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Solving Quadratic Programs to High Precision

using Scaled Iterative Refinement

Tobias Weber1, Sebastian Sager1, Ambros Gleixner2

March 19, 2018

Abstract Quadratic optimization problems (QPs) are ubiquitous, and solution algo-
rithms have matured to a reliable technology. However, the precision of solutions is
usually limited due to the underlying floating-point operations. This may cause incon-
veniences when solutions are used for rigorous reasoning. We contribute on three levels
to overcome this issue.

First, we present a novel refinement algorithm to solve QPs to arbitrary precision.
It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove
linear convergence of residuals and primal errors. Second, we provide an efficient im-
plementation, based on SoPlex and qpOASES that is publicly available in source code.
Third, we give precise reference solutions for the Maros and Mészáros benchmark library.

Keywords Quadratic Programming · Iterative Refinement · Active Set · Rational
Calculations

Mathematics Subject Classification 90C20 · 90-08 · 90C55

1 Introduction

Quadratic optimization problems (QPs) are optimization problems with a quadratic ob-
jective function and linear constraints. They are of interest directly, e.g., in portfolio
optimization or support vector machines [1]. They also occur as subproblems in sequen-
tial quadratic programming, mixed-integer quadratic programming, and nonlinear model
predictive control. Efficient algorithms are usually of active set, interior point, or para-
metric type. Examples of QP solvers are BQPD [5], CPLEX [2], Gurobi [11], qp solve [10],
qpOASES [4], and QPOPT [7]. These QP solvers have matured to reliable tools and can
solve convex problems with many thousands, sometimes millions of variables. However,
they calculate and check the solution of a QP in floating-point arithmetic. Thus, the
claimed precision may be violated and in extreme cases optimal solutions might not be
found. This may cause inconveniences, especially when solutions are used for rigorous
reasoning.
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One possible approach is the application of interval arithmetic. It allows to include
uncertainties as lower and upper bounds on the modeling level, see [12] for a survey
for the case of linear optimization. As a drawback, all internal calculations have to be
performed with interval arithmetic. Hence standard solvers can not be used any more,
the computation times increase, and solutions may be very conservative.

We are only aware of one advanced algorithm that solves QPs exactly over the ratio-
nal numbers. It is designed to tackle problems from computational geometry with a small
number of constraints or variables, [6]. Based on the classical QP simplex method [15], it
replaces critical calculations inside the QP solver by their rational counterparts. Heuris-
tic decisions that do not affect the correctness of the algorithm are performed in fast
floating-point arithmetic.

In this paper we propose a novel algorithm that can use efficient floating-point QP
solvers as a black box. Our method is inspired by iterative refinement, a standard
procedure to improve the accuracy of an approximate solution for a system of linear
equalities, [14]: The residual of the approximate solution is calculated, the linear system
is solved again with the residual as a right-hand side, and the new solution is used to
refine the old solution, thus improving its accuracy. A generalization of this idea to the
solution of optimization problems needs to address several difficulties: most importantly,
the presence of inequality constraints; the handling of optimality conditions; and the
numerical tolerances that floating-point solvers can return in practice.

For LPs this has first been developed in [9]. The approach refines primal-dual so-
lutions of the Karush-Kuhn-Tucker (KKT) conditions and comprehends scaling and
calculations in rational arithmetic. We generalize further and discuss the specific issues
due to the presence of a quadratic objective function. The fact that the general approach
carries over from LP to QP was remarked in [8]. Here we provide the details, provide
a general lemma showing how the residuals bound the primal and dual iterates, and
analyze the computational behavior of the algorithm based on an efficient implementa-
tion that is made publicly available in source code and can be used freely for research
purposes.

The paper is organized as follows. In Section 2 we define and discuss QPs and their
refined and scaled counterparts. We give one illustrating and motivating example for
scaling and refinement. In Section 3 we formulate an algorithm and prove its conver-
gence properties. In Section 4 we consider performance issues and describe how our
implementation based on SoPlex and qpOASES can be used to calculate solutions for
QPs with arbitrary precision. In Section 5 we discuss run times and provide solutions
for the Maros and Mészáros benchmark library, [13]. We conclude in Section 6 with a
discussion of the results and give directions for future research and applications of the
algorithm.

In the following we will use ‖ · ‖ for the maximum norm ‖ · ‖∞. The maximal
entry of a vector maxi{vi} is written as max{v}. Inequalities a ≤ b for a, b ∈ Qn hold
componentwise.

2 Refinement and Scaling of Quadratic Programs

In this section we collect some basic definitions and results that will be of use later on.
We consider convex optimization problems of the following form.

Definition 1 (Quadratic optimization problem (QP)). Let a symmetric matrix Q ∈
Qn×n, a matrix A ∈ Qm×n, and vectors c ∈ Qn, b ∈ Qm, l ∈ Qn be given. We consider
the quadratic optimization problem (QP)

min
x

1
2x

TQx+ cTx

s.t. Ax = b
x ≥ l

(P )
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assuming that (P ) is feasible and bounded, and Q is positive semi-definite on the feasible
set. The rounded version of this convex rational data QP will be denoted as (P̃ ).

A point x∗ ∈ Qn is a global optimum of (P ) if and only if it satisfies the Karush-
Kuhn-Tucker (KKT) conditions, [3], i.e., if multipliers y∗ ∈ Qm exist such that

Ax∗ = b (1a)

x∗ ≥ l (1b)

AT y∗ ≤ Qx∗ + c (1c)

(Qx∗ + c−AT y∗)T (x∗ − l) = 0. (1d)

The pair (x∗, y∗) is then called KKT pair of (P ). Primal feasibility is given by (1a–1b),
dual feasibility by (1c), and complementary slackness by (1d). Refinement of this system
of linear (in-)equalities is equivalent to the refinement of (P ).

Definition 2 (Refined QP). Let the QP (P ), scaling factors ∆P ,∆D ∈ Q+ and vectors
x∗ ∈ Qn, y∗ ∈ Qm be given. We define the refined QP as

min
x

1
2x

T ∆D

∆P
Qx+ (∆D ĉ)

Tx

s.t. Ax = ∆P b̂

x ≥ ∆P l̂,

(P∆)

where ĉ = Qx∗ + c − AT y∗, b̂ = b − Ax∗, and l̂ = l − x∗. The rounded version of this
refined and scaled rational data QP will be denoted as (P̃∆).

The following theorem is the basis for our theoretical and algorithmic approaches. It
is a generalization of iterative refinement for LP and was formulated and proven in [8,
Theorem 5.2]. Again, primal feasibility refers to (1a–1b), dual feasibility to (1c), and
complementary slackness to (1d).

Theorem 3 (QP Refinement). Let the QP (P ), scaling factors ∆P ,∆D ∈ Q+, vectors
x∗ ∈ Qn, y∗ ∈ Qm, and the refined QP (P∆) be given. Then for any x̂ ∈ Rn, ŷ ∈ Rm
and tolerances εP , εD, εS ≥ 0:

1. x̂ is primal feasible for (P∆) within an absolute tolerance εP if and only if x∗+ x̂
∆P

is primal feasible for (P ) within εP /∆P .

2. ŷ is dual feasible for (P∆) within an absolute tolerance εD if and only if y∗ + ŷ
∆D

is dual feasible for (P ) within εD/∆D.

3. x̂, ŷ satisfy complementary slackness for (P∆) within an absolute tolerance εS if
and only if y∗ + ŷ

∆D
, x∗ + x̂

∆P
satisfy complementary slackness for (P ) within

εS/(∆P∆D).

For illustration, we investigate the following example.

Example 4 (QP Refinement). Consider the QP with two variables

min
x

1
2 (x2

1 + x2
2) + x1 + (1 + 10−6)x2

s.t. x1 + x2 = 10−6

x1, x2 ≥ 0.

An approximate solution to a tolerance of 10−6 is x∗1 = x∗2 = 0 with dual multiplier
y∗ = 1. This solution is slightly primal and dual infeasible, but the solver can not
recognize this on this scale. The situation is depicted in Figure 1 on the left.

The point x∗ seems to be the optimal solution satisfying the equality constraint
and the brown circle representing the level curve of the objective function indicates the
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Figure 1: Illustration of nominal QP (left) and of refined QP (right) for Example 4. The
scaled (and shifted) QP (P∆) works like a zoom (and shift) for (P ), allowing to correct
the solution x∗ (orange dot) from (0, 0) to (10−6, 0).
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optimality. The corresponding violations are l̂ = (0, 0)T , b̂ = 10−6, and ĉ = (0, 10−6)T .
The refined QP is

min
x

1
2 (x2

1 + x2
2) + x2

s.t. x1 + x2 = 1
x1, x2 ≥ 0

with scalings ∆P = ∆D = 106. The optimal solution to this problem is x̂1 = 1, x̂2 = 0
with multiplier ŷ = 1. This situation is depicted in Figure 1, right. The point x∗ is
obviously not the optimal solution and the solution to the refined problem is x̂. The
refined solution is x∗+ x̂/∆P = (10−6, 0)T and y∗+ ŷ/∆D = 1 + 10−6. These values are
primal and dual feasible in the original problem.

3 Iterative Refinement for Quadratic Programming

To solve quadratic programs to arbitrary, a priori specified precisions, we apply the
refinement idea from the previous section iteratively in Algorithm 1.

Algorithm 1 expects QP data (Q,A, c, b, l) in rational precision, primal and dual
termination tolerances (εP , εD), complementary slack termination tolerance (εS), scaling
limit α > 1 and iteration limit kmax. First the rounded QP (P̃ ) is solved with a floating-
point QP solver oracle which returns optimal primal and dual solution vectors (Line 2 ).

In Line 3 the main loop begins. The primal violations for constraints (b̂, Line 4 ) and

for bounds (l̂, Line 5 ) are calculated. The maximal primal violation is saved as δP
in Line 6 . The reduced cost vector ĉ and its maximal violation δD are calculated in
Lines 7–8 . In Line 9 the scaling factor ∆k is chosen as the maximum of α∆k−1 and the
inverses of the violations δP and δD. The complementary slack violation δS is calculated
in Line 10 . If the primal, dual and complementary slack violations are already below
the specified tolerances the loop is stopped (Lines 11–12 ) and the optimal solution is
returned (Line 17 ). Else (Line 13 ) the refined, scaled, and rounded QP (P̃∆k) is solved
with the floating-point QP oracle in Line 14 . We save the floating-point optimal primal
and dual solution vectors (Line 15 ). We scale and add them to the current iterate
(xk, yk) to obtain (xk+1, yk+1), Line 16 .

Note that all calculations except the expensive solves of the QPs are done in rational
precision. Algorithm 1 uses only one scaling factor ∆k for primal and dual infeasibility
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Algorithm 1 Iterative QP Refinement (IQPR)

1: Input: (P ) in rational precision, termination tolerances εP and εD and εS , scaling
limit α > 1, iteration limit kmax

2: Initialization: ∆0 ← 1, solve (P̃ ) approximately, save optimal (x1, y1)
3: for k ← 1, 2, ..., kmax do
4: b̂← b−Axk
5: l̂← l − xk
6: δP ← max

{
0, ‖b̂‖,max{l̂}

}
7: ĉ← Qxk + c−AT yk
8: δD ← max {0,max{−ĉ}}
9: ∆k ← min

{
δ−1
P , δ−1

D , α∆k−1

}
10: δS ←

∑
i l̂iĉi

11: if δP ≤ εP and δD ≤ εD and δS ≤ εS then
12: break
13: else
14: solve (P̃∆k) approximately
15: (x∗, y∗)← KKT pair returned as optimal

16: (xk+1, yk+1)← (xk, yk) + (x∗,y∗)
∆k

17: Return: (xk, yk)

to avoid the scaling of the quadratic term of the objective. Keeping this matrix and
the constraint matrix A fixed gives QP solvers the possibility to reuse the internal
factorization of the basis system between refinements, as the transformation does not
change the basis. This allows to use efficient hotstart techniques for all solves after the
initial solve.

To investigate the performance of the algorithm we make, in analogy with the LP
case [9, Assumption 2.9], the following assumption.

Assumption 5 (QP solver accuracy). We assume that there exists ε ∈ [0, 1) and σ ≥ 0
such that the QP solver oracle returns for all rounded QPs (P̃∆k) solutions (x̄, ȳ) that
satisfy

‖Ax̄−∆k b̂‖ ≤ ε

x̄ ≥ ∆k l̂ − 1ε
Qx̄+ ∆k ĉ ≥ AT ȳ − 1ε

|(Qx̄+ ∆k ĉ−AT ȳ)T (x̄−∆k l̂)| ≤ σ

in the rational QPs (P∆k).

Note that this ε corresponds to a termination tolerance passed to a floating-point
solver, while the algorithm uses overall termination tolerances εP and εD and a scaling
limit α > 1 per iteration. We denote ε̃ = max{1/α, ε}.

Lemma 6 (Termination and residual convergence). Algorithm 1 applied to a primal and
dual feasible QP (P ) and using a QP solver that satisfies Assumption 5 will terminate
in at most

kmax = max { log(εP )/ log(ε̃), log(εD)/ log(ε̃), log(εS/σ)/(2 log(ε̃)) + 1 } (2)

iterations. Furthermore, after each iteration k = 1, 2, ... the primal-dual iterate (xk, yk)
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and the scaling factor ∆k satisfy

∆k ≥ 1/ε̃k (3a)

‖Axk − b‖ ≤ ε̃k (3b)

xk − l ≥ −1ε̃k (3c)

Qxk + c−AT yk ≥ −1ε̃k (3d)

|(Qxk + c−AT yk)T (xk − l)| ≤ σε̃2(k−1). (3e)

Proof. We prove (3) by induction over k, starting with k = 1. As ε̃ ≥ ε, the claims
(3b–3e) follow directly from Assumption 5. Using Lines 6, 4–5 , and Assumption 5 we
obtain

δP = max
{

0, ‖b̂‖,max{l̂}
}

= max{0, ‖Ax1 − b‖,max{l − x1}} ≤ ε

and with Lines 8,7 and Assumption 5

δD = max {0,max{−ĉ}} = max
{

0,max{Qx1 + c−AT y1}
}
≤ ε.

Thus from Line 9 we have

∆1 = min
{
δ−1
P , δ−1

D , α∆0

}
≥ min

{
ε−1, ε−1, α

}
≥ ε̃−1

and hence claim (3a) for the first iteration.
Assuming (3) holds for k we know that δP,k, δD,k ≤ ε̃k and ∆k ≥ 1/ε̃k. With the

scaling factor ∆k using x∗ = xk and y∗ = yk we scale the QP (P ) as in Theorem 3
and hand it to the QP solver. By Theorem 3 this scaled QP is still primal and dual
feasible and by Assumption 5 the solver hands back a solution (x̂, ŷ) with tolerance ε ≤ ε̃.
Therefore using Theorem 3 again the next refined iterate (xk+1, yk+1) has a tolerance
in QP (P ) of ε̃/∆k ≤ ε̃k+1, which proves (3b–3d).

With the same argument the solution (x̂, ŷ) violates complementary slackness by σ
in the scaled QP (Assumption 5) and the refined iterate (xk+1, yk+1) violates comple-
mentary slackness in QP (P ) by σ/∆2

k ≤ σε̃2k proving (3e).
We have now δP,k+1, δD,k+1 ≤ ε̃k+1. Also it holds that α∆k ≥ α/ε̃k ≥ 1/ε̃k+1. Line 9

of Algorithm 1 gives
∆k+1 ≥ 1/ε̃k+1,

proving (3a).
Then (2) follows by assuming the slowest convergence rate of the primal, dual and

complementary violations and by comparing this with the termination condition in
Line 11 of Algorithm 1

ε̃k ≤ εP , ε̃k ≤ εD, σε̃2(k−1) ≤ εS .

This is equivalent to (2).

The results show that even though we did not use the violation of the complemen-
tary slackness to choose the scaling factor in Algorithm 1, the complementary slackness
violation is bounded by the square of ε̃.

Remark 7 (Nonconvex QPs). Algorithm 1 can also be used to calculate high precision
KKT pairs of nonconvex QPs. If the black box QP solver hands back local solutions of
the quality specified in Assumption 5 Lemma 6 holds as well for nonconvex QPs and
Algorithm 1 returns a high precision local solution.

However, assuming strict convexity, an even stronger result holds. Inspired by the
result for the equality-constrained QP [3, Proposition 2.12] we investigate how this right-
hand side convergence of the KKT conditions is related to the primal-dual solution.
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Lemma 8 (Primal and dual solution accuracy). Let QP (P ) be given and be strictly
convex, the minimal and maximal eigenvalues of Q be λmin(Q) and λmax(Q), respectively,
and the minimal nonzero singular value of A be σmin(A). Let the KKT conditions (1)
hold for (x∗, y∗, z∗), i.e.,

Ax∗ = b (4a)

AT y∗ + z∗ = Qx∗ + c (4b)

z∗T (x∗ − l) = 0 (4c)

x∗ ≥ l (4d)

z∗ ≥ 0 (4e)

and the disturbed KKT conditions for disturbances e ∈ Qm, g, f, h ∈ Qn, and i ∈ Q hold
for (x, y, z), i.e.,

Ax = b+ e (5a)

AT y + z = Qx+ c+ g (5b)

zT (x− l) = i (5c)

x ≥ l + f (5d)

z ≥ h. (5e)

Denote

a :=
λmax(Q)‖e‖2

2σmin(A)
+ λmax(Q)λmin(Q)‖g‖2/2

d := λmax(Q)‖i− hT (x∗ − l)− z∗T f‖2.

Then
‖AT (y − y∗) + (z − z∗)‖2 ≤ a+

√
a2 + d (6)

and
‖x− x∗‖2 ≤ λmin(Q)(a+

√
a2 + d) + λmin(Q)‖g‖2 (7)

Proof. By (4a) and (5a) we have that A(x − x∗) = e and taking the Moore-Penrose
pseudoinverse A+ of A we define δ = A+e with Aδ = e and ‖δ‖2 ≤ σmin(A)−1‖e‖2.
Using this we can start to derive the dual bound by taking the difference of (4b) and
(5b)

AT (y − y∗) + (z − z∗) = Q(x− x∗) + g. (8)

Multiplying from the left with Q−1(AT (y − y∗) + (z − z∗)) transposed gives

‖AT (y − y∗) + (z − z∗)‖2Q−1 = (AT (y − y∗) + (z − z∗))T ((x− x∗) +Q−1g).

= (AT (y − y∗) + (z − z∗))TQ−1g + (y − y∗)T A(x− x∗)︸ ︷︷ ︸
Aδ

+(z − z∗)T (x− x∗).

= (AT (y − y∗) + (z − z∗))T (Q−1g + δ) + (z − z∗)T (x− x∗ − δ). (9)

The second term of (9) can be expressed as

(z − z∗)T (x− l − (x∗ − l)− δ) = zT (x− l)︸ ︷︷ ︸
i

+ z∗T (x∗ − l)︸ ︷︷ ︸
0

− zT (x∗ − l)︸ ︷︷ ︸
≥hT (x∗−l)

− z∗T (x− l)︸ ︷︷ ︸
≥z∗T f

(z − z∗)T (x− l − (x∗ − l)− δ) ≤ i− hT (x∗ − l)− z∗T f.
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With this and (9) we bound from above the term ‖AT (y− y∗) + (z− z∗)‖2Q−1 = ∗ giving
the inequality

∗ ≤ (AT (y − y∗) + (z − z∗))T (Q−1g + δ) + i− hT (x∗ − l)− z∗T f.

Taking the norm on the right and reordering terms gives

‖Q‖−1
2 ‖AT (y − y∗) + (z − z∗)‖22 ≤ ‖AT (y − y∗) + (z − z∗)‖2‖Q−1g + δ‖2

+‖i− hT (x∗ − l)− z∗T f‖2.

This is a quadratic expression in ‖AT (y − y∗) + (z − z∗)‖2 = m

m2 −m‖Q−1g + δ‖2‖Q‖2 − ‖i− hT (x∗ − l)− z∗T f‖2‖Q‖2 ≤ 0.

It has two roots, but only one is greater than zero and bounds ‖AT (y−y∗)+(z−z∗)‖2(=
m) from above

m ≤ ‖Q−1g + δ‖2‖Q‖2/2
+
√

(‖Q−1g + δ‖2‖Q‖2)2/4 + ‖i− hT (x∗ − l)− z∗T f‖2‖Q‖2.
(10)

This can be expressed as

‖AT (y − y∗) + (z − z∗)‖2 ≤ a+
√
a2 + d (11)

where a and d are defined as above. This proves (6). To prove the primal bound we
multiply equation (8) from the left with Q−1

(x− x∗) = Q−1(AT (y − y∗) + (z − z∗)− g).

Taking norms gives the inequality

‖x− x∗‖2 ≤ ‖Q−1‖2‖AT (y − y∗) + (z − z∗)‖2 + ‖Q−1g‖2. (12)

Combining the dual bound (11) and (12) we get the final primal bound

‖x− x∗‖2 ≤ λmin(Q)(a+
√
a2 + d) + λmin(Q)‖g‖2

which proves (7).

Note that λmax(Q)λmin(Q) is the condition number of Q. The above assumption and
lemmas can be summarized to a statement about the convergence of the algorithm for
a strictly convex QP.

Theorem 9 (Rate of convergence). Algorithm 1 with corresponding input and using a
QP solver satisfying Assumption 5 solving the QP (P ) that is also strictly convex has a
linear rate of convergence with a factor of ε̃1/2 for the primal iterates, i.e.

‖xk − x∗‖ ≤ ε̃1/2‖xk−1 − x∗‖,

with x∗ being the unique solution of (P ).

Proof. By Assumption 5 and Lemma 6 we know that the right-hand side errors of the
KKT conditions are bounded by

‖e‖ ≤ ε̃k, ‖g‖ ≤ ε̃k, ‖f‖ ≤ ε̃k, ‖i‖ ≤ σε̃2(k−1), ‖h‖ = 0.

Here we set the violations h of the inequality KKT multipliers z to zero and count them
as additional dual violations g for simplicity. Also note that in Lemma 8 the bound
is just depending on the norm of the right-hand side violation vectors, two different
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violation vectors with the same norm give the same bound. Therefore we just consider
the norms. Combining the above with Lemma 8 we get

‖xk − x∗‖ ≤ c1ε̃k +
√
c2ε̃k + c3ε̃2k

for the primal iterate in iteration k with constants

c1 = λmin(Q)λmax(Q)
(

( 1
λmax(Q) + λmin(Q)

2 ) + 1
(2σmin(A)

)
c2 = λmax(Q)‖z∗‖
c3 = (c1 − λmin(Q))2 + λmax(Q)σ/ε̃2.

Looking at the quotient

‖xk − x∗‖
‖xk−1 − x∗‖

≤ c1ε̃
k +

√
c2ε̃k + c3ε̃2k

c1ε̃k−1 +
√
c2ε̃k−1 + c3ε̃2(k−1)

and seeing that

‖xk − x∗‖
‖xk−1 − x∗‖

≤ ε̃k/2(c1ε̃
k/2 +

√
c2 + c3ε̃k)

ε̃(k−1)/2(c1ε̃(k−1)/2 +
√
c2 + c3ε̃k−1)

= ε̃1/2γk

with γk ≤ 1 proves the result.

This theoretical investigation shows us two things. First, we have linear residual
convergence with a rate of ε̃. In contrast to usual convergence results our algorithm
achieves this rate in practice by the use of rational computations if the floating-point
solver delivers solutions of the quality specified in Assumption 5. This is also checked
by the rational residual calculation in our algorithm in every iteration. Second, this
residual convergence implies primal iterate convergence with a linear rate of ε̃1/2 for
strictly convex QPs.

4 Implementation

Following previous work [9] on the LP case we implemented Algorithm 1 in the same
framework within the SoPlex solver [16], version 2.2.1.2, using the GNU multiple pre-
cision library (GMP) [? ] for rational computations, version 6.1.0. As underlying
QP solver we use the active-set solver qpOASES [4] version 3.2. This version of qpOASES
was originally designed for small to medium QPs (up to 1,000 variables and constraints).
Furthermore, we implemented an interface to a pre-release version of qpOASES 4.0, which
can handle larger, sparse QPs of a size up to 40,000 variables and constraints. Compared
to the matured qpOASES 3.2, this version is not yet capable of hotstarts and in some
cases less robust. Nevertheless, it allows us to study the viability of iterative refinement
on larger QPs. The source code of our implementation is available for download in a
public repository.1

In order to treat general QPs with inequalities, our implementation recovers the
form (P ) by adding one slack variable per inequality constraint. Note that not only
lower, but also upper bounds on the variables need to be considered. However, this is a
straightforward modification to our algorithm and realized in the implementation.

One advantage of using the active-set QP solver qpOASES is the returned basis infor-
mation. We use the basis in three aspects: first, to calculate dual and complementary
slack violations; second, to explicitly set nonbasic variables to their lower bounds after
the refinement step in Line 16 of Algorithm 1; and third, to compute a rational solution

1https://github.com/TobiasWeber/QPrefinement
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Table 1: IQPR parameters

parameter set s1 s2 s3 s4 s5
qpOASES version 3.2 3.2 4.0 4.0 3.2

primal tolerance (εP ) 1e-100 1e-100 1e-100 1e-100 1e-10
dual tolerance (εD) 1e-100 1e-100 1e-100 1e-100 1e-10
maxscaleincrement (α) 1e12 1e12 1e12 1e12 1e12
sparse no no yes yes no
max num backstepping (lmax) 10 10 10 10 1
refinement limit (kmax) 300 50 50 50 10
ratfac minstalls 2 0 0 51 30

defined by the corresponding system of linear equations. This is solved by a standard
LU factorization in rational arithmetic. If the resulting primal-dual solution is verified
to be primal and dual feasible, the algorithm can terminate early with an exact optimal
basic solution.

Since the LU factorization can be computationally expensive, we only perform this
step if we believe the basis to be optimal. When the QP solver returns the same basis as
“optimal” for several iterations this can be used as a heuristic indicator that the basis
might be truly optimal, even if the iteratively corrected numerical solution is not yet
exact. Hence, the number of consecutive iterations with the same basis is used to trigger
a rational basis system solve. This can be controlled by a threshold parameter called
“ratfac minstalls”, see Table 1.

If the floating-point solver fails to compute an approximately optimal solution, we
decrease the scaling factor by two orders of magnitude and try to solve the resulting QP
again. The scaling factor is reduced either until the maximum number of backstepping
rounds is reached or until the next backstepping round would result in a scaling factor
lower than in the last refinement iteration (k − 1).

Currently, the implementation has no detection mechanism for infeasible or un-
bounded QPs. Because the testset at hand contains only convex and feasible QPs,
this does not affect the numerical experiments. The default parameter set (s1) of our
implementation is given in Table 1. The other four parameter sets (s2-s5) are used for
our numerical experiments to derive either exact or inexact solutions.

We exploit the different features of the two qpOASES versions. Version 3.2 has hotstart
capabilities that allow to reuse the internal basis system factorization of the preceding
optimal basis. Therefore we start in the old optimal basis and build on the progress made
in the previous iterations instead of solving the QP from scratch at every iteration.
Additionally we increase the termination tolerance and relax other parameters that
ensure a reliable solve. This speeds up the solving process and is possible because the
inaccuracies, introduced by this in the floating-point solution, are detected anyway and
handed back to the QP solver in the next iteration for correction. If the QP solver fails
we simply change to reliable settings and resolve the same QP from the same starting
basis before downscaling. Hence, in Algorithm 1 each ‘solve’ statement means: try fast
settings first and if this fails switch to slow and reliable settings of qpOASES 3.2. These
two sets of options are given in Table 2.

For the pre-release version 4.0 we use default settings and no resolves. We either
factorize after each iteration or not at all (see Table 1).

10



Table 2: qpOASES options (version 3.2)

Option Fast Reliable

Standard settings set MPC Reliable
NZCTests enabled enabled (default)
DriftCorrection enabled enabled (default)
Ramping enabled enabled (default)
terminationTolerance 1e-3 1.1105e-9 (default)
numRefinementSteps 0 (default) 10
enableFullLITests 0 0

5 Numerical results

For the numerical experiments the standard testset of Maros and Mészáros [13] is used.
It contains 138 convex QPs that feature between two and about 90,000 variables. The
number of constraints varies from one to about 180,000 and the number of nonzeros
ranges between two and about 550,000.

We perform two different experiments. The goal of the first experiment is to solve
as many QPs from the testset as precisely as possible in order to analyze the iterative
refinement procedure computationally and to provide exact reference solutions for future
research on QP solvers. In the second experiment we want to compare qpOASES (version
3.2, no QP refinement, one solve, default settings) to low accuracy refinement (low
tolerance of 1e-10 in Algorithm 1, using also qpOASES 3.2). This allows us to investigate
whether refinement could also be beneficial in cases that do not require extremely high
accuracy, but a strictly guaranteed solution tolerance in shortest possible runtime.

Experiment 1 We use the three different parameter sets (s2-s4) given in Table 1 to
calculate exact solutions. The first set (s2) contains a primal and dual termination
tolerance of 1e-100, enables rational factorization in every iteration, and allows for 50
refinements and 10 backsteppings using a dense QP formulation with qpOASES version
3.2. In contrast the other two sets (s3, s4) with qpOASES version 4.0 use a sparse QP
formulation, either with factorization in every iteration or without factorization.

Table 3 states for each setting the number of instances which it solved exactly, for
which tolerance 1e-100 was reached, and for which it failed to produce a high-precision
solution. In total these three strategies could solve 91 out of the 138 QPs in the testset
exactly and 39 instances within tolerance 1e-100. For eight instances no high-precision
solution was computed. These “virtual best” results stated in the fifth column consider
for each QP the result of the individual parameter sets that resulted in the smallest
violation. It should be emphasized that for each of the three parameter sets there exists
at least one instance for which it produced the most accurate solution.

The last column reports the average number of nonzeros of the QPs in the three
“virtual best” categories. This suggests that for problems with less nonzeros a higher
accuracy was reached. Furthermore, one sees that the entries in the second column (set
s2) do not sum to 138 because with the dense QP formulation some of the problems do
not return from the cluster due to memory limitations. Hence the set s2 fails in total on
32 instances. For the parameter set s4 without rational factorization we see that one QP
is solved by chance exactly while for all others the algorithm terminates with violations
greater zero.

In order to solve the 197 (=33+45+118) QPs to high precision the algorithm needed
on average 8.84 refinements. This confirms the linear convergence because we bounded
the increase of the scaling factor in each iteration by α = 1012 and terminate after
reaching a tolerance of 10−100. If qpOASES would consistently return solutions with an
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Table 3: Results for the three exact parameter sets (s2-s4) over all 138 QPs in the
testset: number of instances according to terminal solution accuracy for each setting,
for the virtual best setting, and the average number of nonzeros over the instances in
the “best” categories.

Accuracy reached s2 s3 s4 best avg. nnzs

Exact (no viol.) 73 74 1 91 6.76e+03
High (≤ 1e-100) 33 45 118 39 1.45e+04
Low (> 1e-100) 11 18 18 8 9.34e+04
Fail (Not returned) 21 1 1 0

accuracy of 10−12 we would expect the algorithm to need 9 iterations (100/12 ≈ 8.33 . . .
rounded up). We see that qpOASES usually delivers solutions of a tolerance below 10−12.

Detailed results can be found in the Appendix in Tables 5, 6, and 7. If an exact
solution is found qpOASES usually returns the optimal basis in the first three iterations
(refinements). Subsequently, the corresponding basis system is solved exactly by a ratio-
nal LU factorization. For six problems we found that the objective values given in [13]
differ from our results by more than 1e-7: GOULDQP2, HS268, S268, HUESTIS, HUES-
MOD, and LISWET8. This might be due to the use of a floating-point QP solver with
termination tolerance about 1e-7 when originally computing the values reported. The
precise objective value can be found in the online material associated with this paper.

Experiment 2 In the following the iterative refinement algorithm is set to a termination
tolerance 10−10 and the rational factorization of the basis system is disabled. The refine-
ment limit is set to 10 and the backstepping limit is set to one (parameter set s5). We
compare this implementation to qpOASES 3.2 with the three predefined qpOASES settings
(MPC, Default, Reliable) that include termination tolerances of 2.2210e-7, 1.1105e-9,
and 1.1105e-9, respectively. For these fast solves we select only part of the testset, in-
cluding the 73 problems that have no more than 1,000 variables and constraints. This
corresponds to the problem sizes for which qpOASES 3.2 was originally designed. In or-
der to allow for a meaningful comparison of runtimes, the evaluation only considers QPs
which were solved by all three qpOASES 3.2 settings and by refinement to “optimality”,
where optimality was certified by qpOASES 3.2 (with its internal floating-point checks)
or rational checks in our algorithm, respectively.

An overview over the performance results is given in Table 4. We report runtime,
QP solver iterations, and the final tolerance reached, each time as arithmetic and shifted
geometric mean. To facilitate a more detailed analysis, we consider the series of subsets
“> t” of instances, for which at least one algorithm took more than t seconds. Equiv-
alently, we exclude the QPs for which all settings took at most 0.01 s, 0.1 s, 1 s, and
10 s seconds. Defining the exclusion by all instead of one method only avoids a biased
definition of these sets of increasing difficulty.

The results show that in no case the mean runtime of the refinement algorithm is
larger than the runtime of qpOASES with reliable setting. At the same time, the accuracy
reached is always significantly higher. Compared to qpOASES Default, which results in
an even lower level of precision, refinement is faster in arithmetic and slightly slower in
shifted geometric mean. The QP solver iterations of the refinement are comparable to
the MPC setting. When looking at the different subsets we see that for QPs with larger
runtime the refinement approach performs relatively better (smaller runtime, iterations
and lower tolerance) than the three qpOASES 3.2 standard settings. The refinement
guarantees the tolerance of 1e-10 if it does not fail. To achieve this tolerance, for 9 QPs
two refinements were necessary, for 21 QPs only one refinement was necessary, and for 35
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Table 4: Performance comparison for inexact solves (runtimes are in seconds).

IQPR s5 qpOASES with standard settings:
Measure subset MPC Default Reliable

Time: arith. mean
(% rat. time)

all 2.54 (0.16) 1.03 2.77 19.58
> 0.01 3.25 (0.16) 1.32 3.55 25.08
> 0.1 4.02 (0.12) 1.64 4.40 31.07
> 1 5.66 (0.12) 2.31 6.27 44.60
> 10 7.19 (0.11) 2.77 9.06 69.39

Time: shifted geo.
mean, shift=0.01
(% rat. time)

all 0.16 (1.68) 0.08 0.10 0.16
> 0.01 0.36 (0.98) 0.15 0.20 0.36
> 0.1 0.60 (0.54) 0.24 0.32 0.64
> 1 0.94 (0.49) 0.43 0.67 1.66
> 10 0.54 (1.00) 0.26 0.51 1.51

QP solver iterations:
arith. mean

all 283.75 260.53 389.92 386.96
> 0.01 362.16 332.44 496.91 493.09
> 0.1 436.67 400.96 591.35 586.96
> 1 520.91 479.38 765.59 761.56
> 10 353.00 348.25 837.15 832.75

QP solver iterations:
shifted geo. mean,
shift=1

all 38.43 36.86 62.08 61.68
> 0.01 85.18 80.86 113.98 112.72
> 0.1 108.12 101.95 124.46 123.05
> 1 105.41 100.22 144.20 142.88
> 10 36.21 35.23 69.62 69.39

Tolerance:
arith. mean

all 1.49e-12 1.29e-08 1.10e-08 2.28e-09
> 0.01 1.91e-12 1.65e-08 1.40e-08 2.92e-09
> 0.1 2.10e-12 2.03e-08 1.74e-08 3.62e-09
> 1 8.89e-13 2.21e-08 2.48e-08 4.98e-09
> 10 5.29e-14 1.42e-08 3.92e-08 7.32e-09

Tolcerance:
shifted geo. mean,
shift=1e-20

all 1.29e-16 2.14e-12 1.62e-15 4.34e-15
> 0.01 8.71e-17 1.00e-11 4.91e-15 1.13e-14
> 0.1 3.57e-17 8.45e-12 6.92e-15 2.10e-14
> 1 1.94e-17 1.08e-12 2.44e-15 6.02e-15
> 10 9.36e-19 6.86e-15 3.21e-16 2.45e-16

instances no refinement was necessary at all. The rational computation overhead stated
in brackets after the runtime and is well below 2%. The details are shown in Table 8
in the Appendix. Also note that due to exclusion of fails (which mainly occur with the
qpOASES MPC settings) the summarized results have a slight bias towards qpOASES.

6 Conclusion

We presented a novel refinement algorithm and proved linear convergence of residuals
and errors. Notably, this theoretical convergence result also carries over to our imple-
mentation due to the use of exact rational calculations. We provided high-precision
solutions for most of the QPs in the Maros and Mészáros testset, correcting inaccuracies
in optimal solution values reported in the literature. This is beneficial for future research
on QP solvers that are evaluated on this testset.
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In a second experiment we saw that iterative refinement provides proven tolerance
solutions with smaller or equal computation times compared to qpOASES with “Reliable”
solver settings. It can therefore be used as tool to increase the reliability and speed of
standard floating-point QP solvers.

If optimal solutions are needed for rigorous reasoning or to make decisions in the
real world the algorithm presented is useful because it is able to fully ensure a specified
tolerance. This tolerance then can be adapted to the necessity of the application at
hand. At the same time this comes with little overhead in rational computation time,
which is important for practical applications.

Regarding algorithmic research and solver development, our framework also provides
the possibility to compare different floating-point QP solvers by looking at the number
of refinements needed with each solver to detect optimal bases or solutions of a specified
tolerance as a measure for solver accuracy. Solver robustness can be checked precisely
because violations are computed in rational precision. In the future, the implementation
should be extended for the detection of unbounded or infeasible QPs. Also one could
try more general variable transformations, e.g. having a different scaling factor for each
variable. As a concluding remark, we hope that the idea of checking numerical results
of floating-point algorithms in exact or safe arithmetic will become a future trend when
applying or analyzing numerical algorithms.
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Table 5: Detailed results for exact solve of large QP set with pa-
rameter set s2 (Iter.=Iterations, Tol.=Tolerance, Ref.=Refinements,
Back.=Backstepping, Res.=Resolves)

QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

AUG3D optimal 3492.32 0 2.56e-113 8 0 0
AUG3DC optimal 219.36 0 00 0 0 0
AUG3DCQP optimal 218.64 540 00 1 0 0
AUG3DQP optimal 3092.52 324 2.15e-110 8 0 0
BOYD1 abort NaN NaN NaN NaN NaN NaN
BOYD2 abort NaN NaN NaN NaN NaN NaN
CONT-050 optimal 4306.67 1 00 0 0 0
CONT-100 timeout 10814.69 3 NaN 7 6 0
CONT-101 timeout 10830.68 2 NaN 7 6 0
CONT-300 abort NaN NaN NaN NaN NaN NaN
CVXQP1 L fail 15786.74 4010 55500 0 0 0
CVXQP1 M optimal 16.78 412 00 0 0 0
CVXQP1 S optimal 0.04 36 00 0 0 0
CVXQP2 M optimal 25.97 651 00 0 0 0
CVXQP2 S optimal 0.01 62 00 0 0 0
CVXQP3 L timeout 10803.72 2990 NaN 1 0 0
CVXQP3 M optimal 5.95 231 00 1 0 0
CVXQP3 S optimal 0.00 22 00 0 0 0
DPKLO1 optimal 2.23 0 00 0 0 0
DTOC3 fail 19121.42 0 4.40e-15 0 0 0
DUAL1 optimal 0.26 26 00 1 0 0
DUAL2 optimal 1.05 4 00 1 0 0
DUAL3 optimal 1.90 14 00 1 0 0
DUAL4 optimal 0.21 13 00 0 0 0
DUALC1 optimal 0.11 31 00 0 0 0
DUALC2 optimal 0.07 28 00 0 0 0
DUALC5 optimal 0.07 3 00 0 0 0
DUALC8 optimal 0.39 13 00 0 0 0
EXDATA optimal 8964.52 6738 00 1 0 0
GENHS28 optimal 0.00 0 00 0 0 0
GOULDQP2 inconsistent 6.70 585 00 2 0 0
GOULDQP3 optimal 1.84 176 00 0 0 0
HS118 optimal 0.00 24 00 0 0 0
HS21 optimal 0.00 3 00 0 0 0
HS268 inconsistent 0.00 0 00 0 0 0
HS35 optimal 0.00 1 00 0 0 0
HS35MOD optimal 0.00 0 00 0 0 0
HS51 optimal 0.00 0 00 0 0 0
HS52 optimal 0.00 0 00 0 0 0
HS53 optimal 0.00 0 00 0 0 0
HS76 optimal 0.00 4 00 0 0 0
HUESTIS inconsistent 9782.42 554 00 0 0 0
HUES-MOD inconsistent 9408.64 554 00 0 0 0
KSIP optimal 31.56 1080 00 1 0 0
LASER optimal 593.20 2838 00 0 0 0
LOTSCHD optimal 0.00 5 00 0 0 0
MOSARQP1 optimal 445.13 1528 00 0 0 0
MOSARQP2 optimal 21.45 332 00 0 0 0
PRIMAL1 optimal 0.51 77 00 0 0 0
PRIMAL2 optimal 2.66 94 00 0 0 0

continued on next page
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QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

PRIMAL3 optimal 4.37 117 00 0 0 0
PRIMAL4 optimal 21.04 88 00 0 0 0
PRIMALC1 optimal 0.11 234 00 0 0 0
PRIMALC2 optimal 0.17 237 00 0 0 0
PRIMALC5 optimal 0.23 288 00 0 0 0
PRIMALC8 optimal 1.86 515 00 0 0 0
Q25FV47 optimal 372.89 7362 00 0 0 0
QADLITTL optimal 0.09 232 00 0 0 0
QAFIRO optimal 0.00 30 6.15e-107 7 0 0
QBANDM optimal 2.93 1164 00 0 0 0
QBEACONF optimal 0.91 305 8.07e-110 9 0 0
QBORE3D optimal 0.87 536 1.97e-111 9 0 0
QBRANDY optimal 1.07 450 4.86e-108 8 0 0
QCAPRI optimal 2.95 1051 1.76e-106 8 0 1
QE226 optimal 4.66 1396 1.71e-101 8 0 0
QETAMACR optimal 4.75 559 5.17e-102 9 0 0
QFFFFF80 error 44.78 1079 NaN 9 3 5
QFORPLAN optimal 2.20 1174 00 0 0 0
QGFRDXPN optimal 29.31 1423 00 0 0 0
QGROW15 optimal 8.11 632 2.54e-105 8 0 0
QGROW22 optimal 32.92 944 2.86e-109 10 0 0
QGROW7 optimal 0.83 298 7.99e-112 8 0 0
QISRAEL optimal 0.38 290 00 0 0 0
QPCBLEND optimal 0.06 66 00 1 0 0
QPCBOEI1 optimal 3.64 435 00 1 0 0
QPCBOEI2 optimal 0.23 175 00 0 0 0
QPCSTAIR optimal 2.76 257 00 0 0 0
QPILOTNO optimal 573.39 7442 1.99e-102 13 0 0
QPTEST optimal 0.00 1 00 0 0 0
QRECIPE optimal 0.07 48 9.74e-110 7 0 0
QSC205 optimal 0.78 106 1.50e-107 8 0 0
QSCAGR25 optimal 6.17 1076 00 0 0 0
QSCAGR7 optimal 0.14 329 00 0 0 0
QSCFXM1 optimal 8.05 801 1.13e-112 11 0 1
QSCFXM2 optimal 81.35 1891 1.25e-108 10 0 0
QSCFXM3 optimal 319.56 2510 1.77e-107 10 0 0
QSCORPIO optimal 2.43 233 1.08e-101 7 0 0
QSCRS8 optimal 49.19 2016 00 1 0 0
QSCSD1 optimal 8.78 2054 00 1 0 0
QSCSD6 optimal 106.56 6015 4.11e-101 9 0 0
QSCSD8 optimal 1560.58 19564 2.22e-104 8 0 0
QSCTAP1 optimal 11.22 1474 2.63e-103 8 0 0
QSCTAP2 optimal 860.50 3862 6.58e-113 10 0 0
QSCTAP3 optimal 2156.04 6964 2.49e-101 8 0 0
QSEBA optimal 26.60 1677 00 0 0 0
QSHARE1B optimal 0.51 782 00 1 0 0
QSHARE2B optimal 0.19 359 00 1 0 0
QSHELL optimal 119.14 3306 7.69e-109 9 0 1
QSHIP04L optimal 398.29 4847 1.67e-106 8 0 0
QSHIP04S optimal 130.24 2908 2.11e-107 8 0 1
QSHIP08L optimal 3711.96 7911 3.68e-102 8 0 0
QSHIP08S optimal 738.69 3997 1.86e-110 9 0 0
QSHIP12L optimal 8386.98 9765 4.22e-109 8 0 1
QSHIP12S optimal 1176.10 3821 2.30e-109 8 0 0

continued on next page
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QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

QSIERRA error 996.02 6421 NaN 0 0 1
QSTAIR optimal 13.43 1136 7.18e-111 9 1 2
QSTANDAT optimal 26.45 1222 00 3 0 0
S268 inconsistent 0.00 0 00 0 0 0
STADAT1 optimal 8013.74 9995 00 0 0 0
STADAT2 optimal 6437.65 6527 00 1 0 0
STADAT3 timeout 18337.54 2144 NaN 0 0 1
STCQP1 optimal 604.13 353 1.05e-103 7 0 0
STCQP2 optimal 419.60 105 00 0 0 0
TAME optimal 0.00 0 00 0 0 0
VALUES optimal 0.10 143 00 2 0 1
YAO optimal 659.58 2001 00 1 0 0
ZECEVIC2 optimal 0.00 3 00 0 0 0
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Table 6: Detailed results for exact solve of large QP set with pa-
rameter set s3 (Iter.=Iterations, Tol.=Tolerance, Ref.=Refinements,
Back.=Backstepping, Res.=Resolves)

QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

AUG2D timeout 10865.56 0 NaN 1 0 0
AUG2DC timeout 10836.45 0 NaN 6 5 0
AUG2DCQP optimal 155.71 0 1.47e-101 8 0 0
AUG2DQP timeout 10801.84 0 NaN 6 5 0
AUG3D error 7.60 0 NaN 1 0 0
AUG3DC optimal 112.66 0 00 0 0 0
AUG3DCQP optimal 19.50 0 00 0 0 0
AUG3DQP optimal 7.62 0 00 0 0 0
BOYD2 abort NaN NaN NaN NaN NaN NaN
CONT-050 optimal 4224.16 0 00 0 0 0
CONT-100 timeout 10806.77 0 NaN 7 6 0
CONT-101 timeout 10809.28 0 NaN 7 6 0
CONT-200 timeout 10802.04 0 NaN 7 6 0
CONT-201 timeout 10801.56 0 NaN 7 6 0
CONT-300 abort NaN NaN NaN NaN NaN NaN
CVXQP1 L optimal 6641.26 0 1.90e-101 9 0 0
CVXQP1 M optimal 8.02 0 00 0 0 0
CVXQP1 S optimal 0.02 0 00 0 0 0
CVXQP2 L timeout 11041.07 0 NaN 5 4 0
CVXQP2 M optimal 19.13 0 00 0 0 0
CVXQP2 S optimal 0.03 0 2.25e-110 7 0 0
CVXQP3 L error 7587.33 0 NaN 6 1 0
CVXQP3 M optimal 2.33 0 00 0 0 0
CVXQP3 S reached 0.48 0 NaN 50 0 0
DPKLO1 optimal 2.26 0 00 0 0 0
DTOC3 optimal 2611.08 0 00 0 0 0
DUAL1 optimal 0.15 0 00 0 0 0
DUAL2 optimal 0.53 0 00 0 0 0
DUAL3 optimal 0.78 0 00 0 0 0
DUAL4 optimal 0.20 0 00 0 0 0
DUALC1 optimal 0.07 0 00 0 0 0
DUALC2 optimal 0.05 0 00 0 0 0
DUALC5 optimal 0.08 0 00 0 0 0
DUALC8 optimal 0.19 0 00 0 0 0
EXDATA optimal 1407.82 0 00 0 0 0
GENHS28 optimal 0.00 0 00 0 0 0
GOULDQP2 inconsistent 0.24 0 1.50e-110 7 0 0
GOULDQP3 optimal 0.11 0 00 0 0 0
HS118 optimal 0.00 0 00 0 0 0
HS21 optimal 0.00 0 00 0 0 0
HS268 inconsistent 0.00 0 00 0 0 0
HS35 optimal 0.00 0 00 0 0 0
HS35MOD optimal 0.00 0 00 0 0 0
HS51 optimal 0.00 0 3.14e-108 6 0 0
HS52 optimal 0.00 0 00 0 0 0
HS53 optimal 0.00 0 00 0 0 0
HS76 optimal 0.00 0 00 0 0 0
HUESTIS inconsistent 40.17 0 00 0 0 0
HUES-MOD inconsistent 21.27 0 00 0 0 0
KSIP optimal 2.38 0 00 0 0 0

continued on next page
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QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

LASER optimal 41.47 0 00 0 0 0
LISWET1 optimal 57.85 0 00 0 0 0
LISWET10 optimal 645.20 0 1.60e-105 15 0 0
LISWET11 optimal 54.26 0 00 0 0 0
LISWET12 optimal 63.22 0 00 0 0 0
LISWET2 optimal 704.57 0 4.17e-107 17 0 0
LISWET3 optimal 306.45 0 1.20e-101 14 0 0
LISWET4 optimal 317.64 0 2.60e-107 15 0 0
LISWET5 optimal 324.42 0 4.27e-106 15 0 0
LISWET6 optimal 325.27 0 3.68e-102 14 0 0
LISWET7 optimal 54.87 0 00 0 0 0
LISWET8 inconsistent 56.98 0 00 0 0 0
LISWET9 optimal 64.09 0 00 0 0 0
LOTSCHD optimal 0.00 0 00 0 0 0
MOSARQP1 optimal 0.96 0 00 0 0 0
MOSARQP2 optimal 0.52 0 00 0 0 0
POWELL20 optimal 44.65 0 00 0 0 0
PRIMAL1 optimal 0.20 0 00 0 0 0
PRIMAL2 optimal 0.71 0 00 0 0 0
PRIMAL3 optimal 1.45 0 00 0 0 0
PRIMAL4 optimal 0.76 0 00 0 0 0
PRIMALC1 optimal 0.01 0 00 0 0 0
PRIMALC2 optimal 0.01 0 00 0 0 0
PRIMALC5 optimal 0.01 0 00 0 0 0
PRIMALC8 optimal 0.02 0 00 0 0 0
Q25FV47 optimal 9.14 0 3.75e-114 9 0 0
QADLITTL optimal 0.01 0 00 0 0 0
QAFIRO optimal 0.00 0 00 0 0 0
QBANDM optimal 0.20 0 1.17e-103 6 0 0
QBEACONF inconsistent 0.16 0 NaN 50 0 0
QBORE3D inconsistent 0.18 0 NaN 50 0 0
QBRANDY optimal 0.18 0 4.04e-106 9 0 0
QCAPRI optimal 0.11 0 00 0 0 0
QE226 optimal 0.19 0 4.36e-107 8 0 0
QETAMACR optimal 1.24 0 3.85e-106 10 0 0
QFFFFF80 optimal 0.99 0 3.05e-114 9 0 0
QFORPLAN optimal 0.23 0 1.88e-113 8 0 0
QGFRDXPN optimal 0.45 0 3.34e-104 9 0 0
QGROW15 optimal 0.37 0 00 0 0 0
QGROW22 optimal 0.90 0 00 0 0 0
QGROW7 optimal 0.22 0 00 0 0 0
QISRAEL optimal 0.11 0 00 0 0 0
QPCBLEND optimal 0.03 0 00 0 0 0
QPCBOEI1 optimal 0.58 0 5.70e-114 10 0 0
QPCBOEI2 optimal 0.10 0 00 0 0 0
QPCSTAIR optimal 0.96 0 1.04e-109 11 0 0
QPILOTNO inconsistent 40.49 0 NaN 50 0 0
QPTEST optimal 0.00 0 00 0 0 0
QRECIPE inconsistent 0.04 0 NaN 50 0 0
QSC205 optimal 0.30 0 1.27e-107 11 0 0
QSCAGR25 optimal 0.32 0 1.06e-104 7 0 0
QSCAGR7 optimal 0.02 0 3.71e-107 8 0 0
QSCFXM1 optimal 0.20 0 1.79e-112 7 0 0
QSCFXM2 optimal 0.73 0 5.01e-112 9 0 0
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QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

QSCFXM3 optimal 1.46 0 3.59e-101 8 0 0
QSCORPIO optimal 0.16 0 2.31e-101 8 0 0
QSCRS8 optimal 0.36 0 1.58e-108 13 0 0
QSCSD1 optimal 0.12 0 7.72e-110 7 0 0
QSCSD6 optimal 0.18 0 2.69e-111 7 0 0
QSCSD8 optimal 1.16 0 00 0 0 0
QSCTAP1 optimal 0.18 0 6.15e-106 7 0 0
QSCTAP2 optimal 0.55 0 5.86e-111 6 0 0
QSCTAP3 optimal 1.04 0 00 0 0 0
QSEBA optimal 0.24 0 1.15e-103 9 0 0
QSHARE1B optimal 0.07 0 00 0 0 0
QSHARE2B optimal 0.04 0 00 0 0 0
QSHELL optimal 0.82 0 3.16e-103 9 0 0
QSHIP04L optimal 0.60 0 7.13e-110 9 0 0
QSHIP04S optimal 0.43 0 5.88e-109 9 0 0
QSHIP08L optimal 2.14 0 2.31e-110 7 0 0
QSHIP08S optimal 1.21 0 2.31e-108 9 0 0
QSHIP12L optimal 2.78 0 3.71e-113 8 0 0
QSHIP12S optimal 3.00 0 2.82e-104 9 0 0
QSIERRA error 0.95 0 NaN 6 0 0
QSTAIR optimal 0.58 0 4.32e-101 8 0 0
QSTANDAT optimal 0.06 0 3.62e-107 7 0 0
S268 inconsistent 0.00 0 00 0 0 0
STADAT1 optimal 9.82 0 00 0 0 0
STADAT2 optimal 9.89 0 00 0 0 0
STADAT3 optimal 40.23 0 00 0 0 0
STCQP1 optimal 47.09 0 1.91e-107 11 0 0
STCQP2 optimal 25.77 0 5.65e-102 9 0 0
TAME optimal 0.00 0 00 0 0 0
UBH1 optimal 136.35 0 00 0 0 0
VALUES optimal 0.03 0 00 0 0 0
YAO optimal 1.53 0 00 0 0 0
ZECEVIC2 optimal 0.00 0 00 0 0 0
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Table 7: Detailed results for exact solve of large QP set with pa-
rameter set s4 (Iter.=Iterations, Tol.=Tolerance, Ref.=Refinements,
Back.=Backstepping, Res.=Resolves)

QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

AUG2D error 55.14 0 NaN 1 0 0
AUG2DC optimal 56.77 0 4.76e-109 7 0 0
AUG2DCQP optimal 154.49 0 1.47e-101 8 0 0
AUG2DQP optimal 320.54 0 3.10e-107 7 0 0
AUG3D error 1.54 0 NaN 1 0 0
AUG3DC optimal 6.38 0 7.59e-108 7 0 0
AUG3DCQP optimal 4.73 0 1.52e-102 6 0 0
AUG3DQP optimal 3.31 0 8.00e-103 6 0 0
BOYD2 abort NaN NaN NaN NaN NaN NaN
CONT-050 optimal 53.31 0 2.25e-108 8 0 0
CONT-100 optimal 1076.87 0 2.86e-102 7 0 0
CONT-101 optimal 1029.04 0 5.89e-101 7 0 0
CONT-200 timeout 13506.53 0 NaN 4 0 0
CONT-201 timeout 11449.02 0 NaN 3 0 0
CONT-300 abort NaN NaN NaN NaN NaN NaN
CVXQP1 L optimal 6853.92 0 1.90e-101 9 0 0
CVXQP1 M optimal 5.74 0 4.34e-107 9 0 0
CVXQP1 S optimal 0.05 0 8.55e-102 8 0 0
CVXQP2 L optimal 550.82 0 9.00e-109 9 0 0
CVXQP2 M optimal 0.98 0 1.12e-108 9 0 0
CVXQP2 S optimal 0.02 0 2.25e-110 7 0 0
CVXQP3 L error 7293.07 0 NaN 6 1 0
CVXQP3 M optimal 18.06 0 3.73e-111 9 0 0
CVXQP3 S reached 0.45 0 NaN 50 0 0
DPKLO1 optimal 0.09 0 8.39e-108 9 0 0
DTOC3 optimal 112.18 0 1.48e-114 7 0 0
DUAL1 optimal 0.07 0 3.21e-103 10 0 0
DUAL2 optimal 0.06 0 1.54e-101 6 0 0
DUAL3 optimal 0.06 0 2.48e-103 6 0 0
DUAL4 optimal 0.04 0 1.37e-104 6 0 0
DUALC1 optimal 0.05 0 8.05e-106 6 0 0
DUALC2 optimal 0.07 0 1.44e-106 6 0 0
DUALC5 optimal 0.06 0 6.55e-107 6 0 0
DUALC8 optimal 0.22 0 7.30e-105 6 0 0
EXDATA error 560.71 0 NaN 5 0 0
GENHS28 optimal 0.00 0 1.25e-110 6 0 0
GOULDQP2 inconsistent 0.22 0 1.50e-110 7 0 0
GOULDQP3 optimal 0.36 0 4.48e-108 11 0 0
HS118 inconsistent 0.02 0 NaN 50 0 0
HS21 optimal 0.00 0 00 0 0 0
HS268 inconsistent 0.00 0 6.35e-112 9 0 0
HS35 optimal 0.00 0 9.00e-106 6 0 0
HS35MOD optimal 0.00 0 4.03e-108 6 0 0
HS51 optimal 0.00 0 3.14e-108 6 0 0
HS52 optimal 0.00 0 4.97e-106 6 0 0
HS53 optimal 0.00 0 2.34e-108 6 0 0
HS76 optimal 0.00 0 3.83e-108 6 0 0
HUESTIS inconsistent 37.99 0 6.05e-104 7 0 0
HUES-MOD inconsistent 18.39 0 4.21e-108 7 0 0
KSIP optimal 2.11 0 3.89e-105 6 0 0
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QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

LASER optimal 2.94 0 7.30e-105 12 0 0
LISWET1 optimal 768.27 0 1.01e-107 15 0 0
LISWET10 optimal 638.05 0 1.60e-105 15 0 0
LISWET11 optimal 586.91 0 4.47e-103 13 0 0
LISWET12 optimal 574.81 0 6.47e-106 12 0 0
LISWET2 optimal 699.25 0 4.17e-107 17 0 0
LISWET3 optimal 299.09 0 1.20e-101 14 0 0
LISWET4 optimal 309.00 0 2.60e-107 15 0 0
LISWET5 optimal 312.78 0 4.27e-106 15 0 0
LISWET6 optimal 316.60 0 3.68e-102 14 0 0
LISWET7 optimal 1189.62 0 3.11e-108 37 0 0
LISWET8 inconsistent 659.38 0 1.63e-104 15 0 0
LISWET9 optimal 671.45 0 2.04e-104 10 0 0
LOTSCHD optimal 0.00 0 2.70e-107 6 0 0
MOSARQP1 optimal 2.14 0 2.01e-115 10 0 0
MOSARQP2 optimal 0.83 0 1.11e-107 9 0 0
POWELL20 optimal 127.81 0 2.82e-110 9 0 0
PRIMAL1 optimal 0.14 0 1.35e-112 7 0 0
PRIMAL2 optimal 0.27 0 2.38e-103 7 0 0
PRIMAL3 optimal 0.39 0 1.38e-102 6 0 0
PRIMAL4 optimal 0.72 0 1.06e-112 7 0 0
PRIMALC1 optimal 0.04 0 1.56e-104 6 0 0
PRIMALC2 optimal 0.01 0 8.59e-107 6 0 0
PRIMALC5 optimal 0.01 0 1.63e-103 6 0 0
PRIMALC8 inconsistent 0.15 0 NaN 50 0 0
Q25FV47 optimal 9.15 0 3.75e-114 9 0 0
QADLITTL optimal 0.03 0 2.11e-111 7 0 0
QAFIRO error 0.01 0 NaN 9 0 0
QBANDM optimal 0.24 0 1.17e-103 6 0 0
QBEACONF inconsistent 0.21 0 NaN 50 0 0
QBORE3D inconsistent 0.15 0 NaN 50 0 0
QBRANDY optimal 0.18 0 4.04e-106 9 0 0
QCAPRI optimal 0.27 0 8.03e-116 10 0 0
QE226 optimal 0.21 0 4.36e-107 8 0 0
QETAMACR optimal 1.24 0 3.85e-106 10 0 0
QFFFFF80 optimal 0.97 0 3.05e-114 9 0 0
QFORPLAN optimal 0.23 0 1.88e-113 8 0 0
QGFRDXPN optimal 0.41 0 3.34e-104 9 0 0
QGROW15 optimal 0.32 0 2.68e-107 9 0 0
QGROW22 optimal 0.58 0 1.77e-107 9 0 0
QGROW7 optimal 0.10 0 4.66e-109 9 0 0
QISRAEL optimal 0.19 0 9.15e-104 9 0 0
QPCBLEND optimal 0.03 0 4.29e-114 9 0 0
QPCBOEI1 optimal 0.50 0 5.70e-114 10 0 0
QPCBOEI2 optimal 0.12 0 6.52e-105 9 0 0
QPCSTAIR optimal 0.95 0 1.04e-109 11 0 0
QPILOTNO inconsistent 40.22 0 NaN 50 0 0
QPTEST optimal 0.00 0 2.66e-110 6 0 0
QRECIPE inconsistent 0.02 0 NaN 50 0 0
QSC205 optimal 0.27 0 1.27e-107 11 0 0
QSCAGR25 optimal 0.32 0 1.06e-104 7 0 0
QSCAGR7 optimal 0.02 0 3.71e-107 8 0 0
QSCFXM1 optimal 0.16 0 1.79e-112 7 0 0
QSCFXM2 optimal 0.68 0 5.01e-112 9 0 0
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QP Name Status Time Iter. Tol. Ref. Back. Res.
[s] [#] [-] [#] [#] [#]

QSCFXM3 optimal 1.50 0 3.59e-101 8 0 0
QSCORPIO optimal 0.16 0 2.31e-101 8 0 0
QSCRS8 optimal 0.36 0 1.58e-108 13 0 0
QSCSD1 optimal 0.09 0 7.72e-110 7 0 0
QSCSD6 optimal 0.23 0 2.69e-111 7 0 0
QSCSD8 optimal 8.62 0 2.23e-106 10 1 0
QSCTAP1 optimal 0.19 0 6.15e-106 7 0 0
QSCTAP2 optimal 0.55 0 5.86e-111 6 0 0
QSCTAP3 optimal 0.92 0 7.96e-110 6 0 0
QSEBA optimal 0.30 0 1.15e-103 9 0 0
QSHARE1B optimal 0.04 0 5.84e-112 7 0 0
QSHARE2B optimal 0.05 0 1.65e-105 9 0 0
QSHELL optimal 0.80 0 3.16e-103 9 0 0
QSHIP04L optimal 0.58 0 7.13e-110 9 0 0
QSHIP04S optimal 0.43 0 5.88e-109 9 0 0
QSHIP08L optimal 2.06 0 2.31e-110 7 0 0
QSHIP08S optimal 1.18 0 2.31e-108 9 0 0
QSHIP12L optimal 2.67 0 3.71e-113 8 0 0
QSHIP12S optimal 2.92 0 2.82e-104 9 0 0
QSIERRA error 0.95 0 NaN 6 0 0
QSTAIR optimal 0.66 0 4.32e-101 8 0 0
QSTANDAT optimal 0.11 0 3.62e-107 7 0 0
S268 inconsistent 0.00 0 6.35e-112 9 0 0
STADAT1 optimal 15.69 0 2.28e-107 8 0 0
STADAT2 optimal 16.69 0 2.33e-110 11 0 0
STADAT3 optimal 116.94 0 8.80e-104 12 1 0
STCQP1 optimal 47.31 0 1.91e-107 11 0 0
STCQP2 optimal 25.51 0 5.65e-102 9 0 0
TAME optimal 0.00 0 3.12e-112 6 0 0
UBH1 optimal 203.99 0 3.28e-111 7 0 0
VALUES inconsistent 0.08 0 NaN 50 0 0
YAO optimal 23.19 0 1.58e-106 10 0 0
ZECEVIC2 optimal 0.00 0 2.66e-110 6 0 0
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Table 8: Detailed results for inexact and fast solves of medium QP
set with parameter set s5 and the three standard qpOASES option sets
(Iter.=Iterations, Tol.=Tolerance)

Refinement qpOASES with standard settings:
Tol. 1e-12 MPC Default Reliable

QP Name Time Iter. (Ref.) Tol. Time Iter. Tol. Time Iter. Tol. Time Iter. Tol.
[s] [#] ([#]) [-] [s] [#] [-] [s] [#] [-] [s] [#] [-]

CVXQP1 M 9.53 412 (1) 8.50e-21 6.94 404 2.17e-10 23.92 1705 2.21e-11 169.24 1705 2.34e-11
CVXQP1 S 0.02 36 (0) 2.73e-13 0.02 36 4.05e-12 0.02 139 4.39e-13 0.06 139 3.88e-13
CVXQP2 M 10.50 651 (0) 1.05e-12 9.48 663 5.65e-11 6.84 712 1.50e-12 44.61 713 8.41e-13
CVXQP2 S 0.02 62 (0) 7.47e-14 0.02 60 1.29e-11 0.01 68 9.94e-14 0.01 68 5.82e-14
CVXQP3 M 4.52 231 (2) 8.10e-22 3.86 229 5.40e-09 79.12 3867 3.95e-10 307.04 3869 3.20e-10
CVXQP3 S 0.02 22 (0) 7.18e-12 0.02 24 5.30e-11 0.07 189 4.73e-13 0.05 181 2.50e-13
DPKLO1 0.02 0 (0) 2.67e-14 0.02 0 2.67e-14 0.14 321 5.75e-15 0.31 321 7.32e-15
DUAL1 0.03 26 (1) 5.14e-17 0.02 28 1.09e-11 0.04 75 8.78e-16 0.02 75 7.06e-16
DUAL2 0.04 4 (1) 6.32e-17 0.03 4 3.05e-11 0.05 92 6.06e-16 0.05 92 7.44e-16
DUAL3 0.05 14 (1) 2.53e-17 0.03 14 1.68e-12 0.06 97 1.03e-15 0.06 97 9.27e-16
DUAL4 0.01 13 (0) 1.01e-15 0.01 13 1.51e-11 0.03 62 1.04e-15 0.02 62 8.03e-16
DUALC1 0.08 31 (0) 4.40e-12 0.01 31 2.18e-10 0.01 4 6.20e-13 0.00 4 6.25e-13
DUALC2 0.14 28 (1) 1.91e-21 0.01 30 2.17e-09 0.00 5 2.33e-13 0.00 5 2.73e-13
DUALC5 0.10 3 (0) 3.32e-13 0.01 3 1.30e-09 0.01 5 2.68e-13 0.00 5 8.70e-14
DUALC8 0.60 13 (1) 6.10e-19 0.02 11 8.95e-10 0.01 6 5.15e-11 0.01 0 NaN
GENHS28 0.00 0 (0) 3.47e-16 0.00 0 3.47e-16 0.00 14 6.80e-16 0.00 14 5.13e-16
GOULDQP2 6.53 585 (2) 9.00e-21 3.77 573 7.77e-14 15.44 2409 1.13e-09 247.95 2409 1.13e-09
GOULDQP3 1.68 176 (0) 7.52e-15 1.54 176 5.94e-13 2.98 740 8.40e-15 17.52 740 8.16e-15
HS118 0.00 24 (0) 4.71e-15 0.00 24 6.76e-13 0.00 27 6.92e-15 0.00 27 5.56e-15
HS21 0.00 3 (0) 8.80e-16 0.00 3 1.28e-17 0.00 1 5.55e-17 0.00 1 5.55e-17
HS268 0.00 0 (1) 1.69e-16 0.00 0 2.62e-12 0.00 11 8.60e-07 0.00 12 7.87e-13
HS35 0.00 1 (0) 3.61e-16 0.00 1 2.22e-16 0.00 4 7.77e-16 0.00 4 3.06e-16
HS35MOD 0.00 0 (0) 1.01e-15 0.00 0 9.98e-16 0.00 4 1.66e-16 0.00 4 1.66e-16
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Refinement qpOASES with standard settings:
Tol. 1e-12 MPC Default Reliable

QP Name Time Iter. (Ref.) Tol. Time Iter. Tol. Time Iter. Tol. Time Iter. Tol.
[s] [#] ([#]) [-] [s] [#] [-] [s] [#] [-] [s] [#] [-]

HS51 0.00 0 (0) 2.54e-16 0.00 0 2.54e-16 0.00 5 8.16e-15 0.00 5 8.16e-15
HS52 0.00 0 (0) 1.22e-15 0.00 0 1.22e-15 0.00 10 2.29e-15 0.00 10 1.13e-15
HS53 0.00 0 (0) 3.89e-16 0.00 0 3.89e-16 0.00 9 1.00e-15 0.00 9 8.30e-16
HS76 0.00 4 (0) 3.16e-17 0.00 4 2.78e-16 0.00 4 6.36e-16 0.00 4 6.36e-16
KSIP 24.26 1080 (1) 1.63e-18 0.15 1088 3.61e-15 0.21 1019 1.89e-16 0.20 1019 3.68e-17
LOTSCHD 0.00 5 (0) 8.82e-15 0.00 5 5.30e-13 0.00 18 1.82e-14 0.00 18 2.27e-14
MOSARQP2 18.25 332 (0) 1.18e-15 2.54 332 6.33e-13 8.99 1012 1.83e-15 317.07 1012 1.32e-15
PRIMAL1 0.38 77 (0) 1.92e-16 0.17 75 1.76e-11 0.50 399 2.29e-16 6.14 399 1.05e-15
PRIMAL2 3.49 94 (0) 8.16e-16 0.52 96 4.02e-11 3.04 742 1.45e-15 85.84 742 1.68e-15
PRIMAL3 2.95 117 (0) 1.21e-15 0.69 101 4.77e-11 4.86 841 1.48e-15 134.65 841 1.83e-16
PRIMALC1 0.17 234 (1) 2.69e-22 0.10 222 2.47e-09 0.02 27 6.50e-13 0.01 27 1.01e-12
PRIMALC2 0.16 237 (1) 1.01e-22 0.11 237 6.00e-13 0.00 10 8.05e-16 0.00 10 1.66e-13
PRIMALC5 0.27 288 (1) 7.11e-23 0.17 292 3.15e-10 0.03 23 2.50e-14 0.02 23 2.58e-14
PRIMALC8 2.76 515 (1) 3.87e-17 0.70 519 2.34e-09 0.07 25 1.91e-14 0.05 26 4.08e-12
QADLITTL 0.05 234 (1) 1.92e-17 0.03 189 5.93e-09 0.02 132 3.31e-13 0.02 124 1.39e-10
QAFIRO 0.00 30 (0) 5.49e-15 0.00 29 8.37e-11 0.00 16 3.48e-15 0.00 16 3.48e-15
QBANDM 2.85 1164 (0) 1.54e-13 1.59 870 1.61e-08 5.43 1512 2.23e-13 7.69 1512 9.62e-14
QBEACONF 0.43 304 (2) 1.18e-18 0.24 302 2.44e-08 0.09 133 1.30e-11 0.09 133 1.31e-11
QBORE3D 0.78 522 (1) 5.27e-13 0.25 155 NaN 0.30 221 4.61e-13 0.31 221 2.76e-11
QBRANDY 0.56 444 (0) 4.69e-12 0.28 414 2.53e-08 0.85 854 2.43e-13 1.16 854 3.13e-13
QCAPRI 2.69 1050 (1) 3.62e-19 1.06 1008 9.68e-08 0.64 457 4.83e-10 0.91 457 4.34e-10
QE226 3.24 1393 (1) 1.07e-13 0.95 1431 2.59e-08 1.17 825 2.36e-14 2.07 813 3.78e-14
QETAMACR 4.12 558 (2) 6.05e-16 2.15 493 2.14e-09 7.86 1354 2.30e-07 23.13 1354 2.30e-07
QFFFFF80 19.05 1008 (1) 2.26e-13 7.76 1005 9.90e-08 20.85 2293 1.59e-11 73.22 1722 NaN
QFORPLAN 2.21 1180 (1) 7.31e-22 1.53 1930 2.39e+06 1.28 796 8.03e-10 1.81 804 7.13e-10
QGROW15 4.07 629 (1) 8.55e-18 2.66 531 1.04e-07 3.29 600 4.28e-09 4.17 589 6.40e-09
QGROW22 15.30 934 (2) 1.52e-20 7.62 621 1.14e-07 10.71 888 3.69e-07 14.64 881 4.97e-08
QGROW7 0.45 296 (1) 1.56e-19 0.28 266 5.07e-08 0.42 340 1.88e-09 0.45 298 3.22e-09
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Refinement qpOASES with standard settings:
Tol. 1e-12 MPC Default Reliable

QP Name Time Iter. (Ref.) Tol. Time Iter. Tol. Time Iter. Tol. Time Iter. Tol.
[s] [#] ([#]) [-] [s] [#] [-] [s] [#] [-] [s] [#] [-]

QISRAEL 0.41 290 (0) 3.11e-12 0.11 360 3.99e-08 0.08 258 4.81e-12 0.12 258 5.03e-12
QPCBLEND 0.03 66 (1) 2.25e-16 0.01 64 8.38e-14 0.02 176 7.56e-16 0.02 176 9.67e-16
QPCBOEI1 3.18 435 (2) 2.12e-13 1.08 441 2.15e-09 1.32 652 2.74e-11 7.68 652 3.20e-11
QPCBOEI2 0.30 175 (0) 6.07e-11 0.07 177 7.37e-10 0.07 224 4.21e-10 0.16 224 3.00e-10
QPCSTAIR 1.32 257 (0) 1.58e-11 0.54 239 9.26e-11 2.29 908 8.77e-12 3.67 908 8.06e-12
QPTEST 0.00 1 (0) 7.40e-16 0.00 1 1.22e-15 0.00 2 3.89e-16 0.00 2 3.89e-16
QRECIPE 0.07 48 (0) 5.90e-15 0.02 42 1.04e-10 0.02 88 1.64e-14 0.02 88 1.64e-14
QSC205 0.29 93 (1) 4.22e-18 0.04 43 7.63e-08 0.08 215 3.84e-16 0.08 215 4.35e-16
QSCAGR25 7.38 1077 (2) 1.77e-18 36.34 0 NaN 6.12 1327 1.09e-11 8.88 1299 1.43e-11
QSCAGR7 0.19 329 (0) 3.88e-12 0.06 349 3.18e-10 0.22 418 4.58e-12 0.22 418 5.03e-12
QSCFXM1 4.18 799 (2) 1.25e-15 1.73 988 1.32e-07 1.69 580 9.14e-12 2.69 612 1.48e-11
QSCFXM2 42.74 1890 (2) 3.82e-18 16.53 2189 1.62e-07 17.45 1454 6.84e-11 26.22 1370 3.92e-11
QSCORPIO 0.87 233 (0) 5.22e-14 0.12 0 NaN 0.87 470 3.20e-11 1.19 469 1.06e-11
QSCSD1 8.81 2054 (1) 3.44e-22 6.51 1075 8.77e-11 0.64 204 4.77e-13 0.57 153 1.38e-10
QSCTAP1 6.77 1374 (1) 7.45e-15 30.15 0 NaN 1.00 500 9.20e-12 1.44 503 1.54e-08
QSHARE1B 0.59 782 (2) 1.25e-16 0.18 468 2.49e-08 0.34 517 1.21e-09 0.51 497 3.70e-11
QSHARE2B 0.12 359 (1) 2.00e-13 0.02 355 5.33e-10 0.06 207 1.35e-12 0.05 196 1.25e-12
QSTAIR 3.18 792 (0) 6.37e-12 1.28 784 1.92e-08 1.68 740 4.39e-12 2.67 740 4.41e-12
S268 0.00 0 (1) 1.69e-16 0.00 0 2.62e-12 0.00 11 8.60e-07 0.00 12 7.87e-13
TAME 0.00 0 (0) 1.11e-16 0.00 0 1.11e-16 0.00 2 1.95e-16 0.00 2 1.95e-16
VALUES 0.10 142 (0) 1.46e-12 0.04 0 NaN 0.05 142 4.29e-16 0.04 142 2.45e-15
ZECEVIC2 0.00 3 (0) 1.25e-16 0.00 3 1.15e-12 0.00 2 2.22e-16 0.00 2 2.22e-16
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