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Conformational Dynamics using Fuzzy Sets

M. Weber! and T. Galliat!

1 Konrad-Zuse-Zentrum Berlin, Takustr. 7, 14195 Berlin, Germany

Abstract

Recently, a novel approach for the analysis of molecular dynamics on
the basis of a transfer operator has been introduced [6, 2]. Therein confor-
mations are considered to be disjoint metastable clusters within position
space of a molecule. These clusters are defined by almost invariant char-
acteristic functions that can be computed via Perron Cluster analysis [1].

The present paper suggests to replace crisp clusters with fuzzy clus-
ters, i.e. to replace characteristic functions with membership functions.
This allows a more sufficient characterization of transition states between
different conformations and therefore leads to a better understanding of
molecular dynamics. Furthermore, an indicator for the uniqueness of
metastable fuzzy clusters and a fast algorithm for the computation of
these clusters are described. Numerical examples are included.

Keywords. biochemical conformations, conformational dynamics, molecular
dynamics, cluster analysis, transition states, fuzzy sets.

1 Introduction

The identification of metastable conformations on the basis of a transfer operator
is an important concept to characterize the function of a molecule [6]. Using a
suitable operator, these conformations correspond to metastable clusters within
the position space of the molecule [2]. Their number and characteristic functions
can be computed via Perron Cluster analysis [1].

Usually a molecule does not move directly between states of different confor-
mations: There exist transition states which belong to different conformational
changes and which have different frequencies of occurrence. Unfortunately the
use of characteristic functions leads to crisp clusters, i.e. each transition state
is assigned to exactly one cluster — a characterization that may be too strict.
The aim of this paper is a replacement of characteristic functions by member-
ship functions so that transition states can be assigned to different conforma-
tions with a certain degree of membership. It will be shown that the use of
membership rules allows to construct an indicator for the uniqueness of the cor-
responding metastable clusters. Such an indicator is very useful in situations
where Perron Cluster analysis leads to different possible sets of clusters.

In section 2 we will describe a concept of conformational analysis on the
basis of a transfer operator approach. We will show that this concept leads to
a special cluster problem.



In section 3 we are going to generalize this cluster problem by using mem-
bership functions instead of characteristic functions and in section 4 we will
present a necessary and sufficient condition for its uniqueness.

In section 5 we will present a fast algorithm for the computation of unique
metastable clusters based on membership functions. In addition, a simple indi-
cator for uniqueness is given.

Finally, in section 6 two numerical examples are described.

2 Conformational analysis

Transfer operator approach. In classical molecular dynamics [5] a molecule
with N atoms is represented by d = 3N spatial coordinates ¢ € Q C IR? and
d = 3N momentum coordinates p € IR?. Molecular motion with respect to the
time scale 7 is modeled by the solution of a Hamiltonian differential equation,
i.e. by the flow ™ : Q x R — Q x IR¢ with

@7 (q0,p0) = (¢(7),p(7))-

Schiitte et al. define the spatial transition operator T : L} (2) — L () as
follows [2, 9]:

Tu(@) = [ um (@ (0.0) PG do )

where

L) = fu: Q G’,/Q u(g)|"Q(q)dg < 0}, n=1,2,

7 : Q@ x R? = Q is the projection 7 (g, p) = ¢ into spatial coordinates, P is
the normalized canonical momentum density and Q is the normalized canonical
spatial density.

This operator T describes the momentum weighted fluctuations inside the
canonical ensemble with respect to time scale 7. If there exists a non-void subset
A C Q with characteristic function x4 : @ — {0,1} and

Txa = Xa, (2)

then A is a stable conformation with regard to the flow ®”. In coupled cases
only xq meets (2). Therefore one is interested in metastable conformations
B C Q with almost T-invariant characteristic functions xp, i.e. in characteristic
functions that solve (2) approximately.

Galerkin discretization. For a numerical evaluation, one has to discretize
the operator T, i.e. one has to compute a decomposition of Q into m disjoint
subsets Aj,..., A, and to replace Q with a finite set Q* := {Ay,..., 4} as
described in [2, §].

Hence one yields the positive stochastic (m,m)-matrix T'

7 . Joxa(@) Txa,(9) Qa) dg
Jo x:(0) Q(a) dg
Since T may be interpreted as the transfer operator of an underlying Markov

chain, the computation of (3) can be done by Hybrid Monte Carlo (HMC)
methods [4].
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Cluster problem Let x : Q* — {0,1} be any characteristic function that
solves

Tx=x (4)

approximately. If we set

A= U A;, (5)

{i€{1,....m};x(Ai)=1}

then x4 is an approximate solution of (2). Therefore the problem of finding
metastable conformations corresponds to the following cluster problem: Com-
pute s characteristic functions x1,...,xs : 2* = {0,1} so that

L Viz1,omTjeqr,.s Xi(Aid) =1,
2. Vi1, .m V(G k)=1,.,s 52k X5 (Ai) =1 = xx(4s) =0,
3. ijl’___’s TXj X

We will refer to the sets Bj, ..., Bs that correspond to the characteristic func-
tions x1,...,xs according to (5) as metastable clusters.

Perron Cluster analysis Deufelhard et al. suggest a solution for the above
cluster problem by Perron Cluster analysis [1]. Let v',...,v® € IR™ denote
the eigenvectors corresponding to the eigenvalues of the Perron Cluster of the
matrix T, i.e. corresponding to eigenvalues A = 1. Assume s non-void disjoint
index subsets I; C {1,...,m} so that the s-tuples {(v},...,v{),i € I;} share
the same sign structure for every j =1,...,s, then x; : @* — {0,1} with
w)={ o 50

is an approximate solution of our cluster problem. Note that one has to deter-
mine exactly s different sign structures.

Transition states From perturbation analysis it follows that components
v] being almost zero (absolute value beneath a problem depending threshold)
are not “significantly large” enough to be assigned to any sign structure for
sure [1]. In this case the corresponding A; is a transition state between different
metastable clusters. The following simple example illustrates the occurrence of
transition states.

Example 2.1 Assume Q* = {A;, 42, As} and

1—c¢ € 0
T= a l—a-b b (6)
0 € 1—c¢

with a,b > 0,a+b<1l,a+ b~ 1 and € > 0 small. The matriz T is positive
stochastic and has two eigenvalues A\1 =1 and Ay =1 — € near 1 in the Perron
Cluster, while the third eigenvalue A3 = 1 — € — a — b is bounded away from 1.
Therefore we have s = 2. The corresponding right eigenvectors are vl = (1,1,1)!
and v = (b,0, —a)t.



In this case Ay controls the stability of Ay and As, and v? controls the clus-
tering via sign structure. Obviously Ay is a transition state, because via an
investigation of the sign structure of the second eigenvector we can not decide,
whether Ay belongs to Ay or to As.

3 Membership functions

Almost T-invariant cluster problem. We can generalize our cluster prob-
lem from section 2: For a given data set {2 and a linear operator T find s
characteristic functions x1,...,xs : € = {0,1} that satisfy approximately (2)
and meet the following covering property

s
> xi =g, ()
i=1
where 1o : Q — {1} is a constant function.

The Perron eigenspace. Let v!,...,v° be the eigenvectors corresponding to
the Perron cluster A1,...,A; of T. Assuming Aq,...,As & 1 every
X € Iy = span{v!,... v®}

solves (2) approximately. Ir is called the Perron eigenspace of T.

If there are s characteristic functions x1, - - ., xs € I which meet the covering
property (7), then a solution of our cluster problem is given by a simple linear
transformation of the eigenvectors v!,.. ., v®.

In general there exists no such linear transformation, because the codomain
of characteristic functions is discrete. But extending the codomain to the inter-
val [0, 1] makes such a linear transformation possible. This changes the point of
view from crisp clustering into fuzzy clustering.

From now on

x:Q —[0,1]
are membership functions which are also called fuzzy sets in the literature [10].
The sought-after subset I'y C I is called the set of almost T-invariant mem-
bership functions. It is the intersection of the set of membership functions with
the vector space Ir.

Complete system of membership functions. We are interested in linear
independent membership functions xi,...,xs € I'r. We call such a system
complete if it meets the covering property (7) and if it is a basis of Iy, i.e. if
it is a solution of our almost T-invariant cluster problem. Note that for the
existence of complete systems it is necessary that g € I'r.

Suppose Ilg € I'r and that the eigenvectors v',...,v° :  — IR spanning
It are bounded. Then the following linear transformation (LT1) leads to a
complete system of membership functions in I':

e Step 1: Positiveness. Assume without loss of generality v! = 1. For
i=2,...,s define . ' '
w' =0 — (igf v")1q. (8)

Hence for i = 2,...,s we have w' € Iy and infq w® = 0.



e Step 2: Scaling. Determine

S
iy 1
= (sup(d_w') . 9)
9 i
Hence for i = 2,...,s we have supg pw® < 1.

e Step 3: Completing. For i =2,...,s set

Xi := pw’ (10)
and
s
x1=1lg = xi. (11)
i=2
Then x1,...,xs € I'r is a complete system of membership functions with

infox;=0fori=1,...,s.

Example 3.1 Remember example 2.1. We show how the above linear trans-
formation (LT1) works for v' = (1,1,1)* and v*> = (b,0, —a)t. Step 1 leads to
w? = (b+ a,a,0)t. Step 2 gives us p = 1/(b+ a). Finally we get in step 3 a
complete system of membership functions in T'p:

0

1
xi={ 35 |, x=| 3% |- (12)
1 0

Thus a reasonable grade of membership is calculated for Ay with regard to
X1 and x2 respectively.

The above example shows that almost T-invariant membership functions
assign transition states to different clusters with different grades of membership.

Indecomposable membership functions Look at the following two com-
plete systems of membership functions for Q* = {A;, Az, A3}:

0.56 0.44 0.8 0.2
N A W R e I R W

13)

Both systems span the same vector space I, but the first system is decom-

posable (e.g. x7 = 0.6x7* + 0.4x3*), whereas the second one is indecomposable.
This motivates the following definition:

Definition 3.2 (Indecomposable Membership Functions (IMF))

7:={x € T'1; xa,xB € I'T, xa+XB =X = X4, X8 linear dependent}
is the set of indecomposable membership functions with regard to I't C It.

Obviously 0q : © — {0} is an IMF. Fuzzy sets that represent a mixture of
different clusters like (x7,x%) can be split into linear independent membership
functions like (x7*,x3*). Therefore Definition 3.2 means that IMFs are not
mixtures of different clusters, they are pure. To get more familiar with IMFs
we present some of their properties.



Lemma 3.3 Let x € I'S: an indecomposable membership function x : Q@ — [0, 1],
then the following propositions hold:

(i) pe RY, ux € T'r = ux € T'%
(Z'L) 1g € F% =IT'r= {,u]lQ; JIAS [0, 1]}
(i5) x and Lq linear independent = info(x) = 0.

In particular if dim It > 1, then for x € 'S there exists i € IR so that px € I'Y,,
info(ux) = 0 and supg (px) = 1 (maximum scalability).

Proof: (i). If there exists x4, x5 € I'r with ux = x4+ X, linear independence
follows from g txa +p txp = x and x € T'%.

(ii). Follows from the decomposition 1o = (1o — x) + x for x € I'r.

(iii). If info(x) = 0 > 0, then one yields the decomposition

x = (01g) + (x — 61lg) with (x — d1lg) € T'y and therefore x & T'5.. O

After these preparations we are ready to define, how solutions of our cluster
problem should look like.

Definition 3.4 (Indecomposable solution of almost 7T-invariant
cluster problems)

If a system {x1,...,xs} of membership functions x; : @ — [0,1] is com-
plete and x1,...,Xxs € I'y, then it is called an indecomposable solution
of the almost T-invariant cluster problem.

An indecomposable solution is called unique if there are no other indecom-
posable membership functions in I'7,, except for multiples of x1,. .., xs according
to Lemma 3.3(i).

4 Uniqueness of indecomposable cluster solutions

Extreme Element. We first prove a sufficient condition (extreme element
condition) for the uniqueness of an indecomposable solution of the almost T-invariant
cluster problem.

Definition 4.1 (Extreme Element) Let S = {x1,...,Xxs} be any set of mem-
bership functions x; : Q@ — [0,1], then z € Q is called an extreme element of
membership function x; with regard to S if x;(x) =1 and x;(z) =0,j #i.

Theorem 4.2 Let S = {x1,...,Xs} be any basis of membership functions
Xi : @ — [0,1] of the vector space It. Furthermore let {z1,...,z:} C Q and
z; any extreme element of x; with regard to S for everyi=1,...,s. Then S is
the unique indecomposable cluster solution.

By the linear transformation (LT1) (page 4) and the fact that x; : @ — [0, 1]
(: = 1,2) attends its minimum 0 at some z; for finite Q and x; + x2 = 1q, a
direct consequence of 4.2 is the following corollary:



Corollary 4.3 Let  finite and dim It = 2, then there exists an unique inde-
composable cluster solution that can be computed via transformation (LT1).

Proof of 4.2: Because Ilg € It and S is a basis of It with extreme elements
for every x; € S and 1 has a unique representation as a linear combination of
X1,---,Xs, S meets the covering property (7).

To show that each x; € S is indecomposable we consider y; € S without
loss of generality. Let xa,xB € I'r with x1 = x4 + xB.- Because S is a basis
of It and there are extreme elements for every x; we get real positive numbers
Qy,...,05 EIR(J]r and fB1,...,0s E]R(‘]|r with

s s
Xa =Y aixis xB=_ BiXi
i=1 i=1

We further get

8

xi =Y (@i + Bi)xa-

i=1
Since S is a basis of I7, we have (aq + 1) = 1 and (o + 3;) = 0 for
Jj=2,...,s, where o; and j; are positive. This yields

XA =o1X1, XB=PiXx1

and therefore linear dependency of x4 and xs-

To prove uniqueness, suppose there exists another indecomposable solution
S = {X1s---,Xs}- We only have to show that S CS. Let x € S. Since S is a
basis of It and there are extreme elements for every x; € S, we have positive
real numbers oy, ..., a5 € ]R(J)r with

8
X = Z QX
i=1
Further there exists a j € {1,...,s} with a; # 0 yielding

X =ajx; + ZaiXi-
i#j

Obviously, x € I'9. guarantees linear dependency of
T8

Xa:=ajx; €Tr and xp:=) aixi €Tr
i

implying x = a;x;. Since S meets the covering property, we have oj =1 and
therefore x € S. O

Whereas an indecomposable solution for s = 2 can be found simply by ap-
plying (LT1), corollary 4.3 does not hold in general for s > 3. In this case, after
(LT1) a further linear transformation (LT2) has to be applied to the complete
system of membership functions:

If @ = {A;1,..., Ay} is finite, then a complete system S of membership
functions x1,...,Xs can be written as (m,s)-matrix C":

Ci’j ::Xj(Ai)a i:l,...,m, j:].,...,s. (14)



Because S is complete the columns of C' are linear independent and for the
k-vector 1y := (1,...,1)! we have

Cls = 1y,. (15)

The linear transformation (LT2) is defined as a multiplication of C' with a
(s,8)-matrix D. Since after this transformation (LT2) C'D should again represent
a complete system of membership functions, D has to be regular and to satisfy:

CDII.SZII.m:>DIls:II-s:>D71B-S:II'S‘ (16)

Feasibility of (LT2) due to the conditions 1 > (CD);; > 0 and (16) can
geometrically be interpreted: The rows of C' as points in IR® are convex combi-
nations of the rows of D~! as points in IR®. Because of (15) and (16) the rows
of C and D~! (as points) lie on the same hyper-plane in IR®* and by omitting
the first column (orthogonal projection) of C and D~! they can be interpreted
as points in IR*~1). Name these sets of points C for matrix C' and D for matrix
D1 respectively. Let V, be the convex hull of D, then V is a (s — 1)-simplex
with nonempty interior, because D is regular. C = {yi,...,ym} is called an
Ir-projection of Q. C is not unique, because the choice of a basis of It is not
unique.

Therefore feasibility of (LT2) is the same as

co(C) C Vs (17

with the convex hull co(C) of C.

Uniqueness. If co(C) is a (s — 1)-simplex, then we may choose V; = co(C)
to yield a feasible transformation (LT2), i.e. there exist s points in C that
are related to s elements z1,...,zs €  which span V;. After computing
CD we get via reversal of (14) a complete system of membership functions
S={x1,---,xs} CT'r, where z; is an extreme element of x; for i = 1,...,s.
Theorem 4.2 shows that S is the unique indecomposable cluster solution in this
case.

The next theorem shows the relation between co(C) being a simplex and the
uniqueness of an indecomposable solution of I7.

Theorem 4.4 Let Q) finite. For given s-dimensional IT there exists an
unique indecomposable solution of the T -invariant cluster problem if and
only if the convex hull co(C) C RE=Y of an Ir-projection of Q is a
(s — 1)-simplex.

Proof: One direction of 4.4 has already been shown. Therefore, we only have
to prove that for co(C) not being a (s — 1)-simplex there are —except for scalar
multiplicity— more than s indecomposable membership functions of Ir.

We show that each facet of co(C) leads to an indecomposable membership
function. A facet F of co(C) contains of (s — 1) linear independent points
Y1,---,Ys—1 € C belonging to (s — 1) points z1,...,25-1 € Q.



Take any outer simplex V; with (17) and having F' as a part of one of its
facets. Apply the corresponding linear transformation (LT2). We yield s linear
independent membership functions x1, ..., xs. For one of them, say x;, we have

Xs(wl))---y)(s(xs—l) =0. (18)

Now suppose xs = x4 + xB with
8
XA =) ajx;.
j=1

Hence for i = 1,...,5 — 1 with (18) and the positiveness of xs, x4 and x5 we
have

s—1
0= Z a;X; (@),
j=1

which is a regular system of s — 1 linear equations. Therefore a; = 0 for
j=1,...,5s —1 which implies indecomposability of ;. O

Remark. (LT2) can be applied to the matrix of eigenvectors without applying
(LT1) first. (17) converts the problem of finding a feasible linear transformation
into the problem of finding an outer simplex V; for a given set C.

5 Inner Simplex Algorithm

Outer simplex algorithms. There are many different objective functions to
convert the problem of finding a “best fitting” outer simplex for the set C into
a global optimization problem. But any of these problems will not be convex.
Until now there is no possibility to solve any non-convex global optimization
problem in reasonable time. This is a common property of the class of N P-hard
problems [7]. However, for local optimization methods one may use the fact that
after applying (LT1) a possible outer simplex for C is spanned by the origin and
the (s — 1) unit vectors in IR(~1).

Inner simplex algorithm. Suppose there exists an unique indecomposable
cluster solution. From Theorem 4.4 we know that we can compute this solution
by defining D via the simplex Vs := co(C) (see (16)). To determine V; one may
apply the following algorithm (inner simplex algorithm) based on ideas of the
quickhull algorithm [3]:

1. Find two points y;,y2 € C having maximum Fuclidean distance with re-
gard to every pair of points in C. Obviously y1,y2 € co(C). Add y; and
y2 to the vertex set of the searched (s — 1)-simplex V.

2. For step counter k = 2,...,(s — 1): Find a point € C maximizing the
Euclidean distance between point (y — y;) and the vector space spanned
by (y2 — v1),--.,(yr — y1) via orthogonal projection. Obviously we have
Yr+1 =y € co(C). Therefore add yr4+1 to the vertex set of the searched
(s — 1)-simplex V.

After applying the inner simplex algorithm one yields V.



Transition states and intermediate states. To achieve an indicator for
the fulfillment of the assumption that there exists an unique indecomposable
solution, one applies (LT2) via inner simplex algorithm and looks at the lowest
value 6 of all membership functions. If and only if 8 = 0 this assumption was
correct. |0] € [0,1] is called an indicator for uniqueness.

If 6 = 0 one yields two classes of states in ) after applying (LT2):

e FExtreme elements. Look at Definition 4.1. Extreme elements are related
to the vertices of V.

o Transition states. All elements in Q that are not extreme elements are
transition states. Their grade of membership to one of the extreme ele-
ments is defined via membership functions.

If |8] > 0 a third kind of states in § appears after applying (LT2). An element
z € Q) is called intermediate state if for one of the “membership functions” x
obtained after (LT2) with the inner simplex algorithm we have x(z) < 0.

These states are responsible for the ambiguity of the cluster solution. They
do not occur in unique indecomposable solutions.

6 Numerical examples.

Example 6.1 (n-butane) N-butane (CyH1o) was simulated at 300K for time-
scale 7 = 200fs. For every configuration the torsion angles were stored which
are sufficient for a rough reconstruction of the spatial coordinates together with
the corresponding equilibrium bonds and angles. For conformational analysis
like in [2] only the main torsion angle was considered and uniformely partionated
into 50 equidistant intervalls Q* = {Ay, ..., As0}. Since torsion angles between
—30° and +30° did not occur during simulation, 8 intervals were skipped.

The corresponding Perron Cluster was A; = 1, Ay = 0.9906 and \3 = 0.9877,
while the 4th eigenvalue Ay = 0.5234 is bounded away from 1, i.e. s = 3.

Figure 1(a) shows an Ir-projection of Q* and its convex hull co(C) which is
indeed a 2-simplex. Hence the corresponding indecomposable solution is unique
and the three membership functions are optained via (LT2), see Figure 1(b).

The intervalls [57.6°,64.8°],[172.8°,180.0°] and [—64.8°, —57.6°] are the ex-
treme elements of this clustering representing the trans- and the gauche-con-
formations of n-butane. The other intervalls are more or less transition states
between these conformations. There are no intermediate states.

Example 6.2 (VX-478) The inhibitor VX-478 of the enzyme HIV-protease
was simulated at T00K. After simulation {2 was adaptively decomposed into 72
boxes Q* = {A4,..., A72} via self-organizing box maps (SOBM) [8]. T and its
spectrum of eigenvalues were computed. Since the largest gap was between Ay
and A3, Perron Cluster analysis gave s = 2 and therefore § = 0. Note that there
is a second large gap between A; and A¢ with relatively small |6], but on low
level with regard to As.
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Figure 1: (a) Ir-projection of Q* for n-butane. (b) Indecomposable Solution
{x1,x2,x3} for m =42 and s = 3.

LA 107
1.0000
0.9302 | 0.0000
0.8850 | 0.8011
0.8758 | 0.4466
0.8602 | 0.1528
6 || 0.7948 | 0.6382

Table 1: Eigenvalues and indicator for VX-478 at 700K

UL W N | ®

LA 6]
1.0000
0.9524 | 0.0000
0.9405 | 0.5605
0.9271 | 0.0856
0.9046 | 0.8215
6 || 0.8865 | 0.5990

Table 2: Eigenvalues and indicator for VX-478 at 500K

UL W N~ ®»

After seperation of 2 clusters via Perron cluster analysis, VX-478 was simu-
lated at 500K in one of these clusters. Again ) was adaptively decomposed.

Table 2 gives us the eigenvalues and |f| for the computed T. The gaps
between A4 and A5 and between A5 and g are not significant enough to decide
whether s =4 or s = 5. But an investigation of |§] shows that only s = 4 leads
to an almost unique cluster solution.

7 Conclusion
This paper suggests a modification of conformational analysis. The crisp cluster

problem is replaced by a fuzzy cluster problem. This leads to the following
conceptual changes:
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e Transition states are not assigned to one crisp cluster any longer. Instead
grades of membership are computed via fuzzy membership functions yield-
ing more information about the molecular dynamics.

e The introductory problem of assigning a transition state to one crisp clus-
ter was responsable for the ambiguity of the cluster solution in classical
set theory. Now by fuzzy set theory, an indecomposable solution of an al-
most T-invariant cluster problem can be unique although transition states
occur.

e In many numerical examples there are no gaps in the spectrum of 7', which
are large enough to define the Perron Cluster. In this case the indicator
for uniqueness can be used as a further hint to decide, how many clusters
should be chosen.

Acknowledgments. It is a pleasure to thank Frank Cordes and Alexander
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