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Abstract

Gas networks are an important application area for optimization. When
considering long-range transmission, compressor stations play a crucial
role in these applications. This report collects and describes models for
compressor stations. The emphasis is on recent work on simple yet ac-
curate polyhedral models that may replace more simplified traditional
models without increasing model complexity. The report also describes
an extension of the compressor station data available in GasLib (http:
//gaslib.zib.de/)) with the parameters of these models.

1 Introduction

The long-range transmission of natural gas is driven by so-called compressor
units, which are used to increase the gas pressure to ensure the flow of the
gas through the network. Compressor units are organized in compressor sta-
tions that usually feature several compressor units which can be used in various
configurations. This report summarizes models for compressor units and com-
pressor stations that are intended to be used as part of a bigger optimization
model.

The basic state variables for modeling an element of a gas network (e.g., a
pipe, valve, or compressor unit) are the mass flow ¢ along the network element
and the inlet and outlet pressures p™™ and p°", respectively. Depending on the
type of network element, the corresponding element model restricts values for
these three state variables. The overall model for an entire gas network is then
obtained by combining the element models via flow conservation and pressure
coupling.

Detailed models of a compressor unit [4, 4] require additional variables
and feature several nonlinear relations connecting all the variables. To model
an entire compressor station, this model describing the technical behavior of a
compressor unit is combined with a model describing the choice between several
configurations for using the available compressor units, e.g., how many to use
in parallel. Thus the detailed model for a compressor station is a nonlinear and
nonconvex MINLP model. This level of detail is adequate for solving operational
problems like minimizing the necessary compression power.

For many applications at the strategic and tactical level, e.g., expansion
planning (see [I] and the references therein) and assessing the transmission ca-
pacity of the network [9], simpler models are sufficient. As in these applications
one is often interested in globally optimal solutions, convex or even polyhedral
models with few integer variables are of particular interest.
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Recently, GasLib [I3], a library with realistic gas network data, was created.
GasLib is intended to be used as a common set of input data for comparing
various approaches and techniques in gas network optimization. However, for
compressor units the data comprises only the numerical parameters for the
detailed model. Researchers that want to employ simplified models thus need
to make up suitable numerical parameters for these models.

In this report, we describe several simplified models and how to derive their
numerical parameters from the data for the detailed model. In particular, we
focus on models in (g, p'™, p°'t)-space, i.e., models that avoid the additional
variables for the technical details. The parameters of a simplified model are
determined such that the approximation provided by it is as accurate as possible
for this model type. This is useful in coarse-to-fine approaches (see e.g., [9]),
where a coarse model is used to determine some high-level decisions that are
later refined via a more detailed model. Moreover, we describe an extension of
the original GasLib that makes these parameters available, thus extending the
usefulness of the GasLib.

We consider only stationary models, i.e., models that are not time-dependent,
in the isothermal case assuming a constant gas temperature 7. To account for
different gas temperatures in overall models taking into account changes in the
gas temperature, we provide the numerical parameters for the models for various
values of T

The outline of the remaining report is as follows. Section [2]reviews the mod-
eling concepts for compressor units and compressor stations introduced in [4].
In Section |3 we present several models for compressor units, starting with the
detailed model from [4]. These models are then used in Sections 4| and [5| as
building blocks for models of compressor stations. Table[1| provides an overview
on the model described in this report. Appendix [A] describes the extension
to the GasLib XML format for compressor units and stations that is used to
provide the parameters for the simplified models.

2 Technical components and modeling elements
of compressor stations

We use the following notions that have been proposed in [4].

Compressor machines are used to increase the pressure of the incoming gas
to a higher outflow pressure. Thus, they satisfy the need to overcome pressure
loss caused by friction in pipes and to transport gas over long distances. In
present-day gas transport networks, one mainly finds turbo compressors and
piston compressors in combination with one of four drive types: gas turbines,
gas driven motors, electric motors and steam turbines. The combination of a
compressor machine and a drive will be referred to as compressor unit.

Small groups of compressor machines and drives are often used together in
such a way that the gas enters through a single pipe, is routed through some
of the compressor machines, and leaves via a single pipe. To model this, we
introduce the notion of compressor groups. These entities encapsulate a set
of compressor machines (together with the corresponding drives) that can be
operated in different predefined ways. Compressor groups are active elements,
i.e., network operators can control their mode of operation. Technically possible



Model name Equations

Model type

Compressor unit level

Physical model

Idealized model ,

nonconvex NLP

nonconvex NLP

No-drive model (117) nonconvex NLP

Polyhedral model (Q, Haq) , , nonconvex NLP

Polyhedral model (g, p™, po‘“)| ([19) LP

Box-constraint model| (21) LP

Configuration level

Subnetwork mode1| + machine model (N)LP

Polyhedral model (g, p™, p°“t)| (19) on configuration level LP

Box-constraint model| on configuration level LP
Compressor group level

Configuration choice mode1| + configuration model MI(NL)P

Box-constraint model, (24) LP

Table 1: Overview of all models discussed in this report.

modes are active, closed, and bypass. If a compressor group is closed, it behaves
like a closed valve. Thus, the gas flow is zero, and inflow and outflow gas states
(i.e., gas pressure, temperature, and density) are decoupled. In bypass mode,
the gas flows around the group and is therefore not affected by any part of the
group. In active state, the compressor group can be operated in one of several
different configurations, i.e., predefined arrangements of the single compressor
machines. We define a configuration to be a serial combination of stages, where
a stage in turn is a parallel combination of machines. Each machine must only
occur at most once in every configuration. shows an example of a
compressor group.

Frequently, collections of compressor machines are connected to more than
two pipelines and may be used in various ways to route gas from some of those
pipelines to other ones. Compressor groups are not sufficient to model such
complex structures. Instead, for each compressor station, an explicit subnetwork
that reflects all possible routes of gas through the compressor station is required.
Similar to compressor groups, compressor stations internally allow for multiple
paths that the flow of gas can actually take. The desired path is again selected
by switching a cascade of individual valves, compressor groups, and (sometimes)
control valves in the right way. An exemplary compressor station subnetwork
with four different routings is shown in

In the following sections, we present models for compressor units, configu-
rations and entire compressor groups.



Figure 1: A compressor group with two compressors c1,ce, and two possible
configurations. In the first configuration, the two compressors are connected in
parallel. The second configuration consists of a serial connection of the same
compressors. The bypass valve connected in parallel to the rest of the compres-
sor group allows (uncompressed) flow in both directions.

(a) Mode 1: Flow from north to (b) Mode 2: Flow from east to
south, quad parallel compression. south, triple parallel compression.
X ®
X X X
X X X
A
>/
Xv “xr X
<4
=< EF
<«
(¢) Mode 3: Flow from east to (d) Mode 4: Flow from north to east
south, double serial compression. with double and to south with single

compression.

Figure 2: Four subnetwork operation modes representing different flows of gas
through a large compressor station. Elements colored dark are “closed”.



General gas-related physical quantities

Pressure P [bar]

Mass flow rate q [kg/s]

Normal volumetric flow rate Qo [1000m® /1]

Temperature T ]

Density p [kg/m?]

Compressibility factor z -]

Pseudocritical temperature T, [K]

Pseudocritical pressure Pe [bar]

Molar mass Mol [kg/kmol]

Specific gas constant R [kJ/(kg - K)]
Gas-related constants and conventions

Standard temperature To =273.15 K]

Standard pressure po=1.0 [bar]

Universal gas constant R = 8.3144598 [kJ/(kmol - K)]

Quantities related to compressor units

Specific change in adiabatic enthalpy  H.q [kJ/kg]
Volumetric flow rate Q [m3/s]
Power P [kW]
Specific energy consumption b [kw]
Adiabatic efficiency Nad € [0, 1] [-]
Compressor speed n [rot./min]
Isentropic exponent K [—
Ambient temperature Tomb [°C]
Absolute pressure increase A [bar]
Relative pressure increase 5 [—
Turbo compressor quantities
Surgeline quadratic polynomial
Chokeline quadratic polynomial
Piston compressor quantities
Shaft torque M [kNm|
Operating volume Vo [m3/rot.]

Table 2:

General physical quantities and constants.



3 Models for compressor units

In this section we focus on models for compressor units. The description of
the gas physics and the detailed technical model in Sections and are
based closely on [4]. An overview on the physical quantities that are used in the
models is given in The constants provided in the formulas are based
on the assumption that the values for all physical quantities are provided in the

unit indicated in [Table 2

3.1 Compressor-relevant gas physics

Before starting to describe the various models, we need to have a short look into
the physics that play a role in the context of gas compression. A more detailed
presentation can be found in e.g., [3 [, [14].

The equation of state for ideal gases connects the state variables pressure p,
density p, and temperature 7' and reads

p = pR,T. (1a)

The specific gas constant Rs can be computed from the universal gas constant R
and the molar mass My, of the gas as Ry = RM;;I. However, the properties of
real gases differ from the above equation of state, which necessitates a correction
by the so-called compressibility or real gas factor z = z(p,T). The modified

equation of state is then
p=pRTz(p,T). (1b)

For an ideal gas, z = 1.

The real gas factor depends on the chemical composition of the gas as well as
on the pressure and the temperature. For low pressures and high temperatures,
real gases behave almost ideally, whereas their properties differ significantly from
those of ideal gases at higher pressures. There exist several approximations for
the computation of the real gas factor, two of which we want to consider: First,
the formula of the American Gas Association (AGA) is suitably precise up to a
pressure of around 70 [bar]:

p T

p
2(p,T) =1+ 0.257— — 0.533— <. %2a
(. T) o T (2a)

Second, the formula of PAPAY is more accurate also for higher pressures:

2
2(p,T) =1 — 35262267 | 0.247 <p> e 8T8 (2b)
DPec Dec

In both equations, p. and T, denote the pseudocritical pressure and temperature
of the gas and depend on the composition of the gas. illustrates the
two formulas for the compressibility factor for T = 273.15 [K].

Instead of regarding z as a variable, it can also be approximately seen as

a constant parameter Z = 2(p,T). In the case of compressor machines, the
relevant z-value is determined by the inlet pressure p'®, such that the following
is reasonable:

1

P:§(P

in,min + in,max)

p
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Figure 3: Compressibility factor computation.

3.2 Physical models of compressor machines and drives

For a single compressor machine, the quantities that we are interested in com-
prise the inlet and outlet pressure p'™ and p°** as well as the throughput of gas in
terms of mass flow rate ¢q. In each of the following models, these quantities will
be subject to a set of constraints of varying complexity. The physical model that
we will introduce first is the most detailed and realistic model used. It provides
an accurate description of the physics of a compressor machine together with its
compressor drive and is typically used in simulations and applications close to
operations, e.g., in [2, [I5] [12]. The physical model yields several nonlinearities
that complicate the solving process of an optimization model. Therefore, it is
also used as basis for the simplified models as described later in this chapter,
with the goal of providing relaxations that reduce the complexity of the fea-
sible operating range to a certain extent, respectively. As already mentioned,
we distinguish between two types of compressor machines, turbo compressors
and piston compressors, whose operational details are represented by different
variables and restrictions. For more details and an extended discussion, we refer
to [14].

The feasible operating ranges of both turbo and piston compressors are given
via so-called characteristic diagrams, that are, however, differently shaped. Ex-
amples of characteristic diagrams are shown in When the compressor
machine is active, it must be operated at some point lying inside its character-
istic diagram.

The two main quantities that restrict the capability of a compressor machine
are the specific change in adiabatic enthalpy H,q, or adiabatic head, and the
throughput in terms of volumetric flow @, given by:

r—1
. K out K
Hoa = R [(I;H >

- 1] ) (3)
-7
Q= o (4)

The adiabatic head takes a positive value if the outlet pressure p°“t is higher than
the inlet pressure p'®, which is always the case for an active turbo compressor
machine. If the two were equal as for a switched-off machine, H,q would be
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Figure 4: Characteristic diagrams of compressor machines.

zero. The mass flow ¢ through an active machine is always positive, which
directly yields positivity for the volumetric flow @, whereas the flow through an
inactive machine is zero. Via the thermodynamical standard equation for real

gases (1b]), now respecting the units in {Table 2| the gas density at the inlet p®
is given as

. pin

= 1007, 5

p RT ()

with 2 = z(p™™,T). The factor 100 comes from unit conversion: 1 [bar] =
100 [kJ/m®]. Assuming a constant compressibility factor, which is a common
simplification in this context, leads to a linear proportional relation between
pressure and density.

3.2.1 Turbo compressors

The boundaries of the characteristic diagram of a turbo compressor are de-
termined by applying least-squares quadratic fits to measurement points. The
same is true for the isolines of speed and adiabatic efficiency. As a result, we
have (bi)quadratic polynomials for which we use the following notation:

T

1 ago Qo1 Qo2 1

x(@,y;A)= | = ajp a1 a2 Yy,
2 2
x a0 Q21 Qa22 Yy

Y(x;a) =ao+ a1z + asz?.



We assume that all coefficients are available for our models.

The left and the right boundaries of the characteristic diagram are called
surgeline and chokeline, respectively, whereas the lower and upper boundaries
result from operating the machine at minimum and maximum speed. The cor-
responding inequalities are given as follows:

Haa < 9(Q;a™"), (6a)
Hag > 1(Q; a™™*), (6b)
Had S 1/’(@ aspeede)’ (60)
Had Z 1/’(@ aspeedMax) (Gd)

The compressor speed n of an active turbo compressor is only implicitly
given via a biquadratic equation relating speed, flow and adiabatic head:

ad - (Qv Aspeed). (7)

There are, however, explicit bounds on the compressor speed: n € [p™®, pmax],
The adiabatic efficiency 7,4 always takes a value in [0, 1] and can be explicitly
obtained from

Nad = X(Q,n; A°T). (8)

Notice that the two equations ([7)) and (8)) are only valid within the boundaries
of the characteristic diagram. Hence, n and 7,4 are left undefined if the machine
is switched off and must be manually set to some meaningful value (e.g. zero).

3.2.2 Piston compressors

In contrast to turbo compressors, piston compressors have a constant adiabatic
efficiency 7,4-

They are characterized by their operating volume V,, i.e., the volume of
gas that can be compressed in every rotation of the piston. The volumetric
flow @ and the compressor speed n are related via this operating volume (with
1 [min] = 60 [s]):

nV,
Q= 60

9)

Same as for turbo machines, n is explicitly bounded by n™™ and n™*, With
the above equation, these bounds can be used to compute bounds on Q:

Q c [Qmin7Qmax] (10)
Moreover, piston compressors can be characterised by their shaft torque M:

M= VOH%‘W. (11)

27”7ad

Since H,q = 0 for an inactive compressor (with all quantities in the denominator
being strictly positive), a shaft torque value of zero is implied in that case.
However, the characteristic diagram of piston compressors technically also allows



for zero shaft torque and thus zero compression if the machine is active. From a
modelling point of view, this might not be a desirable behavior since, within a
compressor group, it is already covered by the bypass mode. As a remedy, one
could impose a small minimum shaft torque value M™" > 0 that every active
machine must at least achieve.

For some piston compressors, the maximum torque value M™?* is known
and can then be directly used, while in other cases only a maximum relative
or absolute compression ratio 6™®* or A™?* is given. Respectively, one of the
following three restrictions is incorporated:

M S Mmax’ (123)
pout S pinémax’ (12b)
pout gpin T Amax (120)

3.2.3 Compressor drives

Each compressor machine is powered by a compressor drive. Again, there exist
several types: Electric motors, gas driven motors, gas turbines and steam tur-
bines. However, we will use a mathematical model that is general enough to
incorporate all of them. The power that is required for the compression process
is given by

— pinQHad _ qHad
Tlad Tad .

P

(13)

In the case of an inactive turbo compressor, where 7,4 is undefined, the value
of P also remains undefined and must be explicitly set to zero.

The maximal power that a drive can deliver to a compressor machine may
depend on the compressor speed and the ambient temperature and is again
given as a (bi)quadratic polynomial. Furthermore, every compressor drive has
an individual energy consumption rate b that is, in general, a quadratic function

of the power produced. See for an example.

n, T. mb; Apower )
P < pmax _ x( a ) (14)
’(/J(’I’L, apower)

b = (P, aereY), (15)

3.3 Simplified models

Depending on the application and the overall optimization model, using the
detailed physical model from Section[3.2|as a building block may be too complex.
Also, detailed compressor unit data such as characteristic diagrams may not be
available, e.g., in network expansion applications where the compressor units
do not exist yet and the goal is to determine some general design parameters
like the required maximum compression power. For these reason, simplified
compressor models have been developed.

10
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Figure 5: Characteristic diagrams of compressor drives.

These simplified compressor models are usually “less nonlinear” than the
detailed physical model. Of particular interest are models that are linear or
mixed-integer linear, as these can be integrated in common MILP optimization
models for gas networks without leaving the realm of MILP models. The sim-
plifications are achieved by neglecting nonlinear constraints and some of the
“internal” state variables like the adiabatic efficiency 7.4 and the compressor
speed n.

3.3.1 1Idealized models

As mentioned in [I4], earlier work on gas network optimization often consider
idealized models of compressor machines and drives, see e.g., [11I, [10]. These
models incorporate the basic physical relations shared by turbo and piston com-
pressors: specific change in adiabatic enthalpy and power consumption .
However, they assume a constant adiabatic efficiency 7,4 and they replace char-
acteristic diagrams and drive properties with simple bounds on the compressor
power, P™™ and P™®*, Analogously, bounds on g and H,q may be used as well.
These bounds are either given explicitly or may be derived from the detailed
physical model if the idealized model is to be used as an approximation for it,

11



see Altogether, the model reads as follows:

. out NTA
Hyq = R.TZ" [(p. > - 1] 7 (16a)

k—1 pn
qHag < Mg P™, (16b)
qHaq > Mg P™™, (16¢)
q € [g™™, ¢, (16d)
Haq € [HR™, HI™. (16e)

This model is often used in applications where the goal is to minimize the
compressor power for handling a given gas demand. In fact, assuming a constant
adiabatic efficiency 7,4 and a constant energy consumption rate b (cf. (L5))), the
term gH,.q provides the exact value for the compressor power in the detailed
physical model.

Another very simple relaxation of the physical model results from assuming
no restrictions on the power that can be delivered. That is, it is only ensured
that (Q, Haq) or (Q, M) lie within the characteristic diagram of a turbo or piston
compressor, whereas all constraints related to the power (i.e., (8) and (13)) as
well as to the compressor drive ((14)), (15)) are omitted:

in

in p

= - 1
o= (172)
2™ = z(p™, T) according to (17b)
out KT_l
Ho = R [(p . ) - 1] , (17¢)
K—1 pm
q
Q=— 17d
o (17a)
VoH.ap™ .
= fdp (only for piston compressors) (17e)
27r77ad

+ feasibility for compressor machine: @ or , (171)

3.3.2 Polyhedral model in (Q, H.q)-space

Going one step further than the no-drive model in terms of removing nonlin-
earities, we might want to consider a linearized and convexified version of the
characteristic diagram boundary. This only applies to turbo compressors since
the characteristic diagrams of piston compressors already have these properties.
Typically, only one or two of the four boundary lines of a turbo compressor
characteristic diagram are slightly concave, such that the convexification error
is relatively small. The linearization error that is made depends on the amount
of support points used. Having computed such an outer approximation as a set
of polytope facets F, we can add linear facet inequalities

ar@Q+bpHuq +cy <0 vVfeF (18)

12
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Figure 6: Linear outer approximation of a characteristic diagram.

instead of the characteristic diagram boundary inequalities (6a)-(6d). However,
the entire model remains nonlinear due to the nonlinear relations of @ and
H,q to our main problem variables ¢, p™™ and p°“*. An example of a linearized
characteristic diagram is shown in

3.3.3 Polyhedral model in (g, p'*, p°**)-space

As we have seen, the capabilities of a compressor machine are determined by
its characteristic diagram. However, incorporating the respective characteris-
tic diagram variables, (Q, Ha.q) for turbo compressors and (@, M) for piston
machines, into a model yields difficulties due to their nonlinear relation to the
main problem variables (g, p™, p°"*). Hence, the idea of the polyhedral model
is to find linear models in the (g, p™™, p°**)-space, given by a set F of polyhedral
facets

afq-‘rbfpin-i-CprUt-i-df <0 VfeF (19)

based on transformations of the original characteristic diagrams.

Turbo compressors In this paragraph, we follow closely the steps presented
in [6] in order to derive a polyhedral description of the feasible region of turbo
compressors in (g, p™™, p°®). As for turbo compressors, recall that we have the
following mapping, given by equations and :

100gR,T2™
Q _ f(q pin pout) _ P k=1 c R2.
Hag o R, T2ty {(1;) " —1]

Conversely, a point (Q, H,q) can be transformed into a (curved) ray in the
(q,p™, p°"*)-space. There is one degree of freedom in this transformation, which
we represent by the variable p. The curvature comes from the evaluation of
the compressibility factor z = z(p,T) according to the formulas of PAPAY or

13
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Figure 7: The operating range polytopes of the two different compressor machine

types in (g, p™, p**).

AGA. If we assume z to be constant, then all rays would be linear in p for fixed

(Qa Had):

_Qp
q 100R: T2
P | = 9(Q, Haasp) = b €R? forp=>0.
out
Ha r—1
p (RST% + 1) p

Whereas in [6] a constant z-factor is assumed, the impact of working with the

PapAY or AGA formula has been studied in [5].

In practice, we start the construction with a set of characteristic diagram
points {(Q(k)7 H;ﬁ))}zzp e.g., the measurements or some random sample. Ap-
plying the above mapping yields a set of rays in (g, p'™, p°"*). On all of these
rays, we compute discrete points using sample values for the free variable p.
For each of the generated points {(¢®), p™(*) pout())1m we then compute
the value of the required compressor power P according to and compare it
to the power bound . Points that are infeasible w.r.t. the power bound are
discarded. This step is an addition to the procedure described in [6] and is also
analysed in [5]. Let C denote the convex hull of all the remaining power-feasible

points. In order to a obtain a linear approximation to the feasible operating
range of the compressor unit in (g, p'*, p°"*), we finally intersect C' with half-

spaces corresponding to the technical limitations of the compressor machine:

in in,min
2p

p
t t,
pou § pOU max ,

min

q=q 7,
ngmax

The constraint p°** > p'® should be implicitly fulfilled through nonnegative
H,4-values in the characteristic diagram, but can of course be explicitly added.

For piston compressors, the dependencies between the

Piston compressors
°u) and the compressor variables (Q, M) are simpler.

problem variables (g, p™, p

14



Assuming that we are only given the pressure bounds p™™™ and p°ut™max  we
can immediately use these for the remaining bounds:

in,max ,__ pout,max
L )

in,min

p
pout,min =p
As long as pi™™in < peut:max these hounds are valid and also tight, since piston
compressors technically allow for an arbitrarily small pressure increase.

The mass flow bounds g™ and ¢™2* can be directly derived from the bounds
on the volumetric flow @ in the characteristic diagram. From the equations

(5) and , we obtain ¢ = 1%%%’:,[‘. This becomes minimal for Q = Q™»

and p™ = p™™Min and maximal for Q = Q™ and p" = p™MAX (since the
compressibility factor z'® is monotonously decreasing in p'*), such that we get

S min _ 100Qminpin,min

- N RTzi» ’

< max _ 100Qmaxpin,max
=9 = TR

If upper bounds on the absolute or relative pressure increase A or ¢ are
available, they are added as

pout < pin T Amax
pout < pinémax

If a maximal shaft torque value M™2* is given, we can use equation (11f) to
b
derive a maximal compression ratio §™** as follows:

out Mmax9 r—1 . . .
p om_1P

illustrates the resulting operating ranges in (g, p™, p°*)-space of
both a turbo and a piston compressor.

out )

3.3.4 Box-constraint model in (g, p™, p°"!)-space

For solving optimization problems on large networks that involve compressor
stations, the physical compressor machine model is far too complex. However, it
is solvable when a machine is considered individually. Hence, we can precompute
bounds on our variables of interest (p, p'™, p°'*) as well as on the absolute and
relative pressure increase, A and §, via the physical model NLP and then build a
simpler compressor model upon these. The same idea has already been applied
to the compressor power P in the idealized model.
The model then reads as follows:

q c [qmin’ qmax}7 (213)

pin c [pin,min7pin,max}7 (21b)

pout c [pout,min’pout,rnax]7 (21C)

pout _pin c [Amin’Amax]7 (21d)
out

’; _ ¢ [gmin, gmex], (21e)
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Figure 8: Feasible region of the box-constraint model (green) compared with

the feasible region of the polyhedral model in (g, p'*, p°'*) as in

Notice that the results depend on the assumed ambient and gas temperature.
shows a typical feasible region of the box-constraint model.

4 Configuration models

As described in the beginning, compressor machines are operated in one of
several technically possible configurations within a compressor group. By con-
vention and thereby covering all practically relevant cases, we assume a con-
figuration to be a sequence of parallel compressor machine arrangements. The
variables p™™ and p°"t shall now refer to the inlet and outlet pressure of the
configuration, and ¢ denotes its throughput in terms of mass flow, such that our

target space of interest remains (g, p™, p°t).

4.1 Subnetwork model

Most obviously, configurations can be modelled as a simple subnetwork consist-
ing of serially combined stages of parallel machines with pressure coupling and
flow conservation constraints. Formally, for a configuration, let 7 = {¢1...tx}
be an ordered set of k serial stages. Every stage t € T comprises a set
My = {mgt) . ..ml(z)} of compressor machines that are operated in parallel.
For each stage t € T, we introduce in- and out-pressure variables pi® and p"t,
respectively. Moreover, for every compressor machine m € My, Vt € T, we
introduce a (nonnegative) mass flow variable ¢ ,,,. With this, the subnetwork

model can be stated as follows:

q= Z Qt.m vteT (22a)
meMy
Pt =p (22b)
Pt =pit, Vi=1...k—1 (22c)
P =t (224)
(qt,m,pitn,p‘t)Ut) S Pt,m Vt €T Vm € My, (226)

16



where Py, denotes the set of feasible working points of some arbitrary com-
pressor unit model from

out )

4.2 Polyhedral model in (¢, p, p°**)-space

Following the steps described in [6] and similar to the polyhedral model for
compressor machines, the goal is again to find a linear model for the overall
capabilities of a configuration in the space of (g, p™, p°t).

Let us start with finding the representation of the operating range for a single
stage, i.e., the parallel combination of compressor machines. For simplicity of
the notation, we assume that there are only two parallel machines M; and Mo,
but the extension to the general case is straight-forward. Let

PMl = {(qlvpi1n7p(1mt)}7
Pr, = {(g2, 5", 05™)}
denote the feasible operating ranges of M; and Ms as determined by the poly-

hedral model of a single compressor machine. Then, the feasible region of the
parallel combination M; || My can be described as

P = {(g; ™, ™)}
with
q=q +q ) .
(qlvpllnvp?u ) S PMla

Pt =pit = p for .
(g2, P8, p8") € Puy,.

out __ _out __ _out
b =pP1 =D

In words, the mass flows simply add up while the in- and out-pressure must be
equal for both machines.

Having computed the overall operating range of each stage, we need to pro-
ceed with finding the operating range of their serial combination. Again, we
restrict ourselves to the case of two serial stages S; and S; whose operating
ranges are given by all points in

Psl = {(qlapilnapclmt)}7
PS2 = {(Q27p12nﬂp(Z)Ut)}'

In the serial combination S; — Ss, the mass flow through both machines
must be equal and the outlet pressure of stage S; must match the inlet pressure
of stage Sy. The feasible region of S; — S5 is then given as

PS1—>SQ = {(Q?pin7pOUt)}

with
q=4q1 =42
" =p o (q1, P, p5™) € Ps,,
pout = pout (g2, I8, p3™) € Ps,.
Pt = py'

Obviously, while parallel combinations of machines are always symmetric,
the order of serially combined stages matters. In general, the resulting operating
range of serial combination S; — S is different to the one of S; — S7.
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4.3 Box-constraint model in (¢, p™, p°*')-space

The idea of the box-constraint model as presented in the previous [Section 3.2|for
individual compressor machines can also be generalized to configurations. As
a preprocessing step, we now compute bounds on several quantities by solving
NLPs based on the physical compressor model in combination with the above-
mentioned subnetwork model for the configuration. In this case, we focus on
bounds within the (g, p™, p°"*)-space. Bounds on the adiabatic head H,q and
the volumetric flow @ could of course also be included, but are not as meaningful
for an entire configuration as they were for a single machine. With A and §
referring to the absolute and relative pressure increase, respectively, the model
can be written (similar to the box-constraint machine model) as

mln max}

€lq
€ p™
€[p
P e [amn, Ama"]

out

p

lIl Hlln lIl HIaX]
)

out out, mm out max]

)

c [5min’ 5max} .

in

The box-constraint model for configurations is superior to the one for in-
dividual machines, since it provides a tighter relaxation and necessitates fewer
variables. For example, let us consider two machines M; and M, that are
serially combined and let 4]*** and §5"** denote their respective maximal com-
pression ratios as computed by the box-constraint machine model. Then, the
subnetwork model for the configuration would assume the maximal overall com-
pression ratio to be 6™** = §1*** . §5"**. However, 61"** and J5*** may have been
achieved by M; and M5 at very different rates of mass flow. This is automati-
cally taken into account by the box-constraint configuration model, which yields
5max S 6{11&)( . 6511&)(.

5 Compressor group models

In the previous section, we have described several models for configurations of
multiple compressor machines. Now, we want to widen our view and find models
for an entire compressor group that consists of several configurations and whose
capabilities shall, again, be characterized by the tuple of variables (g, p', p°®t).
As we have mentioned before, compressor groups can be in different states:
closed or open, and, if open, active or bypass. At this point, we will focus on
active compressor groups.

5.1 Configuration choice model

In an active compressor group, exactly one of the configurations must be active.
Therefore, let P;, i = 1...n, denote the operating range of configuration 4
as obtained by any of the configuration models, with n being the number of
possible configurations. Furthermore, we introduce a binary variable s; for
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every configuration i with

s; =1, if configuration ¢ is active,

s; =0, otherwise.

With this, we can formulate a first and very flexible model (with respect to
the configuration and machine models that are used):

si=1 = (¢,p",p"") P, (23a)
D si=1, (23b)
=1

s;€0,1], i=1...n (23¢)

5.2 Box-constraint model

Starting with the parameter bounds computed for the box-constraint configu-
ration model, we immediately develop a variant of that model for a compressor
group. For any parameter ¢ € {q,p™, p°", A, §}, let £ and €M% denote the
bounds of this parameter computed for configuration ¢, ¢ = 1...n. Then, we
can dircetly determine overall parameter bounds for the compressor group as

gmin — .min {E;nin}’
1=1...n

£m = max (€1},
1=1...n

and use these in a similar way as in the box-constraint model for compressor
machines or configurations.

However, we can easily do better: For every configuration ¢ = 1...n, the
intersection of the half-spaces given by the parameter bound inequalities yields
a polyhedral feasible set P; of points in the same space of (g, p™, p°"*). We can
then use the convex hull of the union of all these polyhedra to impose:

n
(q.p™,p™") € conv | J P,.
=1

For this, we do not explicitly need to compute U?:l P;, but can use a convex
combination of the vertices v(P;) of all P, i =1...n:

(q,p™,p°") = Z Ayv with Z Ao =1, A, >0. (24)
UEU v(P;) UEU v(P;)
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A Extended XML format for compressor mod-
els

All of the models presented in this report can be set up using the publicly
available data from the GASLIB [7]. This library of gas network data contains
several network instances together with detailed specifications of compressor
units and different flow-pressure-scenarios in standard XML format. The com-
pressor groups as arcs in the gas network are specified in the .net-file, whereas
all specific data related to the compressor units and configurations within a
compressor group is given in the corresponding .cs-file.

We have extended the format of the GASLIB .cs-file in order to accomo-
date the data of some of the simplified models. The numerical values for the
compressor models do depend to some extent on the composition of the gas. To
obtain specific values, we used the parameters of pure methane (CHy):

Mol = 16.043 [kg/kmol]
R, = 0.5182705 [kJ/(kg - K)]
Pe = 45.922 [bar]
T, = 190.564[K]
k= 1.304

The quantity x, the so-called isentropic exponent, actually depends both on
the gas composition as well as on the gas temperature. We use x = 1.304
independently of the chosen gas temperature value. In order to account for the
dependency of the compressor model parameters on the gas temperature, we
decided to include data for various gas temperatures, namely {0, 15,30,45} [°C].

To provide the model parameters, we extended the existing XML format
for compressor data by a new tag <boxModelBounds> which is added both on
the level of compressor units and on the level of configurations. The param-
eters of the gas composition that have been assumed are documented in the
<parameters> subtag.

The values for the computed bounds follow in a tag of the form <gasTemperature
unit="K" value="273.15">. The values of the bounds themselves are speci-
fied, for each of the physical quantities, together with their respective unit, as
for example

<massFlowMin unit="kg_per_s" value="22.5201"/>
<massFlowMax unit="kg_per_s" value="131.4391"/>.

Moreover, we incorporated facet inequalities of the polytope approximations

of the characteristic diagrams in (Q, Hnq) as well as the operating range in

(q,p™, p°"*). These are supposed to be used in addition to the bounds. They

are given specified and listed within an <additionalFacets>-tag, where the at-

tribute <space="ppq"> refers to the operating range in (¢, p™, p°**) and <space="QHad">
the characteristic diagram in (Q, Haq). A comprehensive example of the added

XML format is given in
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<boxModelBounds>
<parameters>
<compressibilityFactorFormula value="papay"/>
<pseudocriticalPressure unit="bar" value="45.922"/>
<molarMass unit="kg_per_kmol" value="16.043"/>
<ambientTemperature unit="Celsius" value="10.0"/>
<isentropicExponent unit="1" value="1.304"/>
<pseudocriticalTemperature unit="K" value="190.564"/>
<specificGasConstant unit="kJ_per_kg_per_K" value="0.518260911301"/>
</parameters>
<gasTemperature unit="K" value="273.15">
<massFlowMin unit="kg_per_s" value="22.5201"/>
<massFlowMax unit="kg_per_s" value="131.4391"/>
<pressureInMin unit="bar" value="31.0132"/>
<pressureInMax unit="bar" value="67.0357"/>
<pressureQutMin unit="bar" value="32.6953"/>
<pressureOutMax unit="bar" value="71.0132"/>
<pressureIncAbsMin unit="bar" value="1.682"/>
<pressureIncAbsMax unit="bar" value="19.5641"/>
<pressureIncRelMin unit="1" value="1.0542"/>
<pressureIncRelMax unit="1" value="1.4459"/>
<adiabaticHeadMin unit="kJ_per_kg" value="6.8858"/>
<adiabaticHeadMax unit="kJ_per_kg" value="48.9912"/>
<volumetricFlowMin unit="m_cube_per_s" value="0.9409"/>
<volumetricFlowMax unit="m_cube_per_s" value="3.3796"/>
<normVolumetricFlowMin unit="1000m_cube_per_hour" value="114.4246"/>
<normVolumetricFlowMax unit="1000m_cube_per_hour" value="667.8426"/>
<powerMin unit="kW" value="339.6328"/>
<powerMax unit="kW" value="3383.575"/>
<additionalFacets space="ppq">
<variables>
<variable coeff="a" name="massFlow" unit="kg_per_s"/>
<variable coeff="b" name="pressureIn" unit="bar"/>
<variable coeff="c" name="pressureOut" unit="bar"/>
</variables>
<facet a="-0.5732" b="-0.3319" c="0.7492" rel="le" rhs="2.7646"/>
<facet a="0.0755" b="0.6691" c="-0.7393" rel="le" rhs="-0.3221"/>
<facet a="-0.0450" b="0.7560" c="-0.6530" rel="le" rhs="0.2734"/>

</additionalFacets>
<additionalFacets space="QHad">
<variables>
<variable coeff="a" name="volumetricFlow" unit="m_cube_per_s"/>
<variable coeff="b" name="adiabaticHead" unit="kJ_per_kg"/>
</variables>
<facet a="-0.9885" b="-0.1514" rel="le" rhs="-2.7158"/>
<facet a="-0.9999" b="0.0165" rel="le" rhs="-0.7246"/>
<facet a="-0.9998" b="0.0215" rel="le" rhs="-0.5494"/>

</additionalFacets>
</gasTemperature>
<gasTemperature unit="K" value="288.15">

</gasTemperature>

</boxModelBounds>

Figure 9: Example excerpt from the extended XML data for the compressor
models.
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