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Abstract

Estimation of time of death based on a single measurement of body
core temperature is a standard procedure in forensic medicine. Mech-
anistic models using simulation of heat transport promise higher accu-
racy than established phenomenological models in particular in nonstan-
dard situations, but involve many not exactly known physical parameters.
Identifying both time of death and physical parameters from multiple
temperature measurements is one possibility to reduce the uncertainty
significantly.

In this paper, we consider the inverse problem in a Bayesian setting
and perform both local and sampling-based uncertainty quantification,
where proper orthogonal decomposition is used as model reduction for
fast solution of the forward model. Based on the local uncertainty quan-
tification, optimal design of experiments is performed in order to minimize
the uncertainty in the time of death estimate for a given number of mea-
surements. For reasons of practicability, temperature acquisition points
are selected from a set of candidates in different spatial and temporal loca-
tions. Applied to a real corpse model, a significant accuracy improvement
is obtained already with a small number of measurements.

1 Introduction

Cooling of corpses after death is the foundation of temperature-based estimation
of time of death (ToD) in forensic medicine. This method, applicable within a
time frame of about 24 hours after death, is one of the standard procedures per-
formed on crime scenes. Established practice is to take one rectal temperature
measurement and to find the point of time at which a phenomenological cooling
curve attains the measured value [7]. The widely accepted phenomenological
cooling model by Marshall and Hoare is a doubly-exponential curve with four
parameters [20], two of which can be fixed from the initial body core tempera-
ture of about 37oC and from physical considerations. A choice of the remaining
two parameters based on body mass, environmental temperature, and clothing
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has been proposed by Henßge [11, 12] on the basis of a small number of cases.
A somewhat larger set of cases has been established later [22].

A drawback of this approach is that several aspects affecting the cooling
of the corpse and hence the time of death estimate, e.g., posture, anatomy,
irradiation, and changes in environmental temperature, are not captured in the
model. The negligence of such conditions leads to considerable uncertainty in
the estimated time of death, in particular in nonstandard situations. Due to
ethical restrictions, the acquisition of more data for a better parametrization of
phenomenological models is severely limited.

This limitation of phenomenological models can in principle be overcome by
mechanistic models obtaining the cooling curve from a detailed simulation of the
underlying physical processes, as proposed by Mall et al. [19]. While this allows
to capture also nonstandard situations [14,21], mechanistic models contain many
parameters such as heat capacities and conductivities, corpse geometry, tissue
distribution, and environmental temperatures. Since the parameters’ values
affect the cooling curve, their accuracy is important for the accuracy of the
time of death estimate. Some parameters can be obtained directly, e.g., the
corpse’s geometry and tissue distribution from computed tomography [30], or
the environmental temperature at the time when the body is found. Other
parameters are in principle measurable, but their acquisition faces practical
problems, e.g., heat capacities of different tissues, or heat transfer coefficients of
clothing. Finally there are parameters that are principally unaccessible, such as
the time course of environmental temperature before the corpse is found, or the
supravital metabolic heat generation. Of course, the parameters have different
impact on the rectal temperature curve [31], such that not all need to be known
with the same precision.

One possibility to gather more information about those parameters with the
most impact on the cooling curve is to take more temperature measurements, at
several times or in several spatial locations, or both. A parametrization of the
Marshall-Hoare model by a least-squares approach for sequential measurements
has been proposed recently [29], as well as averaging time of death estimates
obtained independently from several measurements [13]. In the present paper,
we consider a similar approach for a mechanistic model. Instead of a single
intersection of a cooling curve with the constant measured temperature, a more
complex inverse problem has to be solved [15]. Here, the time of death is just
one of the parameters to be identified. In a Bayesian setting, the solution of the
inverse problem is a posterior joint probability distribution for the parameters,
from which a marginal distribution for the ultimately interesting time of death
can be obtained. Point estimates such as maximum posterior or conditional
mean, together with uncertainty information such as variance can be extracted
as a more accessible result of the inversion.

On the one hand, the uncertainty in the result can be expected to decrease
with increasing information in form of more temperature measurements. On
the other hand, acquiring more data increases the measurement effort on the
crime scene and is limited by practical issues such as available time and the
desired nondestructivity of data acquisition. With a large set of possible tem-
perature measurement positions in space and time, and a much smaller number
of measurements that can be taken on the crime scene, the selection of actual
positions and times for taking temperature measurements leads to a problem of
optimal design of experiments (DoE), see [3, 16,27].
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In the next section, we briefly review the forward model of body cooling,
with the relevant parameters, and discuss issues of finite element discretization.
Parameter identification and uncertainty quantification in a Bayesian context
is presented in Section 3. As local uncertainty quantification based on Taylor
approximations is extremely beneficial for efficient optimal design of experi-
ments, we also investigate the accuracy of approximating posterior probability
densities by lognormal distributions. This is done using a Markov-Chain Monte
Carlo sampling based on model reduction. Finally, we investigate the use of
techniques for optimal design of experiments as a means to define good tem-
perature acquisition points. Due to practical requirements – low measurement
effort and nondestructivity of testing – measurement locations are chosen from
a predefined set of candidate points.

2 The Forward Model

In this section we briefly recall the mechanistic model of heat transfer, the ther-
mal parameters relevant for body cooling, the acquisition of individual anatomy
models, finite element discretization of the heat equation, and simplified models.

Thermal model. The physical model of corpse cooling in the time interval
[0,∞[ describes the temperature distribution ϑ by Fourier’s law of heat conduc-
tion,

cρϑ̇ = div(κ∇ϑ), (1)

where c is the specific heat capacity, ρ the density, and κ the heat conductivity
of the tissue. The influence of supravital metabolic heat generation [31] is rather
uncertain but in most cases small. Therefore, we neglected it here for simplicity
reasons. We interpret the heat capacity cρ as a single parameter instead of
treating density and specific heat capacity separately.

Heat transfer from the body to the environment across the boundary (skin)
is due to conduction/advection and radiation:

nTκ∇ϑ = h(ϑenv − ϑ) + εσ(ϑ4
env − ϑ4). (2)

Here, n is the unit outer normal and h the heat transfer coefficient, ϑenv the envi-
ronmental temperature, ε the emissivity, and σ = 5.6704× 10−8 Wm−2K−4 the
Stefan-Boltzmann constant. Several simulations have shown that in the usual
range of temperatures (270 K to 310 K) a linearization of the Stefan-Boltzmann
radiation term has a negligible impact on the cooling curve and hence on the
estimated ToD. For the current study, we therefore assume

nTκ∇ϑ = γ(ϑenv − ϑ) (3)

with the effective heat transfer coefficient γ = h + 4εσϑ3
env. This includes the

possibility of irradiation. There is need for special considerations only in cases
where the reference temperature (”sky temperature”) for radiation deviates sig-
nificantly from the environmental temperature ϑenv, see [5].

The initial temperature field of the body ϑ0 = ϑ(0) at time t = 0 is assumed
to be spatially constant, i.e., ϑ0 = ϑcore, with ϑcore being the body core temper-
ature. A slightly more realistic choice would be the solution of the stationary
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Figure 1: Left: Skeleton and inner organs represented in the tetrahedral mesh of
the corpse. Muscles, fat, and small intestine are not shown. Right: Illustration
of tissues in the corpse including muscle, intestine, and fat.

Bio-Heat-Transfer-Equation proposed by Pennes [25],

− div(κ∇ϑ0) + cbw(ϑ0 − ϑcore) = 0, (4)

where cb is the heat capacity of blood and w the tissue perfusion. The difference
between these two different choices of ϑ0 has, however, been found to be rather
small [31].

Anatomical model. The heat equation (1) is defined on a geometric domain
Ω ⊂ R3 representing the corpse. The material parameters cρ, κ, and w depend
on the biological tissue type, and are different in particular for muscle, adipose
tissue, and bone.

Individual anatomy can be acquired from a CT (computed tomography) scan
of the corpse, segmented into the different tissue types. For actual computation,
a finite element mesh is created in such a way that a single tissue type can
be assigned to each cell [32]. For a sample corpse considered here, the CT
data segmented into the nine tissue types bone, fat, muscle, gastrointestinal
tract, bladder, kidneys, liver, heart, and lungs is shown in Figure 1. Mesh
generation then creates a tetrahedral grid containing 1, 439, 552 tetrahedra, and
N = 256, 041 vertices.

Model parameters. The parameters entering into equations (1), (3), and (4)
depend on the individual corpse and the environmental conditions at the sup-
posed crime scene. Assigning specific values a priori is therefore subject to
some uncertainty, with different impact on the estimated ToD. The uncertainty
is considered only for heat capacity and conductivity, but not for perfusion.
Sensitivity studies have shown that differentiation of fatty tissue, bones, and
tissues with dominant water content such as muscle is sufficient for practical
accuracy [31]. Means and standard deviations estimated from various values
reported in the literature are given in Table 1.

The assumed values for the remaining parameters are given in Table 2. In
particular, we assume a constant environmental temperature ϑenv for simplicity
reasons, such that (3) is time invariant. Uncertainty is considered here exem-
plary for the effective heat transfer coefficient γ only.
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Table 1: Averaged thermal properties of human tissues together with estimated
standard deviation, condensed from [31].

tissue ρc± σρc κ± σκ
106 J/m3/K W/m/K

fat 2.13± 0.36 0.21± 0.02
bone 2.76± 0.48 0.32± 0.03
muscle 3.72± 0.53 0.49± 0.04

Table 2: Global parameters.

parameter symbol value unit

body core temperature ϑcore 310.15 K
environmental temperature ϑenv 297.15 K
effective heat transfer coefficient γ 8.95± 0.60 W/m2/K

Finite element simulation. For a given mesh of the corpse’s geometry (in-
cluding tissue labels per element) and given thermal parameters, the heat trans-
fer model can be solved numerically for the temperature distribution ϑ(t) by the
finite element method, see, e.g., [9,33]. Applying the method of lines to the heat
equation (1), (3) yields the linear, high-dimensional, parameter-dependent or-
dinary equation

Mθ̇ = Aθ + b, θ(0) = θ0 (5)

for the finite element coefficients θ of the temperature distribution ϑ =
∑N
i=1 θiϕi

in terms of the N finite element basis functions ϕi. Due to the environmental
temperature assumed to be constant, the source term b is constant in time.

For the current work, we use the research code Kaskade 7 [10] with linear
finite elements and an extrapolated linearly implicit Euler time stepping scheme
of order three, and make sure that the numerical discretization error is well below
any of the considered modeling errors. Thus, we do not distinguish between the
finite element and exact solutions.

3 A Bayesian Approach to Time of Death Esti-
mation

Assume there are m temperature measurements ϑmi , i = 1, . . . ,m, taken at spa-
tial locations xi ∈ Ω and times ti. The sequence (ti, xi)1≤i≤m of measurement
points will be defined by some protocol specifying τi = ti − T ≥ 0 with τ1 = 0,
such that the delay T between death and the first measurement is the time of
death.

It will turn out to be convenient in the following to use the parameter vector

p := (T, ln(ρcbone), ln(ρcfat), ln(ρcmuscle), lnκbone, lnκfat, lnκmuscle, ln γ) ∈ R8

(6)
containing time of death and the logarithms of the thermal parameters. In
terms of this parameter vector, the forward model (5) predicts the temperature
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measurement vector as

ϑmi ≈ Fi(p) := ϑ(p+ τie1, xi), i = 1, . . . ,m,

with e1 = (1, 0, . . . , 0) ∈ R8.
In the Bayesian framework [4, 15], both the parameters p and the measure-

ments ϑm are assumed to be random variables with associated probability distri-
butions. The prior πprior(p) describes the a priori knowledge of parameter values
without taking any measurements into account. The likelihood πlike(ϑm | p) is
the conditional probability of observing ϑm given the parameters p, and de-
scribes measurement errors as well as modeling errors. The theorem of Bayes
then provides the posterior πpost(p | ϑm), i.e., the conditional probability of
parameter values p given that measurements ϑm have been observed, as the
product

πpost(p | ϑm) ∝ πlike(ϑm | p)πprior(p) (7)

up to a normalization constant. From the posterior, point estimates like the
maximum posterior parameters pMAP = arg maxπpost(p) or conditional mean
E[πpost] together with uncertainty quantification in terms of variance, or margi-
nal densities like the conditional probability πpost(T | ϑm) of the time of death
can be extracted.

3.1 Bayesian inversion

Setting up a Bayesian inverse problem requires to specify the prior and likelihood
distributions, which is what we do next.

Prior. Statistical data on thermal tissue properties is scarce due to the difficul-
ties encountered in acquistion and measurement of samples. Rough estimates
of mean µ and standard deviation σ can be compiled from available litera-
ture as reported in Table 1. Since heat capacities and conductivities as well
as heat transfer coefficients are doubtless nonnegative, we assume them to be
log-normally distributed [18]:

πprior(x) = Λ(x;µ∗x, σ
∗
x) =

{
1√

2πσ∗
x

exp
(
− (ln x−µ∗

x)2

2(σ∗
x)2 − lnx

)
, x > 0

0, x ≤ 0
(8)

for all parameters x ∈ {ρcbone, ρcfat, ρcmuscle, κbone, κfat, κmuscle, γ}. The dis-
tribution parameters µ∗ and σ∗ are given in terms of mean µ and standard
deviation σ as µ∗ = lnµ− (σ∗)2/2 and (σ∗)2 = ln

(
(σ/µ)2 + 1

)
. Since then the

logarithms are normally distributed with mean µ∗ − (σ∗)2 and variance (σ∗)2,
it is convenient to formulate the inverse problem directly in terms of the log-
arithms – which is the reason for the definition (6) of the parameter vector
p.

The time of death T , however, plays a different role. Usually one knows
that T is contained in some interval [ta, tb], but nothing else. Among the many
noninformative priors that have been proposed [4], we choose the uniform prior
for simplicity reasons, and obtain πprior(T ) = (tb − ta)−1χ[ta,tb].

Lacking any information on statistical dependence, we assume the parame-
ters to be independently distributed, and obtain

πprior(p) = πprior(T )πprior(ln(ρcbone)) . . . πprior(ln γ). (9)
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Likelihood. The likelihood describes the distribution of deviations of mea-
surements ϑm from model predictions F (p) due to measurement errors and
modeling errors. Measurements taken with a single thermal probe contain in-
dependent noise as well as a bias due to miscalibration of the thermal probe.
Assuming normally distributed errors with standard deviation σnoise = 0.01 K
and σbias = 0.05 K, respectively, we end up with

πlike(ϑm | p) ∝ exp(−(ϑm − F (p))TΣ−1
l (ϑm − F (p))), (10)

where Σl = σ2
noiseI + σ2

bias1111T and 11 = (1, . . . , 1)T ∈ Rm.
Modeling errors such as neglecting the dependence of parameters on tem-

perature, or their spatial variation, are difficult to quantify. We may conjecture
that there are neglected effects that affect all measurements in essentially the
same way, and other effects that have an independent impact on the measure-
ments. Indeed, some preliminary tests with spatially varying heat capacity and
slightly varying location of rectal temperature probe suggest that mainly the
bias part is affected, with an effect on the measured temperature in the order
of magnitude of 0.1 K. Thus, modeling errors could be taken into account in a
very crude way by increasing σbias to 0.11 K.

Posterior. From (9) and (10) we obtain the posterior distribution as

πpost(p | ϑm) ∝ χ[ta,tb](T ) exp (−J(p;ϑm)) (11)

via the Bayes theorem (7), with the least squares functional

J(p;ϑm) =
1

2
‖ϑm − F (p)‖2

Σ−1
l

+
1

2
‖p− (µ∗ − (σ∗)2)‖2

Σ−1
p

(12)

and the prior information matrix Σ−1
p := diag(0, (σ∗ρcbone

)−2, . . . , (σ∗γ)−2).
Due to monotonicity of the exponential function, maximum posterior points

can be computed efficiently by solving the regularized, constrained least squares
problem

pMAP(ϑm) = arg min
p∈R8

+

J(p;ϑm) subject to T ∈ [ta, tb]

with gradient based methods, e.g., Gauss-Newton methods [8].
Alternatively, the complete posterior distribution πpost can be approximated

by a sampling generated by, e.g., the Metropolis-Hastings algorithm [15]. The
sample mean can then be used as an approximation of the conditional mean
point estimate pCM.

Local uncertainty quantification. While posterior sampling provides a di-
rect uncertainty quantification in terms of the sample covariance, the draw-
back is that many samples are required for obtaining reliable values. Moreover,
derivatives of the covariance with respect to the measurement locations and
times are difficult to compute, which is a severe drawback in view of the opti-
mal design of experiments considered in Secion 4. In contrast, the maximum
posterior point estimate is easily computed, but needs to be complemented by
some information on its reliability, such as statistical moments.
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If F were linear in p, and πprior(T ) Gaussian, the posterior were Gaussian,
and its covariance matrix

Γ(ϑm) = J ′′(pMAP(ϑm);ϑm)−1 =
(
(F ′)TΣ−1

l F ′ + Σ−1
p

)−1
(13)

a complete description of the estimation uncertainty.
Unfortunately, since πprior(T ) is uniform and therefore non-Gaussian, and F

is nonlinear, the posterior will in general not be Gaussian. Still, if it is unimodal
and sufficiently similar to a normal distribution, and TMAP is well in the interior
of the interval [ta, tb], the covariance approximation

Γ(ϑm) = J ′′(pMAP;ϑm)−1 (14)

provides a good description of the point estimate’s uncertainty.
Among the many criteria for quantifying uncertainty in terms of the posterior

covariance [27], the ultimate criterion of interest is the standard deviation σT :=

Γ(ϑm)
1/2
TT of the marginal time of death posterior distribution

πpost(T |ϑm) =

∫
p̂∈R7

+

πpost((T, p̂)|ϑm) dx ∝ exp

(
− (T − TMAP)2

2ΓTT

)
,

a particular case of C-optimality.
It is straightforward to compute not only its value, but also derivatives with

respect to the measurement locations and times. This makes local uncertainty
quantification particularly attractive for optimal design of experiments. In order
to justify its use, we investigate the similarity of the posterior to a normal
distribution next.

3.2 Posterior sampling

We consider an artificial setup with the corpse anatomy shown in Figure 1,
ta = 0, tb = 20 h, and parameters p drawn randomly from the prior πprior.
Simulated temperature measurements ϑm are simulated at two spatial positions
(rectal and skin surface) at four times τi = 20(i − 1) min, i = 1, . . . , 6, and
shifted by measurement errors drawn from the likelihood distribution.

For this setting, a sampling of the posterior can be computed using the
Metropolis-Hastings algorithm [15]. Since reasonably accurate representations
of the posterior density require many samples, and each evaluation of the poste-
rior involves the solution of the heat equation (5), a really fast solver is needed.
Therefore, standard time stepping on the full finite element model is inappro-
priate.

Model reduction. Using a small, problem-adapted basis for the Galerkin
method of lines instead of the large finite element basis is a straightforward
way to obtain spatial discretizations of smaller size. In particular for the heat
equation, where spatially high-frequent components are damped out quickly,
the dimension reduction factor can be expected to be large.

The chosen basis needs to be able to represent arising temperature distribu-
tions in the corpse with sufficient accuracy for any parameter value p of poten-
tial interest. One way to define such a basis is proper orthogonal decomposition
(POD) [17, 26]. In a preprocessing phase, the heat equation (5) is solved for a
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Table 3: Parameter values for which snapshots are calculated.

ρcbone ρcfat ρcmuscle κbone κfat κmuscle γ

J/m3/K J/m3/K J/m3/K W/m/K W/m/K W/m/K W/m2/K

2.76 e+06 2.13 e+06 3.72 e+06 0.32 0.21 0.49 8.95
3.24 e+06 1.82 e+06 3.26 e+06 0.19 0.45 8.39

2.49 e+06 4.25 e+06 0.23 0.53 9.55

sampling of parameter values, and snapshots of the temperature distribution are
taken at several times through the integration. A principal component analysis
of these snapshots is then performed to select the n dominant modes (vi)i=1,...,n

of variation in the snapshots, and these modes are taken as basis vectors.
For the current setup, finite element solutions have been computed on a

cartesian grid on the parameter box for p of width roughly 2σ around the mean
value in each parameter dimension as given in Table 3. The number of grid
points in each parameter dimension has been chosen according to the relative
sensitivity of the time of death estimation with respect to that parameter, re-
sulting in 486 evaluation points. Every 20 min a snapshot has been recorded.

From the principal component analysis, the dominant n = 10 modes have
been selected. The L∞ deviation from the finite element solution is quite inde-
pendent of the actual value in the parameter box, and decreases with time, from
around 0.43 K at 6 h to about 0.17 K at 14 h. Mean squared error and the error
at selected measurement points are, of course, smaller. For actual estimation
of the time of death, the model reduction error of n = 10 appears to be too
high, and more modes or the full FE model should be used. For the purpose
of investigating the global shape of the posterior density, however, and also for
design of experiments in Section 4 below, the reduced model can be expected
to be accurate enough, in particular as the approximation error is spatially and
temporally smooth.

The parameter-dependent mass and stiffness matrices in the discretized heat
equation (5) are represented as

M = M0 + ρcboneMbone + ρcfatMfat + ρcmuscleMmuscle ∈ RN×N

and

A = A0 + κboneAbone + κfatAfat + κmuscleAmuscle + γAγ ∈ RN×N ,

respectively, which is possible due to the linearity of the equation. With the
Galerkin prolongation matrix V containing the n dominant modes as columns,
the reduced model contains the mass matrix

M̄ = V TMV = V TM0V +
∑

i∈{bone,fat,muscle}

ρciV
TMiV ∈ Rn×n,

and the reduced stiffness matrix Ā ∈ Rn×n defined analogously, as well as the
source vector b̄ = V T b. The reduced ODE model for the POD coefficients
θ ∈ Rn then has the same structure as (5),

M̄ θ̇ = Āθ + b̄, θ(0) = θ0 = ϑ0V
T 11, (15)
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Figure 2: Marginal posterior distributions estimated from the sampling S. Left:
Histogram of the posterior πpost(T ) of the time of death T together with a Gaus-
sian of same mean and variance, both scaled to maximum 1. Right: Contour
lines of a histogram with 30× 30 bins of the marginal posterior for muscle heat
capacity ρcmuscle and surface heat transfer coefficient γ.

where 11 = (1, . . . , 1)T ∈ RN . Due to the constant right hand side, the POD
equation (15) admits an explicit expression of the solution

M̄θ = EM̄θ0 + (E − I)M̄Ā−1b̄

in terms of the matrix exponential E = exp(tĀM̄−1), which allows a highly effi-
cient evaluation of simulated temperatures ϑ(t) ≈ V θ(t) at given measurement
times.

Posterior structure. Using the reduced POD model for evaluating posterior
πpost a sampling S = (pi)1≤i≤NS

of the posterior distribution of size NS =
8 · 106 has been created using the Metropolis-Hastings algorithm with a Gibbs
sampler [28].

In terms of the maximum posterior estimate pMAP and estimated covariance
Γ(ϑm) on the one hand and the sample mean E[S] = N−1

S

∑NS

i=1 pi and sample

covariance Cov[S] = (NS−1)−1
∑NS

i=1(pi−E[S])(pi−E[S])T on the other hand,
the relative deviation of mean and covariance is small,

‖pMAP − E[S]‖Cov[S]−1

‖E[S]‖Cov[S]−1

≤ 0.01,
‖Γ(ϑm)− Cov[S]‖
‖Cov[S]‖

≤ 0.15,

which suggests that local uncertainty quantification should provide reasonably
accurate values.

This is also supported by the histograms of marginal densities derived from
the sampling and shown in Figure 2 agreeing very well with a normal distribu-
tion.

3.3 Numerical example

Let us investigate how much the acquisition of more than one temperature
measurement can improve the accuracy of the estimated time of death, evaluated
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Figure 3: Estimated marginal posterior standard deviation from local uncer-
tainty quantification for both protocols (solid lines), and absolute estimation
error for a measurement sequence drawn from the likelihood distribution (dot-
ted lines). Left: true ToD = 4 h. Right: true ToD = 10 h.

in terms of marginal posterior standard deviation. As fictitious measurement
protocols we choose (a) sequential acquisition of rectal temperature every ten
minutes and (b) simultaneous rectal and skin temperature measurements at
sequential time points every ten minutes. For the latter, an arbitrary skin
position in the ventral pelvic region has been chosen.

For the generation of artificial measurement data, material parameters have
been drawn randomly from their respective prior distributions, with tempera-
tures recorded starting at a time of death T = 4h and T = 10h. The heat
equation (4) has been solved with a finer discretization in time and space for
measurement generation than for inversion, avoiding an inverse crime [15].

Estimated time of death and its approximate standard deviation as obtained
from local uncertainty equation is shown in Figure 3. The accuracy improve-
ment by a factor of four resulting from acquiring several more measurements is
clearly visible. This is in contrast to previous findings in [13], where barely any
improvement and even deterioration of variance estimates have been observed,
and in [29], where three measurements starting at T = 1.75 h after death re-
sulted in too small time of death estimates of mean 0.83 h in twenty cases – an
average error of more than 50%. The reason appears to be that both papers
rely on the phenomenological Marshall-Hoare model, which is not comprehen-
sive enough to describe the actual cooling curves accurately, and that [13] is
based on a simple averaging of multiple ToD estimates computed independently
from single measurements. Thus, a sufficiently rich forward model able to cap-
ture the physical cooling processes in combination with a proper inverse problem
approach seems to be necessary to exploit the additional information contained
in multiple temperature measurements.

While taking more rectal measurements sequentially in time improves the
uncertainty estimate considerably, the additional benefit of the second spatial
location depends strongly on the time of death, being rather small for larger
times of death. This will be confirmed by the design of experiments in Section 4
below.

Apparently, solving an inverse problem based on a mechanistic forward prob-
lem for multiple temperature measurements is a promising way for improving
the accuracy of the estimation compared to current practice. Since the ac-
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quisition of measurements on the crime scene incurs an additional effort, the
immediate question is which measurement protocol provides the best accuracy
for a given budget of measurements that can be taken. This problem of design
of experiments is addressed in the next section.

4 Optimal Design of Experiments

4.1 DoE problem

A measurement protocol (or design) is a finite set M ⊂ R+×Ω of measurement
points (τi, xi). For simplicity reasons, we choose spatial measurement points
from a discrete set X̄ ⊂ Ω of m̄x candidate locations that are defined in view
of their practical accessibility. The measurement effort on the crime scene is
only determined by the number of different spatial measurement locations and
the total measurement time, since with suitable equipment it makes no dif-
ference how many measurements a placed probe takes within the given time
frame. Assuming sequential measurements to be taken every ten minutes, we
will therefore consider designs of the form

M = T ×X, X ⊂ X̄, T = {hi | i = 0, . . . ,mt − 1}, h = 600 s.

For a given budget of effort, given in terms of measurement time frame mt

and number mx = |X| of measurement locations, the choice of measurement
protocol should be made such as to minimize the resulting local uncertainty
estimate Γ(ϑm,M)TT = (J ′′(pMAP;ϑm)−1)TT , which now depends not only on
the measurements ϑm but also on the design M , and in particular on X.

Equivalently, the design M can be formulated in terms of binary weights
w ∈ {0, 1}m̄x for the candidate locations, with wi = 1 ⇔ xi ∈ X, and 11Tw =
mx. Sorting the measurement points (τi, xi) by spatial location x, the likelihood
information matrix Σ−1

l has to be replaced by WΣ−1
l W , where W = diag(w)⊗

I ∈ Rmxmt×mxmt is the diagonal matrix with entries wi occuring mt times each,
see, e.g., [1, 2].

Of course, when choosing the design M , the measurements ϑm and conse-
quently pMAP are still unknown. We first consider only a local optimal design
for the a priori most likely outcome, i.e.,

pprior(Tprior) = (Tprior, E[πprior(ln(ρcbone))], . . . , E[πprior(ln γ)]) (16)

and ϑm = F (pprior). Note that πprior(T ) tends to have the largest coefficient
of variation among the marginal prior distributions, such that a fixed choice
Tprior = E[πprior(T )] = (ta + tb)/2 will often be misleading. We therefore con-
sider pprior to be parametrized over Tprior and address the variation of Tprior

later on.
The local posterior covariance approximation (14) then reads

Γ(w, Tprior)
−1 = F ′(pprior(Tprior))

TWΣ−1
l WF ′(pprior(Tprior)) + Σ−1

p , (17)

with the posterior marginal standard deviation of the time of death,

σT (w, Tprior) = Γ(w, Tprior)
1/2
TT ,
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Optimal design for ToD = 6h

Optimal design for ToD = 14 h

Optimal design for ToD = 6 h

Figure 4: Set X̄ of candidate locations for measurements. Interior: Five rectal
points, two points at the liver. Surface: three points on the leg, two points at
the shoulder, four points on the chest, two points at the throat, five points at the
stomach. Spatial measurement locations of optimal designs with mx = mt = 4
for Tprior ∈ {6 h, 14 h} are indicated.

as the ultimate quantity of interest. The optimal design of experiments problem
is thus

min
w∈{0,1}m̄x

σT subject to 11Tw = mx. (18)

The integer requirement w ∈ {0, 1}m̄ makes the DoE problem (18) NP-hard [23].
Its solution by complete enumeration is only possible for small numbers m̄x

and mx. The continuous relaxation w ∈ [0, 1]m̄, in contrast, can be solved
efficiently by nonlinear programming solvers also for larger m̄x and mx. Feasible
but suboptimal integer solutions can then be obtained by rounding. Globally
optimal solutions can be obtained at higher cost by mixed integer programming
approaches like branch and bound.

4.2 Numerical experiments

In order to limit the computational complexity, we select m̄x = 23 mostly easily
accessible spatial positions shown in Figure 4, of which five are located inside
the rectum, 16 distributed on the skin surface, and two inside the liver.

Within this setting, we will explore the potential benefit of a systematic
optimal design of experiments compared to both, the current practice of taking
only one rectal temperature measurement, and the ad hoc design used in Sec-
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Figure 5: Expected standard deviation σT [min] of the time of death estimate
for different designs, at Tprior = 10 h. Left: Comparison of ad hoc design from
Section 3.3 and optimal design with mx = 2 for up to one hour of measurement.
For reference, the standard design (one rectal measurement) is shown as well.
Right: Optimal designs for up to five spatial locations and up to one hour of
measurement.

tion 3.3, as well as the dependence of design and improvement on the actual
time of death T .

Expected benefit of optimal designs. In the setting of Section 3.3 with
Tprior = 10 h, we consider up to five measurement locations and up to an hour
measurement time, i.e., mx ≤ 5 and mt ≤ 7. The estimated standard deviation
σT of the time of death estimate is shown in Figure 5 for the standard method,
the ad hoc design from Section 3.3, and the globally optimal design for different
values of mx and mt.

Obviously, there is a small but noticeable improvement of expected esti-
mation error in the order of 5 min (about 20%) visible in Figure 5, left, when
moving from the ad hoc design to an optimized design with mx = 2 measure-
ment locations. The improvement is much less pronounced if only one or two
sequential measurements in time are taken. Altogether, an expected error of
around 10 min is achieved, five times less than the standard design. Adding
more spatial locations in Figure 5, right, improves the expected error further,
down to about 6 min. Taking more sequential measurements appears to be more
important than increasing the number of measurement locations, though.

The high accuracy estimated in this numerical example, with a standard
deviation of time of death of only 6 min, is probably too optimistic compared
to practical situations, since several model uncertainties have been treated in a
cursory way by simply increasing the likelihood bias term. The biases of mea-
surements in different spatial locations, however, are assumed to be independent,
even if the locations are near to each other. This is certainly appropriate for
independent temperature probes or independent placement of probes, but not
for global effects like varying environmental temperature. While the impact of
independent bias sources can be reduced by using more temperature probes,
e.g., placing several in nearby rectal locations, the global bias will stay – which
is not captured by the simple likelihood used here.

Some resulting designs are shown in Figure 4. As might be expected, the de-
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signs are quite stable with respect to changing mx or mt, i.e., if mx is increased,
most of the time there is a new location added, without further exchanges of
locations. For different values of mt, the optimal designs are mostly the same,
with an occasional exchange of nearby locations. A remarkable observation is
that up to design size six, only locations in the interior are selected, even though
their cooling curves are closely correlated. One reason is that despite the tem-
perature correlation, the bias of different probes is assumed to be independent,
such that using more probes, even in the same location, reduces the measure-
ment error. The other reason is that after T = 10 h, the skin is already too
much cooled to provide useful temperature information. This will be different
for smaller values of T , or in situations where parts of the skin are thermally
isolated due to clothing or ground contact. We may therefore expect different
designs in other situations, which we explore next.

Dependence of optimal designs on the time of death. The choice of the
design point pprior in (16) is natural only for the thermal parameters in pprior,
but not for the time of death Tprior. We therefore investigate how the optimal
designs and the expected uncertainty depends on Tprior and the actual time of
death T in the usual case T 6= Tprior.

We computed optimal designs for mx = mt = 4 for different choices of
Tprior ∈ [2 h, 14 h] and estimated the expected time of death standard deviation
σT for different actual times T ∈ [1 h, 16 h]. The resulting designs for Tprior ∈
{6 h, 14 h} are shown in Figure 4. As expected, optimizing for very short times
of death considers only surface locations, since the interior points have not yet
started cooling down sufficiently. For medium times, skin and interior locations
are mixed, whereas for longer times only interior locations are chosen.

The impact on the expected estimation accuracy is shown in Figure 6. Ob-
viously, the design optimized for a particular value of Tprior is the best design
at T = Tprior. Clearly, none of the single optimal designs is optimal for the
whole range of possible times T of death. One way to address this is a sequen-
tial design approach: With a first rectal measurement, a provisional estimate
T̂ is obtained, and then a design selected and applied that has been optimized
for some Tprior close to T̂ , achieving nearly optimal accuracy at the expense of
fixing a design only after the first measurement. A different way is to consider
Bayesian design of experiments at least for Tprior, which is done below.

Robust and Bayesian design. An alternative to a sequential design is to
look for a design w ∈ {0, 1}m̄x that is either optimal on average, or optimal in
the worst case, leading to Bayesian optimal design [6] or robust design [24]. For
the average case, we consider the uncertainty of a design w to be either

U1
abs(w) =

∫
Tprior∈R+

σT (w, Tprior) dπprior(Tprior)

=
1

tb − ta
‖σT (w, Tprior)‖L1([ta,tb])

or

U1
rel(w) =

1

tb − ta

∥∥∥∥σT (w, Tprior)

Tprior

∥∥∥∥
L1([ta,tb])

.
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Figure 6: Dependence of expected relative estimation error σT /T on Tprior versus
the actual time of death T .

For the robust case, we simply replace the L1-norm by the L∞-norm and obtain
U∞abs and U∞rel. Minimizing U then provides four designs that are reasonable for
a wide range of times T of death.

Here we fix ta = 1 h, tb = 16 h, and mt = mx = 4, for computing the four
designs w1

abs, w
∞
abs, w

1
rel, and w∞rel. The expected error σT grows with T , such that

minimizing the absolute uncertainty σT results in designs that are optimized for
large T and hence contain only interior points. As the optimization essentially
focuses only on the largest time considered, and there are relatively few interior
points to choose from, it is not surprising that the two designs w1

abs and w∞abs

coincide. In contrast, the relative error notion leads to designs differing in the
choice of the one surface measurement location included in the designs. Since
surface locations mainly affect the result for smaller values of T , the two designs
perform almost equal for large times of death.

The expected estimation errors are plotted against the actual time of death
T in Figure 7.

5 Conclusions

The numerical results presented above strongly support the following four main
findings of the paper.

First, local uncertainty quantification based on linearization around the max-
imum posterior point estimate in a Bayesian setting appears to be sufficiently
accurate to assess and compare the reliability of time of death estimates. The
agreement of Taylor-based Gaussian approximation and Monte-Carlo sampling
of the posterior distribution is quite good in the setting considered here.

Second, model reduction by proper orthogonal decomposition is a valuable
and sufficiently accurate tool in particular for uncertainty quantification. It
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allows to perform Monte-Carlo sampling of the posterior density, which is not
affordable with finite element solvers, and simplifies uncertainty quantification
and Bayesian optimal design of experiments. While ten modes appear to be
enough for uncertainty quantification and design of experiments, its use for
actual estimation will require more modes.

Third, acquiring more temperature measurements can improve the expected
accuracy of time of death estimates considerably compared to current practice.
In the setting considered here, the standard deviation of the time of death esti-
mate could be reduced from about 50 min to about 10 min for a time of death
of 10 h. Even though the actual values are somewhat optimistic, since several
model uncertainties have been included only in a cursory way, we expect the
improvements to be significant in more complex settings. The exploitation of
several measurements requires that the underlying forward model is able to re-
produce actual cooling curves faithfully. This is a clear advantage of mechanistic
models over simpler phenomenological models. Mechanistic models also allow
the straightforward inclusion of multiple spatial measurement locations, which
is hard to achieve with phenomenological models.

Finally, optimal design of experiments is a viable and promising approach
to come up with practical and accurate measurement protocols that improve
the accuracy over ad hoc designs with multiple measurements. It also reveals
the importance of different spatial measurement locations for the estimation
accuracy for different actual times of death.
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