accurate predictions can be made with our various
methods and that our approaches outperform the featureless approach.

In each of our methods, we tune various parameters independently to mini-
mize the testing error. In a future analysis, we would like to remove this assump-
tion and scan the parameter space more effectively to find the global minimum
of the testing error.

In the course of our experiments, we also identified a promising avenue for
future research. In our experiments we used machine learning techniques and
predictive engines to rank algorithms and produced portfolios based upon this
ranking, in effect choosing the first best, second best, etc. in that order, demon-
strating the usefulness of instance-specific features in this process. However, in
the case that one is predicting a nontrivial portfolio (size more than one), it
is possible to improve upon the results by focusing on choosing portfolios that
focus on including algorithms that complement the existing ones. It is the belief
of the authors that one can use the features of instances to intelligently predict
such a portfolio, but how to use the features to identify the correct portfolio has
not yet been explored. We believe that research in this direction will be valuable
in the application, for instance, by identifying the best set of algorithms to run
in parallel.
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A Extracted Features

This section gives a detailed description of the features extracted from both the
M&C and Regions datasets. For all instances where the value of some feature is
undefined, we use a zero value as replacement. Further in this section, whenever
we refer to nonzero or finite values, we do that in the context of the corresponding
SCIP functions for checking if a value is zero or infinity. More details can be
found in the SCIP documentation7.

A.1 Static features

Static features are extracted based on the problem instance objective function,
the constraint matrix and the right hand side vector. It follows a list of static
features based on the objective function of an instance:

• Logarithm of the number of all variables in the objective function.

• Percentage of all binary, integer, implicit integer, continuous, and fixed
variables in the objective function, where fixed variables are variables with
equal upper and lower bounds.

• Percentage of all nonzero binary, integer, implicit integer, continuous, and
fixed variables in the objective function.

• Minimum, maximum, mean, standard deviation and median values (further
called summary statistics) for each variable type (binary, integer, implicit
integer, continuous, and fixed) and for all types together.

• Summary statistics of finite upper and lower bounds for all variables and
amount of finite entries.

• Objective dynamism calculated as the logarithm of the ratio of the maxi-
mal and minimal element in the vector of all absolute nonzero objective
coefficients.

Before feature extraction, every constraint (all coefficients from the constraint
matrix, left and right hand sides) was normalized such that the maximal absolute
coefficent value of is one. It follows a list of the features extracted from the
constraint matrix, left and right hand sides of the problem instance:

7http://scip.zib.de/doc/html/
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• Logarithm of number of all constraints.

• Percentage of each linear constraint type in problem instance. All 16 con-
straint types used for classification are listed MIPLIB2010 webpage8.

• Summary statistic of finite right and left hand sides vectors (separately
and together), including vectors density.

• Percentage of finite right and left hand sides.

• Summary statistics of number of nonzeros of each constraint.

• Summary statistics for vectors of mean, minimum, maximum and standard
deviation values of linear constraint coefficients and also summary statistics
for vector of ratio of maximum and minimum value for each linear constraint
in problem instance.

• Constraint matrix density.

• Summary statistics for clique vector.

• Dynamism statistics which is calculated on vector of elements calculated
for every linear constraint. Each value is calculated as logarithm of ra-
tio of maximum and minimum nonzero coefficients for particular linear
constraint.

A.2 Dynamic features

In order to extract dynamic features, instances were given to the SCIP solver
using the default settings, and the solving process was allowed to continue up
until the completion of the solution at the root node. No data was extracted
from the time after the branching process began. It is our belief that this partial
solving process can be done efficiently for most instances since in practice most
of the computational effort on hard instances is spent in branching.

More precisely, dynamic features used in this paper are extracted from SCIP
execution logs based on the SCIP statistics output which gives performance
information, for instance, resolving, separating and LP statistics at the root
node. More details about SCIP statistics output can be found in [5]. In the case
that one of the features extracted in this manner has a value of zero for every
instance in the dataset, we drop that feature for the purposes of our experiments.
Also, we do not use information that is provided in units of time, since such
information is highly machine dependent; however, it is conceivable that one
could use this information in future study if one also took the standpoint that
it is acceptable to demand that an end-user benchmark and train the predictor
on the machine that will be later making the predictions. In our experiments,
we have the expectation that the training and prediction will be completed on
different machines, and so we do not incorporate dynamic time information into
our feature set.

8http://miplib.zib.de/miplib2010.php
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A.3 Top features for M&C

The list of the important features obtained using the procedure described in
Section 3.4 for the M&C data set:

Separators Cuts clique
log constr with off presolve
nvar all max with off presolve
clique max with fast presolve
log vars with off presolve
Separators Calls strongcg
clique max with default presolve
rh constr ratio with default presolve
RootNode FinalRootIters

A.4 Top features for Regions

The list of the important features obtained using the procedure described in
Section 3.4 for the Regions data set:

constr matrix density with default presolve
coeff bin mean with default presolve
coeff bin std with fast presolve
Separators Calls clique
Separators Calls impliedbounds
Presolvers Calls trivial
Presolvers Calls dualfix
coeff bin median with off presolve
coeff all median with off presolve

B Completion Codes

• Ok

– ‘ok’: a typical satisfactory completion code.

– ‘fail_solution_infeasible’: the algorithm terminated and gave
a solution, but that solution does not satisfy the constraints. This is
usually due to rounding errors and other forms of numerical inaccuracy
within the machine so can be considered ’ok’.

– ‘solved_not_verified’: the algorithm terminated and found a solu-
tion that was better than the reported bound in the instance definition
(happens either because the instance had not previously been solved
or because the bound was simply missing in the instance definition).
This should mean that the algorithm has correctly solved the instance,
but because we do not have the ground truth we cannot confirm its
correctness.

• Fail

– ‘fail_abort’: indicates a catastrophic failure of the algorithm re-
sulting in its early termination
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– ‘fail_dual_bound’: this only happened on one of our training in-
stances. This happens when the algorithm times out but reports a
lower bound on the dual which is inconsistent with the known lower
bound.

– ‘fail_objective_value’: the algorithm terminated and gave a fea-
sible solution, but that solution was not optimal.

• Timelimit

– ‘timelimit’: typical completion code when algorithm exceeds the
time limit.

– ‘better’: will happen when the algorithm times out, but it did find
at least one feasible solution that was better than the reported bound
in the instance definition (happens either because the instance had
not previously been solved or because the bound was simply missing
in the instance definition)
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