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Abstract
Disjunctive sets arise in a variety of optimization models and much

research has been devoted to obtain strong relaxations for them. This
paper focuses on the evaluation of the relaxation during the branch-and-
bound search process. We argue that the branching possibilities (i.e.,
binary variables) of the usual formulations are unsuitable to obtain strong
bounds early in the search process as they do not capture the overall shape
of the the entire disjunctive set. To analyze and exploit the shape of the
disjunctive set we propose to compute a hierarchy of approximate convex
decompositions and show how to extend the known formulations to obtain
improved branching behavior.

1 Introduction
Disjunctions of (polyhedral) sets are a frequently occuring structure in many
optimization models. They arise in a variety of ways. Obviously, they are nec-
essary to capture switching and decision aspects in the problem domain and to
model the effect of these decisions. Additionally, they may result from model re-
formulations, for instance to model piecewise linear functions as approximations
of nonlinear functions [22] or due to reformulations to improve the strength of
the model [3].

For global optimization, the strength of the relaxation is very important. As
the strongest relaxation of a nonconvex set is its convex hull, there has been
research to determine models for this convex hull based on models for the non-
convex set. In the case of disjunctive polyhedral sets (i.e., unions of polytopes),
the so called convex hull reformulation [2] describes the convex hull in terms
of the inequalities of the original polytopes. The resulting model features one
binary variable for each original polytope that is used to “select” this polytope.
To obtain strong relaxations for models involving several disjunctions that have
to be fulfilled simultaneously, another disjunction of usually more polytopes can
be derived as described in [3]. The convex hull reformulation of this disjunction
often yields a stronger relaxation.

The outlined results focus on obtaining a strong initial relaxation, i.e., the
relaxation of the root node in a branch-and-bound search tree. To success-
fully solve the model using branch-and-bound algorithms, it is also important
that the relaxation becomes stronger while diving into the search tree. A nice
property of the convex hull reformulation in this respect is that after excluding
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(a) A union of polytopes. (b) Convex hull reformulation.

Figure 1: Relaxations of linear disjunctive constraint representing the union of
polytopes.

a polytope (by fixing the corresponding binary variable to 0), the remaining
model yields the convex hull of the remaining polytopes. Thus the relaxation
is as good as possible when branching on the binary variables from the convex
hull reformulation.

However, as we will detail in Section 2, in cases of disjunctions with many
polytopes this relaxation may tighten slowly during branching and thus yields
large search trees. Consider the example illustrated in Figure 1: The disjunctive
polyhedral set consists of three polytopes, two of which determine the convex
hull. The point outside the union of the three polytopes represents a hypo-
thetical solution of the relaxation that is infeasible for the union. Suppose this
relaxed solution arises as a convex combination from the yellow and the blue
polytope. The solver may then decide to branch on the binary variable repre-
senting the yellow polytope. While in the 1-branch, infeasibility of the point is
immediately detected, the relaxation does not improve at all in the 0-branch.
If, however, the solver would have the possibility to branch on the cut shown
in Figure 1b, the relaxation would be tight enough to cut off the point in both
branches.

The example shows that in general, one can benefit from exploiting knowl-
edge about the shape of the disjunctive set to obtain tighter relaxations during
branching. Before outlining our approach, we should mention that the above
example can easily be resolved by applying a “basic step” as described in [3] to
the disjunctive sets given by the union of the three polytopes on the one hand
and the set containing just the relaxation solution on the other hand. This
reformulation is possible (and worthwhile) if two disjunctive sets are known to
often appear jointly in one model, such that a refined model combining them is
a useful submodel. In contrast, the ideas presented here focus on a single dis-
junctive set, assuming that the disjunctive set itself is an interesting submodel
to be used in larger models.

Our contribution In this paper, we propose to employ approximate convex
decomposition methods to derive suitable information and guidance for branch-
ing. Let P be a disjunctive polyhedral set, i.e., P = ∪n

i=1Pi, where each Pi ⊆ Rd,
1 ≤ i ≤ n, is a polytope. The idea is to cover P with polytopes C1, . . . , Cm ⊆ Rd

such that

• P ⊆
⋃m

i=1 Ci,

• P∩Ci is “approximately convex” w.r.t. to some measure for nonconvexity,
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The set of components C1, . . . , Cm is called an approximate convex decomposi-
tion of P. We employ the volume difference between the convex hull of the set
and the set itself to measure nonconvexity.

As the implementation complexity of known methods for obtaining approxi-
mate convex decompositions increases significantly with d, we restrict ourselves
to the case d = 2 to investigate the potential of this approach. In particular,
we adjust the approximate decomposition method from [14] to our purposes as
it is simple to implement. Moreover, as it successively refines a decomposition
by cutting the component Ci with the highest nonconvexity, it naturally yields
a decomposition hierarchy.

The results from this procedure may be used in several ways to reformulate
or extend the original model. In general, the polytopes constituting P are not
disjoint and some parts of their descriptions are not relevant for the bound-
ary of P. Hence the size of an approximate convex decomposition in terms
of number of polytopes and facets might be smaller, in particular if a certain
approximation error is accepted. Thus an approximate convex decomposition
provides a potentially smaller, but coarser replacement for the original disjunc-
tive set. More importantly, the formulation for this reformulated disjunctive set
can be extended by a model of the decomposition hierarchy that encodes the
corresponding refinement in terms of additional binary variables. In this way,
branching may take into account information about the overall shape of the
disjunctive set as suggested in our motivating example. Finally, it is possible
to include these refined models in the original MILP or MINLP formulation to
provide improved branching opportunities.

Related work The results mentioned above are commonly refered to as Dis-
junctive Programming techniques [2, 3, 4]. In recent years, these results have
been extended to the case of convex and nonconvex sets, see e.g., [5, 13, 20].

The exact convex decomposition of nonconvex polyhedra for the case d = 2, 3
has already been studied in the eighties [6]. The problem is known to be NP-
hard and there are lower bounds on the number of required convex components.
In the context of computer graphics and modeling, several methods for obtaining
approximate convex decompositions have been proposed [14, 15, 1, 17, 16] These
methods have been designed for the 2- or 3-dimensional case; some of them [1, 17]
also work, in principle, for arbitrary d, at the expense of more complex data
structures. Most of these measure nonconvexity using the length of a shortest
geodesic path from a point in ∂P to ∂convP or some approximation of thereof.
This measure is not suitable for assessing the strength of a relaxation. Hence
we use the (relative) volume difference as our measure of nonconvexity.

Our computational results are based on polyhedral models arising in gas
network optimization [12, 10]. For an overview on related work in this area we
refer to [21].

The remaining paper is structured as follows. In Section 2 we review the
well-known convex hull reformulation and argue why this formulation may suffer
from poor bounds during the branch-and-bounds process. Section 3 proposes
means to obtain improved overall models for a disjunctive polyhedral set based
on approximate convex decompositions. These improved models are validated
computationally in Section 4.
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2 Models for disjunctive polyhedral sets in the
branch-and-bound solution process

A disjunctive polyhedral set P is a set that can be written as the union of
polytopes, i.e., P = ∪n

i=1Pi, where each Pi ⊆ Rd, 1 ≤ i ≤ n, is a polytope. The
condition x ∈ P is often expressed as the disjunctive constraint

n∨
i=1
{x ∈ Pi}. (1)

In the following, we will assume that each polytope Pi is given by its inequality
description P = {x ∈ Rd | Aix ≤ bi}.

We will now discuss how this constraint can be formulated as a MILP.

2.1 Modeling disjunctive polyhedral sets
One well-known way of formulating constraint (1) as a MILP is the so-called
big-M approach [19]. However, is it known that in general the big-M approach
yields weak LP relaxations that strictly contain the convex hull of P.

There is a formulation that yields the convex hull of P and thus the tightest
possible convex relaxation. This formulation is known as convex hull reformu-
lation [3]. This formulation uses, for each polytope Pi, a binary variable si

and continuous so-called disaggregation variables vi ∈ Rd and can be stated as
follows:

x =
n∑

i=1
vi, (2a)

Aivi − bisi ≤ 0 1 ≤ i ≤ n, (2b)
xsi ≤ vi ≤ xsi 1 ≤ i ≤ n, (2c)

n∑
i=1

si = 1 (2d)

si ∈ {0, 1} 1 ≤ i ≤ n. (2e)

In this model, x, x are finite lower and upper bounds for the variable vector x
(component-wise), which exist as all Pi are bounded.

For brevity, we will refer to the entire model (2) for a disjunctive polyhedral
set P using the notation convhull [(Pi)1≤i≤n; x; s].

2.2 Evolution of the relaxation during branch-and-bound
search

We will now show that in cases of disjunctive polyhedral sets consisting of
many polytopes, branching only on the binary variables corresponding to each
polytope leads to slow convergence of the search process. We do this by studying
two didactic examples. Throughout we assume that the disjunctive polyhedral
sets are modeled via the convex hull reformulation (2), which yields the convex
hull of any subset of the polytopes, too.
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k 5 10 20 30 40 50 60 70 80 90 100
#nodes 1 1 71 115 139 199 217 261 293 331 355

Table 1: Number of search tree nodes necessary to show infeasibilty for various
values of k.

2.2.1 A feasibility problem

Let P1, . . . , Pk ⊂ {(x, y) ∈ R2 | x < 0} and Pk+1, . . . , P2k ⊂ {(x, y) ∈ R2 | x >
0} be polytopes and consider the disjunctive polyhedral set P = ∪2k

i=1Pi. The
task is to prove 0 /∈ P.

As 0 ∈ conv{Pi, Pj} for any 1 ≤ i ≤ k and k+ 1 ≤ j ≤ 2k, it is necessary to
exclude at least k polytopes via branching. In terms of the formulation (2), this
means that at least k binary variables need to be fixed in the branch-and-bound
search tree. However, the resulting search tree is not a full binary tree, but a
degenerate one, as the selection of a polytope immediately shows infeasibility
of the corresponding subproblem. Note that branching on “0 ∈ P1, . . . , Pk” or
“0 ∈ Pk+1, . . . , P2k” obviously yields the desired conclusion in one step.

We conducted some experiments to investigate the solution behavior for this
simple disjunctive polyhedral set using the MILP solver SCIP 4.0[18]. When
feeding the formulation (2) together with the constraint x = 0 into the solver,
infeasibility is determined immediately in the preprocessing phase. The reason
for this are the powerful preprocessing techniques of modern solvers. In this
case, infeasibility is established by a technique known as probing. In fact, in
this setting probing effectively performs a “basic step” between the disjunctive
polyhedral sets P and {0}. This means that two distinct components of the
model are combined to conclude infeasibility. As we want to study the behavior
of formulations of disjunctive polyhedral sets in isolation, we disabled probing.
Moreover, we disabled strong branching for the same reason.

Table 1 shows the number of search tree nodes required by SCIP for various
values k and randomly generated1polytopes. The number of nodes in the search
tree grows roughly linear in k.

2.2.2 An optimization problem

To show the implications of the limited branching opportunities for optimiza-
tion, we consider the following example. Similarly to the preceding construction,
let P1, . . . , Pk ⊆ [−1, 1]× [0, k] and Pk+1, . . . , P2k ⊂ [0, k]× [−1, 1]} be polytopes
and consider the disjunctive polyhedral set P = ∪2k

i=1Pi. Moreover, let xref be
an infeasible reference point near the barycenter of convP (see Figure .

The task is to find a feasible point x ∈ P with minimal distance to xref , i.e.,

min
x∈P
||x− xref ||2.

1The exact generation procedure does not matter much. We used the following setup. Each
polytope arises as the convex hull of 20 points chosen uniformly at random from [−1, 1] ×
[−1, 1]. Polytope i, 1 ≤ i ≤ k, is shifted in the direction of the x-axis by Si := 1 +

∑i

j=1 oi,
where each oi is chosen uniformly at random from [0, 2]. Polytopes i, k + 1 ≤ i ≤ 2k, are
generated analogously but shifted in the other direction.
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Figure 2: An instance of the example optimization problem for k = 10.

When thinking about the constraint x ∈ P as being part of a bigger model,
this objective can be viewed as a proxy for the remaining model which prefers
a solution close to xref . Note that we chose a nonlinear objective as a linear
objective is always minimized on the convex hull of P.

The reference point lies within the convex hull of many subsets of the poly-
topes. Accordingly, many polytopes need to be excluded in order to obtain
a positive lower bound for the distance. In contrast to the last example, the
1-branch selecting a polytope is not infeasible, but yields the much simpler sub-
problem of determining the minimum distance between the polytope and xref .
Note that branching on “x ∈ P1, . . . , Pk” or “x ∈ Pk+1, . . . , P2k” immediately
yields a positive lower bound for the distance between x ∈ P with minimal
distance to xref .

Using an analogous procedure to the last experiment, we generated problem
instances for various values of k and solved them with SCIP 4.0. With probing
and strong branching enabled, SCIP solves the models with only a few nodes.
However, this is due to heavy collaborative work of the entire presolving ma-
chinery, involving several restarts to finally obtain a reasonable tight bound to
solve the instance. For probing and strong branching disabled, Figure 3 shows
the evolution of the lower bounds with the number of branching nodes visited.
As expected, many nodes are required to eventually obtain good bounds.

In the two examples discussed, a significant amount of branching is required
to solve the models. In fact, these models can only be solved rapidly as the re-
maining subproblem in one branch direction is trivial. In more complex models,
this is likely not the case, and the branching effort to deal with several dis-
junctions multiplies. In both examples there is an obvious significantly better
branching opportunity that cannot be realized by the solver due to the formula-
tion used. In the following, we will address this issue by proposing a method to
reformulate the disjunctive polyhedral set in order to provide additional branch-
ing opportunities that yield tighter relaxations.
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Figure 3: Evolution of the quality of the lower bound relative to the optimal
solution for various values of k. In all but two cases the lower bound is actually 0
until the last node is finished. For the remaining two cases k ∈ {70, 100} it still
takes many nodes to raise the lower bound above 0 and to close the gap.

3 Approximate convex decompositions for dis-
junctive polyhedral constraints

In this section, we describe in detail how to obtain approximate convex de-
compositions and how to use them to construct models that facilitate improved
branching during the solution process.

3.1 Computing a hierarchy of approximate convex decom-
positions

Our starting point is the algorithm proposed in [14] to construct approximate
convex decompositions of a disjunctive polyhedral set P = ∪n

i=1Pi. We chose
this algorithm because it has a generic structure and it is relatively simple
to implement, thus lending itself to experiments. Moreover, as it successively
refines a decomposition by cutting a single component Ci, it naturally yields a
decomposition hierarchy.

The first step in order to apply the algorithm is to compute an explicit
representation of P := ∂P, i.e., the boundary of our disjunctive polyhedral set.
This is a well-known and well-solved problem; in our implementation, we are
using the freely available Python package Shapely [8] for this operation. In
the general case, P is a nonconvex polygon and may have holes.

The algorithm from [14] takes a (nonconvex) polygon P as input and re-
cursively splits P into two (nonconvex) components such that some measure
of nonconvexity is reduced in every recursion. The algorithm uses the length
of a shortest geodesic path from any vertex x of P to a vertex of the con-
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vex hull of P as a nonconvexity measure for the vertex x. We will denote
this distance as spdistP (x), using the convention spdist(P ) := max{spdistP (x) |
x is a vertex of P}. This nonconvexity measure is local, i.e., it assigns a noncon-
vexity value to every point x ∈ ∂P . This property is necessary for the algorithm
as a single vertex x∗ maximizing spdistP (x) is selected as the basis for splitting
the polygon. This splitting is accomplished by a procedure called Resolve(P, x∗),
which searches a connection from x∗ to some other vertex of P that is used to
split P into two subpolygons P1 and P2 such that P = P1 ∪ P2. If there are
any holes in the original polygon, these are considered infinitely nonconvex and
thus resolved first. For a more detailed description of the algorithm, we refer to
the original paper [14].

We propose the extension of this algorithm outlined in Algorithm 1 to com-
pute a decomposition hierarchy for P that captures approximate convex decom-
positions. The idea is to “record” the successive refinements due to the Resolve
procedure in a tree T = (V,E) with root v0 ∈ V . For each node v, there is a
nonconvex polygon Pv represented by v; the root node v0 represents the original
polygon P . Figure 4 shows a decomposition hierarchy as produced by a typical
run of Algorithm 1.

Algorithm 1: Construncting a decomposition hierarchy.
Input: A (non-convex) polygon P and a nonconvexity tolerance τsp
Output: A decomposition hierarchy T = (V,E) with root node v0,

family of polygons for each node (Pv)v∈V

V ← {v0}, E ← ∅, Pv0 ← P
Q← {v0}
while Q 6= ∅ do

Pop node v from the queue Q.
Compute spdist(Pv).
if spdist(P ) > τsp then

Let x∗ ∈ ∂P be a point realising spdist(P ).
V ← V ∪ {v1, v2}, E ← E ∪ {(v, v1), (v, v2)}
Pv1 , Pv2 ← Resolve(Pv, x

∗)
Q← Q ∪ {v1, v2}

end
end

The decomposition hierarchy T = (V,E) computed by Algorithm 1 gives
rise to a variety of approximate convex decompositions in the following way.
First we associate with every node v corresponding to a polygon Pv a convex
component Cv via Cv := conv(Pv). Note that Cv0 is the convex hull of the
original disjunctive set P. A covering node set L ⊆ V is a set of nodes that
are the leaves of a subtree of T rooted at v0. For a non-leaf node v with child
nodes v1 and v2 we have, due to the Resolve-procedure, that Pv = Pv1 ∪Pv2 and
thus Pv ⊂ Cv1 ∪Cv2 . Thus for a covering node set L ⊂ V we have P ⊆

⋃
v∈L Cv

and hence the family (Cv)v∈L is an approximate convex decomposition of P.
A nice additional advantage of considering approximate convex decompo-

sitions is that often distinct convex components are disjoint and thus lead to
disjoint subproblems in the search tree.
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Figure 4: Example of a decomposition hierarchy produced by the ACD algo-
rithm. The edge used for cutting into two components is shown in orange.

3.2 Using approximate convex decompositions as replace-
ment model

By definition, any approximate convex decomposition (C1, . . . , Cm) of P can be
used to relax (1) to

m∨
i=1
{x ∈ Ci}. (3)

To judge the quality, i.e., tightness, of this relaxation, we use a measure for
nonconvexity that provides a global view rather than the local measure that is
used within Algorithm 1. A natural and intuitive choice is based on the ratio
of volumes

vol (P \ (
⋃m

i=1 Ci))
volP =

vol (
⋃m

i=1 Ci)
volP − 1. (4)

We propose the following simple algorithm for selecting an approximate con-
vex decomposition for a given maximum convexification error τvol as definded
in (4). Starting with the covering node set L = {v0}, we successively replace
a node v by its sucessors v1 and v2 as long as vol Cv

vol Pv
− 1 > τvol. Note that

by construction, L remains a covering node set and thus yields the approxi-
mate convex decomposition (Cv)v∈L. While this procedure may not yield the
minimal decomposition (in terms of number of components) with the specified
convexification error (larger errors for some components cannot be outweighed
by smaller errors for others), it guarantees that the global threshold is satisfied.
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3.3 Using the hierarchy of approximate convex decompo-
sitions to guide branching

Replacing the original disjunctive set P by an approximate convex decomposi-
tion improves branching only if the number of polytopes is reduced. This is due
to the fact that no additional branching opportunities are introduced and the
effects discussed in Section 2.2 apply.

To incorporate additional branching opportunities, we can combine the con-
vex hull reformulation for P with the convex hull reformulation of an (potentially
coarse) approximate convex decomposition C := (C1, . . . , Cm) in one model:

convhull
[
(Pi)1≤i≤n; x; sorig] , (5a)

convhull [(Ci)1≤i≤m; x; sapprox] . (5b)

Branching on the additional binary variables sapprox introduced for C exploits
knowledge of the shape of P encoded in the inequalities for each component Ci.
In this way, branching on these binary variables early provides a tighter relax-
ation quickly, while the disjunctive constraint for P ensures equivalence to the
original model.

Obviously it is possible to use several approximate convex decompositions
in addition to the original model at the same time to capture a hierarchy of
refinements in the overall model. However, this introduces a lot of additional
disaggregation variables and constraints that can be avoided.

Consider again the decomposition tree T = (V,E). We say that a covering
node set V 2 is a refinement of a covering node set V 1 if any node v ∈ V 1 is
covered by a subset V 2(v) ⊆ V 2. Note that the subsets V 2(v) are disjoint.
Consider two approximate convex decompositions C2 := (C2

u)u∈V 2 and decom-
position C1 := (C1

v )v∈V 1 arising from covering node sets V 1, V 2 where V 2 is
a refinement of V 1. Due to this property, the two levels of the hierarchy can
be expressed simultaneously using the binary variables of the finer approximate
convex decomposition C2 and additional binary variables for C1. This observa-
tion yields the model:

convhull
[
(Pi)1≤i≤n; x; sorig] , (6a)

convhull
[
(C2

u)u∈V 2 ; x; s2] , (6b)∑
u∈V 2(v)

s2
u = s1

v v ∈ V 1, (6c)

s1
v ∈ {0, 1} v ∈ V 1. (6d)

Note that branching on the coarse-level binary variable s1
v either removes all

corresponding components from C2 from the disjunctive constraint for C2 (s1
v =

0) or restricts the disjunctive constraint to those C2-components corresponding
to C1

v (s1
v = 1). In both cases, the convex hull reformulation for C2 yields the

same relaxation as if convhull
[
(C1

v )v∈V 1 ; x; s1] was included in the model as
well.

Of course, model (6) may be extended to include more than two levels. If
the finest level is actually an exact decomposition of P or the convexification
error is acceptably small, constraint (6a) may be omitted.
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4 Computational Results
Motivated by our work in gas network optimization [12, 10], we consider poly-
hedral disjunctive sets modeling gas compressor stations. Each polytope of this
disjunctive set corresponds to a configuration employing a subset of the compres-
sor machines in the station in a particular way. The union of these configuration
polytopes describes the set of feasible operating points of the entire compressor
station. We have used publicly available data from the GasLib [11], in particu-
lar from the instance GasLib-582-v2. As the compressor stations available in
GasLib are not as complex as real-world stations, we have merged compres-
sorStation_{2|3|4} into an aggregated and hence more complex station for
our testing purposes. Our aggregated compressor station consists of 6 compres-
sor machines that can be operated in 42 different configurations (see Figure 5).
We have uniformly sampled 5000 points within the convex hull of the configura-
tion polytopes. The task is to decide whether each of these points is a feasible
operating point.

Running Algorithm 1 on this disjunctive sets yields an approximate con-
vex decomposition with the number of components depending on the specified
nonconvexity threshold. The first two columns of Table 2 indicate the trade-
off between the number of components and the resulting convexification error.
The convex hull itself (i.e., one component) has a very high convexification er-
ror of more than 100%. It is evident that the refinement of the decomposition
quickly reduces the error. In particular, the errors are just around 1% or less
for approximate convex decompositions with only 4, 5 or 8 components. Thus
the shape of the entire disjunctive set is effectively captured by the successive
decompositions. Even an exact convex decomposition, i.e., one with convex-
ity error 0.0, consists of only 13 convex components. Hence, in this case, the
number of binary variables is reduced from 42 to 13 without losing accuracy.

For each approximate convex decomposition, we created an optimization
model to check the feasibility of a operating point using the convex hull refor-
mulation. We solved this model using SCIP 4.0[18] to determine which of the
5000 potential operating points are feasible for the approximate convex decom-
position and which are not. The results are shown in the remaining columns of
Table 2, including the overall time needed for checking the points. The running
times are significantly lower for approximate convex decompositions with fewer
components. The final stages of the decomposition (i.e., with 8 and 13 compo-
nents) yield almost the same feasibility result as the original model, but require
25% (15%) less running time.

In addition to the MILP model resulting from the disjunctive set, we also
investigated using an approximate convex decomposition to improve the full
MINLP model for the compressor station. This full MINLP model [7, 9] fea-
tures additional variables coupled by several nonlinear equations and inequali-
ties. We strengthened the full model by the convex hull reformulation for each
approximate convex decomposition computed before. This is valid since the
configuration polytopes have been obtained as a very accurate approximation
for the full MINLP model [9]. Table 3 shows the results of solving these models,
again using SCIP 4.0. It can be seen that the number of instances that are feasi-
ble or infeasible remains almost the same across all model variants; we attribute
the small deviations to numerical precision issues. For the feasible instances,
adding the model for the approximate convex decomposition does not affect
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(a) 6 machines, 42 configurations.
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(b) Aggregated characteristic diagram.
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(c) 1 components, error = 102.51%.
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(d) 2 components, error = 15.55%.
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(e) 3 components, error = 6.71%.

0.0 5.0 10.0 15.0 20.0 25.0

Volumetric flow rate Q in [m3/s]

0.0

50.0

100.0

150.0

200.0

A
d

ia
b

at
ic

 h
ea

d
 H

ad
 in

 [k
J/

kg
]

(f) 4 components, error = 1.33%.
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(g) 8 components, error = 0.25%.
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(h) 5,000 sample instances.

Figure 5: Approximate convex decomposition of the aggregated characteristic
diagram of an artificial compressor group. The compressor group consists of 6
compressor machines that can be operated in 42 different configurations.
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# components error(vol) # feas # infeas total time
(42) 0.00% 2495 2505 987s

1 102.51% 5000 0 664s
2 15.55% 2842 2158 615s
3 6.71% 2676 2324 625s
4 1.33% 2530 2470 613s
5 0.75% 2514 2486 661s
8 0.25% 2503 2497 730s

13 0.00% 2498 2502 830s

Table 2: Computational results for ACD on operating range of compressor
station.

model # feas time (feas) # infeas time (infeas)
physical 2287 5701s 2713 1694s
physical + ACD (1 comp.) 2294 5849s 2706 1686s
physical + ACD (2 comp.) 2292 5717s 2708 599s
physical + ACD (3 comp.) 2289 5770s 2711 495s
physical + ACD (4 comp.) 2296 6147s 2704 494s
physical + ACD (8 comp.) 2292 5873s 2708 782s
physical + ACD (13 comp.) 2291 6002s 2709 800s

Table 3: Computational results for ACD on operating range of compressor
station.

the total solving time much. This is because the solver has to find solutions
to the nonlinear compressor equations anyway. However, using approximate
convex decompositions with two or more components reduces the running time
for detecting infeasibility significantly. For those instances, the total runtime is
reduced up to 70%.

5 Conclusions and outlook
In this paper we showed that the well-known “best possible” convex hull refor-
mulation for disjunctive polyhedral sets may yield weak bounds in branch-and-
bound search. This is due to the fact that this formulation does not take into
account the shape of the entire set. We proposed to analyse this shape by com-
puting a hierarchy of approximate convex decompositions, which can be used to
augment the original formulation to provide additional branching opportunities.
This yields considerable improvements in running time for solving the resulting
models.

However, the algorithm from [14] that we used to compute our hierarchy has
certain drawbacks for our application. First of all, the measure of nonconvexity
used to determine where to refine the approximation is unrelated to the tight-
ness of the resulting relaxation. Hence the resulting decomposition hierarchy
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does not necessarily provide useful guidance for branching. For instance, in
the first level of the decomposition hierarchy in Figure 4 the convex component
corresponding to left child node is equal to the convex component of its parent.
Moreover, nonconvexity is reduced in the classical way [6] by splitting the non-
convex polygon at a vertex that is not on the convex hull and another vertex
(this is done by the Resolve-procedure). Due to this “local” cutting, the convex
components of two sibling nodes in the hierarchy need not be relatively disjoint,
which is however a desirable property for branch-and-bound search.

In fact, these drawbacks are shared by other existing methods for obtaining
approximate convex decompositions [15, 1, 17, 16]. Therefore, there is need for
a method that is tailored to this application.
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