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Abstract

For all perfect graphs, the stable set polytope STAB(G) coincides with
the fractional stable set polytope QSTAB(G), whereas STAB(G) C
QSTAB(G) holds iff G is imperfect. Padberg asked in the early sev-
enties for “almost” perfect graphs. He characterized those graphs for
which the difference between STAB(G) and QSTAB(G) is smallest
possible. We develop this idea further and define three polytopes be-
tween STAB(G) and QSTAB(G) by allowing certain sets of cutting
planes only to cut off all the fractional vertices of QSTAB(G). The
difference between QSTAB(G) and the largest of the three polytopes
coinciding with STAB(G) gives some information on the stage of im-
perfectness of the graph G. We obtain a nested collection of three
superclasses of perfect graphs and survey which graphs are known to
belong to one of those superclasses. This answers the question: which
graphs are “almost” perfect?

1 Introduction

BERGE [1] proposed to call a graph G = (V, F) perfect if, for each (node-
induced) subgraph G’ C G, the chromatic number x(G’) equals the clique
number w(G’). That is, for all G' C G, we need as many stable sets to cover
all nodes of G’ as the maximum clique of G’ has nodes (a set V' C V is a
clique (stable set) if the nodes in V' are mutually (non-)adjacent; maximum
cliques (stable sets) contain a maximal number of nodes).

BERGE [1] conjectured two characterizations of perfect graphs. His first con-
jecture was that a graph G is perfect iff the clique covering number X(G')
equals the stability number a(G") VG' C G (i.e., that we need as many cliques



to cover all nodes of G’ as a maximum stable set of G’ has nodes). Since

complementation transforms stable sets into cliques, we have a(G) = w(G)
and x(G) = X(G) where G denotes the complement of G. Hence, BERGE [1]
conjectured and LovAsz [17] proved that a graph G is perfect if and only
if its complement G is (Perfect Graph Theorem). The second BERGE con-
jecture concerns a characterization via forbidden subgraphs. It is a simple
observation that chordless odd cycles Co,11 with k£ > 2, termed odd holes,
and their complements Cy;41, called odd antiholes, are imperfect. Clearly,
each graph containing an odd hole or an odd antihole as subgraph is im-
perfect as well. BERGE conjectured in [1]: a graph is perfect iff it contains
neither odd holes nor odd antiholes as subgraphs (Strong Perfect Graph Con-
jecture). This conjecture is still open and one of the most famous conjectures
in graph theory.

PADBERG [21, 22] asked which graphs are “almost” perfect, i.e., which graphs
are imperfect with the property that all of their proper induced subgraphs are
perfect. Such graphs are nowadays called minimally imperfect. Using this
term, the Strong Perfect Graph Conjecture reads: odd holes and odd antiholes
are the only minimally imperfect graphs. In order to give a characterization
of minimally imperfect graphs (and thereby to verify or falsify the Strong
Perfect Graph Conjecture), many fascinating structures of such graphs have
been discovered. First, the Perfect Graph Theorem implies that a graph is
minimally imperfect iff its complement is. Further properties reflecting an
extraordinary amount on symmetry of their maximum cliques and stable sets
are given by the next two theorems.

Theorem 1.1 (LovAsz [17]) Every minimally imperfect graph G has exactly
aw + 1 nodes and, for every node x of G, the graph G — x can be partitioned

into « cliques of size w and into w stable sets of size a, where & = a(G) and
w = w(Q@) holds.

Theorem 1.2 (PADBERG [21]) Ewvery minimally imperfect graph G on n
nodes has precisely n maximum stable sets and precisely n mazximum cliques.
Each node of G is contained in precisely a(G) mazimum stable sets and in
precisely w(G) mazimum cliques. For every mazimum clique @ (mazimum
stable set S) there is a unique mazimum stable set S (mazimum clique Q)

with QNS = 0.

Unfortunately, minimally imperfect graphs are not characterized by those
properties but share them with other graphs. BLAND, HUANG, and TROT-
TER suggested in [2] to call a graph partitionable if it satisfies the condi-
tions of Theorem 1.1 for some integers «, w and verified Theorem 1.2 for



all partitionable graphs (see Figure 1 for two partitionable graphs which are
not minimally imperfect). Thus, the class of partitionable graphs contains
all potential counterexamples to the Strong Perfect Graph Conjecture. One
main interest is, therefore, to find so-called genuine properties satisfied by
all minimally imperfect graphs but violated by at least one partitionable
graph (see [25] for more information on minimally imperfect and partition-
able graphs).

(a) (b)

Figure 1: Examples of partitionable graphs.

PADBERG [21, 22| investigated general set packing problems and studied the
case when the polyhedron P(A) = {z € R} : Az < 1} associated with
an m x n 0/1-matrix A has integral vertices only (where 1 = (1,...,1)).
PADBERG proved in [21] that P(A) coincides with Pr(A), the convex hull of
integer vertices of P(A), if and only if A is a perfect 0/1-matrix. Translating
this result in graph theoretic terms [21], consider the graph G associated
with A where the nodes of G correspond to the n columns of A and two
nodes of G are linked by an edge if the corresponding columns of A have a
l-entry in common. Consequently, A is the clique-node incidence matrix of
G and P(A) is the fractional stable set polytope QSTAB(G) given by
the nonnegativity constraints

for all nodes 7 of G and by the clique constraints
Z z; <1 (1)
i€Q

for all cliques @ C G. Furthermore, P;(A) corresponds to the stable set
polytope STAB(G) which is defined as the convex hull of the incidence
vectors of all stable sets of the graph G. Then the result on perfect 0/1-
matrices says:



Theorem 1.3 (PADBERG [21]) STAB(G) = QSTAB(G) if and only if G is
perfect.

Remark. In [4] CHVATAL noted that Theorem 1.1 implies that polyhedral
characterization of perfect graphs, further references are FULKERSON [9, 10]
and SACHS [27].

If G is an imperfect graph, STAB(G) C QSTAB(G) holds and the difference
between STAB(G) and QSTAB(G) can be used as a tool in order to decide
how far a graph is away from being perfect. In this sense, PADBERG [22, 23|
introduced the notion of almost integral polyhedra defined with respect to
m x n 0/1-matrices A: P(A) is called almost integral if P(A) possesses at
least one fractional vertex, but the polyhedra obtained from P(A) by pro-
jecting P(A) into (strictly) lower-dimensional subspaces have integer vertices
only. PADBERG proved several properties of almost integral polyhedra (see,
e.g., Theorem 1.4 below) and showed recently an equivalent version of the
Strong Perfect Graph Conjecture in terms of almost integral polyhedra [23].
(PADBERG introduced in [23] two kinds of orthogonal projections and proved
that the Strong Perfect Graph Conjecture is correct if and only if the studied
projections of almost integral polyhedra yield again almost integral polyhe-
dra.)

Theorem 1.4 (PADBERG [22]) If P(A) is almost integral, then the following
conditions are simultaneously satisfied. Every fractional verter has exactly n

adjacent integer vertices. P(A) has exactly one fractional verter. Pr(A) =
PAN{z €R} : 30 i, i <@} with@ = max{)_, ., =i 1 ¢ € P(A)}.

PADBERG called a 0/1-matrix A almost perfect if P(A) is almost integral
and showed that A is almost perfect if and only if it is the clique-node
incidence matrix of an almost perfect (i.e., minimally imperfect) graph. In
graph theoretic terms, the above theorem implies, therefore, the following
characterization of minimally imperfect graphs.

Theorem 1.5 (PADBERG [21, 22]) G is minimally imperfect if and only
if QSTAB(G) has ezactly one fractional vertex (adjacent to the |G| inte-
ger vertices coming from the mazimum stable sets of G) and STAB(G) =

QSTAB(G)N{z e RE : ¥, o < a(G)}.

(Note that @ = max{) ..,z; : * € QSTAB(G)} is sometimes called the
fractional stability number of G.) That means, G is minimally imperfect if



and only if QSTAB(G) has precisely one fractional vertex which can be cut
off by ezxactly one cutting plane, namely, the so-called full rank constraint

in < a(Q) (2)

1€G

associated with G. The above theorem implies, therefore, a most beautiful
nontrivial genuine property that holds ezactly for all minimally imperfect
graphs and for none of the other partitionable graphs:

Theorem 1.6 (PADBERG [21, 22]) A partitionable graph G is minimally
imperfect if and only if QSTAB(G) has ezxactly one fractional verte.

In the case of minimally imperfect graphs G, the polytope QSTAB(G) is
the smallest possible relaxation of STAB(G) and, hence, minimally imper-
fect graphs are indeed “almost perfect”. The next possible relaxation of
STAB(G) is the case when QSTAB(G) may have more than one fractional
vertex but, again, the full rank constraint is required as only cutting plane
to cut off all those fractional vertices. This lead SHEPHERD [30], inspired
by PADBERG’s results, to the definition of near-perfect matrices: an m x n
0/1-matrix A is called near-perfect if P;(A) coincides with P(A)N{z € R :
D 1<icn®i < a(G)} where G is again the graph with clique-node incidence
matrix A. Let denote FSTAB(G) the polytope given by all nonnegativity
constraints (0), all clique constraints (1), and the full rank constraint (2).
SHEPHERD [30] called a graph G near-perfect if STAB(G) = FSTAB(G).
Minimally imperfect graphs are obviously near-perfect. Since there is no re-
quirement that QSTAB(G) has at least one fractional vertex but only that
all fractional vertices are cut off by the full rank constraint, perfect graphs
are all near-perfect, too. Figure 2 shows near-perfect graphs which are nei-
ther perfect nor minimally imperfect. More examples and considerations on
near-perfect graphs can be found in Section 3.

(a) (b) (c) (d)

Figure 2: Examples of near-perfect graphs.



Following a suggestion of GROTSCHEL, LOVASz, and SCHRIJVER [15] one
may relax the notion of perfectness further by generalizing clique constraints
to other classes of inequalities valid for the stable set polytope and then
by investigating all graphs such that their stable set polytope is entirely
described by nonnegativity constraints and the inequalities in question. A
natural way to generalize both clique constraints and the full rank constraint
is to consider all 0/1-inequalities, i.e., to investigate the rank constraints

Sw < of@) 3)

associated with arbitrary induced subgraphs G’ C G (note «(G') = 1 holds
iff G’ is a clique). Every rank constraint is obviously valid for the stable
set polytope and defines in some cases also a facet (see next section for ex-
amples of graphs G where the full rank constraint is facet-defining). Hence,
the polytope RSTAB(G) given by all nonnegativity constraints (0) and all
rank constraints (3) is a further relaxation of STAB(G) but contained in
FSTAB(G). We define all graphs G with STAB(G) = RSTAB(G) to be
rank-perfect (i.e., if we need only 0/1-inequalities of the form (3) to cut
off all fractional vertices of QSTAB(G)). Every perfect, every minimally im-
perfect, and every near-perfect graph is obviously also rank-perfect. Further
classes of rank-perfect graphs are discussed in Section 4.

If a rank constraint is associated with a proper subgraph G' C G, then it
does not yield a facet of STAB(G) in general, even if . .. z; < a(G') is
facet-defining for STAB(G"). In the latter case, we can determine a facet

in + Z a;iz; < a(G) (4)

€G! 1€EG-G'

of the stable set polytope of the whole graph G by computing appropriate
coefficients a; for all nodes 7 in G—G’ via sequential lifting [20] (see Section 2).
We call facets of the form (4) weak rank constraints if the base rank
constraint associated with G’ is facet-defining for STAB(G'). (That means,
a lifted rank constraint ) . . @ + > ,cq o @i%i < o(G') is a weak rank
constraint if an orthogonal projection is the full rank facet of STAB(G').)
Clearly, facet-defining rank constraints are weak rank constraints with a; = 0
for i € G — G'. Let WSTAB(G) be the polytope given by all nonnegativity
constraints (0) and all weak rank constraints (4). WSTAB(G) is a further
relaxation of STAB(G) but contained in RSTAB(G) (since we allow more
general cutting planes than rank constraints only). We define all graphs G
with STAB(G) = WSTAB(G) to be weakly rank-perfect (see Section 5

6



for classes of weakly rank-perfect graphs). Moreover, the stable set polytope
itself is entirely described by all “trivial” facets (0) and all “nontrivial” facets
of the general form
Zai z; < a(G,a) (5)
ic@
where we interpret the vector a = (ai,...,a,) to be a node weighting of
G associating the weight a; to © € G and denote the weighted graph by
(G,a). Furthermore, o(G,a) = max{) ,.qa; : S C G stable set} stands
for the weighted stability number. Thus, there is no further relaxation of
STAB(G) possible that way beyond WSTAB(G). By the chain of relaxations
of STAB(G)

STAB(G) C WSTAB(G) C RSTAB(G) C FSTAB(G) C QSTAB(G)

we have finally obtained a nested collection of superclasses of perfect graphs:
near-perfect, rank-perfect, and weakly rank-perfect graphs. The difference
between QSTAB(G) and the largest polytope coinciding with STAB(G) in-
creases, hence each superclass contains graphs which are successively “less”
perfect. This gives us some information on the stage of imperfectness or
answers in a wider sense the question: which graphs are “almost” perfect?
Our considerations will have a special stress on near-perfect graphs (which
are closest to perfect graphs) while we only list known classes of rank-perfect
and weakly rank-perfect graphs in Section 4 and Section 5. We close with
some final remarks and open problems in Section 6.

2 Rank Constraints and Sequential Lifting

Determining the system of facet-defining inequalities of STAB(G), i.e., to find
all cutting planes required to cut off the fractional vertices of QSTAB(G),
is very difficult in general. Thus one often tries to find classes of valid in-
equalities for STAB(G) and to investigate when those valid inequalities yield
facets of STAB(G). One natural class of valid nontrivial inequalities are
rank constraints (3) associated with induced subgraphs G’ C G. For conve-
nience, we often write (3) as z(G', 1) < (G, 1), z(G',1) < a(G'), or just
z(G") < a(G"). The goal is to find out, for which subgraphs G’ C G, the
associated rank constraint z(G') < «(G") yields a facet of STAB(G). A first
step towards this goal is to identify those graphs G for which their stable set
polytope has the full rank constraint (2)

z(G, 1) < a(G,1)



as a facet (we say that such graphs produce the full rank facet). PADBERG
showed this if G is a clique [20] or minimally imperfect [21]. BLAND, HUANG,
and TROTTER [2] generalized PADBERG’s result [21] by showing that (2) is
a facet of STAB(G) for all partitionable graphs G. Webs form a graph class
with circular symmetry of their maximum cliques and stable sets which con-
tain many partitionable graphs. A web WF is a graph with nodes 1,...,n
where ij is an edge if i and j differ by at most & (i.e., if |i — j| < k mod n);
we assume n > 2(k+1) in the following since W is a clique otherwise. Note
that W is a hole, Wfkjrll an odd antihole for £ > 2, and that W2 4:1 is parti-
tionable with o = a(W}™') = [2] and w = w(W}~") = k. The partitionable
web W3 is shown in Figure 1(a), the near-perfect graph in Figure 2(d) is the
web W2

Remark. Webs are also called circulant graphs C* defined in [5]. Further-
more, graphs W (n, k) with n > 2, 1 < k < in and W(n,k) = W’:jl were
introduced in [32].

TROTTER [32] studied when the complement of a web, called antiweb, pro-
duces the full rank facet: he showed that this is the case if and only if the
antiweb W’;_l is prime, i.e., if k£ and n are relatively prime. In order to show
which webs produce the full rank facet, we need the following result [4]. An
edge e of a graph G = (V| E) is a-critical if o(G) < a(G —e). We call G a-
connected if the graph on the same node set V' having all a-critical edges of
G is connected. CHVATAL [4] showed that every a-connected graph produces
the full rank facet (see [29] for a survey and [18, 24] for further results).

Theorem 2.1 W1 produces the full rank facet if and only if k is not a
divisor of n.

Proof. If: Consider the maximum stable set S; = {i,i+k,...,i+ (] —1)k}
of WE=L (where all indices are taken modulo n). Since k is not a divisor of n,
we have | ]k < n. Subtracting & — 7 from both sides of this relation yields
(i+ ([2] — 1)k < i+n—k where i +n — k is the last neighbor of 7 in W} 1.
Consequently, (S; — {i}) U {i — 1} is also a maximum stable set of W}t1
and the edge i — 1,7 is, therefore, a-critical for 1 < ¢ < n (where all indices
are again taken modulo n). Thus, if k is not a divisor of n, then Wk~ is
a-connected and produces the full rank facet due to CHVATAL [4]. ©

Only if: In the case that k is a divisor of n, there are only £ maximum stable
sets in WF™1 (of size 2). Thus, W1 cannot contain n maximum stable sets

k
the incidence vectors of which are affinely independent. O



Remark. The If-part is along the proof in [32] that W~ produces the full
rank facet if £ and n are relatively prime. The weaker condition that k is
not a divisor of n suffices for the argumentation. (E.g., W3, produces the full
rank facet but 4 and 10 are not relatively prime.)

Moreover, EDMONDS and PULLEYBLANK [7] established via matching the-
ory that line graphs of 2-connected hypomatchable graphs have the full rank
facet: H is called hypomatchable if, for all nodes v of H, the subgraph
H — v admits a matching (i.e., a set of disjoint edges) meeting all nodes. A
graph is 2-connected if it is still connected after removing an arbitrary node.
The line graph L(F) of a graph F is obtained by taking the edges of F' as
nodes of L(F') and connecting two nodes in L(F) iff the corresponding edges
of F' are incident. (Note: matchings of H correspond to stable sets of its
line graph L(H) since the line operator transforms non-incident edges of H
to non-adjacent nodes of L(H)).

For some cases, a sufficient condition is known when a rank constraint z(G") <
a(G") associated with a proper subgraph G' C G yields a facet of the sta-
ble set polytope of the whole graph G. PADBERG [20] showed that clique
constraints z(Q, 1) < 1 are facet-inducing for STAB(G) iff @ is an (inclusion-
wise) maximal clique of G. The result in [7] implies that a rank constraint

e, 1 < 1 (3a)

associated with the line graph of a 2-connected hypomatchable graph H C F
is a facet of STAB(L(F)) iff H is an induced subgraph of F. In general, a
rank constraint associated with a proper subgraph G’ C G does not need to
provide a facet of STAB(G), even if STAB(G') admits the full rank facet.
This is the case for, e.g., odd hole constraints

$(02k+1, ]1) S k (3b)
with Cy,,1 C G and for odd antihole constraints
$(62k+1, ]1) S 2 (3C)

with Coxy1 C G. Figure 3(a) shows a graph with an induced Cs (note a Cj
is both an odd hole and an odd antihole) but the rank constraint associated
with this C5 does not induce a facet of the stable set polytope of the whole
graph.

However, rank constraints z(G') < a(G') with G’ C G may be strengthened
to a facet of STAB(G) using sequential lifting introduced by PADBERG [20],

9



(@ (b) (0 (d)

Figure 3

i.e., by determining appropriate lifting coefficients a; for all nodes i in G — G’
such that the right hand side o(G") of the inequality is still satisfied and that
there are |G| many stable sets of weight «(G’) the incidence vectors of which
are linearly independent. Every inequality

z(G, 1)+ 2(G — G',a) < a(G',1) (4)

is a weak rank constraint if it is obtained by lifting a base rank constraint
z(G', 1) < a(G’, 1) which is facet-defining for STAB(G'), i.e., if G’ produces
the full rank facet. The graph G depicted in Figure 3(a) yields a weak rank
constraint basing on an odd hole constraint by using a lifting coefficient # 0, 1
(thus G is not rank-perfect in particular). G consists of an odd hole (nodes
1, ..., 5) and a central node adjacent to all nodes of the odd hole (such
graphs are termed odd wheels). The Cj yields 5 stable sets of weight 2 the
incidence vectors of which are linearly independent. In order to construct
the remaining stable set of weight 2 containing the central node 6, we have
to choose lifting coefficient ag = 2. The resulting facet z(C5, 1) 4+ 2x¢ < 2 of
STAB(G) is a special weak rank constraint, called odd wheel constraint

.I(Cgk_H, ]]) + k.TC S k (4&)

where c is the central node adjacent to all nodes of the odd hole Cyxiy
and k£ > 2. (See PADBERG [20] for a general description how to lift odd
hole constraints associated with proper subgraphs to weak rank facets of the
whole graph.) SHEPHERD [31] studied a more general weak rank constraint

1 _
Z — (W) +2(Q, 1) < 1 (4b)
i<k a(W5)
associated with the complete join of prime antiwebs W1, ..., W and a clique

@. (The complete join of two disjoint graphs G; and G5 is obtained by
joining every node of (G; and every node of G2 by an edge. E.g., every odd

10



wheel is the complete join of an odd hole and a single node. Note that the
support graph of such facets arise by the complete join of graphs which all
produce their full rank facet, i.e., we put together disjoint facet blocks. The
obtained constraints can be scaled in such a way that they have the form
(4) with a base rank constraint z(G’) < a(G’) and noninteger coefficients a;
for i € G — G'. In this sense, (4b) can be seen as a lifted clique constraint.)
SHEPHERD [31] showed that odd antiholes are the only prime antiwebs that
occur in complements of line graphs. Thus their stable set polytopes admit
weak rank constraints

S a(4) +22(Q) < 2 (40)
i<k
associated with the complete join of odd antiholes Ay, ..., A; and a clique

Q. Cooxk studied (in an unpublished manuscript, see [30]) the stable set
polytopes of graphs G with a(G) = 2. He showed that the inequality

z(N(Q)) +22(Q) <2 (4d)

is valid for STAB(Q) for every clique @ where N(Q) is the set of all nodes
v of G with Q C N(v) (note N(Q) = V(G) if Q = 0 and N(v) denotes the
set of all neighbors of v). CooK showed that (4d) is a facet of STAB(G) iff
no component of N(Q) in the complementary graph G is bipartite (see [30]).
Since a(G) = 2 implies w(G) = 2, a component of G is not bipartite iff it
contains an odd hole. Hence, (4d) is a facet iff N(Q) is the complete join of
subgraphs all containing an odd antihole and (4d) is, therefore, as lifting of
(4c) a special weak rank constraint.

GILES and TROTTER [14] studied further weak rank constraints: Consider
the webs Wt and WF with n = 2k(k + 2) +1 where V(WF+1) = {1,...,n}
and V(WF) = {1,...,n'}. Construct the graph G* by taking W*! and
Wk as induced subgraphs and adding the edges {7,i'}, {i,(i + 1)'}, ...,
{i, (i + 2k + 1)’} for 1 < ¢ < n where all indices are taken modulo n. (The
graph G' is shown in Figure 4, here the odd antihole W? and the odd hole
W} are emphasized with bold lines). Then

(k+1) 2(WHY) + k o(WF) < 2k(k +1) (4e)

is a facet of STAB(G*) by [14]. Wk*! has stability number 2k and produces
the full rank facet by Theorem 2.1 (since k + 2 is not a divisor of n =
2k(k +2) + 1). Hence (4e) is a class of weak rank constraints.

Note that the weak rank facet obtained by lifting may depend on the order
in which the nodes are lifted [20]. Hence, lifting a base rank constraint may
result in several weak rank constraints. The graph G in Figure 3(b), e.g.,

11



Figure 4

contains the 5-wheel from Figure 3(a) as induced subgraph and the associ-
ated odd wheel constraint z(Cs, 1) + 2z¢ < 2 is also a facet of STAB(G).
Furthermore, there is another way to lift the rank constraint associated with
the C5 to a facet of STAB(G), namely, by choosing ag = 1 and a7 = 1 (i.e.,
STAB(G) also admits the full rank facet).

Finally, STAB(G) may admit nontrivial facets which are not weak rank con-
straints. The stable set polytope of the graph G in Figure 3(c), e.g., has
the facet ) . ¢ x; + 227 < 3 which is not a weak rank constraint: among the
nodes of G with coefficient 1, there is no subgraph G’ such that z(G') < 3
is a facet of STAB(G'). (That means, there is no facet-inducing structure
of a proper subgraph G’ C G which we could lift to a facet of STAB(G).)
In particular, the graph G in Figure 3(c) is an example of a graph which is
not weakly rank-perfect. (Checking the stable set polytopes of small imper-
fect graphs yields that G and G are the only two not weakly rank-perfect
graphs on up to seven nodes.) The graph G in Figure 3(d) is a so-called
wedge introduced in [14]. Wedges are further example of graphs which are
not weakly rank-perfect. The stable set polytope of G' has, e.g., the facet
Doics Ti 2D 5cic i < 3 which is not a weak rank constraint, too.

ORIOLO [19] introduced a new class of inequalities valid for the stable set
polytope of every graph. Let G = (V, E) be a graph and Q be a family of
(at least three) maximal cliques of G. Let k < |Q| be an integer, A(|Q|, k) =
bl with | = Q| — k[%], and define the following two sets: I(Q, k) =
{veV:{Qe Q:ve} >k}and O(Q,k)={veV: {QReQ:vce
Q}| =k —1}. It is known from [19] that

2(1(Q.K) + A(12] ) 2(0(Q. k) < |12 (50)

is valid for the stable set polytope of every graph G and that (5a) is a common

12



generalization of the rank constraints (3a) associated with line graphs of 2-
connected hypomatchable graphs, the full rank constraints associated with
webs W¥~! where k is not a divisor of n, and of the weak rank constraints
(4e) asociated with graphs G* introduced in [14]. However, it is not known
so far whether a facet of the form (5a) is a weak rank constraint in general.

3 Near-Perfect Graphs

The subject of this section is a class of graphs which is, in a polyhedral sense,
the smallest superclass of perfect graphs: the class of near-perfect graphs G
where only one cutting plane, namely the full rank constraint, is required
to cut off all fractional vertices of QSTAB(G) [30]. That means, for near-
perfect graphs G we only have to add the full rank constraint (2) to the
nonnegativity (0) and clique constraints (1) in order to arrive at STAB(G).
Since there is no requirement that QSTAB(G) has at least one fractional
vertex, all perfect graphs are near-perfect in particular (here the full rank
constraint is not a facet except in the case of a clique). Hence near-perfect
graphs are indeed the closest superclass of perfect graphs.

Minimally imperfect graphs are further examples of near-perfect graphs by
PADBERG [21, 22|, see Theorem 1.5. While the characterization of minimally
imperfect graphs via the Strong Perfect Graph Conjecture is still open, there
is, besides Theorem 1.5, a further polyhedral characterization of minimally
imperfect graphs in terms of near-perfection.

Theorem 3.1 (SHEPHERD [30]) An imperfect graph G is minimally imper-
fect if and only if both G and G are near-perfect.

That means, the part of the class of near-perfect graphs which is closed under
complementation consists exactly in all perfect and all minimally imperfect
graphs. For every partitionable graph G we know that G' and G produce the
full rank facet by BLAND, HUANG, and TROTTER [2], but at most one of G
and G is near-perfect. We have even more:

Theorem 3.2 A partitionable graph G is minimally imperfect if and only if
G is near-perfect.

Proof. Every minimally imperfect graph is near-perfect by PADBERG [21,
22]. We show that a partitionable graph G which is not minimally imperfect
cannot be near-perfect either. G properly contains a minimally imperfect
subgraph G' C G with a(G’) < «(G) by [30]. The rank constraint associated
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with G’ yields a nontrivial facet of STAB(G) which is different from a clique
facet and the full rank facet of G. O

Hence, we have, in addition to Theorem 1.6, a further nontrivial genuine
property that holds ezactly for all minimally imperfect graphs and for none
of the other partitionable graphs. That means: if G is partitionable but
not minimally imperfect, then QSTAB(G) has at least two fractional ver-
tices by Theorem 1.6 and at least two cutting planes are required to arrive
at STAB(G) (recall that every partitionable graph G produces the full rank
facet by [2], but the full rank facet does not suffice to cut off all fractional
vertices of QSTAB(G) by the above Theorem 3.2).

In order to be near-perfect, an imperfect graph G has obviously to satisfy
the condition that every minimally imperfect subgraph of G has the same
stability number as G. A further property was conjectured to characterize
near-perfect graphs in [30].

Conjecture 3.3 (SHEPHERD [30]) A graph G is near-perfect if and only

iff each lifting of a rank constraint associated with a minimally imperfect
subgraph of G yields the full rank facet z(G) < a(Q).

Besides perfect and minimally imperfect graphs, no other class is known so
far to belong (completely) to the class of near-perfect graphs. In addition to
Theorem 3.2, we give characterizations of all the near-perfect graphs in three
graph classes. We start with a result from [30] on graphs G with stability
number o(G) = 2.

Theorem 3.4 (SHEPHERD [30]) A graph G with o(G) = 2 is near-perfect if
and only if the neighborhood of every node of G induces a perfect graph.

Next we study two classes which contain all odd holes, all odd antiholes, and
many partitionable graphs: webs and antiwebs. Recall from Section 2 that a
web W¥=! produces the full rank facet iff k is not a divisor of n (Theorem 2.1)

while the same is true for antiwebs W’;fl iff £ and n are relatively prime
(TROTTER [32]). We now determine for which webs and antiwebs the full

rank facet is the only facet of the stable set polytope besides facets of type
(0) and (1).

Theorem 3.5 A web is near-perfect if and only if it is perfect, an odd hole,
W2, or if it has stability number two.
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Proof. If: The assertion is trivial if W%~ is perfect and follows for odd holes
from PADBERG [21]. In the case a(WF 1) = 2, we apply Theorem 3.4 due to
SHEPHERD [30]. The neighborhood N (i) of every node i of W1 consists of
two disjoint cliques, namely, {i—(k—1),...,s—1}and {i+1,...,i+(k—1)}
where all indices are taken modulo n. Thus N (i) induces the complement of
a bipartite graph and is, therefore, perfect for all nodes i. Hence, WF=1 is
near-perfect by Theorem 3.4 if o(WF~') = [2] = 2 holds. Checking the sta-
ble set polytope of W3 explicitely shows that W3 is near-perfect, too. (Note:
W2 has C7 as only minimally imperfect subgraphs and o(C7) = 3 = a(W3)
holds.) <

Only if: WF1is a stable set if k = 1 and a hole if k¥ = 2, hence either perfect
or minimally imperfect and, in the latter case, near-perfect by PADBERG [21].
Wfk’l is the complement of the graph consisting of k disjoint edges (recall
that we assume n > 2k since WF=! is a clique whenever n < 2k). Wfkjrll 1s
an odd antihole if £ > 2, hence near-perfect by PADBERG [21]. We have to
show that, for k¥ > 3 and n > 2k + 2, the web W3 is the only near-perfect
web WE~! with stability number | 2] > 2.

In the case k > 3 and n > 2k + 2, WE=! properly contains an odd hole or an
odd antihole by TROTTER [32]. If one of those odd holes or odd antiholes
has a stability number < a(W/~!) then STAB(W/!) has a nontrivial facet
which is neither associated with a clique nor with Wk~1 itself. Hence W/!
is near-perfect only if it has stability number two or if it contains only odd
holes W, with stability number |%| = | %] > 2 but no odd antihole. We
show that W}f‘l with £ > 3 and n > 3k has odd holes with stability number
< a(WF1) except the case k =3 and n = 11.

Claim 1. WP contains odd holes of different length if k = 3,4 and

n

n>24,ifk=5andn > 27, if k > 6 and n > 5k.

Proof of Claim 1. Due to TROTTER [32], we have W}, C WF~1iff 2n > n'k
and n < n'(k — 1), i.e., iff

n n
< <22, '
P (i)

If %5 +4 < 2%, there exist at least two odd n’ which satisfy (i). Thus,

determine n s.t.
4k(k — 1)

k—2 —
holds. We obtain n > 24 if k € {3,4}, n > 27 if k =5, and n > 5k if k > 6.

n
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Moreover, % > 5 holds in all those cases, hence Wk=1 contains odd holes
of different length.

Claim 2. W} contains only odd holes with stability number |%| > 3 only
if k=3 and n = 11.

Proof of Claim 2. We consider W*~1 containing odd holes of length n' only,
i.e., we get
n n
'—2< —— </ <2—<n+2
n P71 S n < T n +

by (i) . Replacing n’ by 2|7 + 1 (since [%'J = 2=L = | 2] is required), we
obtain

212 -1 <

- <92 J+1§29<2L%J+3 (ii)

k—1 k

in order to guarantee a(W,,) = a(WF~') > 3. We first observe that 2% <
2[ 2] +3is true for all k£ and n (since ¥ <[] + 1) Further, 2| 2] +1 < 27
means [ 2] + 3 < # and is fulfilled Whenever ik+%5< n < (z + 1)k for some

i Ifz—3 Wecons1der2[ J—1=5< 2 =34l Wlth <l < k and obtain
Qk<5+lwhlchlstrueon]y1fk<4 If i = 4, then 2| ¥ J 1=7<" 1—‘}ck_+1l

with % 5 <1 <k yields 3k < 7+ [ which is true only if £ < 3. If i = 5, we
only have to check k = 3,4 by Claim 1 (note 5k + & > 27 if k = 5) but W,
W3,, and W3 all contain a Cy and a Cy; (which is implied by (i)). If i = 6,7
we only have to check k£ = 3 by Claim 1, but we obtain Cy;,C13 C W3, and
C13,C15 C W by (i). The case i > 8 has not to be checked for any k > 3
by Claim 1, thus we have only left : = 3 and k = 3.

The observation that W~ with n < 3k cannot contain an odd hole different
from a Cs (since a(WF~!) = 2) finishes the proof. O

Theorem 3.6 An antiweb is near-perfect if and only if it is perfect, an odd
hole, or an odd antihole.

Proof. In the case that Wfl_l is perfect or minimally imperfect, then Wz_ is
clearly near-perfect. We show that there are no other near-perfect antiwebs.
W:z_l is a clique if £ = 1 and an antihole if £k = 2. W’:b_l consists of k
disjoint edges (and is perfect) if n = 2k. TROTTER [32] has shown that
Wﬁ_l contains an odd hole or odd antihole as induced subgraph if £ > 3

and n > 2k. If n = 2k 4+ 1, then Wz_l is isomorphic to an odd hole. If
n > 2k + 1, then Wz_l properly contains an odd hole W];k,_il or an odd
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antihole W, since W.. = C W ' implies | = k by [32] and W,, # W~ '
follows by k& > 3. Then STAB(Wz_l) has the corresponding (zero-lifted)
odd hole or odd antihole facet by TROTTER [32]. This facet is different from

the full rank constraint associated with W’;_l since the stability number of
the odd hole or odd antihole in Wz_l is strictly less than k = a(WfL—l)

(note that W, - C W~ " implies n = n’ by [32] again). Hence, W — is not
near-perfect if £ > 3 and n > 2k+ 1. O

4 Rank-Perfect Graphs

We now turn to the next superclass of perfect graphs: the class of rank-
perfect graphs G where 0/1-inequalities of the form (3)

z(G') < a(G")

with G’ C G are needed as only nontrivial facets to describe STAB(G). Since
clique constraints are special rank constraints (namely those with a(G’) = 1),
all perfect graphs are rank-perfect in particular. Furthermore, all near-
perfect graphs are obviously rank-perfect, too. There are further classes
of rank-perfect graphs known.

CHVATAL [4] defined graphs G to be t-perfect if STAB(G) has rank con-
straints associated with edges and odd holes as only nontrivial facets. (Note
that ”t” stands for "trou”, the French word for hole, and that every Coxiq
with £ > 1 is here considered to be a hole.) Bipartite graphs without isolated
nodes are obviously t-perfect. CHVATAL conjectured in [4] and BOULALA
and UHRY proved in [3] that series-parallel graphs are t-perfect (that are
graphs obtained from disjoint cycle-free subgraphs by repeated application of
the following two operations: adding a new edge parallel to an existing edge
and subdividing edges, i.e., replacing edges by a path). Further examples
of t-perfect graphs are almost bipartite graphs (having a node the dele-
tion of which leaves the graph bipartite) due to FONLUPT and UHRY [8] and
strongly t-perfect graphs (having no subgraph obtained from subdividing
edges of a K, such that all four cycles corresponding to the triangles of the
K, are odd) due to GERARDS and SCHRIJVER [12]. Further investigations
of t-perfect graphs without certain subdivisions of K, can be found in GER-
ARDS and SHEPHERD [13].

By definition [15], a natural generalization of t-perfect graphs is the class
of h-perfect graphs (from hole-perfect) where, besides nonnegativity con-
straints (0), all clique constraints (1) and odd hole constraints (3b) suffice
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to describe the associated stable set polytopes. At present, there are no
interesting classes of h-perfect graphs known that are neither perfect, nor
t-perfect, nor combinations of these. (For combinations, see FONLUPT and
UHRY [8] and SBIHI and UHRY [28].)

Line graphs are a further class of rank-perfect graphs due to a result of
EDMONDS and PULLEYBLANK [7]. Their result implies that the stable set
polytopes of line graphs are given by nonnegativity constraints (0), clique
constraints (1), and rank constraints (3a) associated with the line graphs of
2-connected hypomatchable graphs. Note that line graphs are a “natural”
graph class which is proven to contain rank-perfect graphs only (while near-
perfect, t-perfect, and h-perfect graphs are rank-perfect by definition).

It is worth noting that line graphs seem to be a maximal class of rank-
perfect graphs. The closest superclass of line graphs consists of all quasi-
line graphs where the neighborhood of each node partitions into two cliques.
(Quasi-line graphs were first investigated by BEN REBEA in his PhD thesis.
Tragically, he died shortly after completing his thesis and all the efforts to
reorganize and publish his results have been unsuccessful so far.) It is easy
to check that, besides all line graphs, each web is a quasi-line graph. We
know which webs are near-perfect due to Theorem 3.5. DAHL [6] showed
that webs W2 for all n > 4 are rank-perfect. But there are webs with clique
number > 4 (e.g. Wjs) the stable set polytopes of which have non-rank
facets (see KIND [16]). The graphs G* introduced in [14] are further quasi-
line graphs which produce non-rank facets (4e). Thus, quasi-line graphs are
not rank-perfect. Furthermore, we studied in [33] critical edges with respect
to perfectness (that are edges of perfect graphs the deletion of which yields an
imperfect graph). We investigated the case of deleting critical edges e from
perfect line graphs G. Besides 0/1-liftings of rank constraints (3a) associated
with line graphs of 2-connected hypomatchable graphs, there also appear odd
wheel constraints (4a) associated with 5-wheels as facets of STAB(G — e),
see [33]. Thus deleting edges from line graphs destroys the property of being
rank-perfect, too. However, the 5-wheel constraints does not appear if we
restrict our consideration to line graphs of bipartite graphs. Thus, G — e
might be rank-perfect if G is the line graph of a bipartite graph [33].

5 Weakly Rank-Perfect Graphs

This section deals with weakly rank-perfect graphs G where, besides nonneg-
ativity constraints (0), only weak rank constraints (4) of the form

z(G, 1)+ z(G — G',a) < a(G', 1)
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are required to describe STAB(G). (Recall that the above inequality is ob-
tained by lifting the base rank constraint associated with G' C G and that
z(G', 1) < (G, 1) produces the full rank facet of STAB(G’) by the defini-
tion of a weak rank constraint.) Since every facet-defining rank constraint
z(G', 1) < a(G', 1) is a weak rank constraint with a; = 0 for i € G — G,
the class of weakly rank-perfect graphs contains all rank-perfect graphs (and,
therefore, all near-perfect and all perfect graphs). One general way to ar-
rive at classes of weakly rank-perfect graphs goes as follows: Consider a
class of rank-perfect graphs where only nonnegativity constraints and spe-
cial rank constraints are needed to describe the stable set polytope. Then
define the “corresponding” class of weakly rank-perfect graphs by allowing
weak rank constraints based on those special rank constraints as the only
nontrivial facets of the stable set polytope. E.g., the class of weakly h-
perfect graphs can be defined that way to contain all graphs whose stable
set polytope is given by nonnegativity constraints (0), clique constraints (1),
and lifted odd hole constraints. (See PADBERG [20] for a general descrip-
tion how to lift odd hole constraints to weak rank facets.) The 5-wheel in
Figure 3(a) and the graph in Figure 3(b) are examples of weakly h-perfect
graphs which are not h-perfect. (Note that the classes of weakly t-perfect
and weakly h-perfect graphs coincide since clique constraints are liftings of
edge constraints.)

Two natural graph classes are known to consist of weakly rank-perfect graphs
only due to SHEPHERD [31]: so-called near-bipartite graphs and complements
of line graphs. A graph ( is near-bipartite if removing all neighbors of an
arbitrary node leaves the graph bipartite. (That means, G — N(v) can be
partitioned into two stable sets for all nodes v of G and near-bipartite graphs
are, therefore, the complements of quasi-line graphs.) The stable set polytope
of near-bipartite graphs has facets of type (4b)

> - (%.)I(Wi) + (@ 1) <1

associated with the complete join of prime antiwebs W1, ..., W and a clique
@ as its only nontrivial facets [31]. The class of near-bipartite graphs con-
tains all complements of line graphs (the non-neighbors of a node v in L(F)
correspond to the edges incident to the edge v in F', hence to two cliques in
L(F) and to two stable sets in L(F')). SHEPHERD [31] showed that odd anti-
holes are the only prime antiwebs that occur in complements of line graphs.
Thus the only nontrivial facets of their stable set polytope are weak rank
constraints (4c) associated with the complete join of odd antiholes and a

clique.
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We studied in [33] critical edges with respect to perfectness (recall: that
are edges of perfect graphs the deletion of which yields an imperfect graph).
We investigated the case of deleting critical edges e from complements G of
perfect line graphs. We showed that odd antiholes are the only minimally
imperfect subgraphs of G — e and how to lift the corresponding odd antihole
constraints to facets of STAB(G — e). We were able to prove that those
lifted odd antihole constraints are, besides clique constraints (1), the only
nontrivial facets of STAB(G — e) if G is the complement of the line graph
of a bipartite graph. Thus: every graph obtained by deleting a critical edge
from the complement of the line graph of a bipartite graph is weakly rank-
perfect [33]. That means deleting edges from complements of line graphs of
bipartite graphs leaves the resulting graphs in the same stage of imperfectness
as general complements of line graphs, see [33] for more details.

Finally, a description of the facet-system of STAB(G) for all graphs G with
a(@) = 2 was found (but not published) by COOK, see [30]. He showed that
the stable set polytope of graphs G with a(G) = 2 is given by nonnegativity
constraints (0) and weak rank constraints of the form (4d)

z(N(Q)) +22(Q) <2

for every clique @ (recall that N(Q) denotes the set of all nodes v of G with
@ C N(v)). That means: graphs G with «(G) = 2 are weakly rank-perfect,
too. In order to figure out which graphs G with «(G) = 2 are rank-perfect,
we determine which rank facets may appear. The inequalities (4d) can be
scaled to have no coefficients different from 0 and 1 only if ) is maximal (then
N(Q) = 0 follows) or Q is empty (then N(Q) = V(G) follows). Thus, the
only possible rank facets are maximal clique facets and the full rank facet.
Hence, we have obtained: a graph G with o(G) = 2 is near-perfect if and
only if G is rank-perfect.

6 Concluding Remarks

For all perfect graphs, the stable set polytope coincides with the fractional
stable set polytope, whereas STAB(G) C QSTAB(G) holds iff G is imperfect.
We used the difference between STAB(G) and QSTAB(G) to decide how far
an imperfect graph is away from being perfect. For that, we introduced three
polytopes that contain STAB(G) but are contained in QSTAB(G). The frac-
tional stable set polytope QSTAB(G) is given by nonnegativity constraints
(0) and clique constraints (1)
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z(G',1) <1

for all cliques G' C GG. We discussed which additional cutting planes are re-
quired to cut off all fractional vertices of QSTAB(G). We defined FSTAB(G)
to be the polytope where the full rank constraint (2) is the only additional
cutting plane. Next, we defined RSTAB(G) as the polytope given by non-
negativity constraints (0) and all 0/1-inequalities (3)

z(G', 1) < a(G', 1)

for arbitrary induced subgraphs G’ C G. The last step was to allow in
WSTAB(G) as nontrivial facets more general inequalities of the form (4)

z(G,a) < a(G',1)

where G' C G with V(G") C {v; € V(G) : a; = 1} and STAB(G’) has the full
rank facet. Since STAB(G) is given by (0) and all general inequalities (5)

2(G,a) < a(G,a)
there is no further relaxation of STAB(G) possible that way than WSTAB(G):
STAB(G) C WSTAB(G) C RSTAB(G) C FSTAB(G) C QSTAB(G)

The difference between QSTAB(G) and the largest polytope coinciding with
STAB(G) gives us some information on the stage of imperfectness of the
graph G. This answers the question: which graphs are “almost” perfect?
Closest to perfect graphs are, all near-perfect graphs G with STAB(G) =
FSTAB(G). The next superclass contains all rank-perfect graphs G with
STAB(G) = RSTAB(G). “Less perfect” are all weakly rank-perfect graphs
G with STAB(G) = RSTAB(G). The discussion which graphs are known
to belong to one of those superclasses of perfect graphs is summarized in
Figure 5. For some interesting graph classes strongly related to minimally
imperfect graphs, we do not know so far to which of the three superclasses
they belong to: partitionable graphs and antiwebs. They are not all near-
perfect, see Section 3, but there is some hope to prove that they are all
rank-perfect.

Furthermore, perfect graphs are closed under complementation, but none
of the superclasses of perfect graphs under consideration is: Theorem 3.1
by SHEPHERD [30] implies that for near-perfect graphs. The 5-wheel is not
rank-perfect but its complement is; the wedge depicted in Figure 3(d) is not
weakly rank-perfect but its complement is.
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Finally, other than the perfect graphs, line graphs constitute the only natural
class of graphs for which we have a polyhedral description for the stable set
polytope for the class as well as for the complementary class. The question of
polyhedral descriptions for quasi-line graphs and, more general, for claw-free
graphs (having no node with a stable set of size three in its neighborhood)
remains one of the interesting open problems in polyhedral combinatorics.
We already know that quasi-line graphs are not rank-perfect, see the web
W, and the graphs G* introduced in [14]. ORIOLO [19] conjectured that
the only nontrivial facets of the stable set polytope of quasi-line graphs have
the form (5a), but we even do not know whether these are weak rank con-
straints. We already know that claw-free graphs are not weakly rank-perfect,
since all wedges are claw-free but produce facets which are not weak rank
constraints by GILES and TROTTER [14], see Section 2. PULLEYBLANK and
SHEPHERD [26] showed that all wedges belong to a subclass of claw-free
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graphs, so-called distance claw-free graphs (where the nodes at distance ex-
actly two from a node do not contain a stable set of size three). Hence,
distance claw-free graphs are not weakly rank-perfect, too. But there is a
complete description of all rank facet producing claw-free graphs due to GAL-
Luccio and SASSANO [11]. They showed that the rank facets of claw-free
graphs essentially come from cliques, line graphs of 2-connected hypomatch-
able graphs, and partitionable webs.
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