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Abstract

We discuss a nested collection of three superclasses of perfect graphs:
near-perfect, rank-perfect, and weakly rank-perfect graphs. For that,
we start with the description of the stable set polytope for perfect
graphs and allow stepwise more general facets for the stable set poly-
topes of the graphs in each superclass. Membership in those three
classes indicates how far a graph is away from being perfect. We in-
vestigate for webs and antiwebs to which of the three classes they
belong. We provide a complete description of the facets of the stable
set polytope for antiwebs (with help of a result due to Shepherd on
near-bipartite graphs). The main result is that antiwebs are rank-
perfect.

1 Introduction

BERGE [1] proposed to call a graph G = (V, E) perfect if, for each (node-
induced) subgraph G’ C G, the chromatic number equals the clique number.
That is, for all G' C G, we need as many stable sets to cover all nodes of G’
as a maximum clique of G’ has nodes (a set V' C V is a clique (stable set) if
the nodes in V' are mutually (non-)adjacent; maximum cliques (stable sets)
contain a maximal number of nodes).

BERGE [1] conjectured two characterizations of perfect graphs. His first
conjecture was that a graph G is perfect if and only if its complement G
is (G denotes the graph on the same node set as G where two nodes are
adjacent iff they are non-adjacent in G). This conjecture was proven by
LovAsz [7]. The second BERGE conjecture concerns a characterization via
forbidden subgraphs. It is a simple observation that chordless odd cycles
Cor+1 With k > 2, termed odd holes, and their complements Coyy1, called
odd antiholes, are imperfect. Clearly, each graph containing an odd hole or
an odd antihole as subgraph is imperfect as well. BERGE [1] conjectured: a
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graph is perfect if and only if it contains neither odd holes nor odd antiholes
as subgraphs (Strong Perfect Graph Conjecture). This conjecture is still open
and one of the most famous conjectures in graph theory.

PADBERG [9, 10] asked which graphs are “almost” perfect, i.e., which
graphs are imperfect with the property that all of their proper induced sub-
graphs are perfect. Such graphs are nowadays called minimally imperfect.
Using this term, the Strong Perfect Graph Conjecture reads: odd holes and
odd antiholes are the only minimally imperfect graphs. In order to give a
characterization of minimally imperfect graphs (and thereby to verify or fal-
sify the Strong Perfect Graph Conjecture), many fascinating structures of
such graphs have been discovered, e.g., properties reflecting an extraordi-
nary amount on symmetry of their maximum cliques and stable sets [7, 9].

A common generalization of odd holes and odd antiholes is a class of
graphs with circular symmetry of their maximum cliques and stable sets, so-
called webs: A web W¥ is a graph with nodes 1,...,n where ij is an edge if
i and j differ by at most k (i.e., if |i — j| < k mod n). We assume k£ > 1 and
n > 2(k+1) in the following in order to exclude the degenerated cases when
Wk is a clique. W, is the hole C,, and W, the odd antihole Coy 1 for
k > 2. Two further examples of webs are depicted in Figure 1. (Note that
webs are also known as circulant graphs C¥ [3]. Furthermore, graphs W (n, k)

withn > 2,1 <k < tnand W(n, k) = W' ! were introduced in [13].) The
complements of webs, called antiwebs, have clearly also a circular symmetry
of their maximum cliques and stable sets and contain all odd holes and odd

antiholes, see Figure 1 for two further examples.

Figure 1: Examples of webs and antiwebs.

In the next section, we introduce a nested collection of superclasses of
perfect graphs: near-perfect, rank-perfect, and weakly rank-perfect graphs.
For that, we start with the description of the stable set polytope for per-
fect graphs [2, 9] and allow stepwise more general facets for the stable set
polytopes of the graphs in each superclass. Hence, each superclass contains
graphs which are step by step “less” perfect and membership in those three



graph classes indicates how close or how far a graph is from being perfect
(see [14, 15] for more details). In [15] it was asked to which of the three super-
classes webs and antiwebs belong. We discuss this question in Section 3. We
give characterizations from [15] which webs and antiwebs are near-perfect.
We further present known examples of rank-perfect webs from [4] but also
webs which are not rank-perfect by [6]. The main contribution of the present
paper is Theorem 5 which gives a complete description of the facets of the sta-
ble set polytopes for antiwebs (with help of a result due to SHEPHERD [12]
that a superclass of antiwebs, so-called near-bipartite graphs, consists of
weakly rank-perfect graphs only). Theorem 5 implies to which of the three
superclasses of perfect graphs antiwebs belong:

Theorem 1 Antiwebs are rank-perfect.

2 Three Superclasses of Perfect Graphs

A well-known characterization of perfect graphs [2, 9] says that a graph is
perfect if and only if its stable set polytope coincides with its fractional stable
set polytope. The stable set polytope STAB(G) of a graph G is defined as
the convex hull of the incidence vectors of all stable sets of G. A relaxation
of STAB(G), the fractional stable set polytope QSTAB(G), is given by
all “trivial” facets, the nonnegativity constraints

for all nodes i of GG, and by the clique constraints
Z zp <1 (1)

for all cliques () C G. Since a clique and a stable set have at most one node
in common, QSTAB(G) contains all incidence vectors of stable sets of G,
thus STAB(G) C QSTAB(G) holds for all graphs G. If G is an imperfect
graph, then STAB(G) C QSTAB(G) follows by [2, 9] and QSTAB(G) has in
particular also fractional extreme points. The difference between STAB(G)
and QSTAB(G) can be used as a tool in order to decide how far a graph is
away from being perfect. PADBERG [10] proved that a graph G is minimally
imperfect if and only if QSTAB(G) has precisely one fractional extreme point
which can be cut off by exactly one additional cutting plane, namely, the so-
called full rank constraint

Y @ < aG) (2)
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associated with G (where a(G) denotes the size of a maximum stable set in
(). For minimally imperfect graphs G, the polytope QSTAB(G) is, therefore,
the smallest possible relaxation of STAB(G).

The next relaxation of STAB(G) is the case when QSTAB(G) may have
more than one fractional extreme point but, again, the full rank constraint is
required as only cutting plane to cut off all those fractional extreme points.
This lead SHEPHERD [11] to define near-perfect graphs where the stable
set polytope is given by nonnegativity constraints (0), clique constraints (1),
and the full rank constraint (2). Minimally imperfect graphs are obviously
near-perfect. Since there is no requirement that QSTAB(G) has at least one
fractional extreme point but only that all fractional extreme points are cut
off by the full rank constraint, perfect graphs are near-perfect, too.

Following a suggestion of GROTSCHEL, LOVASZ, and SCHRIJVER [5] one
may relax the notion of perfectness further by generalizing clique constraints
to other classes of inequalities valid for the stable set polytope and then
by investigating all graphs such that their stable set polytope is entirely
described by nonnegativity constraints and the inequalities in question. A
natural way to generalize both clique constraints and the full rank constraint
is to consider all 0/1-inequalities, i.e., to investigate the rank constraints

Sw < o) 3)

pstel

associated with arbitrary induced subgraphs G’ C G (note «(G’) = 1 holds
if and only if G’ is a clique). For convenience, we often write (3) as z(G’) <
a(G"). We define all graphs G to be rank-perfect if STAB(G) is given by all
nonnegativity constraints (0) and all rank constraints (3), i.e., if we need only
0/1-inequalities (3) to cut off all fractional extreme points of QSTAB(G).
Every perfect, every minimally imperfect, and every near-perfect graph is
obviously also rank-perfect, see [14, 15] for more examples. The main result
of Section 3 is that antiwebs belong to the class of rank-perfect graphs.

For some cases, a sufficient condition is known when a rank constraint
z(G') < «a(G") associated with a proper subgraph G’ C G yields a facet
of the stable set polytope of the whole graph G. PADBERG [8] showed,
e.g., that clique constraints z(Q) < 1 are facet-inducing for STAB(G) iff Q
is an (inclusion-wise) maximal clique of G. In general, a rank constraint
associated with a proper subgraph G’ C G does not need to provide a facet
of STAB(G), even if STAB(G’) admits the full rank facet. However, rank
constraints z(G') < a(G’) with G’ C G may be strengthened to a facet

in + Z a; z; < oG (4)

1€G’ 1€G—G'
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of STAB(G) using sequential lifting [8], i.e., by determining appropriate lift-
ing coefficients a; for all nodes i in G — G’ such that the right hand side
a(G') of the inequality is still satisfied and that there are |G| many stable
sets of weight a(G") the incidence vectors of which are linearly independent.
Every inequality (4) is a weak rank constraint if it is obtained by lifting
a base rank constraint z(G') < a(G") which is facet-defining for STAB(G'),
i.e., if G’ produces the full rank facet. We define all graphs G to be weakly
rank-perfect if STAB(G) is given by all nonnegativity constraints (0) and
all weak rank constraints (4). Clearly, facet-defining rank constraints are
weak rank constraints with a; = 0 for i € G — G'. Thus, weakly rank-perfect
graphs contain all rank-perfect graphs.

We have finally obtained a nested collection of superclasses of perfect
graphs: near-perfect, rank-perfect, and weakly rank-perfect graphs. The dif-
ference between QSTAB(G) and STAB(G) increases in each step, hence each
superclass contains graphs which are gradually “less” perfect. Thus, mem-
bership in those three graph classes gives some information on the stage of
imperfectness. We discuss in the next section to which of the three super-
classes of perfect graphs webs and antiwebs belong. The main result is that
antiwebs are rank-perfect.

3 Stage of Imperfectness for Webs and Anti-
webs

In this section we discuss the stage of imperfectness of webs and antiwebs
by treating the question: which of the three superclasses of perfect graphs
contains all webs and antiwebs?We start our consideration with the class
closest to perfect graphs: with near-perfect graphs. First, there are some
perfect webs WF and antiwebs Wﬁ, namely those with £ = 1, n even and
with k£ > 1, n = 2k +2: if n is even then W, is an even hole and Wi an even
antihole, the antiweb W’;k 4o consists of k disjoint edges. Perfect webs and
antiwebs are obviously near-perfect. Next, the webs W¥ and antiwebs W’;
with £ = 1, n odd and with £ > 1, n = 2k 4+ 3 are minimally imperfect: if
n is odd then W) is an odd hole and W,ll an odd antihole (note n > 5 holds
by n > 2k + 2, odd), the webs W21k+3 are odd antiholes and the antiwebs
W;k +3 0dd holes. Minimally imperfect webs and antiwebs are near-perfect
by [10]. WF and WZ contain an odd hole or odd antihole as proper subgraph
if £k > 2 and n > 2k + 4 by [13]. Thus, all those webs and antiwebs with
k > 2 and n > 2k +4 are imperfect but not minimal. For imperfect graphs, a



necessary condition for the membership in the class of near-perfect graphs is
to produce the full rank facet. From a result in [13] follows that a web W1
produces the full rank facet if and only if & is not a divisor of n (the two webs

shown in Figure 1 satisfy this property). An antiweb W’;_l produces the full
rank facet if and only if it is prime, i.e., if k£ and n are relatively prime [13].

The antiweb W?O in Figure 1 has this property but Wi’o not. (Recall from
the definition of webs that we exclude the case of cliques). Thus, not all
imperfect webs and antiwebs satisfy this necessary condition, hence webs
and antiwebs are not all near-perfect. The next two theorems characterize
those webs and antiwebs for which the full rank facet is the only facet of the
stable set polytope besides facets of type (0) and (1).

Theorem 2 (WAGLER [15]) A web is near-perfect if and only if it is perfect,
an odd hole, W2, or if it has stability number two.

The definition of webs implies a(W}~') = [2]. Thus a(W}™') = 2 is
satisfied for all webs W%~ with n < 3k. Hence, there are other webs with
stability number two than odd antiholes, e.g., W2, W3, and W3. That
means: there are near-perfect webs which are neither perfect nor minimally
imperfect. This is not true for antiwebs:

Theorem 3 (WAGLER [15]) An antiweb is near-perfect if and only if it is
perfect, an odd hole, or an odd antihole.

Our next question is: do webs and antiwebs belong to the class of rank-
perfect graphs? DAHL [4] showed that webs W2 are rank-perfect for all n > 4.
But there are webs with clique number > 4 the stable set polytopes of which
have non-rank facets (see KIND [6]), the web Wy is one example. There are
two ways to partition the nodes 1,...,25 of Wy such that the resulting two
subgraphs induce a W and a W7: the node sets 1, 2, 3, 6, 7, 8, 11, 12,
13, 16, 17, 18, 21, 22, 23 and 1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 21, 22,
24 both induce a W and the remaining nodes of W induce a W in both
cases. The resulting facets of the form

x(W135) + Qx(Wfo) <6

are obviously non-rank facets of STAB(W,;). Hence, webs are not all rank-
perfect. We do not know so far which webs are rank-perfect. But scaling
the above constraint to fz(Wg) + z(Wg) < 3 shows that this facet is a
weak rank constraint basing on the prime antiweb constraint associated with
W2, It is not known so far whether all webs are at least weakly rank-perfect.



In the remaining part of this section, we show that antiwebs are rank-
perfect. We use a result due to SHEPHERD [12] that gives a complete de-
scription of the stable set polytope of near-bipartite graphs, a superclass of
antiwebs.

A graph (G is near-bipartite if removing all neighbors of an arbitrary
node leaves the graph bipartite. (That means, G — N(v) can be partitioned
into two stable sets for all nodes v of G.) SHEPHERD showed in [12] that the
stable set polytope of near-bipartite graphs has facets of type

> T+ (@) <1 5)

associated with the complete join of prime antiwebs W1, ..., W and a clique
Q as only nontrivial facets. (The complete join of two disjoint graphs G
and G5 is obtained by joining every node of G; and every node of G5 by an
edge.) Note that the support graph of such facets arise by the complete join
of graphs which all produce their full rank facet, i.e., we put together disjoint
facet blocks. The obtained constraints can be scaled in such a way that they
have the form (4) with a base rank constraint z(G") < «(G") and (eventually
noninteger) coefficients a; for i € G — G'. In this sense, (5) can be seen as a
lifted clique constraint. That means, constraints of type (5) are weak rank
constraints and near-bipartite graphs are, therefore, weakly rank-perfect.
Every antiweb is near-bipartite. (This can be easily seen since every
web WF has, by definition, the property that the neighborhood of every
node 7 can be partitioned into two cliques, namely, + — k,...,7 — 1 and
i+1,...,i+k where all indices are taken modulo n). Thus, the only nontrivial
facets of the stable set polytope of an antiweb are weak rank constraints (5)
associated with the complete join of prime antiwebs and a clique due to [12].

TROTTER [13] proved that whenever a prime antiweb Wn, oCCurs as subgraph
of an antiweb W then STAB(W ) has a rank facet associated with W . We

show that those facets are the only nontrivial facets of STAB(Wz) besides
clique constraints by proving that no antiweb contains the complete join of
two prime antiwebs or the complete join of a prime antiweb and a clique.

Lemma 4 If an antiweb W’:L contains the complete join of an antiweb Wz,

and a single node, then Wfb, 18 a stable set.

—k . : . =k ——k
Proof. Let W, be an antiweb. Assume there is an antiweb W,, C W com-

pletely joined to a node i € W’; — Wk Then the web W properly contains
a web W¥ and a single node i € W* — W such that there is no edge in W*



connecting 7 and a node in Wf,'. By the definition of a web, Wf/ has nodes in
Wk—{i—k,...,i,...,i+k} only (indices are taken modulo n). Let j be the
node of W with the smallest index > i + k(modn). Then no node between
i+ k and j is a neighbor of j in W¥ (by the choice of j). Thus all neighbors
of j in erf" belong to the set {j +1,...,j + k}. Hence, the neighborhood of
J in W}f/ is a clique. From the circular symmetry of webs follows that W}f/ is

a clique and, therefore, Wz, a stable set. O

The complete join of two antiwebs or of an antiweb and a (nonempty)
clique always contains an antiweb completely joined to a single node in par-
ticular. By the above lemma, this antiweb has to be a stable set (i.e., a

degenerated antiweb Wﬁ with £ = 0 or n < 2(k + 1) which we excluded by
definition) and, therefore, it is no prime antiweb in particular. Hence, the
above lemma implies: the only nontrivial facets of the stable set polytope of
an antiweb are weak rank constraints which do not consist of different facet
blocks but are associated with either a prime antiweb or a clique. Since both
prime antiweb and clique constraints are rank constraints in particular, we
have obtained:

Theorem 5 The stable set polytope of an antiweb has as only nontrivial
facets rank constraints associated either with cliques or with prime antiwebs.

As an immediate consequence of Theorem 5 follows Theorem 1, i.e., the
answer to the question to which of the three studied superclasses of perfect
graphs antiwebs belong: antiwebs are rank-perfect.
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