
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ALEXANDER REINEFELD, HINNERK STÜBEN,
FLORIAN SCHINTKE, GEORGEDIN

GuiGen: A Toolset for Creating Customized
Interfaces for Grid User Communities

ZIB-Report 02-06 (February 2002)

GuiGen: A Toolset for Creating Customized

Interfaces for Grid User Communities

Alexander Reinefeld a, Hinnerk Stüben a, Florian Schintke a,
George Din b

aZuse Institute Berlin (ZIB), Takustraße 7, 14195 Berlin, Germany
bFOKUS Berlin, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Abstract

GuiGen is a comprehensive set of tools for creating customized graphical user inter-
faces (GUIs). It draws from the concept of computing portals, which are here seen
as interfaces to application-specific computing services for user communities. While
GuiGen was originally designed for the use in computational grids, it can be used in
client/server environments as well.

Compared to other GUI generators, GuiGen is more versatile and more portable.
It can be employed in many different application domains and on different target
platforms. With GuiGen, application experts (rather than computer scientists) are
able to create their own individually tailored GUIs.

Key words: Grid computing; customized user interfaces; grid user communities;
web portals; XML.

1 Introduction

Grid environments provide an advanced infrastructure for the use of dis-
tributed computing resources. Such systems are most beneficial when the tech-
nical details of the target platforms are hidden from the user. Ideally, a user
should just have to deal with the application rather than with the type and
location of the computer the application is run on. For this purpose, grid user
communities have developed graphical user interfaces for specific application
domains.

? Part of this work was funded by the German BMBF project UnicorePlus.

To be published in J. Future Generation Computer Systems (FGCS), 2002.

Fig. 1. GuiGen’s FormBuilder, here used for creating an application-specific user
interface for the BLAST sequence search.

GuiGen helps application experts to design customized GUIs for different ap-
plication domains. In GuiGen, the user interface is split into two parts: a plat-
form independent GUI that can be easily tailored to the specific needs of a user
community, and the machine specific back-ends, one for each potential target
system. The GUIs (called Forms) and the back-ends (called JobTemplates) can
be maintained in repositories for later re-use.

Fig. 1 illustrates how the graphical FormBuilder is used to create a GUI for
an application, in this case a BLAST [1] software package for DNA sequence
searches. As can be seen, the FormBuilder provides predefined widgets that
facilitate the design of GUIs by novices. This is an important aspect, because
we assume the application experts rather than computer scientists to create
the GUIs, because they know best about the work-flow in their application
domain.

The customized GUIs are encoded in XML. This allows to store them in
libraries and to send them from one system to another, which is especially
important in heterogeneous distributed systems. The GUIs’ back-ends are kept
separately. They usually contain just a few script commands for starting the
job with the given settings on the target machine. For a given GUI there may

2

J o b S p e c s
X M L

F o r m V i e w e rF o r m V i e w e r

F o r m B u i l d e rF o r m B u i l d e r

J o b B u i l d e rJ o b B u i l d e r

J o b T e m p l a t eJ o b T e m p l a t e

J o b S c r i p tJ o b S c r i p t

F o r mF o r m

X M L
k s h , p e r l , . . .

T a r g e t P l a t f o r m

c l i e n t s e r v e r

U s e rU s e r

A p p l i c a t i o n E x p e r tA p p l i c a t i o n E x p e r t

G U I

G U I t e x t e d i t o r

k s h , p e r l , . . .

Fig. 2. The components of GuiGen and their interaction in a client/server environ-
ment.

be more than one back-end, depending on the number of target machines.
Back-ends can be programmed in an arbitrary scripting language like sh, csh,
ksh, or Perl. New scripting languages can be easily added.

GuiGen does not substitute the grid middleware. It rather builds on the grid
layer by accessing job management, file transfer, authorization, security, and
other services. Hence, there is no need for including these services in GuiGen
itself. The number and quality of services solely depends on the underlying
grid system.

GuiGen is open, generic, and extensible. Most of its tools are implemented in
Java and Perl. By using existing Java and XML components, we were able to
implement the complete GuiGen system with only 15.000 lines of code.

In the following sections, we present some architectural and implementational
details of GuiGen and discuss thereafter the use of GuiGen in the Grid.

2 Software Architecture

2.1 Building Blocks

In GuiGen, there are four different types of documents and three kinds of
software components, all of them illustrated in Fig. 2. In this section, we first
introduce these seven components and describe their interactions thereafter.

3

The four document types are:

JobScript: the final, executable script that is generated by the JobBuilder.
The JobScript is used to submit the job to the resource management
system on the target computer.

JobTemplate: an almost complete job script written in a native scripting lan-
guage. The missing variable initializations are inserted by the JobBuilder
at marked positions. JobTemplates for a particular service are stored in all
computing centers that provide this service. Center-specific policies may
be encoded.

Form: an XML document describing a form in the common sense. Forms are
generated by the graphical FormBuilder and displayed on the screen by
the FormViewer. Forms can be stored in repositories, web sites or local file
systems. Version information in a Form allow Forms to evolve over time.

JobSpecs: a temporary XML document containing the user input (key/value
pairs) of the corresponding Form. JobSpecs are generated by the Form-
Viewer, when a user submits a filled Form.

These documents are processed by the following software components:

FormBuilder: a graphical editor used by an application expert to create a
customized Form.

FormViewer: an execution environment for displaying and filling in a cus-
tomized Form on the screen. The FormViewer checks the user input for
correct syntax and transforms it into XML JobSpecs.

JobBuilder: reads a JobTemplate and the JobSpecs, translates the JobSpecs
into the specified scripting language and inserts the resulting initializa-
tions into the JobTemplate to produce a native script.

2.2 Creating GUIs with GuiGen

Before being able to use GuiGen, we first need to create a GUI with the Form-
Builder. Fig. 1 illustrates the use of the FormBuilder to arrange graphical wid-
gets like buttons, menus, editable lines, ticks, text fields, and tables on a Form.
Each field in the Form gets a unique label. Fig. 1 shows a snapshot of a session,
where a simplified GUI for the BLAST [1] sequence search is developed. This
GUI has just one page with the entries ‘JobName’, ‘Sequence’, ‘Database’,
and ‘Notify’.

The FormBuilder stores the Form in XML notation with all necessary infor-
mation like help texts, labels, constraints, and syntactic information on the
possible values of each entry given as regular expressions. We have chosen reg-
ular expressions as a compromise, because they are easy to encode and they
are sufficient in most cases.

4

Fig. 3 shows the XML code of the above BLAST Form. As can be seen, not only
all fields but also every widget in the form gets a unique label which can be
modified by the user. These labels are used to handle internal dependencies
in the form, i.e., for dimming parts of the form depending on the previous
settings. Versioning of Forms is also supported to allow the evolution of Forms.

<?XML version="1.0"?>

<form label="Blast" version="1.0">

<page title="BLASTn" label="PAGE_0">

<slot label="SLOT_0">

<text label="TEXT_0">JobName</text>

<editable-line tab="100" label="jobname" width="15"/>

</slot>

<slot label="SLOT_1">

<help-text>A sequence of the letters A, C, G and T that may be

broken across lines</help-text>

<text label="TEXT_1">Sequence</text>

<editable-area label="sequence" tab="100" width="30" height="10"

typeDescription="^[ACGT]+(\n[ACGT]+)*\n?$"/>

</slot>

<slot label="SLOT_3">

<text label="TEXT_3">Database</text>

<menu label="database" tab="100">

<menu-entry entryLabel="ecoli">ecoli</menu-entry>

<menu-entry entryLabel="drosophila">drosophila</menu-entry>

</menu>

</slot>

<slot label="SLOT_4">

<text label="TEXT_4">Notify</text>

<button label="notify" state="true" tab="50"></button>

<text label="TEXT_5" tab="80">email:</text>

<editable-line tab="140" label="email" width="15"/>

</slot>

</page>

<ignore ref="TEXT_5" if_status_of="notify" equals="false"></ignore>

<ignore ref="email" if_status_of="notify" equals="false"></ignore>

</form>

Fig. 3. XML representation of the BLAST Form.

The second step is to create a JobTemplate. This is a script for starting the
execution of a job. JobTemplates (example shown in Fig. 4) are machine and
application-dependent. They use variables with the names of the labels defined
in the Form. JobTemplates contain all details on the local installation and usage
policies of the computers. Different sites may have different JobTemplates to
get the jobs started correctly in their special environment. JobTemplates can

#!/bin/ksh

@@@include-list ksh

blastn -s "$sequence" -d $database

if [[$notify = true]]

then

print "job $jobname finished at $(date)" | mail $email

fi

Fig. 4. JobTemplate corresponding to the Form in Fig. 3.

5

be written to support several versions of a Form by checking the given version
to trigger version dependent actions.

Before a JobTemplate can be executed the JobSpecs must be inserted by the
JobBuilder to create an executable JobScript. The JobBuilder will insert assign-
ments of values to variables in the language of the JobTemplate. To find the
right place for the variable assignments in the JobTemplates, the JobBuilder
scans the JobTemplates for command lines of the form:

@@@include-list scripting-language

and replaces them by variable assignments in the syntax of the chosen scripting
language. Our current implementation of the JobBuilder supports sh, ksh, csh,
and Perl.

In case a job needs more than just a script to be started, additional environ-
ment variables or temporary input files can be generated by the JobScript.
This allows more complex PBS or Condor jobs to be started.

2.3 Using the GUIs

For displaying a Form on the screen, the user just has to start the FormViewer,
which is a Java application or an applet running in a standard web browser.
The FormViewer reads the XML Form and displays it on the screen, as shown
in Fig. 5.

When the user types his input into the Form, the FormViewer checks the con-
straints and syntax as specified in the Form. The syntax checks are done in
GuiGen with JFlex 1 . Plain HTML pages cannot be used because there is no
mechanism for online syntax checks.

Finally the FormViewer puts the user input together with the corresponding
labels into a JobSpecs XML document as shown in Fig. 6.

2.4 Properties of Forms

Forms are created once and can be used arbitrarily often. Each Form is sub-
divided into smaller objects: pages, slots, and elements. We have chosen this
structure because it can be easily expressed in an XML Document Type Def-
inition (DTD).

1 JFlex: http://www.jflex.de/

6

Fig. 5. The BLAST Form of Fig. 3 displayed by the FormViewer.

<?XML version="1.0"?>

<jobSpecs form="Blast" version="1.0">

<string label="jobname">s1</string>

<text label="sequence"><![CDATA[GTTAATTACTAATCAGCCCATGATCATAACATAACTGAGGTTTCATACATTTGGTAT

TTTTTTATTTTTTTTGGGGGGCTTGCACGGACTCCCCTATGACCCTAAAGGGTCTCGTCGCAG]]></text>

<string label="database">ecoli</string>

<string label="notify">true</string>

<string label="email">drs@zib.de</string>

</jobSpecs>

Fig. 6. XML representation of the contents (JobSpecs) of the form in Fig. 5.

Note that Forms do not contain any information on the positioning of the
elements on the screen. Only the logical order is specified by the hierarchy
of the elements in the XML file. For each element a context sensitive help
text may be specified. The FormViewer pops up the text when the element is
clicked with the right mouse button. Hyperlinks are also supported.

2.5 Generating JobScripts

The JobBuilder translates the JobSpecs from XML into a native scripting lan-
guage. This could have been done with XSLT, the XSL Transformations of
the Extensible Stylesheet Language [2]. We have implemented the JobBuilder
in Perl which is available on supercomputers as well.

To allow for future extensions, the JobBuilder is able to generate code for
any language defined in a configuration table as shown in Fig. 7. We use a
very simple grammar for specifying the syntax of variable initializations in the

7

language prefix assignment delim delim repr. postfix

sh, ksh = ’ ’"’"’

csh sett t=t ’ ’"’"’

Perl $ t=t ’ \’ ;

Java Stringt t=t " \" ;

C chart* t=t " \" ;

cpp #definet t " \"

Fig. 7. Translation table for the JobBuilder. A ‘t’ represents a blank and a missing
entry denotes the empty string.

scripting languages consisting of just one rule:

initialization ::= prefix name assignment delim value delim postfix

The elements are concatenated without any white space in between. In this
rule name is substituted by the label specified in the Form and JobSpecs. Value
is substituted by the given value.

All other elements prefix, assignment, delim, and postfix are language depen-
dent, as shown in Fig. 7. The user input (including numbers) is mapped to
character strings. Delimiters are quoted.

2.6 Implementation of GuiGen

The FormBuilder is the major part of the GuiGen toolset. Like the FormViewer
it was implemented with Java JDK 1.3 and the Swing graphics library. For
parsing XML [2,16] we used the JAXP 2 implementation of DOM [5]. In the
JobBuilder we have used the ‘expat’ library and XML::Parser, a Perl imple-
mentation of SAX, for parsing the XML code.

To provide a preview option in the FormBuilder the Java classes of the Form-
Viewer were re-used. With the help of the above mentioned tools we were able
to implement the whole GuiGen system with 15.000 lines of code.

2 JAXP: JavaTM APIs for XML Processing

8

J o b T e m p l a t e
f o r s e r v e r A

J o b T e m p l a t e
f o r s e r v e r A

J o b T e m p l a t e
f o r s e r v e r B

J o b T e m p l a t e
f o r s e r v e r B

F o r mJ o b S p e c s

k s h ,
p e r l , . . .

J o b S p e c s X M L

F o r m V i e w e rF o r m V i e w e r

J o b B u i l d e rJ o b B u i l d e r
J o b S c r i p t BJ o b S c r i p t BF o r mF o r m

X M Lc l i e n t

f o r m s e r v e r
a n d j o b b u i l d e rU s e rU s e r

G U I

J o b S c r i p t AJ o b S c r i p t A

S e r v e r AS e r v e r A

S e r v e r AS e r v e r BG r i d M i d d l e w a r e (G l o b u s , U n i c o r e , . . .)

J o b T e m p l a t e
f o r s e r v e r A

J o b T e m p l a t e
f o r s e r v e r A

J o b T e m p l a t e
f o r s e r v e r B

J o b T e m p l a t e
f o r s e r v e r B

F o r mJ o b S p e c s

k s h ,
p e r l , . . .

J o b S p e c s X M L

F o r m V i e w e rF o r m V i e w e r

J o b B u i l d e rJ o b B u i l d e r
J o b S c r i p t BJ o b S c r i p t BF o r mF o r m

X M Lc l i e n t

f o r m s e r v e r
a n d j o b b u i l d e rU s e rU s e r

G U I

J o b S c r i p t AJ o b S c r i p t A

S e r v e r AS e r v e r A

S e r v e r AS e r v e r BG r i d M i d d l e w a r e (G l o b u s , U n i c o r e , . . .)

Fig. 8. GuiGen used in a grid environment.

3 Using GuiGen in Grid Environments

To keep things simple, we have described GuiGen in the context of a client/server
environment. In practice, GuiGen is most beneficial when applied to distributed
environments like computational grids. Here the user specifies the job (service)
he wants to be done and the grid middleware autonomously decides on which
system it is going to be executed—so much for the theory.

In practice, several scenarios are possible. The key questions are from where
to retrieve the Form and on which machine to execute the JobScript. In the
scenario shown in Fig. 8 the target machine is determined by the grid middle-
ware. Here the JobBuilder selects the corresponding JobTemplate according to
the label and version in the <form> tag.

In the Unicore project [14], which gave the impetus for our work [4], there is
no brokerage service. The user simply selects the target machine by himself.
In this respect, Unicore is not a computational grid in the common sense,
but it provides an improved, uniform access to distributed high-performance
computer resources [13]. In Unicore a Job Preparation Agent (JPA) is used
to create and to submit the jobs to a participating site, where a Network Job
Supervisor (NJS) incarnates the jobs on the target platform(s). The user gets
a machine independent, application-specific Form, fills it in and sends it via
the JPA to the NJS of the target machine. There the JobBuilder selects the
corresponding JobTemplate and builds the JobScript.

In other grid systems, like Globus [8] or DataGrid [3] for example, a broker
agent decides where to execute the job. The grid middleware sends the Job-
Specs together with some information on the type and size of the selected
target machine to a JobBuilder. Note that the JobBuilder may be run on any

9

Fig. 9. Screenshot of a Gaussian form with sub-forms.

machine in the grid. Based on the given information the JobBuilder selects
the appropriate JobTemplate to generate the executable JobScript. The Job-
Templates can be retrieved, e.g., from the Globus Information Services (GIS),
which is distributed among the participating servers.

Also the application-specific Forms could be kept in a logically central, but
physically distributed global depository. This allows to maintain hierarchies
of Forms for the various application domains. As an example, Fig. 9 shows a
more complex Gaussian [6] form with several pages which could be used as a
sample by the user community. Users could then build on such examples to
create customized Forms for their specific work models.

4 Related Work

There exists a variety of tools for the interactive design of graphical user in-
terfaces (Ilog Views, Qt Designer) and integrated development environments
(Forte, JBuilder, KDevelop). Most of them support only one widget library
and programming language for initializing, arranging and starting the ele-
ments in the window. The GUIs are typically stored in a proprietary format.
The connection between the GUI and the application is usually done with a
callback mechanism that is implemented in the same programming language
as the callback stubs.

10

From these approaches, our GuiGen toolset differs in the following ways:

• it uses standard XML rather than a proprietary data format for handling
the GUIs,
• it uses key-value pairs instead of callback functions,
• it is able to handle applications implemented in arbitrary programming

languages.

The Eclipse Platform [12], for example, is an emerging framework for inte-
grated development environments, backed by over 35 tool providers that try to
eliminate the drawbacks of the existing development environments described
in the beginning. Compared to our approach the GUIs in Eclipse can not yet
be used in grid environments.

There are also some web-based GUIs for batch systems like PBSWeb [11], but
they do not provide application specific interfaces. With our approach we can
hide the technical details of the underlying batch system by displaying Forms
in the user’s own terms and notations.

Other current projects like qprep [15] and the Uniform Job Submission Script
Syntax (UJSSS) initiative of the Global Grid Forum’s Scheduling Working
Group [7] define a command line interface for job management. On the one
hand, this API provides a common access point to different job management
systems, but on the other hand site-specific settings, like file access, system
paths, policies and lifetime of intermediate storage, etc. are not dealt with.

5 Summary and Future Plans

GuiGen allows to quickly design graphical user interfaces for grid applications.
While the GuiGen software can also be deployed as an easy-to-use toolset on
a local computer, it was designed for establishing customized interfaces for
applications in computational grids, like Globus or Unicore [14]. Here, the
user is normally not interested in accessing a specific computer in the grid,
but rather in obtaining a service, no matter on what computer that service is
being supplied.

From another point of view, GuiGen may be seen as a tool for generating
portals [9,10]. We believe that, after the tremendous success of portals in the
commercial world (e.g., the enterprise information portals and the community
portals) it is now time to adapt and utilize the portal idea in the science
community.

GuiGen is just a first step to make high-performance computing more user-

11

friendly by better satisfying the needs of the users. We now consider an even
more user-centric approach by introducing the cookie concept known from the
world wide web. Cookies would allow the system to recognize user preferences
and to act correspondingly. If, e.g., a BLAST user has previously used certain
parameter settings, the GUI should show up with the same settings in the
next session as well. This should apply to all preferences, including the choice
of server and pre- and post-processing tools.

References

[1] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D.J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs, Nucleic Acids Res. 25 (1997), 3389–3402.

[2] R. Anderson et al., Professional XML, Wrox Press Ltd., 2000.

[3] DataGrid project. http://www.eu-datagrid.org/.

[4] G. Din. Service Description in Unicore. Diploma Thesis, Polytechnica University
of Bucharest, Romania, June 2001.

[5] DOM: Document Object Model Level 1 Specification, W3C Recommendation,
http://www.w3.org/TR/REC-DOM-Level-1/, October 1998.

[6] M.J. Frisch et al. Gaussian 98, Revision A.7., Gaussian Inc., Pittsburgh PA,
1998.

[7] Global Grid Forum, http://www.globalgridforum.org/.

[8] Globus project, http://wwww.globus.org/.

[9] T. Haupt, E. Akarsu, G. Fox, and C.H. Youn. The Gateway system: Uniform
web based access to remote resources. Concurrency – Practice and Experience
12(8), (2000), 629–642.

[10] G. v. Laszewski, I. Foster, J. Gawor, P. Lane, N. Rehn, and M. Russell.
Designing Grid-based problem solving environments and portals. Procs. 34th

Hawaii Intern. Conf. on System Sciences, 2001.

[11] G. Ma and P. Lu. PBSWeb: A Web-based Interface to the Portable Batch
System, In Proc. 12th IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS), Nevada, 24–30 (2000).

[12] Object Technology International, Inc. Eclipse Platform Technical Overview.
White Paper, http://www.eclipse.org/, July 2001.

[13] A. Reinefeld, H. Stüben, T. Steinke, and W. Baumann. Models for Specifying
Distributed Computer Resources in UNICORE. 1st European Grid Forum
Workshop, ISTmus Conference Proceedings, Poznan, Poland, 313–320 (2000).

12

[14] UNICORE project, http://www.unicore.de/.

[15] J. Werne, C. Bizon, and M. Gorlay. qprep: A facility-independent tool for job
submission. http://www.pstoolkit.org/. December 2001.

[16] XML: Extensible Markup Language, http://www.w3.org/XML/.

13

