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STRONG CONVEX NONLINEAR RELAXATIONS OF THE
POOLING PROBLEM: EXTREME POINTS

JAMES LUEDTKE∗, CLAUDIA D’AMBROSIO† , JEFF LINDEROTH∗, AND JONAS

SCHWEIGER‡

Abstract. We investigate new convex relaxations for the pooling problem, a classic nonconvex
production planning problem in which products are mixed in intermediate pools in order to meet
quality targets at their destinations. In this technical report, we characterize the extreme points
of the convex hull of our nonconvex set, and show that they are not finite, i.e., the convex hull
is not polyhedral. This analysis was used to derive valid nonlinear convex inequalities and show
that, for a specific case, they characterize the convex hull of our set. The new valid inequalities and
computational results are presented in [6].

1. Introduction. The pooling problem is a classic nonconvex nonlinear problem
introduced by Haverly in 1978, see [4]. The problem consists in routing flow through
a feed forward network from inputs through pools to output products. The material
that is introduced at inputs has known quality for certain attributes. The task is to
find a flow distribution that respects quality restrictions on the output products. As
is standard in the pooling problem, we assume linear blending, i.e., the attributes at
a node are mixed in the same proportion as the incoming flows. As the quality of
the attributes in the pools is dependent on the decisions determining amount of flow
from inputs to the pools, the resulting constraints include bilinear terms.

There are many applications of the pooling problem, including petroleum refining,
wastewater treatment, and general chemical engineering process design [1, 3, 5, 9].
This is confirmed by an interesting analysis performed by Ceccon et al. [2] whose
method allows to recognize pooling problem structures in general mixed integer non-
linear programming problems.

The aim of this work is to strengthen the relaxation of the strongest known
formulation, i.e., the so-called pq-formulation proposed in [8, 10]. By focusing on a
single output product, a single attribute, and a single pool, and aggregating variables,
we derive a structured nonconvex 5-variable set that is a relaxation of the original
feasible set. The description of this set contains one bilinear term which captures
some of the nonconvex essence of the problem. In this paper, we analyze the extreme
points of the relaxation and provide a complete list of all possible and in general
infinitely many extreme points. The relaxation is thus not a polyhedron.

Valid convex inequalities for this set directly translate to valid inequalities for
the original pooling problem. In [6], we derive valid linear and nonlinear convex in-
equalities for the set. For three cases determined by the parameters of the set, we
demonstrate that a subset of these inequalities define the convex hull of the set. Fi-
nally, we conduct an illustrative computational study that demonstrates that these
inequalities can indeed improve the relaxation quality over the pq-formulation, par-
ticularly on instances in which the underlying network is sparse, which are precisely
the instances in which pq-formulation relaxation has the largest gap to the optimal
value.
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2. Mathematical Formulation and Relaxation. There are multiple formu-
lations for the pooling problem, primarily differing in the modeling of the concentra-
tions of attributes throughout the network. We base our work on the state-of-the-art
pq-formulation.

We are given a directed graph G = (V,A) where V is the set of vertices that is
partitioned into inputs I, pools L, and outputs J, i.e., V = I ∪ L ∪ J. For a node
u ∈ V , the sets Iu ⊆ I, Lu ⊆ L, Ju ⊆ J denote the inputs, pools, and outputs,
respectively, that are directly connected to u. Arcs (i, j) ∈ A link inputs to pools,
pools to outputs, and inputs directly to outputs, i.e., A ⊆ (I×L)∪ (L× J)∪ (I× J).
In particular, pool-to-pool connections are not considered.

The pq-formulation of the pooling problem uses the following decision variables:
• xij is the flow on (i, j) ∈ A;
• qi` is the proportion of flow to pool ` ∈ L that comes from input i ∈ I`;
• wi`j is the flow from i ∈ I through pool ` ∈ Li to output j ∈ J`.

With these definitions, the pq-formulation of the pooling problem is:

min
∑

(i,j)∈A
cijxij(1a)

s.t.
∑

`∈Li

xi` +
∑

j∈Ji
xij ≤ Ci for all i ∈ I(1b)

∑

j∈J`
x`j ≤ C` for all ` ∈ L(1c)

∑

`∈Lj

x`j +
∑

i∈Ij
xij ≤ Cj for all j ∈ J(1d)

∑

i∈I`
qi` = 1 for all ` ∈ L(1e)

wi`j = qi`x`j for all i ∈ I`, ` ∈ Lj , j ∈ J(1f)

xi` =
∑

j∈J`
wi`j for all i ∈ I`, ` ∈ L(1g)

∑

i∈Ij
γijkxij +

∑

`∈Lj

∑

i∈I`
γijkwi`j ≤ 0 for all j ∈ J, k ∈ K(1h)

∑

i∈I`
wi`j = x`j for all j ∈ J`, ` ∈ L(1i)

∑

j∈J`
wi`j ≤ C`qi` for all i ∈ I`, ` ∈ L(1j)

0 ≤ xij ≤ Cij for all (i, j) ∈ A(1k)

0 ≤ qi` ≤ 1 for all i ∈ I`, ` ∈ L.(1l)

The objective (1a) is to minimize the production cost, where cij is the cost per
unit flow on arc (i, j). Inequalities (1b)–(1d) represent capacity constraints on inputs,
pools, and outputs, respectively, where here Ci, i ∈ I, C`, ` ∈ L, and Cj , j ∈ J are
given capacity limits. Equations (1e) enforce that the proportions at each pool sum
up to one. Equations (1f) and (1g) define the auxiliary variables wi`j and link them
to the flow variables. (1h) formulates the quality constraints for each attribute k in
the set of attributes K. The coefficients γijk represent the excess of attribute quality
k of the material from input i with respect to the upper quality bound at output j.
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The upper quality bound is met when there is no excess, i.e., the total excess is not
positive. For brevity, we do not include lower bounds on attribute quality at the final
products, but these can be easily added. Inequalities (1i) and (1j) are redundant in
the formulation but are not when the nonconvex constraints (1f) are not enforced as
is done in a relaxation-based solution algorithm. These two constraints constitute the
difference between the q- and the pq-formulation and are responsible for the strong
linear relaxation of the latter. Finally, (1k) limits the flow on each arc (i, j) to a given
capacity Cij .

A linear programming relaxation of the pq-formulation is obtained by replacing
the constraints (1f) with the McCormick inequalities derived using the bounds (1k)
and (1l):

wi`j ≤ x`j , wi`j ≤ C`jqi`, for all i ∈ I`, ` ∈ Lj , j ∈ J(2a)

wi`j ≥ 0, wi`j ≥ C`jqi` + x`j − C`j , for all i ∈ I`, ` ∈ Lj , j ∈ J.(2b)

We refer to the relaxation obtained by replacing (1f) with (2) as the McCormick relax-
ation. Our goal is to derive tighter relaxations of the pooling problem by considering
more of the problem structure.

3. Strong Convex Nonlinear Relaxations. To derive a stronger relaxation of
the pooling problem, we seek to identify a relaxed set that contains the feasible region
of the pooling problem, but includes some of the key nonconvex structure. First, we
consider only one single attribute k ∈ K and relax all constraints (1h) concerning the
other attributes. Next, we consider only one output j ∈ J, and remove all nodes and
arcs which are not in a path to output j. In particular, this involves all other outputs.
Then, we focus on pool ` ∈ L with the intention to split flows into two categories: the
flow through pool ` and aggregated flow on all paths not passing through pool `, also
called “by-pass” flow. Finally, we aggregate all the flow from the inputs to pool `.

As a result, we are left with five decision variables:
1. the total flow through the pool, i.e., the flow x`j from pool ` to output j
2. the total flow z`j over the by-pass, i.e., the flow to output j that does not

pass through pool `

z`j :=
∑

i∈Ij
xij +

∑

`′∈Lj |`′ 6=`
x`′j

3. the contribution uk`j of the flow through pool ` to the excess of attribute k
at output j, i.e.,

uk`j :=
∑

i∈I`
γkijwi`j

4. the contribution yk`j of by-pass flow to the excess of attribute k at output j,
i.e.,

yk`j :=
∑

i∈Ij
γkijxij +

∑

`′∈Lj |`′ 6=`

∑

i∈I`′
γkijwi`′j

5. the attribute quality tk`j of the flow through pool `, i.e.,

tk` :=
∑

i∈I`
γkijqi`.

With these decision variables, the quality constraint associated with attribute k of
output j and the capacity constraint associated with output j from (1) can be written
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as:

yk`j + uk`j ≤ 0, for all k ∈ K, j ∈ J(3a)

z`j + x`j ≤ Cj , for all j ∈ J.(3b)

A key property of these new decision variables is the relation between the flow and
quality in the pool with the excess of the attribute contributed by the flow through
the pool

uk`j = x`jtk` for all ` ∈ L, j ∈ J,(4)

which is valid because using (1f) and (1i)

uk`j =
∑

i∈I`
γkijwi`j =

∑

i∈I`
γkijqi`x`j =

∑

i∈I`
γkijqi`

∑

i′∈I`
wi′`j = tk`x`j .

In order to derive bounds on the new decision variables we define the parameters
γ
k`

and γk` representing bounds on the excess of attribute k over inputs that are

connected to pool `, and β
k`j

and βk`j representing bounds on the excess of attribute

k over inputs that are connected to output j via a by-pass flow :

γ
k`

= min
i∈I`

γki β
k`j

= min
{
γki : i ∈ Ij ∪

⋃

`′∈L\{`}
I`′
}

γk` = max
i∈I`

γki βk`j = max
{
γki : i ∈ Ij ∪

⋃

`′∈L\{`}
I`′
}
.

We thus have,

tk` ∈ [γ
k`
, γk`] for all k ∈ K, ` ∈ L(5a)

β
k`j
z`j ≤ yk`j ≤ βk`jz`j , for all k ∈ K, ` ∈ L, j ∈ J.(5b)

Despite the many relaxations performed in deriving this set, the nonconvex rela-
tion (4), which relates the contribution of the excess from the pool to the attribute
quality of the pool and the quantity passing through the pool, still preserves a key
nonconvex structure of the problem.

With these variables and constraints we now formulate the relaxation of the pool-
ing problem that we want to study. To simplify notation, we drop the fixed indices
`, j, and k. Gathering the constraints (3), (4), and (5), together with nonnegativity
on the z and x variable, we define the set T as those (x, u, y, z, t) ∈ R5 that satisfy:

u = xt(6)

y + u ≤ 0(7)

z + x ≤ C(8)

y ≤ βz(9)

y ≥ βz(10)

z ≥ 0, x ∈ [0, C], t ∈ [γ, γ].

We can assume, without loss of generality, that C = 1 by scaling the variables x, u,
y, and z by C−1.
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Due to the nonlinear equation u = xt, T is a nonconvex set unless x or t is fixed.
Using the bounds 0 ≤ x ≤ 1 and γ ≤ t ≤ γ, the constraint u = xt can be relaxed by
the McCormick inequalities [7]:

u− γx ≥ 0(11)

γx− u ≥ 0(12)

u− γx ≤ t− γ(13)

γx− u ≤ γ − t.(14)

Equations (11)–(14) provide the best possible convex relaxation of the feasible points
of u = xt given that x and t are in the bounds mentioned above. However, replacing
the nonconvex constraint u = xt with these inequalities is not sufficient to define
conv(T ).

Note that (11)–(14) imply the bounds 0 ≤ x ≤ 1 and γ ≤ t ≤ γ. Also the bound
constraint z ≥ 0 is implied by (9) and (10). Thus, we define the standard relaxation
of the set T by

R0 := {(x, u, y, z, t) : (7)–(14)}.
Every convex set is described completely by its extreme points and rays. The set

T is bounded and so has no extreme rays.

3.1. Extreme Points Analysis. In this section, we provide a complete list
of the extreme points of conv(T ). Recall that a point p ∈ T is extreme if it can
not be represented as convex combination of two district points from the set, i.e.,
if there are not two other points p1, p2 ∈ T with p1 6= p2 and a λ ∈ (0, 1) with
p = λp1 +(1−λ)p2. The set of extreme points of conv(T ) is denoted by ext(conv(T )).
Note that ext(conv(T )) ⊂ T .

The following lemma states that extreme points either transport no material at
all (z + x = 0) or that the capacity of the output is fully used (z + x = 1).

Lemma 1. If p = (x, t, z, y, u) ∈ ext(conv(T )), then z + x ∈ {0, 1}.
Proof. Suppose there was a p = (x, t, z, y, u) ∈ ext(conv(T )) with 0 < z + x < 1.

Then p ∈ T and there exists an ε > 0 such that scaling all variable except t with
(1 + ε) and scaling them with (1 − ε) yields two feasible points p+ ∈ T and p− ∈ T .
Since p = 0.5p+ + 0.5p−, p is not extreme which is a contradiction.

When there is no flow though the network, the concentration in the pool can take
arbitrary values in the bounds. The result are two extreme points for this case.

Theorem 2. The points p = (x, t, z, y, u) ∈ ext(conv(T )) with z + x = 0 are
(0, γ, 0, 0, 0) and (0, γ, 0, 0, 0).

Proof. Since extreme points are in T , the condition z + x = 0 implies z = x =
u = y = 0. The only variable that is not fixed is t which can vary freely in its bound
interval [γ, γ]. Hence the two extreme points.

By Lemma 1, all remaining extreme points fulfill z + x = 1 and Lemma 3 reveals the
structure of them.

Lemma 3. If p = (x, t, z, y, u) ∈ ext(conv(T )) and z + x = 1, then either
• x = 1,
• z = 1, or
• y + u = 0.
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Proof. Let p = (x, t, z, y, u) ∈ ext(conv(T )) with x < 1, z < 1, and y+u < 0. Let
K such that y = Kz. Define

p+ = (x(1 + ε), t, 1− x(1 + ε),K(1− x(1 + ε)), tx(1 + ε))

p− = (x(1− ε), t, 1− x(1− ε),K(1− x(1− ε)), tx(1− ε))

Since p ∈ T , both p+ and p−, are in T and p = 0.5p+ + 0.5p−. Therefore, p is not
extreme and not all three inequalities can be strict simultaneously.

The following two theorems characterize the extreme points with z = 1 and with
x = 1.

Theorem 4. If β > 0, then ext(conv(T )) has no extreme points with z = 1.
If β ≤ 0, then the points p = (x, t, z, y, u) ∈ ext(conv(T )) with z = 1 are
• (0, γ, 1, β, 0) and (0, γ, 1, β, 0) and

• (0, γ, 1,min(β, 0), 0) and (0, γ, 1,min(β, 0), 0).

Proof. Since z = 1, we have x = u = 0, y ∈ [β, β] ∩ [−∞, 0], and t ∈ [γ, γ]. This

set becomes infeasible if [β, β] ∩ [−∞, 0] = ∅, i.e., if β > 0. If β ≤ 0, the extreme

points are the vertices of the hyperrectangle {0}× [γ, γ]×{1}× [β,min(β, 0)]×{0}.
Theorem 5. If γ > 0, then ext(conv(T )) has no extreme points with x = 1.
If γ ≤ 0, then the points p = (x, t, z, y, u) ∈ ext(conv(T )) with x = 1 are
• (1, γ, 0, 0, γ) and
• (1,min(γ, 0), 0, 0,min(γ, 0)).

Proof. If x = 1, then z = y = 0, u = t. Since t = u ≤ 0 and t ∈ [γ, γ] the system
is infeasible if γ > 0 and there are not extreme points with x = 1. Otherwise, i.e.,
if γ ≤ 0, the extreme points with x = 1 are completely characterized by t = γ and
t = min(γ, 0).

The remaining extreme points fulfill z + x = 1 and y + u = 0. Using these two
equations and propagating them through the defining inequalities of T , it is easy to
see that the the remaining extreme points have only two liberties and satisfy the
following system which we denote by T̃ :

−xt ≤ β(1− x)(15)

−xt ≥ β(1− x)(16)

x ∈ [0, 1]

t ∈ [γ, γ].

The remaining variables can be computed by substitution and other choices as x and
t as variables describing the two liberties are possible. All extreme points of conv(T̃ )
are extreme points of conv(T ).

To attack T̃ , we fix the variable t to t = α and define the set

Tα :=
{

(x, t, z, y, u) ∈ T
∣∣ z + x = 1, y + u = 0, t = α ∈ [γ, γ]

}
.

It is clear that conv(T̃ ) = conv(
{
Tα
∣∣α ∈ [γ, γ]

}
). Now, it is not clear anymore that

all extreme points of Tα are extreme points of conv(T̃ ); some might actually lie in the
interior of conv(T̃ ). We know, however, that the extreme point of T with z + x = 1
and y + u = 0 are in ∪α∈[γ,γ] ext(Tα).
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Theorem 6. The extreme points of Tα, α 6∈ {β, β}, are completely characterized
by

• x = max(0,
β

β−α ) and x = min(1, β

β−α ) if α < β < β

• x = 0 and x = min(1,
β

β−α ,
β

β−α ) if β < α < β

• x = max(0, β

β−α ) and x = min(1,
β

β−α ) if β < β < α

Proof. The set Tα has only one degree of freedom and every p ∈ Tα is of the form

p = (x, α, 1− x,−xα, xα)

for some x.
Working with (15), we get

x(β − α) ≤ β ⇐⇒ x




≤ β

β−α if β − α > 0

≥ β

β−α if β − α < 0

For β − α = 0, the system is infeasible if β < 0 and feasible with x ∈ [0, 1] if β ≥ 0.
(In any case, α = β does not yield new extreme points for conv(T ), since the extreme
points in this case are on the line between two previously known extreme points.)

Similar for (16)

x(β − α) ≥ β ⇐⇒ x




≥ β

β−α if β − α > 0

≤ β

β−α if β − α < 0

Here, for β − α = 0, the system is infeasible if β > 0 and feasible with x ∈ [0, 1] if
β ≤ 0. (Also in this case we don’t get new extreme points for conv(T ).)

With the condition α 6∈ {β, β}, we get three cases:

case α < β < β : case β < α < β : case β < β < α :

x ≤ β

β − α
x ≤ β

β − α
x ≥ β

β − α

x ≥
β

β − α x ≤
β

β − α x ≤
β

β − α

which completes the proof.

Theorems 2, 4 and 5 provide a discrete set of extreme points of conv(T ) and
Theorem 6 provides a continuous set of points that might or might not be extreme
for conv(T ).
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