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Abstract

Pseudo—transient continuation methods are quite popular for the
numerical solution of steady state problems, typically in PDEs.
They are based on an embedding into a time dependent initial
value problem. In the presence of dynamical invariants the Ja-
cobian matrix of the nonlinear equation system is bound to be
singular. The paper presents a convergence analysis which takes
this property into account — in contrast to known approaches. On
the basis of the new analysis adaptive algorithms are suggested in
detail. These include a variant with Jacobian approximations as
well as inexact pseudo—transient continuation, both of which play
an important role in discretized PDEs. Numerical experiments
are left to future work.

Keywords: pseudo-transient continuation, linearly implicit Euler discretiza-
tion, stiff integration, contractivity of ordinary differential equations, large
scale nonlinear systems, discretized partial differential equations, inexact
Newton techniques, affine invariance
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1 Introduction

This paper deals with the numerical solution of nonlinear systems
F(x)=0

which can be interpreted as steady state problems of a corresponding dynam-

ical system
= F(x), x(0)=uz. (1.1)

The problem class mainly under consideration here are steady state problems
originating from discretized partial differential equations.

From mere geometrical insight it is already clear that any such approach
can only work, if the fixed point of the dynamical system is attractive. If
the fixed point were hyperbolic (in the sense of dynamical systems, not of
PDEs !), then numerical integration of (1.1) would generically come close
to the fixed point in an initial phase, but “run away” afterwards; in such
a case, convergence would only occur from exceptional starting points xg
out of a set of measure zero. The basic idea pursued here is to compute
attractive fixed points by a special technique borrowed from stiff integration.
Among the many possibilities attention is focused on the linearly implicit
Euler discretization — compare, e.g., the textbooks by Hairer and Wanner [5]
or by Deuflhard and Bornemann [3].

In the context of solving nonlinear systems this discretization is often called
pseudo—transient continuation. Recently, Kelley and Keyes [6] gave a con-
vergence analysis of the method in view of an adaptive realization of the
algorithm. This analysis required nonsingularity of the Jacobian matrix.
However, dynamical invariants, which may be even hidden, will typically
cause a non-empty nullspace of the Jacobian. The topic of this paper is
to present an alternative convergence analysis, which does note require the
nonsingularity of the Jacobian and explicitly allows for the possible occur-
rence of (possibly unknown) dynamical invariants. In Section 2 we collect
preliminary considerations concerning affine invariance aspects, the role of
dynamical invariants, and the characterization of attractive fixed points in
the linear case. On this basis, Section 3 presents our convergence analysis for
the nonlinear case in terms of carefully chosen first and second order Lipschitz
conditions. This analysis is then exploited for the construction of an adap-
tive pseudo-transient continuation method with exact Jacobian and direct
elimination method for the arising linear systems. The practically relevant



cases of an approximate Jacobian or of an iterative solution of the arising
linear systems is then treated in a synoptic manner in Sections 4 and 5. For
both situations adaptive algorithms are suggested. Numerical experiments
with the suggested algorithms are not given here, but left to future work.

2 Preliminary considerations

In this section we first want to gain some preliminary insight into the class
of promising algorithms for the solution of problem (1.1). For this reason we
perform a linear coordinate transformation, in terms of an arbitrary nonsin-
gular matrix B, such that

r— y= Bz.
Insertion into (1.1) yields the transformed problem
y = BF(B™'y) = G(y), y(0)= Bz . (2.1)

Whenever the original problem F'(z) = 0 has the unique solution x, then the
transformed problem
G(y) = BF(B™'y) =0 (2.2)

has the unique solution y = Bxz. The effect on the corresponding Jacobian
is a similarity transformation

G'(y) = BF'(z)B™".

That is why we say that the problem classes (2.1) and (2.2) have the prop-
erty of affine similarity which essentially states that the domain and the
image space transform in the same way. Of course, we will try to observe
this property both in the construction of algorithms and in their theoretical
analysis.

As can be easily seen, affine similarity allows for Newton iterations like
F'(2")Axh = —F(2), o = 2% 4 N Ak, k=0,1,...
and for fixed point iterations

AzF = F(2%), 2" = 2% + Ak, kE=0,1,...



with a parameter A to be adapted at each iterative step. The same holds, of
course, for any linear combination of Newton and fixed point iteration such
as the popular so—called pseudo—transient continuation method

(I —7A)Ax = F(xg), (1) =x0+TAT (2.3)

with pseudo-timestep 7 to be adapted. Herein the matrix A is either the
Jacobian F'(xg) or an appropriate approximation. The above scheme is also
known as the linearly implicit Euler discretization of the time dependent
problem (1.1) — see, e.g., [5, 3].
Dynamical invariants. In the class of problems under consideration, dy-
namical invariants occur rather frequently. As an example, take mass con-
servation, which typically shows up as
elw(t) =elag ,

where e? = (1,...,1). This implies, for arbitrary F(z) # 0, that

't =e’F(z)=0 forall x€ DCR".
By differentiation with respect to time ¢ we obtain

e"F'(x)F(z) =0 forall x€ DCR"

and hence the Jacobian (at all arguments) has a zero eigenvalue with left
eigenvector e. If we define the orthogonal projectors

1
Pt .=Z¢l, P=1-Pt,
n

then we can write equivalently
PYF'(z)=0.

As a consequence, naive application of any standard Newton method would
fail in this situation. For this a—priori known dynamical invariant a modifi-
cation of Newton’s method is possible such as

F'(2")Ax* = —F(2%), efAz"=0.

In general, however, more dynamical invariants may exist, most of them
either unspecified or even unknown. Thus, in terms of some projector P we

again have
Pti=P*F(2)=0 = P*F(z)=0.



This time, however, the projector is unknown so that Newton’s method can-
not be successfully modified and is therefore bound to fail.

Upon examining the above iterations, we easily verify that the fixed point
iteration as well as the pseudo—transient iteration do not require any nonsin-
gularity of the Jacobian: both automatically realize the condition

PAz=0.

In other words: the desired dynamical invariance property is implicitly in-
herited to these iterations even in the case of an unknown projector P.

Linear Contractivity. In order to find a theoretical characterization for
attractive fixed points, we consider, for the time being, linear problems

&= Az, z(0) = ¢ , (2.4)
which give rise to a formal solution in terms of the matrix exponential
z(t) = exp(At)xg .

Any coordinate transformation y = Bx would imply a similarity transforma-
tion on the matrix

A— BAB™'.
In view of this behavior, we may start from the Jordan decomposition
A=TJT™" — (BT)J(BT) " .

Herein J is the Jordan canonical form consisting of elementary Jordan blocks
for each separate eigenvalue A\(A). Then the transformation

=T o —12)= (BT)_l(y — )

with origin y = B2 generates an affine similar coordinate frame.

In what follows we will have to work with norms || - || induced by certain
inner products (-,-). For simplicity, we may think of the Euclidean norm
|| - || induced by the Euclidean inner product (u,v) = u”v or any scaled vari-
ants of them (preconditioning). If we formulate our subsequent theoretical
statements in terms of the canonical norm

Jul o= Tl

4



induced by the canonical inner product
(u,v) = (T u, T~ ') ,

then such statements will automatically meet the requirement of affine simi-
larity. In this setting, we may define some constant p = u(A), allowed to be
positive, zero, or negative, such that

(1, Au) < (A uf? (2.5)
This definition is obviously equivalent to
(@, Ja) < pllal® (2.6)

wherein @ = T 'u. Assuming that the quantity yu is chosen best possible, it
can be shown to satisfy

p(A) = max {u, Aw)

e > max RN\ (A)+e, €>0. (2.7)

Herein € = 0 holds, if the eigenvalue of A with dominating real part is simple.
By the above affine transformation we can show that

WBAB™) = p(A) (2.8)

which confirms that this quantity is affine similar. We may apply it to obtain
the estimate

()] < exp(pt)]ol -
Whenever
© <0
holds, then
()] < [zol
which means that the linear dynamical system (2.4) is contractive.

For computational reasons, the Euclidean product (possibly in a scaled vari-
ant) is favored over the canonical product. Suppose that we therefore replace
the above definition (2.5) by the analogous definition

v(A) = max (u, Au)

29
B Tl (2:9)

5



in terms of the Euclidean product. The thus defined quantity can be ex-
pressed as (cf. [4, Sect. 1.10])

V(A) = Anax (%(A + AT)) ,

where Apax is the maximum (real) eigenvalue of the symmetric part of the
matrix A. On one hand, by comparison with (2.6), we may observe that

W(A) = v(J) = A (%(J + JT)) :

which directly leads to the above result (2.7). On the other hand, the quan-
tities v(A) and p(A) may be rather different. In general, for arbitrary trans-
formation matrix B, we will — in contrast to (2.8) — obtain

v(BAB™) # v(A) (2.10)

i.e. the quantity v is not affine similar. Not even the signs of v(A) and u(A)
need to be the same.

As a consequence of this structure, contractivity of the differential equation

(1.1) will show up as contractivity in the canonical norm | - |, but need not
show up as contractivity in the Euclidean norm || - ||. In fact, whenever

v <0 (2.11)
holds, then

lz@)] < exp(vt)]lzoll < [lzoll

Generally speaking, if we transform a relation of the kind
Jul <ol
to the Euclidean norm, then we can only prove that
[[ull < cond(T)[[v]

in terms of the condition number cond(T) = ||T7!| - ||T|| > 1. The condition
number here arises as an unavoidable geometric distortion factor which indi-
cates the possible ill-conditioning of the Jordan decomposition as a whole.



3 Exact pseudo—transient continuation

We now want to study the scheme (2.3) as an iterative method. Throughout
this section we assume that we can evaluate an ezact Jacobian A = F'(x) and
solve the linear system (2.3) by direct elimination techniques. Mollifications
of these assumptions will be treated in subsequent sections.

Let z(7) denote the homotopy path defined by (2.3) starting at x(0) = xo.
Before we actually study the residual norm || F'(z(7))]|, the following auxiliary
result will be helpful. It holds for exact as well as for approximate Jacobian

A.

Lemma 3.1 Notation as just introduced with A = F'(xq). Then the residual
along the homotopy path x(T) starting at xo satisfies

F(z(1)) = (I —7A)""F(x0) + / (F'(z(0)) — A) (I —cA)2F(x0)do . (3.1)
o=0
Proof. Taylor’s expansion of the residual yields

T

F(z(r)) = F(a:o)+/F’(x(a)):b(a)da

o=0

T

= F(xo) + (z(7) — x) + / (F'(x(0)) — A) i(o)do .

o=0

Upon differentiating the homotopy (2.3) with respect to 7, we obtain
(I —7A)t = F(x0) + A(2(1) — 20) = F(20) + TA(I — TA) ' F(20)

and therefore

i(7) = (I —TA)2F(x) ,
which then readily leads to the result of the lemma. ]

Discussion of Lipschitz conditions. With the above auxiliary result at
hand, the question is now how to formulate first and second order Lipschitz
conditions in view of a theoretical convergence analysis.



First order Lipschitz condition. We will employ some one-sided Lipschitz
constant v as introduced in the preceding section. Due to the possible occur-
rence of dynamical invariants the Jacobian matrix may have zero eigenvalues,
which would imply v > 0 instead of the required v < 0. Therefore we will
restrict our attention to iterative corrections in the subspace

Sp={ue€R"| Pru=0}.
Then the definition inequality
(u, Au) < v|ul®>, we€ Sp

is equivalent to
(Pu, (PAP)Pu) < v||Pul]* .

With this modification, the case v < 0 may well arise independent of the
possible presence of dynamical invariants.

Since Az(7) € Sp, we may insert it into the above definition and obtain

(Az, AAT)

~ <L 3.2
e =Y (3:2)

v(r) =

If we multiply equation (2.3) by Az from the left, we obtain
|Az|? = 7(Ax, AAZ) + (Aw, F(x))
= 70(7)||Az|]* + (Az, F(z0))
To(7)|Az|* + | Az|[[| F (o)
|| Az|? + [[Az|[[| F (o)l ,

IAIA

which then leads to the estimates
[E o)l _ [1E (o)l

1l—or = 1—vr

|Az|| < (3.3)

Moreover, since
Ax(1) = F(z9) + O(71) ,

we also have » AF

(o) = FE AT )

|1 (o)

This quantity can be monitored even before the linear equation (2.3) is ac-
tually solved. It plays a key role in the residual reduction process, as shown
in the following lemma.

(3.4)




Lemma 3.2 Let v(0) < 0 as defined in (3.4). Then there exists some 7 > 0
such that

|E(x(m)|| < ||F(z0)|]] and »(1) <0 for all 7€ [0,77.

Proof. By differentiating the residual norm with respect to 7 we obtain

() Pmo = 2F O FC), (7)o
— 2(F(25), AF (x0)) = 20(0)[| F (o) [ < 0.

Since both F'(z(7)) and the norm || - || are continuously differentiable, there
exists some non—empty interval w.r.t. 7, wherein the residual norm decreases.
The proof of the statement for (7) uses the same kind of argument. |

In other words: if at the given starting point zy the condition #(0) < 0 is
violated, then the pseudo-transient continuation method cannot be expected
to reduce the residual norm at all. Recall, however, the discussion at the
end of Section 2 which pointed out that residual reduction is not equivalent
to canonical norm reduction and therefore to contractivity of the differential
equation (1.1). As a consequence, if residual reduction fails to occur, then
the fixed point may nevertheless be attractive.

Second order Lipschitz condition. Upon recalling that in affine similar non-
linear problems the domain space and the image space of the mapping trans-
form in the same way, we will characterize the nonlinearity by the following
Lipschitz condition

I(F" (@) = F'(y))ull < Lollz = yllull - (3.5)

Convergence analysis. With these preparations we are now ready to state
our main result.

Theorem 3.3 Notation as in the preceding Lemma 3.1. Assume A = F'(x)
and denote Ly = ||F'(xo)||. Let dynamical invariants show up via the proper-
ties F(x) € Sp. Assume the one-sided first order Lipschitz condition

(u, Au) < v|u||®* for weSp, v<0,
and the second order Lipschitz condition

I(F'(2) = F'(z0))ull < Loflz — o [[ul| -

9



Then the following estimate holds

Pl < (144222

21 —vur

[F (o)l

1—vr

From this, residual monotonicity
[F (M) < [1F (o)l
is guaranteed for all T > 0 satisfying the sufficient condition
v+ (3LoLy — )7 <0.
Moreover, if
LoLy > 1%,

then the theoretically optimal pseudo—timestep is

M

P LoLy— 12
leading to a residual reduction

P < (1 !

1/2

LoLo

) 1F @)l < 1P ()] -

(3.6)

(3.7)

(3.8)

Proof. We return to the preceding Lemma 3.1. Obviously, the first and the
second right hand terms in equation (3.1) are independent. Upon recalling
(3.3) for the first term, we immediately recognize that, in order to be able
to prove residual reduction, we necessarily need the condition v < 0, which
means v = —|v| throughout the proof. For the second term we may estimate,

again recalling (3.5) and (3.3),
/ I (F"(z(0)) = F'(x0)) (I — 0 A)"*F (x9)||do

<Ly | |lz(0) = zoll[({ — 0 A)*F(o)lldo

o=0
[ ol F(xo)|?
< [ —
= 2/ 1—ov)
o=0

= %L2||F($0)||27'2(1 —vr)72.

10



Combination of the two estimates then directly confirms (3.6), which we here
write as

[E () < alm)[[F(xo)l

in terms of
a(t) = (1 — T + %LOLQTQ) /(1 — 1/7)2 )

Upon requiring a(7) < 1, we obtain the equivalent sufficient condition (3.7).

Finally, in order to find the optimal residual reduction, a short calculation

shows that I
a(r) = (1/—1— 10 2T> /(1 —wvr)*.

— T

An interior minimum can arise only for &(7) = 0, which is equivalent to (3.9)
under the condition (3.8). Insertion of 7,, into the expression for a(7) then
completes the proof. [ ]

From the above condition (3.7) we may conclude: if
v+ % 2LOL2 S 0 )

then 7 is unbounded for local continuation. Apart from a different prefactor,
this turns out to be the residual oriented analog of the error oriented condition
given in [2]. If

v+ % 2LoLs > 0, (3.10)
then the pseudo—timestep is bounded according to

||

T — .
%LoLQ — |V‘2

Note that condition (3.8) is less restrictive than (3.10) so that either un-
bounded or bounded optimal timesteps may occur.

Adaptive pseudo—-timestep strategy. On the basis of the above conver-
gence analysis we now want to derive an adaptive strategy for the selection
of the pseudo—timestep. To do so, we apply the fundamental scheme due to
[1] which has been successful so many times. In our context this means to
replace the unknown theoretical Lipschitz constants Lo, and v by carefully
selected computational estimates [Ly| and [v] and to insert them into the
formula for the theoretical optimal pseudo—timestep

W
opt LOL2 — 2 .

11



This expression can be rewritten in implicit form as

AL = vTopt)

11
oL, (3.11)

Topt =

Remark 3.4 In passing we note that from this representation we may roughly

obtain
1 1

Topt ~ = .
" Lo [F(ao)ll

This relation gives some justification for a quite popular heuristic strategy:
new timesteps are proposed on the basis of successful old ones via

_ IF(zad)|

new — old - (312)
| (Tnew) |

For reference see, e.g., the paper by Kelley and Keyes [6], where also a whole
class of further heuristics is quoted.

In order to exploit the structure of (3.11) in detail, we recall the relation
(3.3) and replace 7,y by the upper bound

_ 4
Ty = ———————— > T ..
o L2”A$(7—)” -
So we are left with the task of identifying cheap computational estimates

[v] < v < 0,[Ly] < Ly. Once this is achieved, we can compute the corre-
sponding pseudo—-timestep

ol
0 Ll

Y

7_—opt 2 Topt - (313)

As for the estimation of v, we may exploit (3.2) in a double way. Whenever
[Az(7)[| = [|F(zo)]l ,

then we know that v > [v] > 0 is guaranteed: in this situation we should ei-
ther terminate the iteration or continue without requiring residual reduction
(a rather popular heuristics). Otherwise we may recognize that

(Az, AAz)  (Az,Ax — F(xg))

— 7 = = < 14
wir=v(r)r=r1 AP INEE <vr (3.14)

12



gives us a quite cheap estimation formula for v. As for the estimation of Lo,
we may rearrange terms in the proof of Theorem 3.3 to obtain

[F(z(7)) = Az(n)|| < / I (F'(z(0)) = F'(x0)) (I — 0 A)"*F(xo)||do

o=0

< Ly | lla(o) = xoll|(T — 0 A) " Ax(o)||do .

o=

If we approximate the integral by the trapezoidal rule, we arrive at

1F(z(7)) = Az(r)l < L2l Ax(r)[r?/(1 = v7) + O(r)

< %L2||Ax(7')||27'2 +O(1) .

Note that already the approximation term, ignoring the O(7%) term, gives
rise to the upper bound

1F(z()) = Az(7)l| < 3Lof|F'(xo)l[*7*/(1 = v7)*

which is the basis of the derivation of Theorem 3.3. Hence, we may well
regard

_ 2[[F(z(7)) — Azl
A

as a suitable computational estimate for Ly. Upon collecting all above es-
timates and inserting them into (3.13), we arrive at the following pseudo-
timestep suggestion

[LQ] S L2 + 0(7'2)

ol = [(Az(7), F(xo) — Az(7))]
P 2f|Ax(n)l[|F(x(r)) — Ax(r)

On this basis, an adaptive T—strategy can be realized in the two usual modes:

T .
I

e correction strategy: if the residual norm does not decrease from zy to
x(7), then the actual stepsize 7 should be replaced by [7,,:] < 7;

e prediction strategy: if the residual norm decreases, then the next con-
tinuatin step is started with the trial value [7,].

Finally, note that the above strategy will terminate, if the steady state to be
computed is not attractive in the residual sense, which means that [v] > 0.
For [v] — 07, the suggested stepsize behaves like [7,,:] — 07 — as to be
reasonably expected.

13



4 Pseudo—transient Continuation with Jaco-
bian Approximations

Throughout this section, we consider the case that we only have a Jacobian
approximation A ~ F'(zy) at hand. We still assume that we solve the linear
system (2.3) by a direct (possibly sparse) elimination method — for the itera-
tive variant see the subsequent Section 5. In order to preserve the dynamical
invariants, we restrict the possible approximations such that PLF(z) = 0
implies P+ A = 0. This property will hold, for example, if A is a Jacobian ma-
trix that has been kept over several steps. In order to measure the Jacobian
approximation error

SA = A— F'(z)

we define an upper bound

10A u|| < d|v|||ul|l, for wueSp.

Convergence analysis. With this additional notation we are ready to
modify the convergence theory of the preceding section.

Theorem 4.1 Notation as in Lemma 3.1 and Theorem 3.3, but here with
A= F'(zg). Let dynamical invariants show up via F(x) € Sp. Assume the
approximate one—sided first order Lipschitz condition

(u, Au) < v|lu|®>, v <0, for u€Sp, (4.1)

and the second order Lipschitz condition (3.5). Let the Jacobian approzima-
tion satisfy

| (A= Flao)ull <olulllul, 6<1 for ueSp.
Then the following estimate holds

PG < (14 a0t + 42520

[ (o) |
21—vr ) 1—vr
From this, residual monotonicity

[E () < 1 (o)

14



holds for all T > 0 satisfying the sufficient condition

LQLQT
1—90 1 <0. 4.3
(1= o+ 57 < (4.9
Moreover, if
LoLy > (1 —0)v*, (4.4)
then the theoretically optimal pseudo—timestep s
(1—0)lv|
opt = , 4.
Tort = T Ty — (1— 0)12 (45)
leading to a residual reduction
2
Pl < (1= 300272 ) IF@oll < [Pl . (o)
ole

Proof. Lemma 3.1 also holds for A # F'(zy). Hence, the proof of this
theorem is just a modification of the proof of the preceding Theorem 3.3.
The first right hand term in equation (3.1) can be bounded as before. For
the second term we obtain here

| / (F'(2(0)) = A) (I — 0 A)*F(0)do|

< LIl (o) |21 - 7v)

H [ () = ) (1 = 0)*Flao)dol]

The above second term can be treated further observing that

T

n/<ﬁww—AM1—m®*Fu@MM:

o=0
’

= [1(F"(wo) = A) [ @(o)do|| = [| (F'(z0) — A) (x(7) = zo)|

o=0

< slulr|Aa(r)] < ol @
1—vr

15



which confirms (4.2).
In order to analyze residual monotonicity, we rewrite (4.2) in the form
Fz(m)| < alr)[|F (o)
with
o) = (1 = ovr)(1 — v7) + §LoLo7?) /(1 —v7)?.

The requirement o« < 1 then leads to the sufficient condition (4.3). The
optimal pseudo—timestep follows from

LoLQT

a(r) = ((1 — )+ 1

— VT

) f= vy =0,

which is equivalent to (4.5) under the condition (4.4). Finally, insertion of

Topt into a(7) yields (4.6), which completes the proof. n
Note that whenever
LoLy
—— <0
Y=g =

then 7 is unbounded. Otherwise the pseudo—timestep is bounded according
to

)|
o %LOLQ - (]_ - 6)V2

Again the stepsize vanishes whenever v — 0.

Adaptive pseudo—timestep strategy. We proceed along the same lines
as in the exact pseudo-transient continuation in Section 3. For convenience,
we repeat the theoretical optimal pseudo—timestep

S ¢ St ) I ||
P LoLy — (1 — 82 LoLs/(1—0) — 12~

The above expression can be rewritten in implicit form as
=9 = vy
LoLs '

Note that also this representation gives some rough justification for the
heuristic strategy (3.12). Next we introduce the theoretical upper bound

o a-apl
7 Lflda(n =

(4.7)

16



and its corresponding formal estimate

L
ol = (A =

In contrast to the exact Jacobian case, two conditions are required here:

7_—opt Z 7—opi& .

v=—lv|<0 and 0<1,

or, equivalently,
(1-0)r<0.

In the fortunate case that ||dA|| < |v|, which is equivalent to § < 1, we may
just use the adaptive stepsize control as described in the preceding Section 3.
If, however, the Jacobian approximation errors cannot be neglected, we have
to take this error into account when estimating the theoretical quantities
needed in (4.7).

To begin with, we will need to replace the quantity (1 — §)v by some lower
bound
W]+ I6All v +dlv| = (1-0)v.

Consequently, the condition
W]+ [ll6All] <0 (4.8)

will be necessary for the continuation process to converge to the steady state
solution. For the actual realization, two typical cases need to be discussed.

In the first case, the Jacobian error ||0A|| can only be estimated via theoretical
upper bounds. For example, when the Jacobian has been “kept” from a
previous continuation step at x(7), the error can be estimated via

I6A]l = |F"(z0) = F"'(x(7))I| < Lallzo — =(7)] -

Since the term ||zg — x(7)]|| is computationally available, a value for [||dA]|]
can be assigned, once an estimate [Ly] is given — which can be also kept
from the continuation history. If, in addition, we compute an updated esti-
mate [v] from (3.14), Jacobian regeneration can be controlled such that (4.8)
holds throughout the continuation process. On this basis, we may realize an
adaptive pseudo—transient continuation method.

In the second case, the Jacobian matrix F”(xg) is actually known, but not
fully used to save linear algebra work in the numerical solution of the pseudo—
transient continuation equation — a strategy known as sparsing. In this

17



case, we may nevertheless use the full Jacobian information for the purpose
of estimating the theoretical quantities needed in (4.7) in a clean way. By
comparison with (4.1) we observe that

(u, F'(wo)u) = (u, Au) — (u, 0Au) < (1 = 0)vlu*.
From this we are immediately led to the computational lower bound

Sl (Az, F'(x¢)Ax) Y
R e Ea (B (49)

which is comparable to the estimate (3.14). Note that here the condition
|Az(T)|| < ||[F(x0)|| is still necessary to guarantee at least [v] < 0. Moreover,
in the light of (4.9), the condition (4.8) is understood to be necessary for the
steady state to be attractive (in the residual sense, of course).

As for the estimation of Lo, we rearrange terms in the proof of Theorem 4.1
and apply again the trapezoidal rule so that

[ (2 (7)) = (F(20) + 7F" (o) Az (7)) |

< / | (F'(2(0)) = F'(x0)) #(0)||do
§U§L2||Ax(7)||272 +O(1h) .

If we, as in the exact Jacobian case, once more ignore the O(7?) term, we
arrive at the modified estimate

2| F'(z(7)) = (F(xo) + 7F (o) Ax(7)) ||

Ly) = < Ly +O(r?
= 2] Aa? shr o)
and finally at the suggested pseudo—timestep
_ |(Az(7), F"(z0) Az(7))| 2
[Topt] =

2 82(NF () — (Flao) + rF @) Aa(r) ]

Again this gives rise to a correction and a prediction strategy for an adaptive
continuation process.
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5 Inexact pseudo—transient continuation

Suppose the linear system (2.3) is so large that we cannot but solve it itera-
tiwely (1 =0,1,...):

(I — TA)(SIl = F(.To) — Ty, .’EZ(T) = T9+ 7'5.1’1' . (51)

Herein r; represents the iterative linear residual, dx; the corresponding inex-
act correction, and z;(7) the approximate homotopy path instead of the exact
x(7). To start the iteration, let xo(7) = xo so that dxg = 0 and ro = F(xo).
In the context of discretized PDEs the matrix A is typically the exact sparse
Jacobian.

If we want to minimize the residuals within each iterative step, we are di-
rectly led to GMRES [7]. In terms of the Euclidean norm || - || we define the
approximation quantities
I L
1 (o) |

Recall that GMRES assures 7;,1 < 1;, in the generic case even 1,11 < ;.
Moreover, due to the residual minimization property and ro = F(xg), we
have

1F' (o) = rill* = (1 = ) | F (o) 1* -

In the present context of pseudo—transient continuation, we may additionally
observe that GMRES realizes the special structure

6z:(1) = Vizi(1) and Hi(t) = (I;,0)" + TH, .

Herein V; is just the orthonormal basis of the Krylov space C;(ry, A) and }AI%
is a Hessenberg matrix like H;(7), but also independent of 7. On this basis,
dynamical invariants can be shown to be treated correctly throughout the
iteration (proof omitted here). The special structure also permits computa-
tional savings when the same system is solved for different pseudo—timesteps.

Convergence analysis. As in Sections 3 and 4 we first analyze the conver-
gence behavior theoretically as a basis for the subsequent derivation of an
adaptive algorithm which here will include the matching of inner and outer
iteration. Before we can do so, we need to modify the auxiliary Lemma 3.1.
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Lemma 5.1 Notation as in Lemma 3.1 with A =~ F'(xq). Then the residual
along the approximate homotopy path z;(T) starting at xo satisfies

F(a(r)) —ri= (I = 7A)" (F(xo) — 13)

+ / (F'(z;(0)) — A) (I — 0 A) 2 (F(x0) — ;) do .

o=0

Proof. The proof is an elementary modification of the proof of Lemma 3.1.
If we differentiate the homotopy (5.1) with respect to 7, we now obtain

ii(1) = (I — TA) 2 (F(x0) — 73) .

Further details can be omitted. ]

Theorem 5.2 Notation as in the preceding Lemma 5.1. Let A = F'(xg) and
Lo = /1 —n?||F(z0)||. Assume that dynamical invariants show up via the
properties F(x) € Sp. Then, with the Lipschitz conditions

(u, Au) < v|u|®>, v <0, for u€Sp

and
[(F"(z) = F'(w0))ull < Lollz — wol|Jull

the estimates

HF@U»—HWSGAQLﬂﬂjHF@@_”H

21 —vr 1—vr
and B
1-— 772 L0L2T2
F < R A D e et S F .
uumw_Gﬁﬁ_m_(+“_w 1)l
hold. Let

[1—mn; .
s(n) = : +Zi > % or,equivalently n; < % . (5.2)

Then residual monotonicity

[E ()| < [1F (o)l
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1s gquaranteed for all T > 0 satisfying the sufficient condition
1 —s(m) + (2s(m;) — Vvt + (%EOLQ — s(m)y2> 2 <0. (5.3)

Assume further that
%LOLQ > 1/2 (54)

and that GMRES has been continued until

2
41— 2 1Y
ni+4/1 7]2-<1—|—2L0L2. (5.5)

Then the theoretically optimal pseudo—timestep is

vl

Tols— 12 o0

Topt =

leading to the estimate

2

IP(ar) = il < (1= b5 ) 1) = il < 1) =]

042

and to the residual reduction

PG < (n+y/1= 2 = 3 ) Pl <Pl 6

Proof. We return to the preceding Lemma 5.1 and modify the proof of
Theorem 3.3 carefully step by step. For example, the second order term may
be estimated as

J 1F (o)) = Flan)) (1 = 04) *(Flan) = r)do
AL F () — 21— )
Combination of estimates then directly confirms
[ (i(7)) = rall < qa(T)[[F (o) — 7]

in terms of

a;(1) = (1 — vt + %£0L2T2> /(1 —vr)?,
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from which we obtain

[E(zi(m)|| < ()| F' (o) |

oy (1) = mi + /1 = nia(r) .

Upon requiring a(7) < 1, we have

a(r) < s(m) < 1. (5.8)

From this, we immediately verify the sufficient condition (5.3). Note that
2s — 1 > 0, which is just condition (5.2), is necessary to have at least one
negative term in the left hand side of (5.3).

Finally, in order to find the optimal residual reduction, a short calculation

shows that
, . V1 =72 LoLyT
a(r) =4/1—nia(r) = 0=y (V + 1 0_ 12/7) .

For the interior minimum we require @(7) = 0, which is equivalent to (5.6)
under the condition (5.4), where

Ji-m =1 (2p=1

has been used. Insertion of 7,,; into the expression for «(7) then leads to

with

which is equivalent to

2

IF(r) =il < (1= 37 ) 1P - n

042

and eventually to (5.7). In order to assure an actual residual reduction, con-
dition (5.8) must also hold for 7,,, which confirms the necessary condition
(5.5). Note that the scalar function n; + /1 — n? is monotonically increas-
ing for n; < %\/5 ~ 0.7, hence also for n; < % = 0.6. Therefore GMRES
may be just continued until the relation (5.5) is satisfied. This completes
the proof. [ ]
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Adaptive pseudo—timestep strategy. We follow the lines of the deriva-
tion for the exact pseudo—transient continuation in Section 3. To start with,
we repeat the expression

Y
LOL2 — 2

Topt — s

which can be rewritten in implicit form as

W[(1 — v7op)
LoL,

Topt =

Recall now that

| F'(20) — 74| _ Lo

(5 i == I— A -1 F — 1y < y 59
62 = 1T = 7A4) (F(wo) = r)| < B2 = 20 (5)
which directly implies
T, t — —’V’ > T t -
T Lofldmi(r)| T
So we need to compute the pseudo-timestep
V] _
opt] = ———————— > Tt = Topt - 5.10
o) = Lo = T = 10

in terms of the appropriate estimates of the unknown theoretical quantities
v, LQ.
As for the estimation of v, we exploit (5.9). Whenever

102 (T) | = |[F'(x0) =74l

then we know that v > 0 is guaranteed and the iteration must be terminated.
Moreover, the relation

vr=r1 = <vr

19 1622 -

23



supplies an estimation formula for v. As for the estimation of Lo, we revisit
Lemma 5.1 to obtain

|F(ai(r)) — i — o)
< [ 1 @ilo) = Fao) (1 = aA) (F(ao) =13 |do

< Ly / lzi(0) = @ol[ll(1 — o A)~ dwi(0)||do
o=0 -
L2T2 LO

<1 S—
-2 (1—vT)?

If we approximate the above integral by the trapezoidal rule (before using
the final estimate), we arrive at

1P (zi(7)) = i = dai()|| < §Lafldxi(r)|Pr*/(1 = v7) + O(7%)
< gLam?|0xi(r)|? + O(r) .

Already the first right hand term gives rise to the above upper bound —
compare (5.9). Hence, as in Section 3, we will pick

_ 2||F(wi(r)) — i — dxi(7)|

- PlozIP

S L2 + 0(7'2)

as computational estimate for Ly. Upon inserting the two derived estimates
into (5.10), we arrive at the pseudo—timestep estimate
o] = [(024(7), F(xo) —1i = 0zi(7))|
T 200z (DIIIF (i) — ri = dxi(T)|

On this basis, an adaptive T—strategy can again be realized as in the case of
the exact pseudo—transient continuation method.

Finally, we want to mention that the iterative version of the pseudo—transient
continuation method still works in the case of unbounded timestep. To see
this, just rewrite (5.1) in the form

(%I — A) (xi(T) — x0) = F(0) — 15 -
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Herein 7 — oo is possible leaving z;(7) — z well-defined even in the presence
of singular Jacobian A caused by dynamical invariants: this is due to the fact
that GMRES (like any Krylov solver) keeps the nullspace components of the
solution unchanged, so that P*(z;(c0) — x9) = 0 is guaranteed throughout
the iteration.

Preconditioning. [ we modify the nonlinear system by means of some
nonsingujlar matrix M from the left as

then GMRES will have to work on the preconditioned residuals Mr; and
adaptivity must be based on norms ||M - ||. Preconditioning from the right
will just influence the convergence speed of GMRES without changing the
above derived adaptivity devices.

Derivative—free realization. Sometimes the inexact pseudo—continuation
method is realized in a derivative—free variant using the first order approxi-
mation

Az = F(z + dz) — F(x) .

To study this variant, additional errors 0 A for the second order discretization
error need to be taken into account requiring a proper combination of the
results of Section 4 and of this section.

Conclusion

The paper presents a convergence analysis as a framework for adaptive pseudo—
transient continuation algorithms. Special focus is on large scale systems such
as discretized PDEs. The suggested algorithms include the cases when only
an approximate (instead of an exact) Jacobian matrix is available or when
the arising linear systems are solved by an iterative method (like GMRES).
On this basis, numerical experiments with realistic nonlinear systems can be
carried out. Preconditioning will turn out to be indispensable.
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