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ABSTRACT 

Countable systems of ordinary differential equations appear frequently 
in chemistry, physics, biology and statistics. They can be considered as 
ordinary differential equations in sequence spaces. In this work, a fully 
adaptive algorithm for the computational treatment of such systems is 
developed. The method is based on a time discretization of an abstract 
Cauchy problem in Hubert space and a discrete Galerkin approach for 
the discretization of the arising stationary subproblems. The Galerkin 
method uses orthogonal functions of a discrete variable, which are gen­
erated by certain weight functions. A theory of countable systems in 
the associated weighted sequence spaces is developed as well as a theory 
of the Galerkin method. The Galerkin equations are solved adaptively 
either by use of analytical properties of the orthogonal functions or by 
an appropriate numerical summation. The resulting algorithm CODEX is 
applied to examples of technological interest, in particular from polymer 
chemistry. 



INTRODUCTION 

Polymers belong to the most important materials in our technology. In a poly­
merization process single molecules are linked together to long polymer chains. 
The mathematical modeling of a polymerization (see e.g. [35]) leads to as many 
single differential equations as polymer chains can arise during the reaction. 
In general this number is not known a priori (sometimes not even the scale), 
but must be assumed to be very large (104 — 106 in realistic examples) or even 
infinite. The resulting system is then called a countable system of ordinary 
differential equations (CODE). Countable systems appear also in other fields of 
chemistry, in physics [23], statistics and economics [20]. 

For the numerical treatment of CODE'S there exist several methods, which 
have been originally developed for special problems in the applications. How­
ever, there is no comprehensive numerical approach up to now and "nearly 
nothing has been done concerning qualitative behavior of solutions" [13] in the 
theory. 

As a new numerical approach, a discrete Galerkin methodh.&s been suggested 
by DEUFLHARD and the author [19]. Thereby orthogonal functions of a dis­
crete variable are used to approximate the solution of a countable system. The 
method has been worked out and implemented for problems from polymer chem­
istry in the program package MACRON [1]. 

This paper presents the new algorithm CODEX, which extends the ideas of the 
discrete Galerkin method and avoids some drawbacks of MACRON, which arise 
from the fact, that it corresponds to the method of lines. A countable system, 
is considered now as an evolution equation in a sequence space. Following ideas 
of BORNEMANN [6], [7], this equation is discretized in time first. The resulting 
stationary subproblem to perform a time step is then solved approximately by 
a Galerkin method in a scale of Hubert spaces generated by a two-parameter 
family of weight functions. It turns out, that CODEX performs well for a wide 
class of problems with solutions having structural similarities to the suggested 
weight functions. The theoretical and numerical concepts can easily be applied 
to similar approaches in weighted sequence or function spaces. 

After introducing some very common model problems, in Section 1 a basis in­
dependent theory of countable systems in the sequence spaces HPt0t is derived. 
Section 2 is concerned with the construction and examination of basis func­
tions of HPi0n which are determined by the so-called modified discrete Laguerre 
polynomials. In Section 3 the algorithm is outlined very briefly, then the time 
discretization scheme and the Galerkin method in HPta are discussed. Section 
4 illustrates the efficiency of CODEX on examples from polymer chemistry. 
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1 COUNTABLE SYSTEMS OF ORDINARY DIFFERENTIAL EQUA­

TIONS 

1.1 MODEL PROBLEMS 

We consider scalar initial value problems of the type (CODE) 

(1.1) < ( i ) = /.(*, Ul(t), u2(t), ...), us(0) = v.,s€ IN (s > 1) , 

where the functions 

/ , : [0,7)] x D -•IR , D C \RN , s € IN , 

and the initial value 

are given. The actual sequence space will be specified later on. The prime 
denotes the derivative with respect to the time t. The index of the sequence 
will usually be called s. For ease of writing we will alternate between the 
notations ua(t) and u(s,t) for the s-component of the sequence (grid function) 
u at time t. As far as the context is clear the time dependence will be omitted, 
such that u(s) or us means u(s,t). 
A function 

u : [ 0 , T ] ^ £ , T G (0,27] , 

is called a solution of (1.1), if u3(0) = <ps, us G (^((OjT]) and u's = fs(t,u) in 
[0,T] for each 5 € IN. 

Example 1.1: Backward difference equation. Consider the equation 

(1.2) «'(*) = - V « ( < ) , u{0)-tp, 

where the backward difference operator V is defined by 

(1.3) (Vu)i = ux , (Vu) , = u s - u s _ ! , 3 = 2, 3 , . . . . 

Equation (1.2) appears as a basic module in many problems (e.g. as chain 
addition Ps + M —* Ps+i in polymerization models). For an initial sequence ip 
the solution of (1.2) can be written as 

U.(t) = (T(t)V)(3) 

in terms of a semigroup T(t) given by 

(1-4) (T(j)?)(s) = e-<±-^~p(r). 
~, (s - r ! 
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Specializing tps = 6Sil , 63tr the Kronecker symbol, the solution u„(t) is a 
Poisson distribution with parameter t: 

^ ( t ) = e-( 

{'-IV-

Example 1.2: Summatory systems. Equations of this type have been studied 
by HlLLE [28] and are related to mathematical models of polymer degradation 
processes [5], which have already been treated numerically by use of the discrete 
Galerkin method in [19] and [38] (see also Example 4.2). Let us consider the 
following system: 

oo 

(1.5) < ( i ) = - ( * - 1) «.(<) + £ ur(t) , u.(0) = <p. , s G IN . 
r=s+l 

The initial value problem (1.5) is not uniquely solvable, because its solution 
depends on an arbitrary (only integrable) function / = f(i) [28]. However, 
with the definition of a family of Hubert spaces 

2T« := / « e RW | H«||? := £ «2 c-* < oo | , 

the condition u(t) € Ht enforces the uniqueness of the solution and the bound-
edness of all statistical moments of u (Corollary 1.4). The latter property is a 
natural requirement in many problems. Finally, in Ht an efficient approximation 
of solutions of (1.5) is possible [19]. 

Example 1.3: Smolochowski model. In [19], the solution of the Smolochowski 
model 

1 5 — 1 CO 

(1.6) U's{t) = - 5 > P ( t ) U,-r(t) - «.(*) E «r(*) , «,(0) = S8tl , S € IN , 
ZT=\ .»=1 

could be approximated well in the scale of Hilbert spaces 

(1.7) # , : = { « € IRN I ||u||; := £ u] (1 - />)" V ^ < oo j 

for p > (jT^)2- The condition on p is necessary and enforces the change of the 
space Hp with t. The reason is, that the operator describing this problem is not 
Lipschitz continuous as an operator on Hp for fixed /?, but only as an operator 
on the scale Hp, 0 < p < 1 (Example 1.6). 

3 



1.2 A T W O - P A R A M E T E R SCALE OF H U B E R T SPACES 

We construct weighted sequence spaces, which allow a theory of countable sys­
tems as well as an efficient numerical treatment of interesting problems. 

DEFINITION 1.1. Define the weighted sequence spaces Hp<ct by 

(1.8) Hp,a := | u e IRIN | Hull^ := £ u\ *„(*)-* < oo } , 

where the weight function ^ ^ ( s ) > 0 is given for s € IN by 

(1.9) *,M = C» a ( - . i f ) p-1 , 0 < p < 1 , a > - 1 , 

wi/i i/ie constant C'a = (1 — p) 1 + a chosen such that \\*&Pia\\p,a = 1-

ßemarics. 

(i) Due to the normalization of the \I/p,a, these weight functions can also be 
regarded as probability distributions. For a = 0 the weight function tyPi0l 

reduces to the geometric distribution. For a > 1, we obtain a narrow 
distribution; if we set a = X/p, $Pl\/p converges pointwise to the Poisson 
distribution with parameter A for p —*• 0. A hyperbola of the form l/sa 

is approximated well by choosing a < 0 and p close to one. 

(ii) For 0 < p < 1 and a > — 1 the space Hp>a is equipped with the scalar 
product 

oo 

(1.10) {u , v)Pia := £ u(s) v(s) I v C s ) " 1 ,u,ve Ep,a . 
3=1 

(iii) The embeddings 

(1-11) HP,* <-+ Hha , 0 < p < p < 1 , 

and 
(1.12) HPya^Hp,0 , -Ka<ß, 

are dense and continuous. 

LEMMA 1.2. For 0<e<p<lletu€ f/p_£,o- Then for all polynomials p 
of degree j we have p • u € HPtCl for a > — 1. 
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Proof. For u G Hp_£fl we have by definition 
oo 

f>(5)VA+£> <co, 
s = l 

writing p = e_A , /) — e = e~A""s in terms of A > 0 , e > 0 . Then there is an 
s > 1 with 

e<A+£>>p(s)2eAs 

for all 5 > s. Thus ||pu||Pio is bounded, if 
oo 5 oo , 

J2 u{s)2 p(s)2 eXs < £ u{s)2 p(s)2 eXs + £ u(s)2
 e(

A+£> < oo , 
a=l s = l s=5+l 

which is true for u G Hp-eß. As 

( - . I t T 1 < 1, a > 0 and ( ' - i f ) - 1 < ^ , - 1 < a < 0, 

we get u € HPy0l and p u € -öp,a for all a > —1. • 

With Lemma 1.2 we can prove the important 

COROLLARY 1.3. If u £ Hp-ea for one a > -I, then u € Hpp for all 
ß>-l. ' 

Proof. For ß > a see (1.12). For ß < a the inequality 

holds by use of a polynomial p with degree j > (a — ß)/2. Application of 
Lemma 1.2 leads to the assertion. • 

Remark. The condition u € Hp-S<ct plays an important role in this work. 
Under numerical aspects it ensures, that we do not approximate an element at 
the 'edge' of the space Hp<a. Corollary 1.3 implies, that on this condition the 
p- scale is the crucial scale for the theory, whereas the a - scale gives some 
freedom for approximation purposes. 

Example 1.4. Let p be given. Define u(s) := Wp) /s , s>l. Then 

„ .., 1 Ä 1 
ULn = ;£^<0° lp'° " i - P£Z s2 

but J2tLi u(s)2 ^p,o(s)_1 is not bounded for any p < p. For v(s) := s u(s) 
we see that v ^ Mp,o • This confirms, that the assumption of Lemma 1.2 and 
Corollary 1.3 concerning p is necessary. 
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COROLLARY 1.4. Define for k = 0, 1, . . . , the moments /zfc[u] of u by 

oo 

(1.13) fik[u}:=J2sk<s)-
3=1 

Then for u £ Hp<a all moments of u are bounded. 

Proof. 

J2 Sk U(s) = Uk yp,a , u) < ll2k{yp,a] | |u | |p , a < CO , 

using the Cauchy-Schwarz inequality and the fact that all moments of typ,a are 
bounded. 

The following results are important for the treatment of certain nonlinear 
operators (e.g. the convolution operator in Example 1.6). We only consider the 
case a = 0 here. For a ^ 0 the constants become a little bit more complicated. 
The proofs are straightforward and can be found in [39]. 

LEMMA 1.5. For 0 < e < p it is \Er
£=£ n € Hp_e0 and 

||*,~ olU.o = \ MPtt , Mp,s := ^ " P + £) 

v^ y/0-P + e) 

COROLLARY 1.6. For u € Hp-Sfi , 0 < e < p, the following inequality 
holds: 

°° 1 -
J2 «(*) ^yp,o(5)-a < -j= Mp,e ||«||p-e,0 , 

Ü;#A a constant 
~ . _ W - P + e))1/a 

1.3 THEORY OF COUNTABLE SYSTEMS 

Mathematical theory concerning countable systems has been developed for many 
years, a survey is given in the monograph of DEIMLING [13]. In contrary to the 
most authors, which e.g. put conditions on linear countable systems, which are 
formulated as infinite matrix equations in an /p-space, we will take a different 
view. The present approach is motivated by the qualitative behavior of the solu­
tions and their efficient approximation. It turns out, that the operators studied 
here are Lipschitz continuous as operators on a fixed Hp,a - space or on the scale 
of these spaces. 
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Example 1.5. A degradation process in polymer chemistry (compare Exam­
ple 4.2) can be written as (5 = 1, 2, ....) 

(1.14) u'(t) = AD u(t) := -(s - 1) u(s) -f 2 ( £ (S+)T u) (s) , u(0) = * , 

in terms of the forward shift operator 

{S+u){s):=u{s + l) . 

The operator S+ is bounded in HPta with the norm 

(1.16) | | S + | U < M + : = ( \ M 1 + Q / 2 > • a*°-
{ y/p , - 1 < a < 0. 

Thus the infinite sum of operators on the right-hand side of (1.14) converges 
uniformly to a bounded operator for 

(1.16) p(l + a/2)<l 

(a condition which plays a role in Example 4.2). However, the first term of AD 
leads to difficulties. Let a. = 0 and define an operator Ai by 

(A1u)s := -(s-l)us , 3 GIN. 

Ai is not bounded in HPt0, but a short calculation yields 

(1.17) PiHLo <-|MI,-e,o, e>0, 

i.e. A\ is Lipschitz continuous as a map from the 'smaller' space Hp-eß to the 
'larger' space HPt0. The estimate (1.17) is the motivation for the following the­
orem, which follows Theorem 15.7 in the textbook [14] and has been converted 
from certain weighted ^-spaces to the fi^-spaces. Theorem 1.7 supplies exis­
tence and uniqueness of solutions of nonlinear ODE's in Hp$ (for simplicity the 
a - scale is omitted and we write || • \\p instead of || • | |p,a). 

THEOREM 1.7. Consider a sub-scale of Hp - spaces for p € [poA) > 0 < 
Po < 1. Let J = [0, Tf] C IR and assume: 

(a) The operator 

is continuous for p > p and F(t,0) € Hpo on J 

F : JxHp —* H-p 



(b) There exists a constant M such that 

M 
(1.18) \\F(t,u) - F(t,v)\\p < -^—^ \\u - v\\p , 0 < 7 < 1 , 

for t G J , p > p and u, v € Hp. 

Then for every p € (po, 1) the initial value problem 

(1.19) u'(t) = F(t,u(t)) , u(0) = <p £HP0 , 

has a unique solution 
u : [0,S(p-py)-^Hp, 

with 8 = min{T/ , (Md 7 ) - 1 } . The constant e?7 > 1 can be computed in concrete 
cases, e.g. di = e , d^^ = 2\/3/3 . 

Proof. The proof is based on a fixed point iteration in a scale of Hubert 
spaces. We consider the successive approximations 

uk(t) =u0+ F($,Uk-i(s)) ds , k > 1 , u0 = (p . 
Jo 

Due to the condition (a) and cp € Hpo, the iterate uk : J —> Hp is continuous 
for p > p0. We will show by induction, that 

(1.20) llu^-u^m-pKCpM^j-^^ iorp>Po, 

where Cpo(t) := |M|P0 +
 {±^mix \\F(s,0)\L-

In a first step we obtain 

IMO - "oil. < T r ^ w ^ ( ' ) . 
(P - Po)7 

using ||«||p < ||«1|P0 for p0 < p. The induction step yields 
,s„ CpJt) M fc+1f fc+14 1 

where e > 0 is chosen such that p — e > p0. In order to get rid of the factor 
l/(k -f 1) we set 

. _ P- Po 
c (k + iyh 

s 



and end up with 
\ fc+i 

/ IVI Tn 

\Uk+1(t)-Uk(t)\\p<Cpo(t) 
MtcL, \+1 If k + l 

(P-PO)V d, \((k + iyh-iyrt 

The last factor on the right-hand side is bounded in k for 7 < 1. For 7 = 1/2 
the maximum is achieved at k = 1 with di/2. For 7 = 1 we can see that 
((jfc + l)lk)k < e . Thus (1.20) holds for all k and as Mtd^p - />)~7 < 1 
for t € [0, S(p — po)7) the sequence Uk(t) is a Cauchy sequence and converges 
uniformly on every closed subinterval of [0,6(p — p0)7) to a continuous u(t) 
satisfying 

u(t) = ip+ [ F(s,u(s))ds . 
Jo 

Moreover u(t) is a solution of the initial value problem, since 

F(;u(-))-- [0,6{P-PoV)-*H, 

is continuous. In order to prove local uniqueness, we consider two solutions 
u(t), v(t) G Hp , p > po . For fixed t and pi > p, 

Now, similar to the considerations above, we 'fill in' estimates in k spaces be­
tween HPl and Hp - setting e = (pi — p)/(k + I )1 /7 in the k-th. step - and end 
up with 

ll«W-«(0llp I<Ci(0 / ' Mtd'1 

XPI-P)\ 
Thus for < < ( / > ! - p)-^(Mdr)-

1 we have u(t) = v(t). The rest follows by 
continuation. • 

Example 1.6. Consider the convolution operator Ac, 
s-l 

(AC U)(s) = Y,Ur Us-r , 
r=l 

which is the first part of the Smolochowski model in Example 1.3. Using Lemma 
1.5 and Corollary 1.6 it can be shown for the Frechet derivative DAc of Ac, 
that 

\\DAc(u)v\\l<-£ 2(1 -p + £)\\u\\l\\v\\l_£. 

Application of the mean-value theorem gives (1.18) with 7 = 1/2. Thus The­
orem 1.7 explains, why the space Hp has to be changed with time for the 
Smolochowski model. 
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2 MODIFIED DISCRETE LAGUERRE POLYNOMIALS 

In this section, an orthogonal basis of the spaces HPi(X is described in view 
of a Galerkin method in this spaces. The basis functions are given in terms 
of the modified discrete Laguerre polynomials. Important properties of these 
polynomials are presented in Section 2.2. The approximation of an element 
u 6 Hp,a by the orthogonal basis is analyzed in Section 2.3. A Gauss summation 
in HPiCl is described in Section 2.4. As not stated otherwise, we always assume 
0 < p < 1 and a > - 1 . 

2.1 CONSTRUCTION OF THE POLYNOMIALS 

First, we try to find polynomials {h}, which are orthogonal with respect to the 
scalar product 

oo 

(2.1) (« ,» ) ' • " : = ! > ( * ) « ( * ) ¥ , > ) , 

where u, v : IN —* IR can be interpreted as sequences or as grid functions on IN. 
The isometric isomorphism 

(2.2) Tp,a : H'" := {u € IRIN | (u, u)p'a < oo} —> Hp<a 

defined by 
{Tp,au)(s)=u(s)Vp,a(s) 

transforms the polynomial basis {h(p, oc)} of Hp'a to the basis {ipk{p, &)} •=z 

{ yp,a h(p, oc) } of HP,Q . 
Fortunately the polynomials h(p, a) can be found in the literature, such that 

only special settings and properties have to be worked out here. We write the 
forward product as 

(a)n := a(a + 1) . . . (a + n — 1) , a € IR , 

and denote the forward difference operator by 

(2.3) (A u), = us+i - us, 5 = 1,2, . . . . 

THEOREM 2.1. 

(i) The Rodrigues formula 

ln(s;p,a) = i l ^* p , a ( , ) - i A-jC-V-1 t i l - )} 
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generates polynomials ln(s) = ln(s;p,a) which are orthogonal with respect 
to the scalar product (2.1) for 0 < p < 1 and a > — 1. The orthogonality 
relation reads 

(2.4) (lm , /„) ' '• = 8nm 7 r , IT := Pn ( T ) • 

The polynomials ln(s;p,a) will be called modified discrete Laguerre poly­
nomials. 

(ii) The polynomials ln(s;p,a) have a series representation 

(2.5) us;p,«)=±pn-k(p-i)k{:ti){°-k
i). 

fc=0 

(Hi) The three-term-recurrence for the modified discrete Laguerre polynomials 
is 

(n + l)ln+i(s]p,a) = [(n + a + l)p + n-(l-p)(s-l)]ln(s;p,a) 
- ( n + a)p/n_!(a;/!>,a), 

(2.6) 
started with /_i = 0 and l0 = 1. 

(iv) The forward difference operator A applied to ln(s;p,a) induces a shift in 
the a-scale: 

(2.7)Aln(s;p,a) = ln(s + l;p,a) - ln(s;p,a) - {p-l)ln_x{s\p,a + V) . 

Proof. The only task is to find a formulation of results in the literature, 
which corresponds to the definition of Hp,a here. This is done in [39]. Basically, 
for part (i) results from [30] and [31] can be taken. The other parts are basing 
on [33], using that the modified discrete Laguerre polynomials are related to 
the Meixner polynomials mn(s;p,~/) as given in [24] by 

ln(s; p, a) := — mn(s - 1; p, 1 + a) . 
n\ 

Remark. The classical discrete Laguerre polynomials associated to the geo­
metric distribution (i.e. a = 0) have been studied by GOTTLIEB [25] in 1938. 
For the modified discrete Laguerre polynomials we refer to LESKY [30], [31] and 
to the textbook of NiKIFOROV and UVAROV [33], which gives a modern survey 
on orthogonal polynomials. Properties of discrete orthogonal polynomials are 
proven e.g. by ASKEY and GASPER [2], [3], [24]. The modified discrete La­
guerre polynomials with a = 0 have been used for the solution of CODE's in 
[19] and [10]. In [38], the parameter a already has been introduced in order to 
realize a discrete Galerkin method for certain so-called heterogeneous processes. 
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2.2 PROPERTIES OF THE POLYNOMIALS 

The approximation of solutions of countable systems in a most suited space 
requires the transformation of a given representation of u € Hp>a to a basis 
expansion in a space H?}5 (see also Section 3.3). We start with transformations 
with respect to the parameter p. 

LEMMA 2.2. The transformation between the polynomial systems {lj(s; p, a)} 
and {lj(s; p,a)} can be expressed by 

i 

(2-8) k
(
=0_ v - f c 

*?(*$ := \i-py ^~^6-Ö ' '* k^° • 

Proof. After inserting the series representation (2.5) of the lk(s;p,a) and 
the definition of the d^k(p, p) a reordering of the summations leads to 

fc=0 Jfe=0 

x E(i:t)((p-rt(i-^r 

With the relation ([36],p. 3) 

and the Binomial theorem we end up with 

t^(prp)k(s;p,a) = t 
k=0 k=0 

i:d>>k(p,p)h(S;p,<x) = Eß-ÖC; 1 )^ - ! )"^ = he;?,*) 

As a consequence of this lemma we note that 

(2-9) ~ [l^a) ,lk(p,a)ra = d^{p,p) 
ik 

for k < j . For k > j the scalar product is zero, of course. 
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COROLLARY 2.3. An element u(s) € Hp<a with basis expansion 
CO CO 

u(s) = Y,aj(p,a)i>j(s;p,a) = ̂ P,a ]T aj(p,a) lj{s;p,a) , 

which is also in the space Hpia, can be expressed in the Hp<a- basis in terms of 
the coefficients 

(2.10) aj(p,a) = ^tak(p1a)(j)i^(l-p)kpf'. 

Note that this transformation is independent of a. 

Proof. The projection of u to a basis element ipj(p, a) = ̂ p>a lj(p, a) can be 
written as 

1 _ 1 °° 

~1j ~tj fc=o 

Insertion of Lemma 2.2 in the form (2.9) and remembering in the definition of 
the 7?'a leads to (2.10). • 

LEMMA 2.4. The transformation between the {lj{s; p, a)} and the {lj(s; p, ä)} 
is given by 

j 

(2 11) lj(s'iP,ä) = ]C4'*(a'ä)M5;/'.0!)> ä > - 1 > 

dj*(a,ä) := ^"* (^"Jf';*-1) , ; > fc > 0 . 

Proof. Following the lines of the proof of Lemma 2.2 we insert the series 
expansion of lj(s; p, a) into the series on the right-hand side of (2.11) and reorder 
the summations: 

± d-;\a, a) W.j p, a)=p> ± (ti) (-•) ± (it:) ( - # H • 

In order to show, that the inner sum is equal to (J*"J, we set m = j — u, n = 
ä — a + j — v, p = v + a, and use relation (3b), p. 8, [36]. • 

The transformation of coefficients aj(p,a) of an #P)a-basis expansion to co­
efficients aj(p,ä) of an HPiS- expansion works analogue to Corollary 2.3 and is 
independent of p in this case. This nice feature shows, how the two scales are 
separated. 

Finally we prove two important shift properties of the discrete Laguerre poly­
nomials. 
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COROLLARY 2.5. The forward difference operator applied to lj(s; p,a) can 
be expanded into 

Alj(s;p,a) = lj(s + l;p,a)-lj{s]p,a) 

[- } = {p-l)y,P^-kh{s;p,a). 

Proof. Insertion of Lemma 2.4 into the fundamental difference relation (2.7) 
leads to transformation coefficients dj

p'
k(a, a + 1) = fP~l~k . • 

COROLLARY 2.6. The backward difference operator applied to lj(s;p,a) can 
be expressed by 

j-i 
Vlj(s;p,a) = lj(s;p,a) - lj(s - l;p,a) = (p-l)J2h(s;p,a) . 

k=o 

Proof. Backward shift of the difference relation (2.12) in the argument s 
yields 

i - i 
lj(s - 1;/>,<*) + (p- l)Y, P3"1-* k{s - l ;p ,a ) = /j(s;p,a) , 

k=o 

which can be regarded as an infinite triangular system of linear equations in the 
variables lj(s — 1; p, a) for given lj(s; p, a). This system can be solved recursively 
by induction for each index j . m 

Further properties, which are related to degradation (Examples 1.2, 4.2) and 
combination processes (Example 1.3, 4.3) can be found in [39] and [38]. 

2.3 APPROXIMATION BY BASIS EXPANSIONS 

Let u G HPia be expanded in the orthogonal basis {ipk(p,ct)} = {^Ptalk{p, a)} 
of HPy0l by 

oo 

(2.13) u(s) = ^PiQ(s)Ytaklk(s;p,a) . 
k=0 

The expansion coefficients a^ are given formally by 

1 °° 
(2-14) <** = —X>W*(s ; /> ,a ) , 

7* *=i 
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and the Parseval equality yields 

oo 

(2.15) NlL = X>l7r-
fc=0 

The orthogonal projection to the n - dimensional subspace 

Hp,a = s P a n {MP> oc),...,i!>n{p,a)} C Hp>a 

is defined by 

(2.16) ^«W^wWE«*^^)-

The associated projection error is 

oo 

(2:17) Q^u(s):=u(s)-Vru(s) = ^p,a(s) £ a*/*(*;/», a) . 
fc=n+l 

Obviously we have \\u — V^a u\\Pt0l —> 0 for n —> oo for all u € Hp<a and 
H^n'^lUa < 1- We want to estimate the norm of the projection error in terms 
of higher differences of u (analogue to the use of higher derivatives in the con­
tinuous case), which should be a measure of the smoothness of u in HPi0i. In the 
polynomial spanned space Hp,a we could use the standard forward difference 
operator A. Because A applied to lk(p, a) shifts the a-scale (2.7), the following 
definition seems to be natural in HPi0l. 

DEFINITION 2.7. Let for u € Hp<a the weighted difference operator 

Aa : HPia —• Hp%a+i 

be defined by 
A a u = Tp>a+1 A T~l u 

in terms of the isomorphism (2.2). Higher weighted differences are inductively 
given by 

A™ u := A a + m _i A a + r n _ 2 . . . A a u . 

COROLLARY 2.8. Foru € HPta with a representation (2.13) the m-th weighted 
higher difference can be written as x 

CO 

A™ u(s) = yp,a+m(s) Y, ak+m (P ~ l ) m h(s; p,a + m) . 
k=0 
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Proof. Repeated application of the difference relation (2.7). • 

As a consequence of Corollary 2.8 we can easily derive, that 

oo 

(2.18) IIA- u\\la+m = £ a\ (1 - p?nTt?tr < -°° • 
k=m 

DEFINITION 2.9. For u € Hp<a , m > 1, define the rn-th weighted differ­
ence norm \\u\\p^m by 

(2 1Q") Hull2 •= Hull2 + IIAmdl2 

{^•i-i>) \\u\\p,a,m • \\u\\p,a r \\i-±a " | | p , a + m • 

For m = 0 set 

IMLcO := IML« • 

Remark. This norms can be considered as discrete weighted Sobolev norms. 

THEOREM 2.10. For u € Hp<a and n + 1 > m > 1 £/te approximation error 
Q%a u can be estimated by 

(2.20) ||Q£'a u||,,a < C(p,a, m) M(n, m) ||u||,,Q,m , 

with a constant 

C ( / ) , a , m ) 2 = ( i ^ ) 2 m ( l + a)(2 + a ) . . . ( m + a) 

and £/ie ierm 

M(n,m) 2 = 
(n + l ) n . . . ( n - m + 2) ' 

describing the asymptotic behavior. 

Proof. Inserting (2.18) we start with 

oo oo 

ii«n;,ft.m = E^7r+E«i( i - / ' ) 2 m 7rr 
( 2 . 2 1 ) k=& k=m 

> Y ^ n2 ~S>a Fl X ( 1 -P ) 2 " ' fe(fe-l)-(fc-m+l)l 
^ Z ^ Uk Ik [l -r pm (l+a)...(m+a) J ' 

k=n-r\ 

-.... _ „ ..,_ , _„,p.o,„-m. k(k-l)...{k-m + l) 
Ik-
p,a+m _ k-m (k+a\ _ „ p.cx -m K\K l J 

Ik-m - P \k-mj - Ik P ( 1 -L Q ) . . . (m — a) 
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The norm of the projection error can be written as 

CO 

and it can be seen that 

1 <• Pm (l+a)(2+a)...(m+a) 
1 — (l-p)2m (M-l)n...(n+l-(m-l)) A 

(2.22) 
[1 , ( l - p ) 2 " fc(fc-l)...(*-wi+l)1 
[±~r pm (l+a)...(m+a) J 

for n + 1 < k. Combining (2.21) and (2.22) gives the assertion (2.20). • 

2.4 SUMMATION OF GAUSSIAN T Y P E 

In the context of the discrete Galerkin method, the numerical evaluation of 
scalar products in Hp<a is necessary, which can be written in the form 

00 u v 
(2.23) S = ^u(s)v(s) , ^ — € # ' • « . 

3=1 *Pi<* 

Thus it is natural to construct a summation formula of Gaussian type [33], 
which uses the special structure of such sums. We replace a sum 

CO 

s = £/(*) 
s=l 

by an approximation 
k+l 

j=i 

with nodes Sj and weights Uj chosen, such that S = S if / G H2
p*+X, i.e. if it 

can be written as the product of a polynomial of degree 2k + 1 and ^p,a- It 
is well known from the theory of quadrature, that then the nodes are just the 
zeros of the modified discrete Laguerre polynomials. The nodes and weights 
can be computed easily for a given k by applying the QR-algorithm to a trian­
gular eigenvalue problem, which contains terms from the three-term-recurrence 
formula of the modified discrete Laguerre polynomials (see the textbook [18], 
Chapter 9.3.). This makes a Gauss summation very efficient, even when the 
nodes have to be updated very often. 

The Gauss summation captures exactly the structure of the approach and does 
not require any truncation of the s—axis. Moreover, in Example 4.2 and Ex­
ample 4.3 double sums are evaluated by this technique very efficiently. 
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3 APPROXIMATION OF COUNTABLE SYSTEMS 

The numerical treatment of countable systems with the algorithm CODEX con­
sists of two main parts: 

(i) the time discretization and step-size control in HPtCl 

(ii) the solver for stationary problems in Hp<a 

The countable system is discretized in time first (i). The arising stationary 
problem is then solved by a Galerkin method (ii) within an accuracy supplied 
by the step-size control. The results of (ii) are also used to obtain a time error 
estimate of the approximation after a time step (ii). Finally, the solution is 
transformed to a space HPtä in order to minimize the number of degrees of 
freedom of the approximation (i). 

The above order of the discretizations - first in time , then in 'space' - is 
called Rothe 's method [37] and has been introduced by BORNEMANN [6] for the 
numerical solution of parabolic differential equations. 

3.1 DISCRETIZATION IN T I M E 

We discuss, how and under which conditions a countable system can be dis­
cretized in time by a given scheme and consider first an abstract (linear) Cauchy 
problem in Hp<a: 
(3.1) ' u'(t) = Au(t) + f(t) , u(0) given. 

THEOREM 3.1. (Hersh/Kato [27], Brenner/Thomee [9]) Let the operator 
A be the generator of a CQ - semigroup of contractions. For each A-acceptable 
rational approximation r of ez of order p, there are constants C and K, such 
that 

(3.2) \\rn(TA)v-enTAv\\<CtTp\\Ap+1v\\, fort = nT,v€D(Ap+l). 

Proof. Theorem 3 in [9]. 

It remains to check here, when v € D(AP+1) is valid for a given p. 

COROLLARY 3.2. Let A additionally satisfy the conditions of Theorem 1.7 
in HPtCt and let v 6 Hp-,ia. Then v € D(AP) for all fixed p G IN. 
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Proof. . Define e^ :— e/k , 1 < k < p. Then A is bounded from Hp-ekiCl to 

• " P - « * + l i O ' B 

As noted in Section 1.2, the condition v € Hp-S,a is crucial for guaranteeing 
senseful numerical approximations anyway. 

Discretization scheme for the linear case. Starting at time t, we use the 
implicit Euler scheme leading to an approximation u1 of u(t -f r ) . The task 
is then to get an estimation of the time error Hu1 — u(t + r ) | | for predicting a 
new reasonable step-size f. This is usually be done by computing a 'better' 
approximation u2 and then taking the difference \\u2 — u11| as an estimate of the 
time error. However, in the case of partial differential equations or countable 
systems, u1 and u2 can only be approximated. It turned out [6], that their 
approximation error has to be comparatively small for not perturbing the time 
error estimation. In order to avoid this disadvantage, BORNEMANN developed 
a so-called multiplicative error correction scheme [7], which allows the direct 
estimation of the time error. The accuracy requirements for the u1 and u2 are 
then less restrictive than in the case described above. For linear problems (3.1) 
the discretization scheme looks as follows (for details see [7]): 
Let (p = ü(t) the exact solution of (3.1) at time t. In order to perform a time 
step r we compute: 

u1 = (I — T A)'1 (<p + r f(t)) (implicit Euler step) , 

(3-3) V1 = \T(I-TA)-*(A(<p-ul)-(f{T)-f{0))), 

u2 = u1 + 771 

The approximation u2 is of order p = 2 and the rational function of the scheme 
is A-acceptable. Note, that only one type of stationary subproblem has to be 
solved in a global time step (in contrary to the application of extrapolation ([6], 
[39]), where problems with different r appear). 

In [7] it is pointed out, that u1 has to be computed with an accuracy 

(3.4) eps=^TOL , 

TOL the required global tolerance for u(t), to ensure the reliable working of the 
time step control. 

Remark. Due to the multiplicative error correction this requirement is much 
weaker than in the case of extrapolation used in [6] and [39]. 
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Discretization scheme for nonlinear problems. For the nonlinear case (see 
Example 4.3) 

u'(t) = f(u(t)) , u(0) given, 

the semi-implicit Euler scheme [16] is used as basic discretization: 

(3.5) 
( J - r A ) A u 1 = r / ( s s ) , 

u1 = <p + Au1 

with A now the Frechet derivative fu(<p) of the right-hand side f(u). Obviously 
the implicit Euler discretization is identical with the semi-implicit Euler scheme 
in the linear case. A correction formula, which fulfills the two requirements 
(direct computation of the error, only one type of stationary problem) is given 
by: 

0.6) " ' = -pu-TAr'Am. 

As will be demonstrated in Example 4.3, the scheme (3.6) works very well for 
nonlinear countable systems. A theory comparable to Theorem 3.1 does not yet 
exist. 

The numerical implementation of the above formulas requires an adaptive 
Galerkin method for the solution of the linear systems in (3.3) and (3.6). The 
correction terms rj1 are then computed with the same accuracy using the results 
of the Euler step. When a time step r has been performed, a new step size f 
can be computed by 

/TOT 
T = Tvw-

3.2 GALERKIN APPROXIMATIONS IN Hp<a 

Before we discuss the details of the Galerkin method, we restrict to the following 
types of linear operators: 

(i) TA is contractive, i.e. r|j.A||p)Cr < 1. 

(ii) A is the generator of a Co - semigroup of contractions. 

Some of the considerations below can be extended by assuming e.g. a V-
ellipticity of A (in Theorem 3.3 and Theorem 3.7), but such an assumption 
does not really fit to CODE's and a general classification of the appearing oper­
ators is still missing. Consequently the following results have to be understand 
as exemplary. 
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As seen in Section 3.1, the computational realization of (semi-) implicit Euler 
steps requires the solution of equations of the type 

(3.7) {I-rA)u = <p . 

Assuming that the solution of (3.7) has a basis expansion in Hp<a and inserting 
it into the equation, we can derive (by analytical or numerical manipulations) 
a linear (also infinite) system, which defines the expansion coefficients. Trun­
cation of this system at dimension n + 1, then called the Galerkin equations, 
leads to a Galerkin approximation 

(3.8) un-' = £ 5l ^ ( s ; pi a) e Hla , n > 0 , 
Ar=0 

of u, where the a\ are not necessarily the expansion coefficients ak of u, because: 

(i) the Galerkin equations may be not self-closing, i.e. the entries of the linear 
system are depending on coefficients ak, k > n implying a dependency of 
the solution ak on the truncation index. This effect is denoted by a tilde 

(ii) in many problems the matrix entries and the right-hand side have to be 
approximated numerically. The superscript I characterizes the accuracy 
of the associated algorithm. 

For fixed n the Galerkin equations can be written as 

(3.9) (vr{ü^-rAün<l),^)pa = {Vrv,i>i)p,a , ^leH*a, 

for j = 0, . . . , n . After insertion of the basis expansion we obtain a n n + 1-
dimensional linear system 
(3.10) {I-rB)a = b, 

with the matrix B := (bjf.), 

bjk := (Aipk, ^ ) p , « » 

and t h e r ight -hand side b = (bl
Q, .<., bl

n)
T, 

bj = (V, 4>j)p>a • 

The vector a = (al
0, . . . , al

n)
T contains the coefficients of ün'!. As said before, the 

superscript / indicates, that the scalar products may be not evaluated exactly. 
For given coefficients a, the approximation un'1 is pointwise computed in the 
program by a fast algorithm [15]. 

In the following we have to deal with three errors: 



(i) The pure projection error 

(3.11) sn = \\u-VZ'au\\, 

where u denotes the solution of (3.7). 

(ii) The error \\u — un||, where un is the solution of a Galerkin equation, which 
may not be self-closing. 

(iii) The general error ||w — «n, 'j|, which includes all effects. 

We will discuss later in this section, how the error is estimated in general and 
we will illustrate, that the error introduced by numerical summations can be 
controlled. First we examine the case, that the Galerkin equations are not 
perturbed. 

The case of unperturbed Galerkin equations. We ask for existence of solu­
tions ün of the Galerkin equations (3.9) and for estimates \\u — ün | |Pia. The 
following theorem, essentially taken from [40], Theorem 21.G, is a standard 
result for Galerkin methods in Hilbert spaces - adapted to our case. 

THEOREM 3.3. Let A : D(A) C HPtCl -> Hp<ot be a linear operator. For the 
following cases the problem (3.7) has a unique solution in Hp<a and the Galerkin 
method converges, i.e. \\ün — u\\ —• 0 for n —* oo. 

(i) TA is contractive. Then the estimate 

(3.12) \\u-u«\\<(l-T\\A\\Pia)-'\\u-Vru\\ 

holds. 

(ii) A is generator of a Co - semigroup of contractions and fulfills the invari-
ance condition 

(3.13) Vp
n'

aA = Vp
n'

aAVp
n'

a , for all n € IN . 

Then we have convergence for r > 0 and for the Galerkin solution ün 

holds 
ün = VP,a^ 

0 0 



Proof, (i) This can easily be proven by use of the Banach fixed-point theo­
rem and the Neumann series. 
(ii) The infinitesimal generator A of a Co - semigroup of contractions is charac­
terized by the Lumer-Phillips theorem ([34], Theorem 4.3): 
A is dissipative. i.e. {Au . u) < 0 and for a A0 > 0 the range of X0I — A is Hp.a. 
For un e # " it follows from 

P,a 

(V^AÜ\ün)PtQ = (Aü\ün)Pta 

that V£aA is also dissipative and the range condition is fulfilled in H™a because 
of (3.13). Hence V^aA generates a contractive C0 - semigroup too. • 

Error estimation. In view of Theorem 3.3 the numerical implementation of 
the discrete Galerkin method requires an estimate of the projection error at 
least. 

LEMMA 3.4. Define an error estimate en of the projection error (3.11) by 

(3-14) 4 : H I ^ + 1 - " l 2 = ^ + i 7 n 7 i , 

and assume that there exist C < 1 and no > 1 such that for n > TIQ the relation 

(3.15) en+1 <Cen 

holds. Then 
( 1 \ 1 / 2 

£n<en< I 1 _c2) e» , n>n0. 

Proof. Obviously 
oo 

k=n+l 

since 7^'a > 0. On the other hand it follows from (3.15) for n > n0 that 

OO OO I 

£, 2 _ V " <r2 <T r2 V r2k — -
n — Z_j £fc-l ^ 5n 2^/^ ~ i _ n2 " " 

k=n+l it=0 X ° 

The actual value of C can be estimated in the algorithm by considering succes­
sive error estimates for increasing n. Whenever C turns out to be near or larger 
than one, a warning is given by the program. In appUcations the projection 
error has to be measured in a scaled norm, of course. 
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In general we obtain a perturbed approximation (3.8). The error ||ün'' — u\\Pta 

can be written in terms of the projection error and a so-called truncation error. 

IIÖB>'-<« = ii^-pr«!!;,« + iif''-«!;,* 
(3J6) = £ «br + E (4 - a^r • 

k=n+l k=0 

Let now an algorithm produce successive approximations ak of ak - e.g by 
increasing the truncation index n or by Gauss summations in (3.10) with an 
increasing number of nodes. Assuming that 

ä[ —y ak for / —> co , k fixed, 

the following error estimation can be applied (spin,i = £n in Lemma 3.4): 

n „ 

(3.17) £n<l := eT>nil + eP,n>, := 2^ K ~ afc ) Ik + !,an+iJ 7n+i • 
k=0 

We are only interested in a truncation error (respectively its estimate) ET,n,l 
being just a little smaller than the projection error £p,n,i for that the estimate 
of the projection error is reliable. Thus we require / to be chosen such that 

(3.18) | | tx B + 1 ' / - tx B + 1 | | P i a </c | |« B ' , - t i | p,a 

with some safety factor 0 < K < 1 (see also [17], (1.26)). In actual computations, 
the terms on both sides are replaced by the estimates suggested in (3.17), K is 
set to 1/4. 

The Effect of Numerical Summation. Finally we examine, whether a nu­
merical summation algorithm as presented in Section 2.4 can be applied to 
construct the Galerkin equations. The scalar products in (3.10) are replaced by 
approximations (u, u) , where the index / denotes now, that 

(3.19) («><« = («>«),,« for ^-eK«-

The question is, how I must be chosen for not perturbing the Galerkin method 
essentially. As the discussion of the general problem requires additional as­
sumptions on the operator A again, in this paper we treat only the case of a 
projection 

unJ _ -pp,au ? Vp,a n u m e r ica l ly evaluated, 

as an example and ask how un is perturbed. We use techniques described in 
the textbook by ClARLET [11] for the case of finite elements. 
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The solution un € H™ of the equation 

(3.20) (uniVn)p,a = {u.yn)PtCt , Vu" € Hp,a , u € #P)Q given, 

is just the projection un = V£,c" u . Let the perturbed projection un'1 be the 
solution of 

(3.21) ( « n , ' , « B ) ^ = («,fB)i,« Vt;"€ffPtW, 

where the index / characterizes a summation formula. Following estimates in 
the proof of the STRANG lemma ([11], Theorem 4.1.1), we can show that 

(3.22) \\u-u^\\<M\\u-un\\ + sup K ' )p'l X ' )p'al • 

The error El(f) of a numerical summation in i/^a is given by 

co r 

(3-23) E\f) = J2f(s)-j:ujf(s]) 
s=l j=l 

where /, the Sj and the Uj are chosen such that El(f) = 0 for / e Hl
pa. Thus 

the missing term in (3.22) is 

(3.24) K^V-K«,tJ = |^(f-) 

In order to get an estimate of this error, we prove an analogue to the Bramble-
Hilbert lemma [8]. 

LEMMA 3.5. Let f be a continuous linear form on the space HPtCl with the 
property 
(3.25) Vp € H'pta , f(p) = 0 . 

Then with the expressions C(p,a,m) and M(l,m) from Theorem 2.10 the fol­
lowing estimate holds: 

(3.26) Vv € Hp,a , | / (v) | < 11/11 C(p, a, m) M(l, m) \\v\\p,a,m 

forl + l>m>l. 
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Proof. For all v € HPta and p € Hpa we may write 

l/(«)i = l/(t;+p)|<||/IUIit; + p|U9 

and thus 
\f(v)\ < \\f\\p,a inf \\v-rp\\P,a. 

The expression on the right-hand side can be estimated by 

inf \\v + p\\p,a = \\v - Vf'av\\Pia < C(p, a, m) M(L m) \\v\\p^m 

for / + 1 > ra > 1 using Theorem 2.10. • 

LEMMA 3.6. For wn € Hpa the summation error El(uwnty~*a), I > n , can 
be estimated by 

(3.27) \E\u wn^;l)\\ < Cs \\wn\\ C(p, a, m) M(l - n, ro) ||u||p,Q,m , 

where Cs is a constant depending on the summation rule. 

Proof. For fixed wn G if" we define a linear form 

f '• Hp,a —> IR , 
U H ^ U t i ) " * ^ ) , 

which is continuous in u and has the norm Cs \\wn\\- Moreover we have f(u) = 0 
for u € Hl~£. Then application of Lemma 3.5 gives the assertion. • 

Finally we insert Theorem 2.10 and Lemma 3.6 into (3.22) and obtain 

THEOREM 3.7. If equation (3.21) is solved by applying a summation rule, 
which is exact in Hl

pa , I > n, the error of un'1 can be estimated by 

(3.28) \\u-un''\\<C(p (M(n, m) + Cs M(l - n, m)). 

Theorem 3.7 shows, that the summation formula has to be of order / = 2n, 
such that the pure and perturbed projection have the same asymptotic behavior. 
Thus we use a Gauss summation with n + 1 nodes in Hpa leading to 

/ = 2n + 1 . 

Theorem 3.7 also shows, that for fixed n 

j j u»_ u«- ' | | — 0 for / —oc . 
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3.3 W E I G H T FUNCTION FITTING 

In order to minimize the computational effort of the discrete Galerkin method, 
a good choice of the parameters p and a is crucial. In this work, we choose an 
heuristic approach which is an extension of the moving weight function concept 
suggested in [19]. After each step, an actual approximation un 6 Hp<a is trans­
formed to ün € Hptä (using the formulas derived in Section 2.2), where n < n 
is expected. 
The main idea is the fitting of the first moments of un € Hp>a to those of the 
weight function $p,ä, a procedure which is possible by Corollary 1.4. Due to 
the normalization of the family tyPiCI this leads to an implicit definition of the 
parameters p, ä by 

(3.29) ^ 

*M I „ ^ , _ ! + ** 
1 - / 5 ' 

„,[*„] = *? + **?+? + ! 
/*,[«] r'ip'ai

 ( 1 - P ) 2 

From (3.29) it follows, that (p,k = MfcM): 

_/ N - M0M2 -p\- MiMo + Mo 
p[U) — 0 = 5 

(3.30) 0 2 W2 ~ Mi 
_/ N - 2/if - /iX/z0 - M2M0 
a(uj = a = 

M0M2 - Mi - M1M0 + Mo 

The requirements 0 < p < 1 and ä > —1 are fulfilled, whenever the denomina­
tors of the expressions in (3.30) are positive. Whenever only the parameter p 
has to be adapted (i.e. a = 0), (3.29) leads to (consistent with [19], (3.15)) 

(3.31) p(u) = 1 - " ° M 

MiM 

In order to compute the moments (io[u], fii[u], M2M f° r u £ Hp,a given in 
the basis expansion, we use the fact, that the monomials sk can be represented 
in terms of the polynomials h{p, ot) by 

k 
(3.32) sk= ^2hmlm(s) , fc = 0, 1, . . . , 

m=0 

with coefficients 6̂ m = hm(p,®) > ̂ fcfc r 0- Then jXkl^ p,a] = &fco and insertion 
of u into the definition of the moments yields 

k 
(3.33) /Ijfe[u] = ^6jtmam7m'a • 

m=0 
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For k < 2 the coefficients bkm can be calculated to be 

ho = vi{p,a) , h\ = 
1 - p 

2ap + p + 3 2 
b20 = MP, a) , 621 = ( 1 - ^ ) 2 ' &22 = ( 1 _ py ' 

In general, the condition (3.29) has the nice characterization for weight functions 
^ with p parameters Cx,..., cp, and associated orthogonal polynomials, that for 
the coefficients of the respective expansion in HCu...fip the relation 

(3.34) ax = a2 = . . . = ap = 0 

is valid. This property has been used in [19] for p = 1 (cx = p) to derive a 
differential equation for the parameter of the Galerkin method. 
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4 NUMERICAL EXAMPLES 

The considerations of this paper led to the program CODEX written in the lan­
guage C. Details of the implementation can be found in [39] for the case of 
extrapolation in time. The use of the multiplicative correction formula as time 
discretization lets the structure of the program in principle unchanged. 

In this chapter some numerical results are presented featuring: 

• the time discretization (linear and nonlinear) 

• the adaptivity of the method with respect to the parameters p, a 

• the adaptivity with respect to the truncation index n 

• the numerical preprocessing with Gauss summation. 

All computations have been performed on a SPARC-station 1+ using double 
precision. The computing times (CPU) are given in seconds. 

4.1 CHAIN ADDITION POLYMERIZATION 

We consider the backward difference equation from Example 1.1: 

«'(*) = - V u ( i ) , u(0) = <p, 

which is the (normalized) CODE of the reaction step Ps + M -4 Ps+1. The 
Galerkin equations can be derived analytically by applying Corollary 2.5. The 
process is started with the geometric distribution (p = \Ppo,o £ Hpo,o a n < i n a s been 
integrated here up to ttn& = 50 sec. The choice p0 = 0.3 is made to illustrate 
the parameter control of the algorithm. From (1.4) the solution u(t) is expected 
to be similar to a Poisson distribution with parameter X = t. As the weight 
function i&Pta tends to such a Poisson distribution for p —> 0 and a = t/p, we 
can expect to obtain Galerkin approximations in spaces Hp<a with p << po and a 
large. It turns out actually, that the parameter p decreases to p(tend) = 3.6-10-3, 
whereas the parameter a. increases from zero to a.{ten<i) = 13844.4 - this is 
presented in Figure 1 (logarithmic scale). Table 1 reflects the behavior of the 
time-step control, where it can be seen, that the maximum true error (computed 
in HPi0l = Hp(t),a(t), using (1.4)) over all time steps fits to the required accuracy 
TOL. Throughout this chapter n ^ ^ may denote the maximum of the number 
of expansion coefficients in Hp(t),a(t) required to represent the solution after a 
global time step. Figure 2 shows the time layers chosen by the algorithm. The 
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Figure 1: Time evolution of p and a 

TOL Time 
steps 

"max norm of true 
error in Hp a 

CPU 

lO"1 

io-2 

lO"3 

59 
157 
482 

4 
5 
7 

5•IO"2 

9•IO"3 

1•IO"3 

0.5 
1.5 
5.0 

Table 1: 
CODEX: performance for different tolerances 
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initial step size is 10~3 and increases in time to a scale of 1. It can be shown, 
that 

||V||P)a —»• oo , a fixed, p —» 0 . 

This would result in time steps tending to zero in general cases, but insertion 
of pa = t (the parameter of the Poisson distribution) shows, that the step sizes 
may tend to one. The behavior of the error estimation compared to the true 
error for TOL=0.1 is presented in Figure 3. 

1 

Figure 2: Moving Poisson distribution emerging from an initial geometric distribution 

Remark. Due to the properties of the Gauss summation, it does not matter 
to replace the analytical properties (here: Corollary 2.5) of the discrete Laguerre 
polynomials applied to the difference operator by a numerical summation. Then 
the example can be extended to a reversible process with s-dependent reaction 
probabilities. In [26], p. 292, a master equation describing a birth-death-process 
from chemistry is given by 

us{t) = w(s-l,s-2)us.i(t)-'rw(s-l,s)us^1(t)-(w(s,s-l)+w(s-2,s~l))us(t) 

(4-1) 
with transition probabilities 

, . w(s,s - 1) = ak^s - 1) + k'2c , 
{ } w{s,3 + l) = k[{s + l)s + k2b(s + 1) 
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0.25 
time ( • 10") 

Figure 3: Behavior of the error-estimator 

and a, 6, kt, k[, &2) k'2 constants. This problem can be solved by CODEX, leading 
to a traveling Poisson distribution comparable to Figure 2. 

4.2 POLYMER DEGRADATION 

In a degradation reaction of the type 

(4.3) PT + Ps_r , s > r > 1 , 

a polymer Ps of chain length 5 breaks at position r into two polymers of length 
r and length s — r. In general (see e.g. [5]) the reaction rate coefficients kST 

depend on the degree of the polymer s and the location r of the breaking bond 
in the polymer chain. Mathematical modeling of a degradation leads to the 
following CODE, with us{i) the number of polymers of chain length s at time t: 

/ s - l \ oo 

(4.4) u's(t) = (ADu)(S):=-[^ksr) «.(*) + 2 X k„ur(t) , 
\ r= l / r=s+l 

re-defining the degradation operator (1.14). A realistic initial distribution us(0) 
from [5] can be described qualitatively by 

(4.5) «,(0) = Ps p = e
_1/'7'miX 
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such that the maximum of the distribution us(0) roughly occurs at chain length 
•5 = rma,x (e.g. rmax « 60000 in [5]). We mentioned in Section 1.3, that the HPt0l 

- theory is valid for the degradation operator only if p(l + a/2) < 1. Therefore 
we cannot use the exact representation 

u « ( 0 ) = ( T ^ - * » W ' s ä 1 ' 

if p > 2/3. This implies, that distributions of the type (4.5) can only be 
represented in HPti for rmax = 1 - the case of a geometric distribution. Hence 
we use the representation of us(0) in HPIQ with p — 2p/(l + p) (due to (3.31)) 
and the expansion coefficients 

and have to control the moving weight function fitting additionally by p(l + 
a/2) < c, c < 1 a safety factor. 

The degradation problem will be attacked here for the reaction coefficients 

(4.6) ksr = ks = kps
ß , kp = 2.11 • 10 - 7 , ß = - 1 / 3 . 

This modeling of a heterogeneous polymerization is suggested in [5] and has 
been treated in [38] by replacing the fractional power s13 by a so-called factorial 
power. Introducing a (small and analyzed) modeling error, the problem could 
be solved there using product linerization formulas of discrete Laguerre polyno­
mials. In order to solve the original problem, we have to evaluate (respectively 
approximate) the scalar products 

(AD^k(p,a),ipj(p,a))pa = 

( 4"7 ) E h(') ((1 - s) * . * * ( * ) * , » + 2 £ h{r + s) tf , ,a(r + s) kr+s) 
s=l V r=l / 

by applying a double Gauss summation. Before discussing the realistic setting 
(''max = 60000), we show that the problem is reliably approximated by CODEX. 
For that we choose r , ,^ = 50 in (4.5), kp = 1.0 in (4.6) and tend = 0.01, such 
that a reference solution can be obtained by a direct integration of system (4.4) 
truncated at smax = 1000 and treated as an ODE. Table 2 shows the nice behav­
ior of the Galerkin approximations for different tolerances. The original case 
with r = 60000 in (4.5) and tend = 3600 sec. implies that the interesting maxi­
mum chain length smax is larger than 400000. Obviously it is no longer possible 
to compute a direct solution of the problem in this case, but a comparison of 
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TOL "max norm of true 
error in Hp a 

CPU 

IO"1 5 6-10-^ 5 
5-10"2 7 4-10-2 12 

10~2 10 6 10-3 39 
5-10"3 11 3•IO"3 72 

Table 2: 
CODEX: performance for heterogeneous degradation. 

0.32 0.63 
s ( . 10 *8) 

Figure 4: Comparison of the results for a heterogeneous degradation, ttnd — 3600 sec. 
obtained by different methods. 
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«««, 

Figure 5: Time evolution of the weight distribution in a degradation process 

a result in [38] (•••), of the new (—) and of the old (- •) version of CODEX [39] 
shows, that the solution seems to be very reasonable (Figure 4). The computing 
times are comparable to Table 2. Figure 5 presents the time evolution of the 
weight distribution s • u3{t) (chosen for ease of representation) of this process, 
where each line represents one time step. 

4.3 SOOT FORMATION 

In the last example we show, that very general types of reactions can be treated 
by using the techniques derived in this paper. 

Coagulation (combination) processes are described in the chemical notation 

by 
P 4. P fcrj) p 

where Pa may denote a polymer molecule or a soot (smog) particle of size s. This 
reaction module appears frequently in applications - distinguished by different 
modelings of the reaction rate coefficients krs = kST. It can also be considered as 
the reverse process of a degradation (4.3). In polymer chemistry often moment 
dependent rate coefficients are in use, whereas the modeling of surface effects 
of the combination of smog particles leads to coefficients dependent on the size 
of the reacting molecules. The CODE of a coagulation process reads in general 
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(us(t) defined as in Example 4.2) 

1 J — 1 OO 

(4.8) U'a(t) = F(u(t))(s) : = X E K»-r «-•(*) «.-,-(<) - «.(*) E fcT "r(*) • 

Concerning the fcsr, we refer to a model by FRENKLACH [21], where the following 
reaction coefficients are suggested: 

1 /9 

(4.9) krs := kp (- + -) (r1 / 3 + s1/3f , kp constant. 

Note, that the algorithm CODEX works for arbitrary coefficients kST (as far as 
the HPt0l - theory is valid). 

The problem (4.8) has been attacked by different authors. In [21], a special 
approximation of the moments is tried just for the coefficients (4.9). In [32], a 
discrete Fourier transform is applied, but this requires a certain separation of r 
and s in the expression for the kTS. A continuous modeling as in [22] leads to 
theoretical difficulties. 

In order to obtain a reference solution of (4.8), we perform again a direct 
time integration of a truncated system as an ODE (replace oo by smax in (4.8), 
•Smax large enough). 
Such an integration up to an interesting ten^ took more than 14000 sec. (CPU) 
on a Cray-YMP. This value would be even larger, if the truncation index s^x 
was not known from the simulations with CODEX a priori ! A realistic number 
of size-classes is given in [21] to be about Smax = 10000, thus we used kp = 1 
and teni large enough to obtain comparable results. By the way we note, that 
the whole simulation with CODEX is independent of the parameter smax. 

The application of the semi-implicit Euler scheme (3.5) in CODEX requires 
the Frechet derivative DF((p)(u) of F with respect to u at ip, which can be 
computed pointwise (the time dependency is omitted) by 

£ — 1 OO OO 

(4.10) DF((p)(u)(s) = E Ks-r Vs-r « , - y , J ksr UT - USY, k„ <Pr • 
r=l r=l r=l 

As in Example 4.2, the entries of the Galerkin equations are computed by a 
double Gauss summation with two infinite sums of the structure described in 
Section 2.4. This can be done after an appropriate re-ordering of the appearing 
sums. 

It turns out, that the solution us(t) (number distribution) at t — 100 sec. has 
a narrow peak for small chain lengths (s < 100). This peak is obviously hard to 
approximate (i.e. time consuming) by a polynomial expansion as used herein 

36 



(see Figure 6). Nevertheless, a relative accuracy of 8-10% can be obtained 
in moderate computing times (about 50 sec. CPU on a SPARC 1-f-), which 
increase strongly for higher accuracies. This is an effect of properties of the basis 
functions, not a consequence of the used time and operator discretization. For 

o 
I 

0.2 , 0.3 
s ( « E+04) 

Figure 6: Comparison between direct solution (• • •) and Galerkin approximations with n = 4 
(-) and n = 20 (-•-) of a heterogeneous coagulation process at t=100. 

a better study of the algorithm for higher accuracies, we compute directly the 
weight distribution us(t) • s from a transformed equation (4.8). Table 3 shows 
the performance of CODEX for a simulation up to t — 100 sec. in this case. If 

TOL time-
steps 

"max true error 
in Hp,a 

CPU 

10-1 

5-10-2 
IQ"2 

50 
67 
135 

5 
7 

14 

1.4-10-1 

8.5-10-2 
3.1-10-2 

16 
49 

1386 

Table 3: 
CODEX: performance for several tolerances. 

the direct solution at t = 100 sec. is directly represented by a basis expansion 
with the parameters obtained by CODEX (i.e. p, a and n), the behavior of the 
time error estimation can be studied. In Table 4 it can be seen, that this device 
works very accurate. Figure 7 shows the time evolution (in logarithmic scale) 
of the weight distribution up to t = 100 sec, showing how fast the mean value 
increases with time. Table 5 compares the computing times of CODEX and 

37 



TOL time*error 
(true) 

time-error 
(estimation) 

lO"1 

5-10-2 
lO"2 

4 - 1 0 " 2 

2.5-10-2 
9•10~ 3 

5•10-2 
2.5 • lO"2 

5 • l O " 3 

Table 4: 
CODEX: Comparison of the time error and its estimation. 

Figure 7: Time evolution of the weight distribution in a soot formation 
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a direct integration with the non-stiff ODE-solver DIFEXl [16] on SPARC 1+ 
and CRAY-YMP. As can be seen, the time for the direct integration increases 
quadratically with the value of smax. Therefore it is in principle only possible 
on a supercomputer - with tremendous effort and preventing a treatment of a 
CODE as a large ODE in general. The computing time of CODEX increases for 
tolerances up to 5 • 10~2 in principle with the number of time steps - independent 
of smax. Figure 8 illustrates the adaptivity of the discrete Galerkin method with 

t smax CPU CPU CPU (DIFEXl) 
CODEX DIFEXl Cray-YMP 

1.0 50 13 18 5 
2.0 90 19 36 10 
5.0 250 27 365 25 

10.0 600 34 - 92 
50.0 1200 51 - 441 

100.0 8500 59 - > 14000 

Table 5: 
Computing times (sec.) for direct (non-stiff) integration (DIFEXl) on SPARC and CRAY and 

CODEX (TOL = 5 • 10~2). 

respect to the truncation index n for the tolerances 10_1, 5-10 -2, 10~2. Because 
the coagulation process roughens the distribution with time (as an element of 
HPta), an increasing number of expansion coefficients is necessary, in particular 
at the beginning. 

We conclude the presentation of the examples with the remark, that the 
techniques implemented in CODEX can be extended obviously to problems with 
combinations of operators as well as to systems of CODE'S. The restrictions 
given by the class of basis functions used herein can be overcome by choosing 
other weight functions or combinations of them. 
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Figure 8: Time evolution of number of expansion coefficients for different tolerances. 
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