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Abstract

A graph property is called elusive (or evasive) if every algorithm for
testing this property has to read in the worst case (’2’) entries of the
adjacency matrix of the given graph. Several graph properties have
been shown to be elusive, e.g. planarity [2] or k-colorability [4]. A
famous conjecture of Karp [11] says that every non-trivial monotone
graph property is elusive. We prove that a non-monotone but heredi-
tary graph property is elusive: perfectness.

MSC 2000. 68Q17, 68Q25
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1 Introduction

Given a graph property, consider the following two-players game to define
elusiveness. Player A wants to know whether an unknown simple graph on a
given node set has the graph property in question by asking Player B one by
one, whether a certain pair of nodes is an edge. At each stage Player A makes
full use of the information of edges and non-edges he has up to that point in
order to decide whether the graph has the property or not. Player A wants
to minimize the number of his questions, Player B wants to force him to
ask as many questions as possible. The number of questions needed for
the decision if both players play optimally from their point of view is the
recognition complexity of the studied graph property. The property is said
to be elusive (or also evasive) if there is a strategy enabling Player B to force
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Player A to test every pair of nodes resp. to ask all possible (g) questions
before coming to a decision. (More precisely, such a strategy has to exist
for all non-trivial cases, i.e., for all n such that there are graphs on n nodes
with and without the studied property.)

Several graph properties are known to be elusive, e.g., having a clique of a
certain size or a coloring with a certain number of color classes (Bollobés [3])
and being planar for graphs on > 5 nodes (Best et al. [2]), see [4, 12] for more
examples. On the other hand, it is well-known that there exist non-trivial
graph properties that need only O(n) questions, see [2, 4].

Aanderaa and Rosenberg conjectured [2] that there exists some v > 0
such that the complexity of every non-trivial monotone graph property (i.e.,
a property preserved under deleting edges) is at least yn?. This conjecture
has been proved by Rivest and Vuillemin [10] for v = 5. The value of
~v has been improved over the years. Currently the largest value of ~ for
which the conjecture of Aanderaa and Rosenberg is known to be true is
1 — o(1). This result was established by Kahn, Saks and Sturtevant [7]. A
sharpened version of the Aanderaa-Rosenberg conjecture is due to Karp [11].
He conjectures that every non-trivial monotone graph property is elusive.

The subject of the present paper is to prove:

Theorem 1 Perfectness is an elusive graph property.

Perfectness is a property which is not monotone but hereditary (pre-
served under deleting nodes) and concerned to the relation of maximum
cliques and optimal colorings. Perfect graphs behave nicely from an algo-
rithmic point of view [6] and have interesting relationships to surprisingly
many other fields of scientific enquiry [9]. However, the recognition problem
for perfect graphs is unsolved and its complexity is even unknown. The
present paper contributes some information by showing: perfectness is a
graph property as complex as possible, namely, elusive.

Berge [1] proposed to call a graph G perfect if, for each of its (node-)
induced subgraphs G’ C G, the chromatic number equals the clique number
(i.e., if we need as many stable sets to cover all nodes of G’ as a maximum
clique of G’ has nodes). This means that identifying one induced imperfect
subgraph would enable Player A to make the final decision: the graph in
question is not perfect. For that, so-called minimally imperfect graphs
are of particular interest (that are imperfect graphs all of their proper in-
duced subgraphs are perfect). The only known examples of minimally im-
perfect graphs are chordless odd cycles of length > 5, termed odd holes,



and their complements, called odd antiholes. (A famous conjecture due
to Berge [1] says that odd holes and odd antiholes are the only minimally
imperfect graphs.) Consequently, Player B has to answer in such a way
that no minimally imperfect induced subgraph appears until Player A asks
the last question but that the last answer can create a minimally imperfect
induced subgraph.

The odd hole of length five is the smallest imperfect graph. Hence, the
cases with n < 4 nodes are trivial: Player A knows without asking any
question that the studied graph is perfect. In order to show that perfectness
is an elusive graph property we have to treat the non-trivial cases n > 5.

The idea for providing a strategy to Player B goes as follows. Find
perfect graphs such that you cannot reach another perfect graph by deleting
or adding one edge. We call an edge e of a perfect graph G critical if
G — e is imperfect. Analogously, we call an edge e not contained in a perfect
graph G anticritical if G + e is imperfect. A perfect graph G is critical
if G has only critical edges. The complement of a critically perfect graph is
again perfect (due to Lovész [8]) and has the property that adding an edge
not contained in the graph so far yields an imperfect graph. We call the
complements of critically perfect graphs anticritically perfect. We look
for bicritically perfect graphs which are both critically and anticritically
perfect: the deletion and addition of an arbitrary edge yields an imperfect
graph.

If there exists a bicritically perfect graph G,,, then Player B has only
to answer all but the last question “ij5 € E?” of Player A as in G,. Le.,
Player B has only to apply the following strategy for graphs on n nodes.

Strategy 1 Let G,, be a bicritically perfect graph on n nodes.
For questions 1 to (3) — 1:
Answer “ij € E?” with YES if i € E(G,), NO otherwise.

Then no induced imperfect subgraph appears during the first (g) — 1 ques-
tions, and the answer to the last question yields the decision:

YES ifij € E(G,) then the graph is perfect
NO ifij € E(G,) then the graph is imperfect
YES ifij ¢ E(G,) then the graph is imperfect
NO ifij ¢ E(G,) then the graph is perfect

Answer “ij € E?"with
n

In order to prove Theorem 1, our task is:

Problem 1 Find, for as many n as possible, a bicritically perfect graph G,
on n nodes.



A first step towards Problem 1 was a computer search enumerating which
perfect graphs on upto 10 nodes are critically perfect.

Theorem 2 No critically perfect graphs with fewer than 9 nodes exist. On
9 and 10 nodes there are precisely 3 and 10 critically perfect graphs, resp.

Figure 1: The three smallest critically perfect graphs.

Clearly, Theorem 2 remains true if “critically perfect” is replaced by “anti-
critically perfect”. Figure 1 shows the three critically perfect graphs on nine
nodes. The first graph is self-complementary and, therefore, also anticritical.
Le., it is our first example Gg of a bicritically perfect graph. The other two
graphs are not anticritical, but only their complements are. Every of the
critically perfect graphs with ten nodes is not anticritical (see next section).
That means particularly: there are no bicritically perfect graphs G, with
n < 8 and n = 10. In Section 2, we present a technique of constructing
examples of bicritically perfect graphs that bases on the characterization of
critically and anticritically perfect line graphs. In Section 3, we apply the
knowledge from the previous section to construct the studied bicritically
perfect graphs G,, if n > 12. Section 4 provides a slightly different strategy
for the cases n = 10, 11.

The cases 5 < n < 8 are treated as follows. The odd hole Cj5 is the
only imperfect graph on five nodes (note: the Cjy is self-complementary,
hence also the odd antihole on five nodes). Consequently, one cannot reach
another imperfect graph from the Cs by deleting or adding one edge. Thus,
the Cs is bicritically imperfect and Strategy 1 does also work for n = 5
with choosing G, = C5. For 6 < n < 8 there is no bicritically imperfect
graph with n nodes. In order to treat these cases we do not provide an
explicit strategy but we show in Section 5 that there ezists a strategy: we
prove elusiveness for 6 < n < 8 with the help of a result of Rivest and
Vuillemin [10] by using a parity argument and doing some computer search.

In summary, we show the existence of a strategy in all non-trivial cases
n > 5 which proves Theorem 1: perfectness is an elusive graph property.



2 Bicritically Perfect Line Graphs

This section provides characterizations of critically or anticritically perfect
line graphs established in [13, 14]. We obtain the line graph L(F) of a
graph F' by taking the edges of F' as nodes of L(F') and joining two nodes
of L(F) by an edge iff the corresponding edges of F' are incident. It is
well-known that the line graph L(F') of a graph F is perfect iff F' is line-
perfect, i.e., iff F' does not contain any odd cycle of length at least 5 as a
weak subgraph.
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Figure 2: Definition of H-pairs and A-pairs.

In order to characterize critical and anticritical edges in L(F'), we define two
structures in F. We say that two incident edges =z and y form an H-pair
in F if there is an edge z incident to the common node of z and y and if
there is an even cycle C' containing z and y but only one endnode of z (see
Figure 2(a)). L(C) is an even hole and the node in L(F') corresponding to z
has precisely two neighbors on L(C), namely z and y (see Figure 2(b)). Two
non-incident edges = and y are called an A-pair if they are the endedges
of an odd path P with length at least five (see Figure 2(c)). L(P) is an
even, chordless path of length at least four with endnodes z and y (see
Figure 2(d)). It is straightforward that deleting and adding the edge zy
in L(C U z) and L(P), respectively, yields an odd hole. In [13, 14] it is
established that xy is a critical (anticritical) edge in L(F') only if z and y
form an H-pair (A-pair) in F'.

Theorem 3 [13, 14] Let G be the line graph of a line-perfect graph F. An
edge xy of G (not contained in G) is critical (anticritical) if and only if ©
and y form an H-pair (A-pair) in F.

Consequently, if L(F) is intended to be critically (anticritically) perfect,
every pair of incident (non-incident) edges in F' must form an H-pair (A-
pair). We define a graph with at least two incident (non-incident) edges
to be an H-graph (A-graph) if each pair of incident (non-incident) edges



forms an H-pair (A-pair). It is an immediate consequence of Theorem 3
that F' has to be a line-perfect H-graph (A-graph) if L(F') is intended to be
critically (anticritically) perfect. In [13, 14] it was shown that F must be
bipartite in both cases (i.e. without any odd cycle).

Finding examples of critically (anticritically) perfect line graphs means,
therefore, to look for bipartite H-graphs (A-graphs). The three smallest
critically perfect graphs are the complements of the line graphs of the three
bipartite A-graphs presented in Figure 3. A; is also an H-graph, hence L(A;)
is bicritical (it is in fact self-complementary). Furthermore, A; is the only
bipartite H-graph with 3 nodes in each color class. If there are 4 nodes in
one color class, then an H-graph has at least 12 edges since it has minimum
degree 3 by definition. Hence, the second smallest H-graph admits 12 edges
and there cannot be any bicritically perfect line graph on 10 or 11 nodes.

Remark 4 All anticritically perfect graphs on 10 nodes are line graphs of
bipartite A-graphs (which arise from A;, Ao, and A3 by adding one edge).
Thus, there is no bicritically perfect graph on 10 nodes. It is unknown so
far whether there exist bicritically perfect graphs on 11 nodes but it is clear
that there is no such line graph.

Ay A, Ag

Figure 3: The three smallest bipartite A-graphs.

The following sufficient condition for a bipartite graph F' to be an H-graph
and an A-graph is established in [14].

Lemma 5 [14] Every simple, 3-connected, bipartite graph is an H-graph as
well as an A-graph.

Remark 6 Note that duplicating edges preserves the property of being an
A-graph (since no new pair of non-incident edges occurs) while it does not
preserve the property of being an H-graph (since parallel edges are incident
but never form an H-pair).



3 Construction of the graphs G,, for n > 12

In order to treat Problem 1, this section is intended to present a bicritically
perfect graph G, for each n > 12. Lemma 5 ensures that L(F') is bicritically
perfect whenever F' is a simple, 3-connected, bipartite graph. Hence we will
construct simple, 3-connected, bipartite graphs F, with n > 12 edges to
obtain the studied bicritically perfect graphs G, = L(F},) on n > 12 nodes.
Consider the graphs F3;, = (AU B, E1 U Es) with k£ > 3 and

A={1,3,...,2k-1}

B =1{2,4,...,2k}
Bi={ii+1:1<4<2k mod(2k)}
BEy={ii+3:ic A}

The three smallest examples of graphs Fs;, for k € {3,4,5} are shown in
Figure 4 (note A; = Fy). Fj3i is an even cycle (AU B, E4) on its 2k nodes
with k chords E5 outgoing from a node in A with odd index and ending in
a node in B with even index. Thus, the graphs F3; are bipartite and simple
by construction. We have to show that they are 3-connected.

e
e

F9 F12 I:15

Figure 4: The graphs F3; with k = 3,4, 5.

Lemma 7 The graphs F3i are 3-connected for k > 3.

Proof. We have to show that the graph obtained from Fj3; by removing
two arbitrary nodes ¢ and j is still connected. Let ¢+ < j. Recall that
F3;, = (AUB, E1 UEj5) has a Hamilton cycle C = (AU B, E) and additional
chords ii+3 € Ey with i € Aodd, 143 € B even. If i and j are neighbors on
C (i.e., j =i+ 1) then the remaining nodes i +2 =j+1,...,2k,1,...,i—1
of F3j are connected by a path with edges in ;. Otherwise, removing
1 and j divides the cycle C into two paths P, = ¢+ 1,...,7 — 1 and
P,=35+1,...,2k,1,....4 — 1. It is easy to see that there is always an
edge e € Fy which connects P; and P: If ¢ is odd, then 7 + 1 is even and



1—2i+ 1€ Ey. We have e = ¢ — 2¢ + 1 as the studied edge connecting P;
and P, if i — 2 is a node of P, or else V(P;) = {i — 1} and j = ¢ — 2 holds.
But then 7 —4 is a node of P; (since k > 3) and we obtain e =1 —47—1 (all
indices are taken modulo 2k). Analogously, if 7 is even, then 1 — 17+ 2 € Fj.
We have e = i — 1 + 2 if i + 2 is a node of P; or else V(P;) = {i + 1}
and j = 7+ 2. But then i + 4 is a node of P, (by £ > 3 again) and we
get e = ¢ + 14 + 4. Hence, the graph obtained from Fj3; by removing two
arbitrary nodes is still connected. O

Thus, we can choose G,, as the line graph of F,, whenever n = 3k,k > 3 by
Lemma 5. To close the gaps with n = 3k + 1,3k + 2 for £k > 4 we use the
following immediate consequence of Lemma 5.

Lemma 8 If F = (AU B, E) is a simple, 3-connected, bipartite graph and
ab & E with a € A,b € B, then F + ab is a simple bipartite A- and H-graph.

Thus, we obtain the studied bipartite A- and H-graphs F), for n = 3k+1 and
n = 3k + 2 if £ > 4 by adding one and two edges, respectively, to F3; such
that the resulting graph is simple and bipartite. This is possible for each
F3;, with k£ > 4 (but not for the complete bipartite graph Fy). We obtain,
therefore, the studied bicritically perfect graphs G,, = L(F,,) for n > 12 and
can apply Strategy 1 for all cases with n > 12 nodes.

4 Construction of the graphs G,, for n = 10,11

Due to Remark 4 there is no bicritically perfect graph on 10 nodes and no
bicritically perfect line graph on 11 nodes. We construct bipartite A-graphs
with 10 and 11 edges which are closest to H-graphs as possible.

Duplicating an arbitrary edge of Fy = A; yields the graph Fjy shown in
Figure 5. Fig is an A-graph but not an H-graph by Remark 6. However,
L(Fyo) has only one non-critical edge, namely, the edge connecting the nodes
that correspond to the parallel edges of Fig. Next, the bipartite graph F1;
in Figure 5 can be obtained by adding two edges to the A-graph Ay from
Figure 3. It is easy to check that F7; is an A-graph and that the two edges
incident to the only node of degree two in Fi; form the only non-H-pair.
Theorem 3 implies that L(F7;) is anticritically perfect and has all but one
critical edges, too.

Let us call a graph G almost bicritically perfect if GG is anticritically
perfect and all but one edges are critical. Then we slightly modify Strategy 1
for almost bicritically perfect graphs as follows:
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Figure 5: The graphs Fjg and Fi;.

Strategy 2 Let G, be an almost bicritically perfect graph on n nodes and
let uv be its only non-critical edge.
Question 1:

Answer “j € E?7” with YES. Number the nodes of G, s.t. i = u, j = v.
For questions 2 to (5) — 1:

Answer “ij € E?” with YES if i € E(G,), NO otherwise.

Then no imperfect subgraph appears during the first (g) — 1 questions, and
the answer to the last question yields the decision again. Since L(Fip) and
L(Fy1) are almost bicritically perfect graphs by construction, we choose
Gl() = L(Fl()) and G11 = L(FH) and apply Strategy 2.

5 The Remaining Cases 6 < n < 8

To prove that perfectness is an elusive graph property for 6 < n < 8 we
use a parity argument due to Rivest and Vuillemin. In [10] they proved
the following: if a property P is not elusive for graphs on n nodes then
the number G(P,n,even) of labeled graphs on n nodes with property P
having an even number of edges equals the number G(P,n,odd) of labeled
graphs on n nodes with property P that have an odd number of edges. In
particular, G(P, n,even)# G(P,n,odd) implies that P is elusive for graphs
on n nodes. In Table 1 we show the numbers G(P,n,even) and G(P, n,odd)
for perfect graphs on 6 < n < 8 nodes which we calculated with the help of
a computer program. To check whether a graph is perfect we made use of
the Strong Perfect Graph Conjecture that is known to be true for all graphs
with at most 25 nodes [5]. As one can see from Table 1, for n = 8 perfectness
is an elusive graph property as the values in column 3 and column 4 differ.

For n = 6 and n = 7 we apply an extension of the previously used
argument. If perfectness is not elusive for graphs on n nodes then it is also
not elusive for the graphs containing one fixed edge, say 4j. Therefore the



n  # perfect graphs G(P,n,even) G(P,n,odd)

6 30824 15412 15412

7 1741616 870808 870808

8 174494128 87264704 87229424
Table 1

number of labeled perfect graphs on 7 nodes which contain the edge 5 and
have an even number of edges must equal the number of these graphs with an
odd number of edges. The last two columns in Table 2 show these numbers
for n = 6 and n = 7. Note that they add up to half the number of labeled
perfect graphs, as the complement of a perfect graph is again perfect [8].
As the numbers in column 3 and column 4 are different in both cases, this
finishes the proof that perfectness is elusive for n = 6,7, 8.

n  # perfect graphs G(P,n,even), ij € E G(P,n,odd), ij € E
6 30824 7712 7700
7 1741616 435284 435524

Table 2

6 Summary

In order to figure out whether perfectness is an elusive graph property, we
used as main idea: Find, for as many numbers n of nodes as possible, a
bicritically perfect graph G, (Problem 1). Since one cannot reach another
perfect graph from G, by deleting or adding one edge, there is a simple
strategy for Player B in that case: Answer all but the last question as in
the bicritically perfect graph G,, (Strategy 1). We constructed bicritically
perfect graphs G, with n =9 and n > 12 (Section 3) and almost bicritically
perfect graphs G1p and G1; (Section 4) where a slightly different strategy
has to be used (Strategy 2). Moreover, the Cj5 is bicritically imperfect and
Strategy 1 does also work for n = 5 with choosing G,, = C5. Consequently,
our main idea works for n = 5 and for all cases with n > 9 nodes. We
used a parity argument from [10] in order to show the desired result for the
remaining cases with 6 < n < 8 nodes (Section 5).

In summary, we showed the existence of a strategy for Player B in all
non-trivial cases n > 5 which finally proves Theorem 1: Perfectness is an
elusive graph property.
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