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Spotting the Details: The Various Facets of Facial Expressions

Carl Martin Grewe1, Gabriel Le Roux1, Sven-Kristofer Pilz1, Stefan Zachow1

1 Mathematics for Life and Material Sciences, Zuse Institute Berlin (ZIB), Germany

Fig. 1: Various facets of fearful and sad expressions synthesized by our 3D Facial Expression Morphable Model.

Abstract—3D Morphable Models (MM) are a popular tool
for analysis and synthesis of facial expressions. They represent
plausible variations in facial shape and appearance within a low-
dimensional parameter space. Fitted to a face scan, the model’s
parameters compactly encode its expression patterns. This ex-
pression code can be used, for instance, as a feature in automatic
facial expression recognition. For accurate classification, an MM
that can adequately represent the various characteristic facets
and variants of each expression is necessary. Currently available
MMs are limited in the diversity of expression patterns. We
present a novel high-quality 3D Facial Expression Morphable
Model built from a large-scale face database as a tool for ex-
pression analysis and synthesis. Establishment of accurate dense
correspondence, up to finest skin features, enables a detailed
statistical analysis of facial expressions. Various characteristic
shape patterns are identified for each expression. The results
of our analysis give rise to a new facial expression code. We
demonstrate the advantages of such a code for the automatic
recognition of expressions, and compare the accuracy of our
classifier to state-of-the-art.

I. INTRODUCTION

Understanding the complexity of facial expressions has been
an interdisciplinary challenge in various fields for decades.
Research on facial expressions often utilizes a systematic
classification of expression patterns into several categories.
A prominent example is the Facial Action Coding System
(FACS) [1]. The FACS defines a set of Action Units (AU)
that are basically derived from the facial muscles. It contains
a qualitative description of the change in facial appearance
related to specific AUs. The authors of FACS have also
determined characteristic AU combinations for the six basic
expressions anger, disgust, fear, happiness, sadness, and sur-
prise [2].

The FACS and the six basic expressions have become the
de facto standard for applications working with quantitative
analysis of expressions. The automatic expression recognition
from facial images, for instance, is an active field of research

in computer vision and affective computing (see surveys in [3]
and [4]). Recent approaches achieve impressive results even in
unconstrained environments. However, a closer look at these
results reveals a significant imbalance in recognition rates
between the expression categories. For expressions related to
sadness, anger, disgust, and fear, a less accurate recognition
is achieved than for happiness and surprise. This fact might
reflect the diversity of characteristic patterns that can be found
within these categories (see Figure 1), as compared to the
typical mouth shapes in the latter two cases.

The goal of our work is to better understand the various
facets and variants of facial expressions on an empirical basis.
The novelty of our approach lies in the detailed analysis of
the geometric variability within the categories, revealing new
insights into their internal pattern structure. With our analysis,
we primarily aim at the improvement of automatic expression
recognition, but it is of high relevance for the synthesis of
facial expressions, too.

In contrast to a description of the change in facial appear-
ance as established by FACS, we choose the fully geometric
approach. The various facets of expressions are quantitatively
analyzed on basis of a large high-quality 3D face database.
This is facilitated by the combination of approaches from ge-
ometry processing and correspondence-based statistical shape
analysis. To our knowledge, an entire set of diverse and signif-
icant patterns for each expression category is determined for
the first time. Our results are used to build a Morphable Model
(MM), that we call the 3D Facial Expression Morphable Model
(FEx-MM). Based on this model we define the Facial Ex-
pression Descriptor (FEx-D), which is a novel coding scheme
for facial expressions. We show its importance in automatic
expression recognition and compare the performance of our
classifier to state-of-the-art. Our main contributions in this
paper are:

• a fully automated method for dense face matching with
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high accuracy up to finest skin features,
• investigation of shape patterns that account for the various

facets of facial expressions using a large 3D database,
• the construction of a high-quality FEx-MM based on

statistical shape analysis, and
• a FEx-MM-based feature extraction method, resulting in

significant improvement of automatic expression recog-
nition.

II. RELATED WORK

The majority of work on facial expression recognition
focuses on 2D images. With the rising availability of mea-
surement devices and data processing toolboxes, the research
community is showing an increased interest in the analysis of
3D facial images. During the last decade, various 3D face
databases like the BU-3DFE and BU-4DFE ([5], [6]), the
Bosphorus database [7], D3DFACS [8], FaceWarehouse [9]
or the BP4D-Spontaneous [10] have been published. The large
variation contained in these databases has enabled researchers
to extract significant geometric and photometric features, and
to recognize facial expression with high accuracy ([11], [12],
[13], [14], [15]). By combining geometric and photometric
features extracted from the models, average classification rates
of about 90% have been achieved [16].

Correspondence estimation (or face registration) is often an
important requirement for automatic expression recognition.
To solve this problem, a vast amount of methods have been
proposed, ranging from the location of sparse facial landmarks
to the determination of dense correspondence across the entire
face. A discussion will be beyond the scope of this paper, we
refer to [3] and [4] for details.

MMs have turned out to be a powerful tool for both, the
analysis and the synthesis of faces and facial expressions.
They offer a low-dimensional parameter space determined by
characteristic shape and appearance patterns. Usually these
patterns are learned from face data that has been set into dense
correspondence. Various large-scale MMs have been published
(e.g. [17], [18]), but only a few include facial expressions. The
MMs published in [19], [20], and [11] provide rather coarse
expression patterns. Recent models like the FaceWarehouse
[9] or FLAME [21] cover more detailed shape variations.
In both models major expression patterns specific to identity
and expressions are extracted using (multilinear) principal
component analysis (PCA).

As PCA typically leads to components that are mixtures of
patterns from various expressions, the work of [22] computes
a PCA model for each expression separately. Although their
MM was built from a database containing 16 subjects with
5 expressions and 5 visemes only, it was able to assist the
user in transferring a specific facial component like the mouth
between different images of the same individual.

III. BACKGROUND AND OVERVIEW

To increase the accuracy of automatic expression recogni-
tion from 3D face scans, our goal is to identify even subtle
characteristic patterns using statistical methods. We focus on

correspondence-based statistical shape analysis of databases
containing a wide variability of subjects with respect to inter-
and intra-individual factors like sex, ethnicity, and expressions.
To this end, we address three major challenges:

Firstly, establishing a corresponding mesh over the entire
facial surface allows for analysis of the full geometric infor-
mation up to folds and wrinkles, instead of just a few facial
landmarks. To transfer a predefined mesh of arbitrarily high
resolution consistently, we determine a dense correspondence
mapping from a reference to a new face. By the incorporation
of reliably estimated sparse 2D and 3D features, our method
is fully automated and thus allows to process large-scale
databases.

Secondly, the quality of the results considerably depends
on the accuracy of the dense correspondence mapping. We
propose a two-step matching approach for each subject using
robust features to match the scan in neutral position to a neutral
reference. The remaining expression scans are then matched to
the individual neutral scan. This enables us to establish highly-
accurate correspondence up to the level of finest skin features
by exploiting the individual photometric texture.

Thirdly, characteristic patterns of facial expressions vary
significantly in spatial frequency and magnitude between the
categories. For instance, compare an opening of the mouth
to a blink of the eyes or wrinkling of the nose. To prevent a
mixture of expressions during statistical analysis and to enable
the identification of patterns on various scales, we show that
it is beneficial to decompose variation related to inter- and
intra-individual factors as well as expressions.

In the remainder of our paper, the term dense correspon-
dence mapping describes a function Ψ that maps each point
in R3 from a common reference face to a scanned face
T in semantically consistent fashion. This basically means,
that significant features like the nose tip or the contour of
the eyes but also finest features like spots on the skin are
mapped consistently. We describe our dense face matching that
establishes Ψ in subsection IV-B. The corresponding meshes
established for a large database of faces are subject to a
detailed shape analysis as described in subsection IV-C, giving
rise to an entire set of characteristic patterns in each expression
category. Based on the results, we describe the construction
of FEx-MM and examine its benefit for automatic expression
recognition from 3D facial surfaces. In subsection IV-D, we
describe the feature extraction method using FEx-MM and
outline the learning approach. In section V, we present our
results and compare the accuracy in expression recognition to
previous work. A discussion and implications for future work
in section VI conclude the paper.

IV. MATERIALS AND METHODS

A. The BU-3DFE database

As our goal is to analyze fine-scale expression patterns, a
large database containing high resolution scans of the entire
face is necessary. This means that the facial area from the
forehead to both ears and to the neck should be consis-
tently covered by all scans. The Binghamton University 3D



Facial Expression (BU-3DFE) database [5] provides such a
wide range of 3D face scans with varying sex and ethnicity
including Caucasians, Afro-Americans, Asians, Indians and
Hispanics. Each of the I = 100 subjects was scanned in
neutral position as well as with K = 4 intensities of each
of the J = 6 basic expressions according to the FACS.
This gives a diverse set of 25 expressions per subject and
a total of 2500 face scans. The BU-3DFE contains posed (i.e.
non-spontaneous) expressions only. A databases providing 3D
scans of spontaneous expression is also available [10]. It is
however limited in spatial resolution and with respect to the
field-of-view, which would require sophisticated smoothing
and interpolation methods to enhance data quality. Throughout
the paper, we will denote each neutral 3D scan contained in
the BU-3DFE by N i while each expression scan is referred
to as Ei

jk, where i = 1, . . . , I is the subject, j = 1, . . . , J are
the expressions, and k = 1, . . . ,K the intensities.

B. Dense Face Matching

The determination of a corresponding surface mesh on all
faces contained in the database is a key to statistical shape
analysis of facial morphology. A prominent strategy is to
establish a dense correspondence mapping Ψ : R → T by
matching significant features of a reference face R and the
individual face T . Several techniques to establish Ψ have been
proposed. We are adopting the approach of [23] due to its
accuracy and automation.

In principle, the idea is to state the matching task as an
image registration problem. Initially, features of a face T (and
R analogously) are mapped into the plane using the surface
parametrization φT : T → [0, 1]2. The mapped features are
rendered into feature images FT . Employing non-linear image
registration [24], the feature images are brought into dense
alignment with the reference features. During registration, an
image warp ψ : [0, 1]2 → [0, 1]2 is determined which min-
imizes a distance measure d(FT (ψ(x)), FR(x)) between the
(warped) feature images. The dense correspondence mapping
can be defined as Ψ := φ−1

T ◦ ψ−1 ◦ φR.
The mean curvature is a typical feature used to determine

geometrically characteristic locations like the nose tip, the eye-
brows or the chin. In addition, 3D face scans usually provide a
photometric texture that is attached to the surface. Photometric
features like the vermilion border or the contour of the eyes
are important for separating facial structures from skin. In
case of expressions, geometric and photometric features vary
significantly when they are compared to a neutral reference
R causing mismatches. We therefore propose a simple yet
powerful extension to the existing matching pipeline exploiting
the identity of the subject.

Because the features between neutral faces are similar, the
pipeline allows to reliably determine a dense correspondence
mapping between the individual scan N i and the reference R.
The expression scans Ei

jk of subject i are, however, matched
to the individual neutral scan N i instead of R (see Figure 2).
Because they belong to the same face, photometric features
are nearly identical. Features up to skin details like spots or

Fig. 2: Matching strategy for a set of individual expressions.
Exemplarily, the two highest intensity expressions of surprise
and fear are shown and matched against the individual neutral
features.

Fig. 3: The images containing the mean curvature (left),
photometric (middle), and gradient (right) features used during
matching. Note that we have approximated the photometric
albedo texture based on [25].

freckles can thus drive the image registration. Even though
such features encounter changes in shape and appearance
under facial expressions, e.g. due to non-rigid skin deformation
or changes in lighting, the effects are relatively small or can
be treated by using insensitive image metrics.

Surface Parametrization and Feature Image Rendering:
We follow previous work to determine φT for all face scans
in the database and to compute the mean curvature and the
photometric texture of each surface. We render images of
size 10242 containing the geometric and photometric features
mapped to the plane via φT (see Figure 3). Additionally we
compute gradient images of photometric features. Similarity
measures using gradient images are more robust against vary-
ing illumination, because they quantify the local change in
color.

Determination of Dense Correspondence: In case of neutral
faces N i, ψ is determined using the existing pipeline. For
the expression scans Ei

jk, we additionally use the gradient
images during image registration. In contrast to the matching
of neutral faces, photometric features and gradient images are
highly weighted to account for the relevance of individual
skin patterns. The similarity of geometric and photometric
images is measured by normalized mutual information, while
normalized cross correlation was used to compare gradient
images (see [26], [24]). To determine ψ, we use multi-level
optimization in the resolution of feature images and parameters
of the B-spline transformation.



Our GPA alignment Typical GPA

Fig. 4: Expressions generated from the FEx-MM. The facial
areas used for alignment are marked in green. The horizontal
lines indicate the robust alignment of the cranium independent
of the opening of the mouth or the eyelids. For comparison, the
right expression was aligned using all point correspondences.

Reference Mesh Transfer: In preparation of the BU-3DFE
database for statistical shape analysis, we have defined a
reference mesh consisting of d = 1827 vertices (see Figure 1).
The dense correspondence mappings are used to transfer the
reference mesh to all face scans. For convenience we use the
same notation of the raw data to refer to the newly created
corresponding meshes.

C. Statistical Shape Analysis

Once correspondence between all face scans has been estab-
lished, the toolbox of correspondence-based statistical shape
analysis is readily applicable (see [27]). By the vectorization
of their vertex coordinates, all shapes are treated as elements
of the vector space R3d which provides canonical operators
and a scalar product.

Superimposition: The vectorized representation of shapes
in R3d is ambiguous (e.g. a translated 3D face has the same
shape but different coordinates), requiring removal of simi-
larity transformations. Generalized Procrustes Analysis (GPA)
iteratively aligns all surfaces to the mean shape [27]. Typically
GPA computes the sum of squared distances over all point
pairs neglecting anatomical knowledge about the human skull.
This has several disadvantages for the analysis and synthesis of
facial expressions as shown in [28]. We define an anatomically
motivated coordinate system attached to the cranium on basis
of well-established anthropological landmarks. Because the
landmarks are at least affected by facial movements, we chose
several vertices around the nasion and lateral of both exocanthi
as shown in Figure 4. The subnasal region is additionally
included to reliabily estimate the pitch of the head rotation.

Variance Decomposition: The variation within the BU-
3DFE database is caused by a mixture of inter- and intra-
individual factors. In order to compare facial expressions
between individuals, expression variation needs to be separated
from all other factors. We follow the work of [21] and decom-
pose the database into two sample sets. The first set is simply
comprised of the superimposed neutral scans N = {N i},
thus containing the inter-individual variation with respect to
factors like sex or ethnicity. The average neutral face shape is

NeutralExpressions

Neutral averageTransferred expression patterns

Fig. 5: Decomposition of variance: the difference between
expressions (surprise, sadness, disgust) and the neutral scan
of an individual is added to the average neutral shape.

computed as N̄ = 1
|N |

∑
iN

i.
In contrast, the second sample set should contain the resid-

ual variation that is related to expressions only. For each scan
Ei

jk, we thus decompose the expression variation by removing
the overall individual face shape as determined by N i and
transfer the patterns to the average neutral via

Êi
jk = N̄ + Ei

jk −N i. (1)

By this means, only the intra-individual patterns remain in the
expression sample set E = {Êi

jk} (see Figure 5).
Dimensionality Reduction: We chose the average neutral

face as the center of distribution and perform the analysis on
the centered sample set. Because it is of minor interest here,
we skip the statistical shape analysis with respect to inter-
individual factors. Main patterns of shape variation are deter-
mined by principal component analysis (PCA) of N . From the
eigenvectors, we assemble the model matrix VN ∈ R3d×p.

Following the majority of related work, we apply PCA
globally on the expression sample set E without considering
its labels. To prevent a mixture of various expression patterns,
we also perform a group-wise PCA on the subset of each
expression category j = 1, . . . , J . For both analyses, we
collect the eigenvectors in the model matrices VE ∈ R3d×q

(global) and V ′
E ∈ R3d×q′ (group-wise).

Construction of the FEx-MM: MMs provide a parametric
description of the variation in facial shape. Typically the
parameters are the coefficients of a linear combination of basis
vectors from R3d. Using the model matrices determined by
dimensionality reduction, we can set up the MM as

FEx-MM(n, e, e′) = N̄ + VN · n+ VE · e+ V ′
E · e′, (2)

where w = (n, e, e′) ∈ Rp+q+q′ are the model’s coefficients.
Each of the eigenvectors contained in the model matrices
describes a specific pattern of facial shape variation. The
adjustment of coefficient wi synthesizes a new face, which



Fig. 6: Significant correlations (p < 0.01) of FEx-D′ for differ-
ent projection methods (upper-right and lower-left submatrix).
Note that L2 projection produces high correlations with all
samples in E even within an expression-specific PCA.

shows the variation of the shape pattern according to its value
(see Figure 1).

D. FEx-MM-Based Expression Recognition

Following the analysis-by-synthesis approach, MMs also
serve as feature extractors. Given a 3D face scan, they provide
a low dimensional descriptor of its shape. To this end, the
model is fitted by adjustment of the coefficients in w. The
optimal w is determined such that the synthesized face is most
similar to the given input in terms of shape and texture. The
neutral face shape is characterized by the fitted coefficients n,
while e and e′ particularly describe the geometric features of
its expression. From these coefficients, we establish the Facial
Expression Descriptors FEx-D and FEx-D′.

Because both descriptors account for similar variations in
shape, we fit them separately fixing the other coefficients
to zero. Determination of FEx-D is straight forward as all
eigenvectors in VE are orthonormal. We simply project the
expression residuals in a least-squares sense. In case of the
second model matrix V ′

E , the basis vectors are assembled
from six different PCAs. Orthogonality of V ′

E is thus no
longer guaranteed. Additionally, the coefficients of e′ are
correlated when least-squares projection is used (see Figure 6).
Consequently we constrain their determination using elastic
net regularization [29]. The combination of least-squares with
L2 and L1 penalties allows the norm and sparseness of e′ to
be constrained. Both penalties are weighted equally, yielding
nearly uncorrelated components of FEx-D′.

For expression regression from 3D face data, the majority
of previous work has successfully employed support vector
machines (SVM). Our experiments confirm, that SVMs yields
superior performance compared to other learning techniques
like linear discriminant analysis or regression trees. We there-
fore employ the one-against-one multiclass SVM [30] with
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Fig. 7: The upper row shows matched photometric feature
images of neutral and high-intensity scans as well as the
average texture over all individual scans (rightmost). The lower
rows show close-ups for comparison with [23]. Circles indicate
the same location in all scans. Note that skin features are
visible in the average image due to improved accuracy of dense
correspondence with our approach.

radial basis kernel and parameters (γ, C) determined in a 10-
fold cross validation setting via simple grid-search. Similarly,
we evaluated the relation between recognition accuracy and
the length of each descriptor. As expression recognition via
SVM is discussed deeply in related work, we refer the reader
to [3] and [4] for more details.

V. EXPERIMENTS AND RESULTS

A. The FEx-MM Model

Exemplary results of our two-step matching approach can be
seen in Figure 7. The replacement of a common reference by
the individual features from the neutral face scan significantly
improves face matching. Particularly in regions providing
few corresponding features between subjects (e.g. cheeks or
forehead), the new method produces highly accurate dense
matchings up to finest skin features, even for high-intensity
expressions.

The cumulative variance explained by the principal compo-
nents (PCs) of the group-wise PCA models V ′

E can be seen
in Figure 8. The curves clearly differ between the expressions
categories. About 97% of the variation is explained by the
first PC in the case of happiness and surprise. In contrast,
each of the first six PCs of the other categories accounts for
more than 3%. Consequently happiness and surprise can be
characterized by a few shape variations, while the others show
a substantially more diverse pattern structure, particularly in
case of sad expressions.

To visualize the distribution of expression scans in E, we
used the t-Distributed Stochastic Neighbor Embedding [31]. In
principle, the method seeks to resemble point-wise distances
of the data points in their 2D projections. Figure 9 shows
the clustering of expressions. Except for surprise, significant
overlap between the clusters exists due to the similarity of
expression patterns. Discrimination of categories within these
areas might be challenging. For instance because of their
similarity in shape variation, anger and sadness or fear and
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Fig. 8: Compactness plots of group-wise PCAs for the first 60
PCs. The global PCA model is also included for comparison.

happiness are likely to be confused during expression recog-
nition. This finding is in accordance with the results reported
in [15] and [16].

In order to maximize the variance of each PC, the global
PCA tends to combine similar shape patterns found in multiple
categories. This results in high correlation of a single feature
of the FEx-D descriptor with multiple expression categories
as shown in Figure 10. For instance the second component
of FEx-D contains the diagonal motion of mouth corners as
described by AU12 and AU15 of FACS. This component is
related to nearly all expression categories and thus captures the
common variation in this particular mouth shape. Expression-
specific motion patterns however are shifted to subsequent
PCs. Because their variance is comparably small, this bears the
risk of mixing characteristic shape variations with noise. As a
benefit of FEx-D′, these characteristics are preserved as V ′

E is
assembled from group-wise PCAs. Elastic net projection onto
V ′
E accordingly produces a more sparse correlation structure.

B. Facial Expression Recognition

Prior to the experiments, we examine the relation of recog-
nition accuracy to descriptor length. Figure 11 shows the
accuracy for increasing length of FEx-D. The recognition
rate starts to converge after the first few coefficients, with its
maximum reached at 13. We therefore fix FEx-D to this length
throughout our experiments. Similarly we chose the number
of components for each expression in FEx-D′. We found two
coefficients for happiness and surprise, as well as six for each
of the other categories to yield the overall best performance.
This corresponds to the diversity of shape patterns found in
the six group-wise PCAs.

We used both descriptors FEx-D and FEx-D′ in our expres-
sion recognition experiments. To ensure comparability with
existing work, we follow the experimental setting introduced
by [12]. For an experiment, 60 subjects are randomly chosen
and 10-fold cross validation is applied using 54 subjects for
training and 6 for testing. The experiment is repeated 100

Fig. 9: Distribution of facial expression scans. The ellipses
depict fitted normal distributions at one standard deviation.

Fig. 10: Correlations between the descriptor components and
expression labels obtained by projection onto VE and V ′

E . The
faces correspond to the variation of PCs in accordance with
the direction of the correlation to the expression.

times. For training and testing, only the two highest intensity
scans are used. We finally aggregate the confusion matrices
for expression prediction in the test sets over all runs.

FEx-D achieves an overall mean accuracy of 86.30% (5.12
SD) while FEx-D′ reaches 88.18% (4.49 SD). The com-
bination of both descriptors further increases the accuracy
up to 88.52% (4.39 SD). The differences in mean accuracy
are significant (p < 0.001). For comparison, we have also
computed descriptors using an MM constructed on basis of the
matching procedure described in [23]. The experiments yield
maximal average accuracy of 86.77% for the combination of
both descriptors, indicating the benefit of increased matching
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accuracy for expression recognition.
The confusion matrices in Table I show in detail the

advantages of the shape patterns described by FEx-D′. Except
a loss of about 1.33% average accuracy in detecting surprise
expressions, all other recognition rates benefit from the sparse
shape descriptors. FEx-D′ provides additional discriminating
power for the widely overlapping regions of anger and sadness
(3.07% and 0.92% increase in mean accuracy). Similarly the
average recognition rate for fear and disgust is increased
by 4.07% and 2.86%. Both categories lie in the center of
all expression clusters (Figure 9). FEx-D′ obviously provides
significant features for better discrimination between fear and
happiness (3.2% and 1.9% less false recognitions) as well as
disgust and anger (1.88% and 0.42% less false recognitions).
In summary, FEx-D′ provides valuable features for expression
recognition beyond the expression patterns discovered by
global PCA.

Table II compiles relevant previous work using the same
experimental setting. Basically two types of features can
be distinguished that are used for expression recognition.
Approaches employing geometric features have achieved an
average accuracy up to 83.50%, while features that have
been extracted from photometric texture perform better with
85.06%. With our work, we could improve the accuracy in
expression recognition based on geometric features up to
88.52%, outperforming similar work by about 5%. However
the works by [15] and [16] have shown the advantage of com-
bining both types of features resulting in average recognition
accuracy up to 90.04%.

VI. DISCUSSION AND FUTURE WORK

In this paper we present the construction of the FEx-MM,
which covers diverse facets of posed facial expressions. A
future goal is to enhance FEx-MM with patterns resulting
from the analysis of spontaneous expressions. The advan-
tages of the expression code derived from FEx-MM for the
automatic recognition of facial expressions is demonstrated.
Even though our method increases classification accuracy
based on geometric features, challenges remain with respect
to the discrimination of expressions that show similar shape
variations. Our results indicate, that a deeper study of their
differences helps to further improve recognition rates.

TABLE I: Confusion matrix for 100 runs trained on the
expression codes FEx-D and FEx-D′ in %.

ang dis fea hap sad sur

FE
x-

D

ang 82.00 4.20 3.33 0.64 9.84 0.00
dis 7.68 83.85 5.05 1.29 0.03 2.09
fea 4.89 4.26 78.21 5.87 4.30 2.47
hap 0.49 0.00 3.39 96.12 0.00 0.00
sad 11.61 0.68 5.49 0.00 82.01 0.22
sur 0.05 0.26 1.50 0.62 0.65 96.93

FE
x-

D
′

ang 85.07 3.77 2.65 0.17 8.34 0.00
dis 5.80 86.71 5.33 0.63 0.28 1.25
fea 3.51 3.57 82.28 2.67 4.09 3.88
hap 1.02 0.08 1.49 97.33 0.00 0.09
sad 11.34 0.46 4.69 0.00 82.93 0.58
sur 0.25 0.30 2.67 0.53 0.66 95.60

TABLE II: Comparison with previous work using the BU-
3DFE database and similar experimental design.

Reference Feature type Accuracy in %

Zeng et al. 2013 [14] Geometry 68.15
Beretti et al. 2010 [12] Geometry 77.50
Beretti et al. 2011 [32] Geometry 78.43
Jan and Meng 2015 [16] Geometry 83.35
Sha et al. 2011 [33] Geometry 83.50
Jan and Meng 2015 [16] Texture 85.06
Azazi et al. 2015 [15] Geometry & Texture 85.81
Our paper (EV ) Geometry 86.30
Our paper (E′

V ) Geometry 88.18
Our paper (EV , E′

V ) Geometry 88.52
Jan and Meng 2015 [16] Geometry & Texture 90.04

If geometric information is limited, photometric features
might provide additional cues including indirect measures
of shape, e.g. due to shading contained in photographically
captured facial textures. This would explain superior clas-
sification rates reported in previous works, that use texture
features captured under nearly constant lighting like in the
BU-3DFE database. However classifiers that generalize well to
heterogeneous input require control or removal of any lighting
bias contained in the training data. Our future research will
investigate these findings in more detail.

Dense face matching is most often quantitatively evaluated
using sparse ground truth data, i.e. some facial landmarks that
are usually contained in 3D face databases. For quantitative
evaluation of correspondence in regions including the cheeks
and the forehead, dense ground truth is required. But its
preparation for representative 3D face databases is challenging.
Quantitative evaluation of our matching method becomes
possible as soon as such a database is available.

Personalizing classifiers is a common technique in facial
expression recognition [34]. We personalized our classifier
using the neutral face scan as an individual reference. Similar
to the method presented in [35], our approach can be extended
to automatically determine the neutral model parameters.



The high accuracy of the proposed matching method is par-
ticularly important for the construction of FEx-MM and takes
about 2-3 minutes processing time with a CPU implementation
on a standard workstation. For online extraction of FEx-MM-
based descriptors during expression recognition, alternative
fitting methods exist. For example the method described in
[35] enables the real-time transfer of expressions. Similar
techniques can be exploited to achieve comparable timings
for expression recognition using the FEx-MM.

VII. ACKNOWLEDGEMENTS

We kindly thank Sophie Buchner and Alexander Tack for
their valuable support and discussions during preparation of
this paper. This work was funded by the German Research
Foundation as part of the Cluster of Excellence Image Knowl-
edge Gestaltung of the Humboldt University of Berlin (Grant
no. EXC 1027).

REFERENCES

[1] P. Ekman and W. V. Friesen, “Facial action coding system: a technique
for the measurement of facial movement,” Consulting Psychologists
Press, Palo Alto, 1978.

[2] P. Ekman and W. V. Friesen, Unmasking the face: A guide to recognizing
emotions from facial clues. Malor Books, 2003.

[3] G. Sandbach, S. Zafeiriou, M. Pantic, and L. Yin, “Static and dynamic
3D facial expression recognition: A comprehensive survey,” Image and
Vision Computing, vol. 30, no. 10, pp. 683–697, 2012. 3D Facial
Behaviour Analysis and Understanding.

[4] C. A. Corneanu, M. O. Simón, J. F. Cohn, and S. E. Guerrero,
“Survey on rgb, 3D, thermal, and multimodal approaches for facial
expression recognition: History, trends, and affect-related applications,”
Transactions on pattern analysis and machine intelligence, vol. 38, no. 8,
pp. 1548–1568, 2016.

[5] L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato, “A 3D facial expres-
sion database for facial behavior research,” in International Conference
Automatic Face and Gesture Recognition, pp. 211–216, IEEE, 2006.

[6] L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale, “A high-resolution
3d dynamic facial expression database,” in International Conference on
Automatic Face and Gesture Recognition, pp. 1–6, IEEE, 2008.
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