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Abstract

Mathematical models for bioregulatory networks can be based on dif-
ferent formalisms, depending on the quality of available data and the
research question to be answered. Discrete Boolean models can be con-
structed based on qualitative data, which are frequently available. On the
other hand, continuous models in terms of ordinary di�erential equations
(ODEs) can incorporate time-series data and give more detailed insight
into the dynamics of the underlying system. A few years ago, a method
based on multivariate polynomial interpolation and Hill functions has been
developed for an automatic conversion of Boolean models to systems of
ordinary di�erential equations. This method is frequently used by mod-
ellers in systems biology today, but there are only a few results available
about the conservation of mathematical structures and properties across
the formalisms. Here, we consider subsets of the phase space where some
components stay �xed, called trap spaces, and demonstrate how Boolean
trap spaces can be linked to invariant sets in the continuous state space.
This knowledge is of practical relevance since �nding trap spaces in the
Boolean setting, which is relatively easy, allows for the construction of
reduced ODE models.

1 Introduction

Biological systems usually consist of numerous subsystems interacting through
various feedback mechanisms, whose relevant scales in space and time span
multiple orders of magnitude. The exact nature of many of these processes
and the relevant values of the parameters involved are in many cases unknown,
and quantitative data is often lacking. This often hinders the use of ordinary
di�erential equation (ODE) models, a standard tool in systems biology for the
quantitative simulation of concentration changes or activity pro�les of biochemi-
cal molecules over time. Although extremely useful, exploration of the complete
parameter space and possible dynamical behavior of a system is usually out of
scope, and calls for alternative modeling paradigms. Logic-based models can
utilize qualitative data, describing states of system components using activity

1This work was funded by the Federal Ministry for Education and Research (BMBF),
project MoSTNet (FKZ 0316195).
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levels, e.g., representing ranges of concentrations, that are responsible for a spe-
ci�c qualitative e�ect [21]. The resulting dynamics can be represented by a �nite
state transition graph, which allows for exploitation of methods and tools not
applicable in the ODE setting such as graph theoretical algorithms or formal
veri�cation [8, 9, 24, 27, 2, 12].

Aside of aspects of computability, switching between the di�erent formalisms
or combining them in hybrid models is of great bene�t for many applications
where the available data sets are highly inhomogeneous, containing data on dif-
ferent levels of resolution. In addition, logical models are much more accessible
for non-experts, making it convenient to use them for testing hypotheses that
can then be transferred to more detailed models. However, such integrated ap-
proaches can only go beyond heuristics if conservation of certain mathematical
structures and properties across the formalisms can be proven.

Di�erent methods have been proposed to transfer either Boolean networks
to ODE models in an automated framework (see, e.g., [25, 11]) or vice versa
(see, e.g., [20, 5]). Since the most common way of modelling is to �rst construct
a Boolean network and to derive an ODE system in the second step, we concen-
trate on the algorithm presented in [25]. This algorithm aims at preserving the
network topology and the type of in�uence (stimulatory or inhibitory) during
the conversion process by using multivariate polynomial interpolation and Hill
functions. The value of this approach crucially depends on our ability to transfer
knowledge from the Boolean model to the continuous model. Results available
so far are limited. Information about the location and number of steady states
can already be deduced from the Boolean model (see, e.g., [22, 25]), but less is
known about other dynamical features like oscillations or reachability. There
are some results about oscillatory behavior for piecewise-linear di�erential equa-
tions, for example in [19, 23]. However, studies on example systems show that
these dynamical features, in general, are not necessarily preserved in Hill-type
continuous models (e.g. [16, 3]).

In this paper we focus on a characteristic feature of dynamical systems that
generalizes the concept of steady states - namely subspaces of the state space
where only some of the components remain �xed, called trap spaces. Trap spaces
have also been studied by other researchers [27, 26, 15, 18]. We show that the
trap spaces of a Boolean dynamical system correspond to invariant sets of the
continuous dynamical system, whereby the size of these sets can be controlled
by the Hill exponents. Trap spaces in a Boolean network can be computed
e�ciently (see [8]). This hints to possible model reductions whereby only a
speci�c subnetwork of the original Boolean network needs to be translated into
an ODE model.

The paper is organized as follows. In Sec. 2 we introduce the notation and
brie�y review the transformation algorithm from [25]. In Sec. 3 we show that
trap spaces of a Boolean network cannot directly be linked to trap spaces in
the ODE model in the general case. This can only be done if normalized Hill
functions are used for the translation, as we demonstrate in Sec. 4. In Sec. 5,
we show that, even if the Hill functions are not normalized, a correspondance
to invariant sets is possible. The size of these sets can be controlled by the
parameters of the Hill functions, as we will demonstrate in Sec. 6. Finally, we
demonstrate the applicability of our approach on a 4-dimensional dynamical
system in Sec. 7.

2



2 Preliminaries

Consider an arbitrary Boolean function f : {0, 1}N → {0, 1}N , N ∈ N. This
function could either decode an asynchronous or a synchronous update scheme.
For our purpose it is enough to consider only the synchronous update scheme
since steady states as well as trap spaces (see De�nition 1) remain the same
in both formalisms [8]. Hence, we consider the following Boolean dynamical
system:

xt+1 = f(xt), t ∈ N (1)

x0 := x0 ∈ {0, 1}N

We will associate to f a family of two-parametric continuous functions

(f
~k,~θ

)~k∈RN>0,
~θ∈(0,1)N , where f

~k,~θ
: [0, 1]N → [0, 1]N , which should be under-

stood as a continuous continuation of f on [0, 1]N . This means that f
~k,~θ

agrees
with f on {0, 1}N or, vaguely speaking, takes at least similar values on {0, 1}N .
Throughout the paper, the line over variables and functions is used only in

the continuous setting. The construction of f
~k,~θ

and the meaning of the pa-
rameters ~k and ~θ will be explained later. This leads to a time-discrete but
state-continuous dynamical system of the form:

xt+1 = f
~k,~θ

(xt), t ∈ N
x0 := x0 ∈ [0, 1]N

Finally we construct for any ~k ∈ RN>0 an ODE system of the form:

ẋ = D · (f
~k,~θ

(x)− x) (2)

x(0) = x0 ∈ [0, 1]N

where D is a strictly positive diagonal matrix, D = diag(d1, . . . , dN ) with di > 0
for i ∈ {1, . . . , N} 1. A solution x : R≥0 → [0, 1]N of (2) could for example
represent the course of mRNA or protein concentrations over time. A steady
state x ∈ [0, 1]N of the ODE system is de�ned as the zero locus of (2),

~0 = f
~k,~θ

(x)− x.

Trap spaces represent a generalization of steady states in that only a few
components remain unchanged, whereas in steady states all components remain
�xed. We now give a formal de�nition of trap spaces. To simplify matters we
will restrict ourselves to the case where the �rst n ≤ N components stay �xed.
However, the results remain of course true in the general case because we can
always permute the components of f in such a way that we arrive at this special
case.

1We could also consider the ODE system ẋ = diag(~α)f
~k
(x)− diag(~β)x. However, after a

normalization step we arrive at a system of the form (2) (see [25]).
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De�nition 1. Consider a dynamical system (G,XN , φ) with time domain G =
N or G = R≥0, N ∈ N, a non-empty set X, and evolution φ given by

φ : G×XN → XN

(t, x) 7→ φ(t, x).

We de�ne the set

(p, ∗)X = {x ∈ XN
∣∣xi = pi for i ≤ n}

with p ∈ Xn, n ∈ {1, . . . , N}. We call a set of the form (p, ∗)X a trap space of
the dynamical system if it is invariant with respect to the evolution, i.e.

φ(t, x) ∈ (p, ∗)X ∀x ∈ (p, ∗)X , t ∈ G.

If the meaning of X is clear from the context, we write (p, ∗) instead of (p, ∗)X .
If we choose in the above de�nition n = N then we arrive at the de�nition

of a steady state. Therefore, every steady state is as well a trap space. On the
other hand we excluded the trivial case where no component is �xed from the
de�nition.

Now we turn our attention to the construction of the functions f
~k,~θ

. Ac-

cording to [25], we will analyze here two ways to construct the family f
~k,~θ

,
~k ∈ RN>0,

~θ ∈ (0, 1)N , one based on Hill cubes and the other one based on nor-
malized Hill cubes. The basic procedure in both approaches is the same. First,
a multivariate polynomial interpolation of f is constructed to obtain a continu-
ous continuation of f . Afterwards, Hill functions are used to induce a behavior
of the resulting continuous function similar to step functions. The exact shape
of these Hill functions can be controlled by speci�c parameters.

De�nition 2. Let f : {0, 1}N → {0, 1}N be a Boolean function. Its multivariate
polynomial interpolation is a function I(f) : [0, 1]N → [0, 1]N with I(f)i :=
I(fi) : [0, 1] → [0, 1] that assigns polynomials to the Boolean functions fi given
explicitly by

I(fi)(x1, . . . , xN ) =
∑

x∈{0,1}N
fi(x)

N∏
j=1

(
xjxj + (1− xj)(1− xj)

)
. (3)

As shown in [25, p.16-17] the multivariate polynomial interpolation I(fi) is
the unique polynomial of minimal degree2 that coincides with fi on the vertices
x ∈ {0, 1}N of the hypercube.

We illustrate this process with a small example which will be used again
later on:
Example 3. Consider the Boolean function f : {0, 1}3 → {0, 1}3 de�ned in
Tab. 1. Using (3) we obtain the polynomial map I(f):

I(f) =

(1− x1)(1− x2)(1− x3) + x1(1− x2)x3 + x1x2x3 + x1x2(1− x3) + x1(1− x2)(1− x3)
x1(1− x2)x3 + x1x2x3 + (1− x1)(1− x2)x3 + (1− x1)x2x3

(1− x1)(1− x2)(1− x3) + x1(1− x2)x3 + x1(1− x2)(1− x3) + (1− x1)(1− x2)x3


=

(1− x1)(1− (x2 + x3 − x2x3)) + x1
x3

1− x2


2The degree of a polynomial P (X1, . . . , XN ) =

∑
(m1,...,mN )∈NN am1,...,mNX

m1
1 · · · · ·

X
mN
N is de�ned as deg(P ) = max(m1,...,mN )∈NN ,am1,...,mN

6=0

∑N
i=1mi.
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Table 1: Truth table for f : {0, 1}3 → {0, 1}3 in Example 3.

x1 x2 x3 f1(x) f2(x) f3(x)

0 0 0 1 0 1
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 0

Figure 1: Di�erent Hill functions for θ = 0.4.

Let's return to the construction of f
~k,~θ

. For this purpose we need the notion
of Hill functions.

De�nition 4. A multivariate Hill function is de�ned by

H
~k,~θ : [0, 1]N → [0, 1]N

H
~k,~θ(x) =

(
hk1,θ1(x1), . . . , hkN ,θN (xN )

)
with univariate Hill functions

hk,θ : [0, 1]→ [0, 1]

hk,θ(x) =
xk

xk + θk
, k ∈ R>0, θ ∈ (0, 1).

The parameter k is called Hill coe�cient and θ is called threshold. In Fig. 1
the graphs of several Hill functions with di�erent Hill coe�cients are depicted.
A larger Hill coe�cient leads to a steeper Hill function. By construction it holds
hk,θ(0) = 0 and hk,θ(1) < 1 for any θ ∈ (0, 1), k ∈ R>0.

Lemma 5. The Hill functions hk,θ as well as the normalized Hill functions
hk,θ
hk,θ(1)

converge on any interval [a, b] ⊂ [0, θ) uniformly to 0 and for [a, b] ⊂ (θ, 1]

uniformly to 1.
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Proof. For x ∈ [a, b] ⊂ [0, θ) it holds x < θ, and for x ∈ [a, b] ⊂ (θ, 1] it holds
x > θ. Using Dini's theorem [4, p. 165] the above Lemma follows from

lim
k→∞

hk,θ(x) = lim
k→∞

xk

xk + ( θxx)
k
= lim
k→∞

1

1 + ( θx )
k
=


0 if x < θ
1
2 if x = θ

1 if x > θ

.

We now consider two ways to construct the family (f
~k,~θ

)~k∈RN>0,
~θ∈(0,1)N from

f : {0, 1}N → {0, 1}N and H~k,~θ.

De�nition 6. A Hill cube is de�ned as ([25, p. 5]):

f
~k,~θ

: [0, 1]N → [0, 1]N

f
~k,~θ

: = I(f) ◦H~k,~θ

A normalized Hill cube is de�ned as ([25, p. 5]):

f
~k,~θ

normalized : [0, 1]N → [0, 1]N

f
~k,~θ

normalized : = I(f) ◦ H
~k,~θ

H~k,~θ(~1)
,

where the division H
~k,~θ

H~k,~θ(~1)
is meant component wise.

We remark here that in [25] the Hill-coe�cients ~k and the thresholds ~θ
are allowed to di�er in each of the components of the functions and variables.
However, here we assume that they can only di�er between di�erent variables.

This allows us to represent f
~k,~θ

as a concatenation of two functions.

3 Motivation

The normalization of the Hill cubes implies that f
~k,~θ

coincides with f on the
vertices of the hypercube [0, 1]N . If the Hill cubes are not normalized, the

function f
~k,~θ

will di�er slightly from f on {0, 1}N . This raises the question
which dynamical properties are preserved during the conversion from the state
and time discrete model to the continuous model. In case of steady states it
is guaranteed that for su�ciently large ~k a steady state x~ksteady of Eq. (2) can
be found in a neighborhood U(xsteady), where xsteady is a steady state of f in
Eq. (1). This result was derived in [25] and generalized in [22].

Theorem 7 ([25]). Assume xsteady ∈ {0, 1}N is a steady state of f in Eq. (1).
If mini∈{0,...,N} ki is su�ciently large, then there is a neighborhood U(xsteady) ⊆
[0, 1]N of xsteady such that the ODE model (2) has a steady state x

~k
steady ∈

U(xsteady). Moreover, for any sequence (~kj)j∈N ⊂ RN>0 that converges component-
wise to in�nity, it holds

lim
j→∞

x
~kj

steady = xsteady.
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This motivates the following question: Do f
~k,~θ

and f
~k,~θ

normalized inherit the
trap spaces of f? A natural idea would be to generalize Theorem 7 by assigning

to each trap space of f a trap space of f
~k,~θ

. However, as the following example
shows, this does not always work.

Example 8. Consider again the Boolean function f : {0, 1}3 → {0, 1}3 from
Example 3. We can write I(f) in the form

I(f)(x) =


1− (1− x1) · (x2 + x3 − x2x3)︸ ︷︷ ︸

=:C(x2,x3)

x3
1− x2

 .

From the de�nition of f (see Tab. 1) it is clear that (1, ∗) ⊆ {0, 1}3 is a trap
space of f . We want to know if there is a p1 ∈ [0, 1] such that (p1, ∗) ⊆ [0, 1]3

is a trap space of f
~k,~θ

. For simplicity, we assume ~k =
(
k k k

)T
for some

k ∈ R>0, ~θ =
(
θ θ θ

)T
, θ ∈ (0, 1), and consequently write f

k,θ
= f

~k,~θ
. This

means, we need to �nd x1 ∈ [0, 1] such that

∀x2, x3 ∈ [0, 1] : 0 = f
k

1(x1, x2, x3)− x1

holds. We have

f
k

1(x1, x2, x3)− x1 = I(f1) ◦Hk,θ(x1, x2, x3)− x1.

In order to �nd a trap space of f
k,θ

, we can instead look at the function g :
[0, 1]3 → [0, 1]

g(x1, y1, y2) := I(f1)(hk,θ(x1), y1, y2)− x1,

since the input variables of the Hill functions are allowed to vary freely. Con-
sequently, for a �xed x1 ∈ [0, 1], we can interpret the function g(x1, ·, ·) as a
polynomial g(x1, Y1, Y2) in R[Y1, Y2]. Since the set K := hk,θ([0, 1])×hk,θ([0, 1])
has a nonempty interior, we have the following equivalence:

∃x1 ∈ [0, 1] : 0 = g(x1, Y1, Y2) ∈ R[Y1, Y2]
⇔ ∃x1 ∈ [0, 1]∀(y1, y2) ∈ K : 0 = g(x1, y1, y2)

⇔ ∃x1 ∈ [0, 1]∀x2, x3 ∈ [0, 1] : 0 = f
k

1(x1, x2, x3)− x1

Hence, for (x1, ∗) being a trap space, the polynomial system of equations needs
to be ful�lled:

0 = g(x1, Y1, Y2)

⇔ 0 = 1− (1− xk1
θk + xk1

) · C(Y1, Y2)− x1 (4)

Since the polynomial C(Y1, Y2) is not the zero polynomial and it has no constant
monomials, we obtain the system of equations

1− xk1
θk + xk1

= 0,

1− x1 = 0,
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which has no solution for k > 0, θ ∈ (0, 1). This means there is no k ∈ R>0

such that f
k,θ

has a trap space of the form (x1, ∗), x1 ∈ [0, 1].

This example shows that we cannot link the trap spaces of a Boolean system
directly to the trap spaces of the ODE system if we use Hill functions. That
means, we cannot generalize Theorem 7 directly. One reason why these di�-

culties arise at all lies in the fact that the functions f
~k,~θ

do not agree perfectly
with their Boolean counterparts on {0, 1}N . The situation changes if we use
normalized Hill functions, as we will demonstrate in the following section.

4 Correspondence of trap spaces for normalized

Hill functions

We will show now that if we use normalized Hill functions, the trap spaces
remain the same during the conversion from the Boolean model (1) to the ODE
system

ẋ = D ·
(
f
~k,~θ

normalized(x)− x
)

(5)

x(0) = x0.

Since the map H
~k,~θ

H~k,~θ(~1)
is a bijection from [0, 1]N to [0, 1]N for ~k ∈ RN>0 and

~θ ∈ (0, 1)N and its restriction to {0, 1}N is the identity map, it su�ces to show
that I(f) is inheriting the trap spaces of f . This result will also be useful later

on with respect to f
~k,~θ

. We introduce the following notation:

I(fi)(x) =
∑

x∈{0,1}N
fi(x)

N∏
j=1

(xjxj + (1− xj)(1− xj))︸ ︷︷ ︸
:=Pxj (xj)︸ ︷︷ ︸

:=Sxi (x)

.

First, we consider a special case:

Lemma 9. Let (~0, ∗) ⊆ {0, 1}N be a trap space of f . Then

∀i ∈ {1, . . . , n}∀x ∈ {0, 1}N∃j ∈ {1, . . . , n} : xj
∣∣Sxi (x),

where
∣∣ is the division relation in the polynomial ring R[x] = R[x1, . . . , xN ] and

~0 ∈ Rn, n ≤ N . In particular, this implies that (~0, ∗) is a trap space of I(f).

Proof. Let x ∈ (~0, ∗). Then, for all i ∈ {1, . . . , n} we have fi(x) = 0 and hence
Sxi (x) ≡ 0. Therefore xj

∣∣Sxi (x) for all j ∈ {1, . . . , n}.
For x ∈ {0, 1}N\(~0, ∗) there exists at least one j ∈ {1, . . . , n} such that

xj = 1, hence P xj (xj) = xj . Since P xj (xj)
∣∣Sxi (x) for all i ∈ {1, . . . , n}, this

proves xj
∣∣Sxi (x).

Let x ∈ (~0, ∗), i.e. xj = 0∀j ∈ {1, . . . , n}. Hence, Sxi (x) ≡ 0 for all
i ∈ {1, . . . , n} and x ∈ {0, 1}N since xj

∣∣Sxi (x). Consequently, I(fi)(x) = 0 for
all i ∈ {1, . . . , n} and x ∈ (~0, ∗), proving that (~0, ∗) is a trap space of I(f).
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Now we generalize Lemma 9 to arbitrary trap spaces. For this purpose we
consider a translation of the form τJ : {0, 1}N → {0, 1}N for J ⊆ {1, . . . , N}
with

(τJ)i : {0, 1}N → {0, 1}

x 7→

{
1− xi, if i ∈ J
xi, else

.

We de�ne τJ := I(τJ). It is easy to see from De�nition 2 that

(τJ)i : x 7→

{
1− xi, if i ∈ J
xi, else

holds and therefore τ−1J = τJ and τ−1J = τJ .

Lemma 10. Let J ⊆ {1, . . . , N}. Then the following diagram commutes:

g := τ−1J ◦ f ◦ τJ
I−−−−→ I(g)

τ−1
J ◦·◦τJ

x τ−1
J ◦·◦τJ

x
f

I−−−−→ I(f)

Proof. We need to show the following equality:

I(g) = τ−1J ◦ I(f) ◦ τJ

For this purpose we need to show that τ−1J ◦ I(f) ◦ τJ is a polynomial map with
minimal degree, which coincides with g on {0, 1}N . Equality follows due to the
uniqueness of the multivariate polynomial interpolation.

Firstly, it is clear that τ−1J ◦I(f)◦τJ as a concatenation of polynomial maps
is itself a polynomial map. Since I(f) as well as τJ = τ−1J coincide with their
Boolean counterparts on {0, 1}N , the same holds true for any concatenation of
these functions, i.e. τJ ◦I(f)◦τJ = τJ ◦f ◦τJ = g on {0, 1}N . Furthermore, the
transformation I(f) 7→ τJ ◦ I(f) ◦ τJ preserves the degree of each component
I(f)i, i ∈ {1, . . . , N}. Therefore, we �rst obtain deg I(fi) = deg(τJ◦I(fi)◦τJ) ≥
deg I(gi) and, since also τJ ◦I(g)◦τJ = τJ ◦g◦τJ = f holds on {0, 1}N , we have
deg(I(gi)) = deg(τJ◦I(gi)◦τJ) ≥ deg I(fi). Consequently, deg I(fi) = deg I(gi)
and deg(τJ ◦ I(fi) ◦ τJ) = deg(I(gi)).

From the minimality of I(g) with regard to the function deg(·) the equality
I(gi) = τJ ◦ I(fi) ◦ τJ �nally follows. This shows that τJ ◦ I(f) ◦ τJ is indeed
the multivariate polynomial interpolation of g.

We are now ready to prove the following proposition.

Proposition 11. Let (p, ∗) be any trap space of f , then (p, ∗) with p = p ∈
{0, 1}n is a trap space of I(f).

Proof. Choose J = {j ∈ {1, . . . , n}|pj = 1}. It holds τJ((~0, ∗)) = (p, ∗). Fur-
thermore, de�ne g := τ−1J ◦f ◦τJ . Then (~0, ∗) ⊆ {0, 1}N is a trap space of g since
τ−1J ◦ f ◦ τJ(~0, ∗) ⊆ (~0, ∗). Then, according to Lemma 9, (~0, ∗) ⊆ [0, 1]N is also

9



a trap space of I(g). According to Lemma 10, we have τ−1J ◦ I(g) ◦ τJ = I(f).
Due to

τ−1J ◦ I(g) ◦ τJ(p, ∗) = τ−1J ◦ I(g)(~0, ∗)
⊆ τ−1J (~0, ∗)
= (p, ∗),

(p, ∗) is also a trap space of I(f).

The last proposition shows that we can assign to each trap space of f a trap

space of I(f). This result then transfers to f
~k,~θ

normalized.

Corollary 12. If (p, ∗), p ∈ {0, 1}n is a trap space of f , then for any ~k ∈ RN>0

and ~θ ∈ (0, 1)N , (p, ∗) is a trap space of the �ow map de�ned by a solution of
the ODE system of the form (5).

Proof. Let x : R≥0 → [0, 1]N be any solution of the above ODE system. Assume
x(t) ∈ (p, ∗), t ∈ R≥0. Since (p, ∗) is a trap space of f , according to Proposition

11, (p, ∗) is a trap space of I(f). The function f
~k,~θ

normalized is de�ned as the
concatenation of normalized Hill cubes and I(f). Consequently, (p, ∗) is a trap

space of f
~k,~θ

normalized. Therefore, for any i ∈ {1, . . . , n} and x(t) ∈ (p, ∗) the

equality ẋi(t) = di ·
(
(f
~k,~θ

normalized)i(x(t))−pi
)
= 0 holds, and (p, ∗) is an invariant

set of any �ow de�ned by the above ODE system.

Now we would like to know what happens if the �xed components of these
trap spaces are perturbed slightly. Therefore, we consider an association to
invariant sets that is possible even if we do not use normalized Hill functions.

5 Associating invariant sets to trap spaces

Instead of associating the trap spaces of f to trap spaces of f
~k,~θ

or f
~k,~θ

normalized,
we can associate them to certain invariant sets of these functions, whose size can
be controlled by the Hill coe�cients ~k. In contrast to trap spaces the previously
�xed components are allowed to change to a certain degree over time in these
invariant sets. We will now state what we mean with this precisely.

De�nition 13. Let π : [0, 1]N → [0, 1]n be the projection on the �rst n ≤ N
components. For any ε > 0 and (p, ∗) ⊆ [0, 1]N , p ∈ [0, 1]n we de�ne (see Fig. 2)

K(p, ε) :=
{
x ∈ [0, 1]N

∣∣‖π(x)− p‖∞ ≤ ε}.
We want to show that K(p, ε) is an invariant set of the ODE system (2)

constructed with either f
~k,~θ

or f
~k,~θ

normalized provided the Hill coe�cients ~k are
large enough. The proof is carried out in two steps. First, we show that K(p, ε)
is an invariant set of the time-discrete dynamical systems

xt+1 = f
~k,~θ

(xt), (6)

xt+1 = f
~k,~θ

normalized(x
t).

Afterwards, we show the invariance for the corresponding ODE systems.

10



Figure 2: Illustration of the set K(p, ε).

5.1 Invariance in the time-discrete dynamical system

Now we want to show that if (p, ∗) is a trap space of f
~k,~θ

or f
~k,~θ

normalized, then

for su�ciently large Hill coe�cients ~k the set K(p, ε) is an invariant set of f
~k,~θ

or f
~k,~θ

normalized as well.

Proposition 14. Let f : {0, 1}N → {0, 1}N , L be the Lipschitz constant of
I(f) with respect to ‖ · ‖∞ and (p, ∗) be a trap space of I(f). Then for any

0 < γ, ε < mini∈{1,...,n}{θi, 1 − θi} and su�ciently large ~k0, the function f
~k,~θ

or, respectively, f
~k,~θ

normalized satis�es

∀~k ≥ ~k0 : f
~k,~θ

(K(p, ε)) ⊆ K(p, γ),

∀~k ≥ ~k0 : f
~k,~θ

normalized(K(p, ε)) ⊆ K(p, γ). (7)

The relation ~k ≥ ~k0 is meant component-wise here. This means, on the one
hand, if ~k grows, there is an increasingly thin tube K(p, γ) around the trap
spaces which is not left by the trajectories of the dynamical systems (6). On
the other hand, there is an increasingly wide tube K(p, ε), whose boundaries ap-
proach the thresholds of the Hill cubes, and every trajectory starting in K(p, ε)
is drawn into K(p, γ).

For the proof of Proposition 14 we exploit that f
~k,~θ

as well as f
~k,~θ

normalized is a
concatenation of the Hill functions and a multivariate polynomial interpolation.
First, we prove that K(p, ε) can be arbitrarily contracted by the Hill functions
provided we choose the parameters ~k large enough and K(p, ε) does not overlap
with any of the thresholds of the Hill functions. Afterwards, we continue showing
that the multivariate interpolation I(f) stretches the setK(p, ε) maximally with
a constant that is bounded by the Lipschitz constant of I(f).

Having the Hill functions in mind, we prove the following lemma:

Lemma 15. Let Hk : [0, 1]→ [0, 1] be a sequence of functions, which converges
uniformly towards 0 on [0, ε], ε ∈ (0, 1), and uniformly towards 1 on [1 − ε, 1],

11



then

∀γ ∈ (0, ε]∃k0 ∈ N∀k ≥ k0 : Hk([0, ε]) ⊆ [0, γ]

and ∀k ≥ k0 : Hk([1− ε, 1]) ⊆ [1− γ, 1].

Proof. This follows directly from the de�nition of uniform convergence.

Applying Lemma 15 to each component of the Hill function H~k,~θ, which is
a Hill function, we arrive at the following corollary:

Corollary 16. For n ≤ N and ~θ ∈ (0, 1)N , the following statement holds:

∀p ∈ {0, 1}n, ε < θmin, γ ∈ (0, 1]∃~k0 ∈ RN>0∀~k ≥ ~k0 : H
~k,~θ
(
K(p, ε)

)
⊆ K(p, γ)

with θmin := mini∈{1,...,n}{θi, 1 − θi}. This remains true for normalized Hill

cubes H
~k,~θ

H~k,~θ(~1)
.

Proof. The components hki,θi , i ∈ {1, . . . , n}, of the Hill function H
~k,~θ as well as

the components hki,θi
hki,θi (1)

, i ∈ {1, . . . , n}, of the normalized Hill function H
~k,~θ

H~k,~θ(~1)

satisfy the conditions of Lemma 15 as long as ε is strictly smaller than θi and
1 − ε is strictly bigger than θi for every i ∈ {1, . . . , n} (see Lemma 5). This
is guaranteed by ε < mini∈{1,...,n}{θi, 1 − θi} for every ~θ ∈ (0, 1)N . For each
x ∈ K(p, ε), i ∈ {1, . . . , n}, we have either xi ∈ [0, ε] or xi ∈ [1 − ε, 1], which is
mapped (for an arbitrary large (k0)i) into [0, γ] in the �rst case or into [1−γ, 1]
in the second case. This means, ∀~k ≥ ~k0 : H

~k,~θ
(
K(p, ε)

)
⊆ K(p, γ).

We proceed with the multivariate interpolation of f .

Lemma 17. Let I : [0, 1]N → [0, 1]N be a Lipschitz continuous function with
respect to ‖ · ‖∞ with Lipschitz constant L. Furthermore, let (p, ∗) be a trap
space of I. Then

∀ε ∈ (0, 1) : I(K(p, ε)) ⊆ K(p, Lε)

holds.

Proof. According to the de�nition of K(p, ε) we need to show that

‖π(x)− p‖∞ ≤ ε⇒ ‖π(I(x))− p‖∞ ≤ Lε

holds. Due to the Lipschitz continuity we have

‖π(I(x))− p‖∞ = inf
y∈(p,∗)

‖I(x)− y‖∞

≤ inf
y∈(p,∗)

‖I(x)− I(y)‖∞

≤ L · inf
y∈(p,∗)

‖x− y‖∞

= L · ‖π(x)− p‖∞
≤ L · ε.

12



The �rst equality holds since y ∈ (p, ∗) can be chosen such that I(x)i − yi = 0
for i ∈ {n+1, . . . , N}, and therefore ‖I(x)− y‖∞ = ‖π

(
I(x)

)
− p‖∞ holds. For

the same reason the fourth equality holds. The second inequality is true due to

I(p, ∗) ⊆ (p, ∗).

Combining the two results (Corollary 16 and Lemma 17) we can now prove
Proposition 14 from the beginning of this section.

Proof. (Proof of Proposition 14) According to Corollary 16, if we choose γ′ ≤ γ
L

such that γ′ ∈ (0, ε], we have for su�ciently large ~k:

f
~k,~θ

(K(p, ε)) = I(f) ◦H~k,~θ(K(p, ε))

⊆ I(f)(K(p, γ′))

According to Lemma 17, we have

I(f)(K(p, γ′)) ⊆ K(p, Lγ′) ⊆ K(p, γ).

The statement f
~k,~θ

normalized(K(p, ε)) ⊆ K(p, γ) follows analogously.

5.2 Invariance in the ODE system

We show in this section the invariance of the set K(p, ε) for a trap space (p, ∗)
of the ODE system 2. The proof is carried out by exploiting the results on the
time-discrete but state-continuous dynamical system of the previous 5.1 and
combining them with a result by Nagumo on invariant sets [13].

De�nition 18 ([1, p. 24]). A subset K of a �nite dimensional vector space X
is said to be invariant under F if for any initial state x0 ∈ K all solutions to
the di�erential equation

ẋ = F (x) (8)

x(0) = x0

remain in K.

De�nition 19 ([1, 6, p. 25]). Let X be a normed space, ∅ 6= K ⊆ X, x ∈ X.
The tangent cone (Fig. 3) to K at x is the set

TK(x) := {v ∈ X
∣∣ lim inf

h→0+

infz∈K ‖(x+ hv)− z‖
h

= 0}.

We use the following Theorem from [13]:

Theorem 20 ([6, 13]). Let K ⊂ RN be closed and convex, F : RN → RN
continuous and assume 8 admits a globally unique solution for every x0 ∈ K.
Then K is an invariant set of this system if and only if

∀x ∈ ∂K : F (x) ∈ TK(x). (9)
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x

K

TK(x)

Figure 3: Illustration of the tangent cone TK(x) of K.

Now we are ready to prove the correspondence of trap spaces and invariant
sets.

Proposition 21. Let (p, ∗), p ∈ {0, 1}N be a trap space of f : {0, 1}N →
{0, 1}N . Then

∀ε ∈ (0, θmin)∃ ~k0 ∈ NN∀~k ∈ NN∀x0 ∈ K(p, ε) : ∀t ∈ [0,∞) : x(t) ∈ K(p, ε),

where x(t) is the solution of 2 and with θmin := mini∈{1,...,n}{θi, 1− θi}.

Proof. We want to show that the ODE system 2 with K(p, ε) satis�es the con-
ditions of Theorem 20. Here, our function F in Theorem 20 has the form:

F
~k,~θ(x) := D · (f

~k,~θ
(x)− x)

We need to show that 9 with K := K(p, ε) is satis�ed. Let ξ ∈ ∂K(p, ε). Eq. (9)
holds especially true if ξ + hF (ξ) ∈ K is satis�ed for small enough h > 0.
Therefore, it would su�ce to show

ξ + h
[
D · (f

~k,~θ
(ξ)− ξ)

]
= (1− hD)ξ + hD · f

~k,~θ
(ξ) ∈ K(p, ε).

Indeed, this is true for su�ciently small h > 0 (to guarantee (1 − hdi) > 0 for
i ∈ {1, . . . , n}) due to the following inequality for i ∈ {1, . . . , n} and su�ciently
large ~k:

‖(1− hdi)ξi + hdif
~k,~θ

i (ξ)− pi‖ = ‖(1− hdi)(ξi − pi) + hdi(f
~k,~θ

i (ξ)− pi)‖

≤ (1− hdi) · ‖ξi − pi‖︸ ︷︷ ︸
≤ε

+hdi · ‖f
~k,~θ

i (ξ)− pi‖︸ ︷︷ ︸
≤ε by Proposition 14

≤ ε (10)

⇒ ξ + hD · (f
~k,~θ

(ξ)− ξ) ∈ K(p, ε)

The uniqueness of the solution of the ODE system (2) follows from the

Lipschitz continuity of f
~k,~θ

(see, e.g., [17, p. 88]).

Again, the same argumentation is valid if we replace f
~k,~θ

by f
~k,~θ

normalized.
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6 Computing explicit values for the Hill coe�-

cients to guarantee invariance

Finally, we are interested in �nding some explicit boundaries for the values ~k
and to �nd out how they are related to the network structure. Namely, assume
we would like to �nd Hill coe�cients ~k such that K(p, ε) is mapped to K(p, γ)

by f
~k,~θ

for given ε, γ > 0 in such a way that K(p, ε) is an invariant set of the
corresponding ODE system.

We can approximate the Lipschitz constants of I(f) explicitly. First, notice
that if we want to �nd the Lipschitz constant L of I(f) : [0, 1]N → [0, 1]N , i.e.

∀x, y ∈ [0, 1]N : ‖I(f)(x)− I(f)(y)‖∞ ≤ L · ‖x− y‖∞, (11)

we can do this by �nding the Lipschitz constants of the components of I(f) =
(I(f1), . . . , I(fN )) and then taking the maximal Lipschitz constant for I(f). For
the Lipschitz constants of the components I(fi) we �nd an upper bound with
the following theorem:

Theorem 22 ([14]). Assume f : [0, 1]N → [0, 1] is a Lipschitz continuous
function. Then

|f(x)− f(y)| ≤ Lp · ‖x− y‖q (12)

and
Lp = sup{‖∇f(x)‖p : x ∈ [0, 1]N}

with 1
p +

1
q = 1, 1 ≤ p, q ≤ ∞.

Applying the theorem to the case q =∞ we need to �nd supx∈[0,1]N ‖∇I(fi)‖1
for all i ∈ {1, . . . , N}.

After having estimated the Lipschitz constant L of I(f), we can proceed as
follows to obtain values for ~k that guarantee that K(p, ε) is mapped to K(p, γ)

for a trap space (p, ∗) of f . For �xed ~θ we need to �nd ki such that

hki,θi(ε) ≤
ε

L
if pi = 0,

hki,θi(1− ε) ≥ 1− ε

L
if pi = 1 (13)

holds to guarantee H~k,~θ
(
K(p, ε)

)
⊆ K(p, εL ). Then Lemma 17 implies

f
~k,~θ

(K(p, ε)) ⊆ I(f)
(
K(p,

ε

L
)
)
⊆ K(p, ε).

6.1 Using the Interaction graph to approximate the Lip-

schitz constant

While (13) is independent of the structure of the bioregulatory system, the size
of the Lipschitz constant of I(f) is not. Therefore, it would be interesting to
�nd out in what respect it depends on the structure of the discrete interaction
graph.
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De�nition 23. Suppose V1, V2, . . . , Vk and W are vector spaces. A function

f : V1 × V2 × · · · × Vk →W

is called multilinear if it is linear in each of its variables, i.e.

∀i ∈ {1, . . . , k} : f(v1, . . . , avi + bwi, . . . , vk) = af(v1, . . . , vi, . . . , vk)

+ bf(v1, . . . , wi, . . . , vk).

An a�ne multilinear function f : V1×V2×· · ·×Vk →W is de�ned analogously.

We notice that due to Eq. (3) the images of the operator I are a�ne multi-
linear functions. Before we proceed we will give two lemmas, which we need in
the proceeding proofs:

Lemma 24. For a multilinear or an a�ne multilinear function f : [0, 1]N →
R≥0, there exists xmax ∈ {0, 1}N such that f takes its maximum value at xmax.

Proof. Assume f is multilinear and xmax := argmaxx f(x), xmax ∈ [0, 1]N\{0, 1}N .
If f(x(1)max, . . . , x

(N)
max) = 0, there is nothing to prove, since in this case ∀x ∈

[0, 1]N : 0 ≥ f(x) ≥ 0⇒ f ≡ 0 holds. Therefore, we assume f(x(1)max, . . . , x
(N)
max) >

0. Since xmax ∈ [0, 1]N\{0, 1}N , there must be an index i ∈ {1, . . . , N} such
that x(i)max 6∈ {0, 1}. Assume f depends on x(i), i.e., f is not constant on the line
{(x(1)max, . . . , x

(i−1)
max , λ, x

(i+1)
max , . . . , x

(N)
max)

∣∣λ ∈ R}3. Then, for λ = 1

x
(i)
max

> 1,

f(x(1)max, . . . , x
(N)
max) < λ · f(x(1)max, . . . , x

(N)
max)

= f(x(1)max, . . . , x
(i−1)
max , 1, x(i+1)

max , . . . , x(N)
max)

holds, which is a contradiction to the assumption. The proof holds true for
a�ne multilinear functions as well since we can shift the coordinate system
accordingly.

Assume f : RN → R is an a�ne multilinear function. We can write f always
in the form

f(x) =
∑

p∈{0,1}N
f(p)

N∏
k=1

(
xkpk + (1− pk)(1− xk)

)
,

since a multilinear function from RN to R is uniquely determined by its values
on {0, 1}N (see also [25, p. 16-17]).

Lemma 25. Let F = (f1, . . . , fN ) : [0, 1]N → RN be a function whose compo-
nents f1, . . . , fN are a�ne multilinear. Then the function ‖F‖1 : x 7→ ‖F (x)‖1
takes its maximum value on {0, 1}N .

3If not x
(i)
max can be replaced by 0 or 1.
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Proof. We have for x ∈ [0, 1]N

‖F (x)‖1 =

N∑
i=1

|fi(x)|

≤
N∑
i=1

∑
p∈{0,1}N

|fi(p)| ·
N∏
k=1

(
xkpk + (1− pk)(1− xk)

)
︸ ︷︷ ︸

≥|fi(x)|

=: g(x).

Furthermore, we have for q ∈ {0, 1}N : ‖F (q)‖1 = g(q) because

‖F (q)‖1 =

N∑
i=1

|fi(q)| =
N∑
i=1

∑
p∈{0,1}N

|fi(p)| ·
N∏
k=1

(
qkpk + (1− pk)(1− qk)

)
︸ ︷︷ ︸

=

0 if p = q

1 otherwise

= g(q)

holds true. The function g : [0, 1]N → R≥0 is a�ne multilinear. According to
Lemma 24, g takes a maximum value in a point in {0, 1}N . Therefore, also
‖F (x)‖1 takes a maximum value on {0, 1}N .

We now de�ne the interaction graph of a Boolean function f . For this
purpose, we need the notion of discrete derivatives.

De�nition 26. The discrete derivative of a function f : {0, 1}N → {0, 1}N is
de�ned as

(∂jfi)(x) : =
fi(x⊕ ej)− fi(x)
(xj ⊕ 1)− xj

,

=
fi(x1, . . . , xj−1, 1, xj+1, . . . xN )− f(x1, . . . , xj−1, 0, xj+1, . . . xN )

1− 0

∈ {−1, 0, 1},

where ⊕ is the addition modulo 2. Furthermore, we denote with ∇fi the
vector

(
∂1fi , . . . , ∂Nfi

)t
.

This means especially that ∂jfi(x) actually does not depend on its value in
xj .

De�nition 27. The local interaction graph IGf (x) := (V,E), x ∈ {0, 1}N of a
Boolean function f : {0, 1}N → {0, 1}N consists of N vertices V := {1, . . . , N}
and a signed edge-set E de�ned in the following way:

(j, i, ε) ∈ E ⇔ (∂jfi)(x) = ε

with ε ∈ {−1, 1}.
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So far, we de�ned the interpolation operator I for functions from {0, 1}N to
{0, 1}N . However, De�nition 2 can be easily extended to functions {0, 1}N →
RN by

I :
{
f : {0, 1}N → R

}
→
{
g : RN → R|g is a�ne linear

}
f 7→

{
x 7→

∑
x∈{0,1}N

f(x)

N∏
j=1

(
xjxj + (1− xj)(1− xj)

)}
. (14)

With the following two lemmas we show that I behaves well with respect to the
interaction graph.

Lemma 28. The function I is linear. Furthermore, for f : {0, 1}N → {0, 1}N
it holds

I(f)(1, ·) = I(f(1, ·))
I(f)(0, ·) = I(f(0, ·)).

Proof. Linearity follows immediately from (14). For the second claim let p, q ∈

{0, 1}. Since p · q + (1 − p)(1 − q) =

{
1 if p = q

0 otherwise
, we obtain with x =

(x2, . . . , xN ) ∈ [0, 1]N−1 and for any q ∈ {0, 1}:

I(fi)(q, ·) =
∑

p∈{0,1}N

[
fi(p) ·

(
p1q + (1− p1)(1− q)

)
·
N∏
j=2

(
pjxj + (1− pj)(1− xj)

)]
=

∑
p∈{0,1}N−1

[
fi(q, p) ·

N∏
j=2

(
pjxj + (1− pj)(1− xj)

)]
= I(fi(q, ·)).

Lemma 29. Let f : {0, 1}N → {0, 1}N . Then I(∂jfi) = ∂jI(fi) for i, j ∈
{1, . . . , N}.

Proof. Let us assume that w.l.o.g. j = 1. I(fi) is an a�ne multilinear function.
Therefore, the partial derivative ∂1I(fi) is given by

∂1I(fi)(x) =
(I(fi)(1, ·)− I(fi)(0, ·)

1− 0

)
(x).

Due to linearity of I and Lemma 28, it holds

∂1I(fi)(x) =
(I(fi)(1, ·)− I(fi)(0, ·)

1− 0

)
(x)

=
(
I
(fi(1, ·)− fi(0, ·)

1− 0

))
(x)

=
(
I(∂1fi)

)
(x),

which completes the proof.
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This allows us to apply Lemma 25 to F := ∇I(fi) = I(∇fi), i ∈ {1, . . . , N},
and we obtain the following.

Corollary 30. The Lipschitz constant of I(fi) with respect to ‖ · ‖∞, i ∈
{1, . . . , N} is smaller or equal to

max
x∈{0,1}N

‖∇I(fi)(x)‖1 = max
x∈{0,1}N

‖I(∇fi)(x)‖1 = max
x∈{0,1}N

‖∇fi(x)‖1.

Proof. According to Theorem 22, the Lipschitz constant L of I(fi) with re-
spect to ‖ · ‖∞ can be approximated by supx∈[0,1]N ‖∇I(fi)(x)‖1. According
to Lemma 25, applied to F := ∇I(fi), we have supx∈[0,1]N ‖∇I(fi)(x)‖1 =

maxx∈{0,1}N ‖∇I(fi)(x)‖1, and due to Lemma 29 maxx∈{0,1}N ‖∇I(fi)(x)‖1 =

maxx∈{0,1}N , ‖I(∇fi)(x)‖1. Furthermore, for x ∈ {0, 1}N ,

I(∇fi)(x) = ∇fi(x)

holds, which proves the above equality.

The expression maxx∈{0,1}N ‖∇fi(x)‖1 can be read o� directly from the in-
teraction graph.

Corollary 31. Let IGf (x) be the local interaction graph of f : {0, 1}N →
{0, 1}N . Then maxx∈{0,1}N ‖∇fi(x)‖1 is the maximal in-degree of i ∈ V =
{1, . . . , N} over all local interaction graphs, i.e.,

max
x∈{0,1}N

indegIGf (x)(i) = max
x∈{0,1}N

‖∇fi(x)‖1.

Furthermore, the Lipschitz constant L of I(f) can be approximated by the max-
imum degree over all local interaction graphs of f4, i.e.,

max
x∈{0,1}N ,i∈{1,...,N}

indegIGf (x)(i) ≥ L, (15)

where L is the Lipschitz constant of I(f).

Proof. The in-degree of a vertex i ∈ {1, . . . , N} in the local interaction graph
IGf (x) equals ‖∇fi(x)‖1 since |∂jfi(x)| ∈ {0, 1}, i.e.,

indegIGf (x)(i) = ‖∇fi(x)‖1
⇒ max

x∈{0,1}N
indegIGf (x)(i) = max

x∈{0,1}
‖∇fi(x)‖1.

Then Corollary 30 proves (15).

Consider an arbitrary Boolean function f : {0, 1}N → {0, 1}N with interac-
tion graph IGf (x), x ∈ {0, 1}N and a trap space (p, ∗) ⊆ {0, 1}N , p ∈ {0, 1}n,
n ≤ N . We give now a su�cient condition for the parameters ~θ and ~k of the
ODE system (2) which guarantees that K(p, ε) is an invariant set of (2).

4This implies that maxx∈{0,1} ‖∇fi(x)‖1 is bounded by the maximal in-degree of the
global interaction graph as well.
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Proposition 32. Let us denote with d := maxx∈{0,1}N ,i∈{1,...,N} indegIGf (x)(i)

the maximal in-degree of IGf (x) over all x ∈ {0, 1}N of a Boolean function
f : {0, 1}N → {0, 1}N . Assume (p, ∗) ⊆ {0, 1}N , p ∈ {0, 1}n, n ≤ N , is a trap
space of f . For

ki ≥


ln ε−ln(d−ε)
ln ε−ln θi , if pi = 0

ln
(
d−ε
ε

)
ln
(

1
θi
− 1
θi
ε
) , if pi = 1

with i ∈ {1, . . . , N}, the set K
(
p, ε
)
is an invariant set of the ODE system (2)

provided ε ∈ (0, θmin).

Proof. Due to Corollary 31, the Lipschitz constant L of I with respect to ‖ · ‖∞
can be approximated by d. Therefore, it remains to prove

H
~k,~θ
(
K(p, ε)

)
⊆ K(p,

ε

d
).

We need to check for each component of H~k,~θ the condition{
hki,θi(ε) ≤ ε

d , if pi = 0

hki,θi(1− ε) ≥ 1− ε
d , if pi = 1

.

For i ∈ {1, . . . , n} we obtain for pi = 0 the condition

hki,θi(ε) ≤
ε

d

⇔ εki

εki + θkii
≤ ε

d

⇔ ki · ln
ε

θi︸︷︷︸
<0

≤ ln
ε

d− ε

⇔ ki ≥
ln ε

d−ε
ln ε

θi

=
ln ε− ln(d− ε)
ln ε− ln θi

and for pi = 1 the condition

hki,θi(1− ε) ≥ 1− ε

d

⇔ ki ≥
ln
(
d−ε
ε

)
ln
(

1
θi
− 1

θi
ε
)

We can obtain a similar result for the normalized ODE system.

7 Application

We want to illustrate how the theoretical results on trap spaces can be used to
ease the analysis of ODE systems. For this purpose, we consider an example
from [8], namely a Boolean dynamical system with update function

f : (x1, x2, x3, x4) 7→ (x1 ∨ x2, x1 ∧ x4,¬x1 ∧ x4,¬x3).
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The state transition graph G(f) is depicted in Fig. 4. As it can be seen in
the �gure, (1, 1, 0, 1), (1, ∗, 0, 1), (1, ∗, 0, ∗), (1, ∗, ∗, ∗) and (0, 0, ∗, ∗) are trap
spaces of the Boolean dynamical system given by f . Hence, the state of the
�rst component plays a decisive role in the behavior of the system. Once the
�rst component is activated, it will never be deactivated afterwards. According
to the results presented in this paper, this behavior should be similar in the
corresponding ODE system as long as we choose su�ciently large Hill coe�cients
~k.

Example 33. Consider the trap space (0, 0, ∗, ∗), where the maximal in-degree

of the local interaction graph is 2. Let ~θ = (0.5, 0.5, 0.5, 0.5)T , D = diag(1, 1, 1, 1),

and ε = 0.4. We would like to �nd values for ~k such that K
(
p, ε
)
is an invariant

set. In Fig. 5 the conditions from Proposition 32 are depicted for the param-
eters θ = 0.5 and maximal in-degree d = 2. Since all �xed components in
our trap space are zero, we only need to consider the curve corresponding to
the �rst condition in Proposition 32. We can learn from this that we need to
choose ki ≥ 6.213 to guarantee invariance for ε = 0.4. More precisely, the �rst
condition in Proposition 32 becomes:

ki ≥
ln ε− ln(d− ε)
ln ε− ln θi

≥ ln 0.4− ln(2− 0.4)

ln 0.4− ln 0.5
≈ 6.213.

Indeed, if we choose an initial state x0 = (0.4, 0.4, 0.1, 0.1)T , and Hill coe�cients
ki ≥ 6.213, then the �rst two components tend to zero. Exactly this behavior
can be observed in Fig. 6a.

Let us see what happens if we change the value of the �rst component slightly,
such that the initial state is no longer in an invariant set corresponding to the
trap space (0, 0, ∗, ∗) but in one associated to p = (1, ∗). For this purpose we
could again consider Fig. 5. Now we need to look at the curve corresponding to
the second condition in Proposition 32, since all �xed components in the trap
space p are 1. We can see that if we choose for example ε = 0.35 the Hill
exponent k = 6.213 is su�ciently large to guarantee that K

(
p, ε
)
is an invariant

set of the corresponding ODE-system. More precisely, due to the inequality

6.213 ≥
ln
(
d−ε
ε

)
ln
(

1
θi
− 1

θi
ε
) =

ln
(
2−0.35
0.35

)
ln
(

1
0.5 −

1
0.5 · 0.35

) ,
we know that the trajectory of the solution is guaranteed to stay in K

(
p, 0.35

)
.

Indeed, if we choose for example the initial value x0 = (0.65, 0.4, 0.1, 0.1)T ,
we observe in Fig. 6b that the trajectory of the solution remains in the set
K
(
p, ε
)
. Finally, let us consider a case, where we need to use both conditions

from Proposition 32. I.e. for p = (1, ∗, 0, ∗) to guarantee that K
(
p, ε
)
is an

invariant set, we need to consider the maximum of both curves in Fig. 5. Again
we observe that for ε = 0.35 the Hill exponents can remain at 6.213 to guarantee
invariance.

For more numerical experiments we refer to the supplementary, where we
conducted some experiments on the T-cell activation model used as well in [25].
More numerical experiments concerning the conservation of trap spaces using
normalized Hill cubes can be found in [27], too.
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Figure 4: Example from [8].

Figure 5: Plot of the conditions from Proposition 32. The curve denoted by
0-bound represents the condition in the �rst case in the proposition, while the
second curve represents the condition in the second case. For an invariant set
K
(
p, ε
)
, corresponding to a trap space (p, ∗), we can read o� the minimal Hill

exponent necessary for invariance from these curves.
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(a) A trajectory in the invariant set corresponding to (0, 0, ∗, ∗)

(b) A trajectory in the invariant set corresponding to (1, ∗).

Figure 6: Trajectories in the invariant set.
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8 Conclusion

Statements about the correspondence between steady states of discrete dynam-
ical systems and corresponding continuous dynamical systems cannot be gener-
alized directly to trap spaces. However, in case of ODE systems that are created
from Boolean systems by multivariate polynomial interpolation and Hill cubes,
we can link the Boolean trap spaces to invariant sets whose size can be con-
trolled by the Hill coe�cients. This result is of practical relevance, since it
allows to transfer knowledge about the location of trap spaces from one model
to the other, which paves the way towards combining Boolean and ODE-models
of bioregulatory networks. For future work, it would be interesting to see in
how far the results presented here can be generalized to a wider class of models
for bioregulatory networks.
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Appendix

We use the T-cell activation model published in [25, 7] to demonstrate that the
conservation of the trap spaces holds as well in a bigger network, stemming from
a biological setting. For our example we use the parameters computed in [25]
and proposed as a possible parametrization of the system. As emphasized in
[25] this is by far not the only possibility to obtain a good �t to the data used
there. In this parametrization the in�uence of one component on the others
is governed by di�erent Hill coe�cients and thresholds. This means that the
simplifying assumption in the main text, namely that we can represent the right

hand side of the ODE-system as a concatenation of the form f
~k,~θ

= I(f) ◦H~k,~θ

or f
~k,~θ

normalized = I(f)◦ H
~k,~θ

H~k,~θ(~1)
, does not hold anymore. However, as we suspected

in the main text, the conservation of trap spaces during the conversion seems
to hold in the more general setting, too.

In the second part of the supplementary we test numerically in how far the
results from the main text justify the usage of trap spaces for network reduction.

Conservation of trap spaces

We analyzed the Boolean model of T-cell activation published in [25, 7]. In
Tab. 2 we see the Boolean function representing this regulatory network and
in Fig. 7 its interaction graph. The Boolean regulatory network includes forty
components. The nodes C4, CD45 and TCRlig are inputs while NFAT, NFkB,
API and CRE are outputs. Here, we chose to set all input variables to one.
The maximal in-degree of a component in the interaction graph is �ve. We
used PyBoolNet [10] to compute all the trap spaces of the network (1000 trap
spaces). From these trap spaces we subsequently chose the biggest5 trap space,
which is not a �xed point, to demonstrate our results (Tab. 3). This trap space
has 21 �xed components.

Next, we converted the Boolean network into an ODE-system using Hill
cubes according to the method described in the main text stemming from [11].
The parameters (lifetimes, thresholds and Hill coe�cients) were chosen accord-
ing to [25, Table 1] (see Tab. 4 and Tab. 5). We inserted an additional param-
eter s a�ecting only the interactions between the components which are �xed
in the trap space (see Tab. 4) and an additional parameter t a�ecting all Hill
coe�cients of the �xed components occurring anywhere in the network. We
are interested in the e�ect of these parameters on the conservation of our trap
space in the ODE-system. Even though we did not prove our results in the
general scenario, considered in this supplementary, our numerical experiments
here point towards the assumption that for su�ciently large Hill coe�cients
trap spaces are preserved as well in this more general setting.

However, since the presence of the invariant sets associated to the trap spaces
in the Boolean network is only guaranteed for su�ciently large Hill coe�cients
(Proposition 21 in the main text), the parameter s needs to be chosen su�ciently
large. This was con�rmed by our simulations.

We simulated our ODE-system for several values of s6. The result for s = 4
is depicted in Fig. 8. White represents the value zero and black the value one.

5with respect to the number of �xed components
6and t remains always zero.
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Species Boolean update function
CD45 1
CD4 1

TCRlig 1
Calcen Ca
NFAT Calcen
CRE CREB
PKCth DAG
Fos ERK
Rsk ERK

PAGCsk Fyn | !TCRbind
TCRphos Fyn | (TCRbind & Lck)
SLP76 Gads
Ras Grb2Sos | RasGRPI
NFkB IkB
IkB IKKbeta
Ca IP3
Jun JNK
JNK SEK
API Jun & Fos
Gads LAT

Grb2Sos LAT
PLCg_bind LAT

Fyn (Lck & CD45) | (TCRbind & CD45)
Rlk Lck
ERK MEK
Lck !PAGCsk & CD4 & CD45

RasGRPI PKCth & DAG
IKKbeta PKCth
SEK PKCth
DAG PLCg_act
IP3 PLCg_act
MEK Raf
Raf Ras

CREB Rsk
TCRbind TCRlig & !cCbl
ZAP70 TCRphos & Lck & !cCbl

PLCg_act (ZAP70 & SLP76 & PLCg_bind & Itk) | (ZAP70 & SLP76 & Rlk & PLCg_bind)
Itk ZAP70 & SLP76
cCbl ZAP70
LAT ZAP70

Table 2: Boolean update function of the T-cell network [25, Fig. 2a]. '&'
denotes the logical conjunction, '|' logical disjunction and ' !' negation.
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Component CD4 CD45 Ca Calcen Fyn Gads Grb2Sos
1 1 0 0 1 0 0

Component IP3 Itk LAT Lck NFAT PAGCsk PLCg_act
0 0 0 0 0 1 0

Component PLCg_bind Rlk TCRbind TCRlig TCRphos ZAP70 cCbl
0 0 1 1 1 0 0

Table 3: Values of the components �xed in the biggest trap space, which is not
a �xed point.

As stopping time for the simulations we chose T = 10. The initial value was
chosen uniformly at random from values between 0 and 1 (see Tab. 6). Only
the �xed components of the trap space we chose to be 0 or 1 according to their
value in the trap space (see Tab. 3).

In the case s = 4 we observe an invariant set associated to our trap space as
we predicted (Fig. 8). On the other hand, if we choose s = 0 then the trap space
of the Boolean regulatory network is not preserved (see Fig. 9). This emphasizes
that not necessarily for all parameterization trap spaces are transfered to the
corresponding ODE-system. Only for Hill coe�cients large enough the ODE-
system behaves similar to the Boolean model. However, it seems that in practice
often already small Hill coe�cients are su�cient for conservation.

Network reduction using trap spaces

In our paper we proved that for su�ciently large Hill coe�cients trap spaces
are preserved as invariant sets whose size is controlled by the Hill coe�cients.
Furthermore, we suspect that this result can be used to reduce the dimension
of the original network. More precisely, instead of considering the complete
network, we can simulate it on one of the trap spaces for su�ciently large Hill
coe�cients by replacing the �xed components with their values in the trap space.
This can be done by �nding the trap space in the discrete setting, replacing the
original Boolean network with its restriction on this trap space and converting
it into an ODE-system. Alternatively, we could simulate the entire ODE-system
obtained from the complete Boolean function, but project the solution on the
components which are not �xed in the trap space. However, this would be more
costly and more parameters would need to be speci�ed. Therefore, a reduction
in the Boolean network could be bene�cial in many scenarios, provided both
ways lead to a similar solution.

We use the example from the previous section to compare both methods
with respect to the L2- and L∞-norm for di�erent Hill coe�cients whose size
is controlled by the parameter t7 in Tab. 4. In contrast to s, this parameter
also has an impact on the in�uences of components �xed in the trap space on
the remaining components. This is necessary, since we implicitly replace these
Hill functions by one or zero as well, when restricting the Boolean function to
its trap space and subsequently convert it into an ODE-system. We use again
the trap space in Tab. 3. As initial value for the simulations we use the values
from the previous section (Tab. 6)8. The result of the reduced Boolean function

7the parameter s remains here at zero.
8or its projection on the components occurring in the reduced system.
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Table 4: Parametrization of the ODE-system taken from [25, Table 1]. The
parameter s we inserted to increase/decrease the size of the invariant set. The
parameter t is used in the second section.
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d_Fos 1.0
d_CD45 0.6097560975609756
d_Calcen 0.22075055187637968
d_MEK 100.0
d_PLCg_bind 100.0
d_Lck 6.666666666666667
d_Grb2Sos 0.19011406844106465
d_CREB 1.0
d_IKKbeta 0.0947867298578199
d_NFkB 1.0
d_DAG 100.0
d_Rsk 1.0
d_ERK 10.0
d_PKCth 0.11547344110854503
d_Raf 0.0847457627118644
d_ZAP70 0.36101083032490977
d_Itk 100.0
d_RasGRPI 0.3623188405797102
d_Gads 8.333333333333334
d_Jun 1.0
d_Ras 0.13333333333333333
d_IkB 1.0
d_Fyn 2.1739130434782608
d_PLCg_act 100.0
d_TCRlig 0.78125
d_LAT 100.0
d_CRE 1.0
d_JNK 12.5
d_API 1.0
d_IP3 100.0
d_CD4 0.4444444444444444
d_NFAT 0.19880715705765406
d_SEK 100.0
d_TCRphos 33.333333333333336
d_cCbl 3.4482758620689657
d_Ca 5.0
d_Rlk 0.9803921568627451
d_PAGCsk 0.7518796992481203
d_TCRbind 1.6949152542372883
d_SLP76 4.166666666666667

Table 5: Lifetimes of the species.
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species concentration
CD45 1
CD4 1
SLP76 0.6383074636864451
TCRlig 1
API 0.7710153667784586
NFkB 0.8674644188468164
SEK 0.36864521258257776
ERK 0.19894364354387672
RasGRPI 0.4385506551628684
MEK 0.4053605834313827
TCRbind 1
Jun 0.08284766843289271
Ca 0
JNK 0.2752331706050737
Fyn 1
IP3 0
DAG 0.7076011269333241
PAGCsk 1
Itk 0
Gads 0
Rlk 0
IKKbeta 0.9305312743703905
Lck 0
NFAT 0
Calcen 0
PLCg_act 0
Rsk 0.5849715505749411
Raf 0.04974369229436948
cCbl 0
CREB 0.35963640904474836
CRE 0.19590574360372903
Fos 0.684761045360155
Ras 0.6950465127721994
LAT 0
TCRphos 1
PLCg_bind 0
IkB 0.24608085019556414
ZAP70 0
Grb2Sos 0
PKCth 0.5742499725510135

Table 6: Initial values corresponding to Fig. 8.
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(a) Concentrations of all components over time.

(b) Components which are �xed in the trap space.

Figure 8: Numerical results for s = 4 until T = 10.
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Figure 9: Components which are �xed in the trap space with s = 0 simulated
until T = 10.

is depicted in Tab. 7. The reduced network has roughly half of the amount of
components than the original one (19 components).

We compared the original system and the reduced system and measured the
di�erence of the two solutions with the L2-norm and L∞-norm. The result is
depicted in Tab. 8. We see that for a larger value of t the L2-norm decreases and
seems to converge to zero. We also observe a big drop in the L2-norm between
t = 0 in the �rst row and t = 1 in the second row. A similar observation can be
made using the L∞-norm. This agrees with our observation that for t = 0 the
trap space is not preserved, but only for higher t it is. This example suggests
that in general for networks with relatively sparse interaction graphs a low Hill
coe�cient can su�ce to allow a network reduction based on trap spaces.
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Species Boolean update function
CRE CREB
PKCth DAG
Fos ERK
Rsk ERK
SLP76 0
Ras RasGRPI
NFkB !IkB
IkB !IKKbeta
Jun JNK
JNK SEK
API Jun & Fos
ERK MEK
RasGRPI PKCth & DAG
IKKbeta PKCth
SEK PKCth
DAG 0
MEK Raf
Raf Ras
CREB Rsk

Table 7: Boolean function restricted to the trap space.

t L2-norm L∞-norm
0 42.39366320006479 0.6143910698641019
1 6.415065690624532e− 11 1.7056744591181783e− 06
10 1.1664356807309132e− 18 6.281553055487166e− 10

Table 8: L2-norms and L∞-norms comparing the reduced system with the orig-
inal one.
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