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COMPUTING TRIANGULATIONS USING ORIENTED MATROIDS

JULIAN PFEIFLE AND JÖRG RAMBAU

ABSTRACT. Oriented matroids are combinatorial structures that encode the combinatorics
of point configurations. The set of all triangulations of a point configuration depends only
on its oriented matroid. We survey the most important ingredients necessary to exploit ori-
ented matroids as a data structure for computing all triangulations of a point configuration,
and report on experience with an implementation of these concepts in the software package
TOPCOM. Next, we briefly overview the construction and an application of the secondary
polytope of a point configuration, and calculate some examples illustrating how our tools
were integrated into thePOLYMAKE framework.

1. INTRODUCTION

This paper surveys efficient combinatorial methods to compute triangulations of point
configurations. We present results obtained for the first time by a software implementation
(TOPCOM [Ram99]) of these ideas. It turns out that a subset of all triangulations of a point
configuration has a structure useful in different areas of mathematics, and we highlight
one particular instance of such a connection. Finally, we calculate some examples by
integrating TOPCOM into thePOLYMAKE [GJ01] framework.

Let us begin by motivating the use of triangulations and providing a precise definition.

1.1. Why triangulations? Triangulations are widely used as a standard tool to decom-
pose complicated objects into simple objects. A solution to a problem on a complicated
object can sometimes be found by gluing solutions on the simple objects. Some examples
are the following:

• Numerics: Finite Elements Method
• Algebraic Topology: computation of topological invariants
• Computer Graphics: Raytracing

Besides these applications, structures on whole sets of triangulations have interesting
connections to seemingly distant disciplines, among them:

• Algebraic Geometry: Connection to Toric Varieties
• Algebra: Polynomial System Solving
• Homotopy Theory: Structure of Loop Spaces

Therefore, the study ofspaces of triangulationshas become a subject in its own right in
the field of discrete geometry [Ram96].

1.2. What exactly are triangulations? For the rest of the paper, letA be ad-dimensional
point configuration withn points. We assume that the points are labeled1, 2, . . . , n, and
denote the coordinate vector of the pointi by ai.

Definition 1.1. A subsetT of (d+ 1)-subsets ofA is atriangulation ofA if and only if
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FIGURE 1. A correct triangulation, an unwanted intersection (IP not
met), and an incomplete triangulation (UP not met)

⋃
σ∈T

convσ = convA(UP)

convσ ∩ convσ ′ = conv(σ ∩ σ ′) ∀σ, σ ′ ∈ T.(IP)

Condition UP makes sure that theunionof all (convex hulls of) simplices inT covers
(the convex hull) ofA. Condition IP takes care of unwanted intersections. Note that we
do not require all points to be used in a triangulation. Figure 1 provides a sketch of the
situation.

2. THE ORIENTED MATROID OF A POINT CONFIGURATION

In a naive approach, checking for non-empty interior intersection of two simplices or
for a complete covering are linear programming problems. Since we need numerically
exact results for our purposes, exact arithmetics is a must. However, linear programming
with exact arithmetics is computationally expensive.

In this section we show how the conditions of Definition 1.1 can be checked purely
combinatorially, provided we have theoriented matroidofA at hand. The resulting combi-
natorial characterization has been formulated and extensively used, e.g., in [Ram97]. More
rigorous proofs can also be found there. Related characterizations and applications thereof
can be found in [Loe95, LHSS96]. More general information about oriented matroids can
be found in [BLVS+93].

2.1. Geometric Problem I: Proper intersection of simplices.We would like to use com-
binatorial data ofA to check (IP). It turns out that there is a finite set of minimal obstruc-
tions, thecircuits of A, that describe the intersections of simplices inA completely. How
does this work?

Assume that the convex hulls of thed-simplicesσ andσ ′ intersect improperly, i.e.,σ
andσ ′ violate (IP). Then, by Radon’s theorem, we findZ+ ⊆ σ andZ− ⊆ σ ′ such

(i) Z+ ∩ Z− = ∅,
(ii) the relative interiors ofZ+ andZ− intersect,

(iii) Z+ andZ− are inclusion minimal with these properties.

The pair(Z+, Z−) is called anintersection circuitof σ andσ ′. In particular, a subset
of A with properties (i)–(iii) it is acircuit of A.

Another interpretation of a circuit is that
∑
i∈Z+ λiai =

∑
i∈Z− λiai is an affine

dependence with minimal support, for suitableλi > 0 with
∑
i∈Z+ λi =

∑
i∈Z− λi,

i = 1, . . . , n. If we setΛ :=
∑
i∈Z+ λi then the (unique) intersection point in convZ+ ∩

convZ− is given by 1Λ
∑
i∈Z+ λiai.

This connection to affine dependences shows that we have exactly one circuit (modulo
exchangingZ+ andZ−) for every affinely dependent set of points inA. Since there are at
most

(
n
d+2

)
affinely dependent sets of points, there are at most that many circuits (modulo
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FIGURE 2. An unwanted intersection can be detected by a circuit

FIGURE 3. An interior facet covered by only one simplex detects a
(UP)-violation; another simplex containing it is required

exchangingZ+ andZ−). Using the set of all circuits ofA, we can check (IP) easily as
follows:

Two simplicesσ andσ ′ in T violate (IP) if and only if there exists a circuit
(Z+, Z−) of A with Z+ ⊆ σ andZ− ⊆ σ ′.

Circuits are, in other words, obstructions to (IP). See Figure 2 for a sketch of two simplices
intersecting improperly and a corresponding intersection circuit.

2.2. Geometric Problem II: Proper covering by simplices. In order to check (UP) pure-
ly combinatorially, we will assume (IP’) for all simplices inT . A non-empty set of sim-
plices satisfying (IP’), but not necessarily covering convA, can be seen as apartial trian-
gulationofA. How can we detect an uncovered area in convA purely combinatorially? To
this end, we look at facets ofd-simplices inT . Such a facet isan interior facet ofT if it is
not a facet ofA. (A facet ofA is a(d− 1)-dimensional subset ofA that is the intersection
of A with a supporting hyperplane. A supporting hyperplane is an affine hyperplane that
does not separateA.)

The following is easy to see [Ram97]: a partial triangulationT violates (UP) if and
only if we find an interior facet ofT that is not contained in any other simplex inT . Let
us assume for the moment that we have a list of all facets ofA. Then we can simply go
through the set of all facets of a partial triangulationT and count the number of simplices
in T containing them. If there is an interior facet ofT contained in only one simplex, then
T violates (UP). This test is purely combinatorial.

Now, how do we get the list of all facets? It turns out that the set ofcocircuitsof A
contains all the necessary information. Consider the set of all affine hyperplanes spanned
by (d − 1)-dimensional subsets ofA, oriented arbitrarily. Each such hyperplane defines a
signatureon the points inA: the signature of a point iszero if it lies on the hyperplane;
it is positiveif it lies strictly on thepositive sideof the hyperplane; it isnegativeif it lies
strictly on thenegative sideof the hyperplane. Such a signature onA is called acocircuit
ofA. We denote such a cocircuit by(C+, C−), whereC+ contains all points with positive
signature andC− those with negative signature.

A subset ofA is a facet ofA if and only if it is the zero set of a cocircuit having no
positive elements, or if it is the zero set of a cocircuit having no negative elements.
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FIGURE 4. A facetF in T , i.e., a facet of some simplex inT , is interior
if the cocircuit ofA spanned byF has both positive and negative elements

There are at most
(
n
d

)
different hyperplanes spanned by subsets of ad-dimensional

point configuration. Therefore, there are at most
(
n
d

)
circuits ofAmodulo reversing signs.

These give us all facets ofA and thus all interior facets ofT .
Summarizing this section, we can use the set of all cocircuits ofA to check (UP) as

follows:

A partial triangulationT of A violates (UP) if there is an interior facet
of T lying in only one simplex ofT .

In other words: interior facets (determined by the cocircuits) incident to exactly one
simplex are obstructions for (UP).

2.3. Triangulations depend only on the oriented matroid. The considerations in the
previous sections justify the name ‘combinatorial characterization of triangulations’ in the
following theorem (see, e.g., [Ram97]):

Theorem 2.1(Combinatorial Characterization of Triangulations). A subsetT of (d + 1)-
subsets ofA is a triangulation ofA if and only if

(IP’) For every pair of simplicesσ, σ ′ ∈ T there is no circuit(Z+, Z−) of A with
Z+ ⊆ σ andZ− ⊆ σ ′.

(UP’) For every interior facetF of T there are at least two simplices inT containingF.

The following fact allows a unified view on the previous two sections: The circuits
of A determine, purely combinatorially, the cocircuits ofA, and vice versa. Theoriented
matroidofA is now defined by the set of circuits or by the set of cocircuits ofA, depending
on what is more convenient in a particular situation.

Thus, the set of triangulations ofA depends only on the oriented matroid ofA.

2.4. An interface from geometry to combinatorics: The chirotope. How do we com-
pute the circuits and the cocircuits from the coordinates of the points inA? There are
actually several ways to do this. The most commonly used approach is the computation of
a third equivalent combinatorial structure ofA: the chirotope.

The chirotope ofA is the following alternating function on the set of(d + 1)-subsets
of A:

(1) χ :

{ ( A
d+1

) → {+,−, 0}

(i1, i2, . . . , id+1) 7→ sign
(
det(ai1 , ai2 , . . . , aid+1

)
)

That means, in particular, that the chirotope assigns to each ordered basis ofA its orien-
tation. The orientation is usually normalized such that the affine standard basis ofR

d has
orientation+. The chirotope value on(d+1)-subsets ofA that are not independent is zero.
One of many ways to accelerate the computation of the chirotope is indicated in Figure 5.
Column normal forms for allk-subsets of columns are maintained as nodes in computation
tree for allk ≤ d + 1; they can be reused in order to save elimination steps. The tree is
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Points as columns

→

Points as columns

Gauß

→

Points as columns

→

Points as columns

Gauß

→

Points as columns

determinant

→

Points as columns

→

Points as columns

determinant

→

Points as columns

→

Points as columns

→

Points as columns

FIGURE 5. Building the computation tree for the chirotope: the matri-
ces in the nodes are all transformed in column normal form before new
columns are added (indicated are regions of possible non-zeroes in the
columns); the determinants can be computed easily at the leaves

traversed in depth-first-search; determinants are produced in the leaves in lexicographic
order w.r.t. the indices of the point coordinates.
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The circuits ofA can now be computed as follows: for any(d + 2)-subsetZ =
{z1, z2, . . . , zd+2} with z1 < z2 < · · · < zd+2 of A, we have the following circuit
(Z+, Z−):

Z+ =
{
zk ∈ Z | (−1)kχ(z1, . . . , zk−1, zk+1, . . . , zd+2) = +

}
(2)

Z− =
{
zk ∈ Z | (−1)kχ(z1, . . . , zk−1, zk+1, . . . , zd+2) = −

}
(3)

The cocircuits can be computed as follows: for anyd-subsetC of A, we have the
following cocircuit:

C+ =
{
i ∈ A \ C | χ(C, i) = +

}
(4)

C− =
{
i ∈ A \ C | χ(C, i) = −

}
(5)

Note that computing circuits and cocircuits is possible without further access to the
coordinates of the points inA: the chirotope forms an interface from geometry to combi-
natorics.

3. APPLICATIONS OF THE ORIENTED MATROID: HOW TO FIND TRIANGULATIONS

So far, we have seen that the oriented matroid ofA determines the set of triangulations
of A. Moreover, once the chirotope has been computed, we can check purely combinato-
rially whether or not a set of simplices is a triangulation ofA.

What we are still lacking is a method to generate triangulations; we certainly cannot
check all possible sets of simplices in reasonable time. Therefore, we show in this section
how the oriented matroid ofA can be used to compute

• some triangulation (Application I),
• local changes in triangulations (Application II),
• many triangulations (Application III),
• all triangulations (Application IV).

3.1. Application I: The placing triangulation. Constructing a triangulation by placing
is an incremental method: we add the points inA one by one, starting from an affine basis.
In each step, we cone the new point to allvisible facetsof what we have already. We will
see that all necessary ingredients can be computed via the oriented matroid.

For a more accurate definition of the placing triangulation, assume that we already have
a triangulationT ′ of the subconfigurationA ′ := A \ {a} for somea ∈ A. There are two
cases:a ∈ convA ′ or a /∈ convA ′.

In the first case we do nothing:T ′ is also a triangulation ofA. Indeed: (IP’) holds
because no new simplex has been added; for the same reason (UP’) holds because all
facets ofA ′ are still facets ofA.

In the second case we define visible facets ofT ′: a facetF, supported by the hyperplane
HF, of ad-simplex ofT ′ is called afacet ofT ′ visible froma if

• a is not onHF.
• A anda are not on the same side ofHF.

In this case, we add all cones of visible facets with apexa to T ′:

T := T ′ ∪ {F ∪ {a} | F is a facet ofT ′ visible froma}

Why does this give us a triangulation ofA?
First, the new simplices intersect properly with each other, since they form a cone over

properly intersecting simplices. Second, the interior intersection between a new and an old
simplex must be empty because none of the new simplices has an interior intersection with
convA ′: it is separated from convA ′ by the supporting hyperplane of the corresponding
facet ofA. Therefore, (IP) holds.

(UP) holds as well: The only facets inT ′ that become interior facets in convA are those
visible froma, by construction.
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FIGURE 6. Cocircuits ofA detect visible facets: the cocircuit spanned
by {3, 4} induces different signs on the new point6 and the old points.
Thus, {1, 3} is a visible facet. The cocircuit spanned by{1, 3} induces
the same signs on the new and the old points:{1, 3} is not visible. Note
that the addition of the cone over{3, 4} removes an obstruction for (UP)
because{3, 4} is an interior facet of the new configuration including6
and was included in only one simplex so far

Now, we want to solely use the oriented matroid data in the step fromT ′ to T . The only
thing we need is the set of visible facets, a subset of the boundary facets ofT ′ (which are
those facets ofT ′ that are contained in exactly one simplex inT ′). Visibility can now be
checked for every boundary facetF in T ′ by looking at the cocircuitCF spanned byF: F is
visible froma if the following holds:

• The new pointa must not be inC0F.
• If one of the points inA ′ is inC+

F thena must be inC−
F .

An example for these conditions is indicated in Figure 6.
Note that it suffices to find a non-zero signature of only one pointa ′ in A ′; then all

points inA ′ with non-zero signature automatically have the same signature asa ′.
By induction, we can construct a triangulation of the whole point configuration by this

placing operation. Furthermore, to do this we only need the cocircuits of the oriented
matroid. Figure 7 shows the corresponding steps for our running example configuration.

3.2. Application II: Flips. Now that we know how to produce one triangulation we will
show that flipping—the standard method to produce new triangulations from old ones—
can also be done by using the oriented matroid.

A flip in a two-dimensional triangulation is, e.g., an edge flip: replacing the diagonal in
a convex quadrilateral. But in our context also the removal of an interior point lying in the
convex hull of exactly three edges is a flip.

In general a flip is the following: Consider a circuitZ := (Z+, Z−) in A. Let Z :=
Z+ ∪Z−. Then it is easy to see that there are exactly two triangulationsT+(Z) andT−(Z)
of Z. The triangulations are:

T+(Z) := {Z \ {z−}|z− ∈ Z−}(6)

T−(Z) := {Z \ {z+}|z+ ∈ Z+}(7)

Figure 8 sketchesT+ andT− in dimension three for a circuit on five points in general
position. Note thatT+ andT− differ in their number of simplices.

Assume that a triangulation ofA contains one ofT+(Z) andT−(Z) as a subcomplex,
sayT+(Z). If Z spans a full-dimensional subconfiguration, then flipping simply means
replacingT+(Z) by T−(Z) in T .

If the circuit spans a lower dimensional subconfiguration then things are more com-
plicated: still, the circuit itself has exactly two triangulationsT+(Z) andT−(Z). These
are lower-dimensional triangulations. If one of them, sayT+(Z), is a subcomplex inT
we cannot simply replaceT+(Z) by T−(Z) and still get a triangulation. If, however, we



8 JULIAN PFEIFLE AND J̈ORG RAMBAU

→
3

6

5

2

1

4

→ 6

54

3

2

1

→
3

6

5

2

1

4

→
3

6

5

2

1

4

→
3

6

5

2

1

4

→
3

6

5

2

1

4

→
3

6

5

2

1

4

→
3

6 2

1

4 5

→
3

6 2

1

4 5

→
3

2

1

4 5

6

FIGURE 7. Constructing a placing triangulation

FIGURE 8. The two possible triangulations of five points in general po-
sition in dimension three;Z− contains, w.l.o.g., the three vertices of the
interior cutting face in the left picture;Z+ contains the two vertices of
the interior cutting edge in the right picture

encounter that every maximal simplex inT+(Z) has the same linkL(Z) in T then we can
replaceT+(Z) ∗ L(Z) by T−(Z) ∗ L(Z) in T . (Here, “∗” denotes the simplicial join.)

So, finding a flip in terms of oriented matroids amounts to the following:

1. Pick a circuitZ.
2. Check whetherT+(Z) or T−(Z) is a full-dimensional subcomplex ofT .
3. If T+(Z) is in T , then replacingT+(Z) by T−(Z) is a valid flip.
4. If not, check the links of all maximal simplices ofT+(Z) or T−(Z).
5. If the links, w.l.o.g. the ones inT+(Z), are identical, say equal toL(Z), then replacing
T+(Z) ∗ L(Z) by T−(Z) ∗ L(Z) is a valid flip.
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(a) (b) (c) (d)

FIGURE 9. All possible flip types in dimension two; the rightmost pic-
ture shows a situation where the links of all maximal simplices are not
equal, whence the corresponding flip is impossible

Figure 9 lists all flip types in dimension two.
Thus, the only information about the point configuration we need for flipping is its set

of circuits. Given the notion of flipping, one can define theflip graphof A:

• The nodes of the flip graph are all triangulations.
• Two nodes are connected by an edge if the corresponding triangulations can be

flipped into each other by a single flip.

3.3. Application III: Computing a component of the flip-graph. So far, we have the
following:

• We can compute one triangulation.
• We construct new triangulations from old ones by flipping.

Using standard enumeration techniques like breadth-first-search or depth-first-search
on the flip graph we can now enumerate all triangulations in the component of the placing
triangulation.

An interesting feature of the flip graph is that its equivariant version—i.e., the one con-
sisting of combinatorial symmetry classes only—is compatible with a breadth-first-search.
Thus, the combinatorial symmetries of the point configuration can be exploited in this
framework.

Let us—in a short excursion—describe the ideas of exploiting symmetries. We assume
that we already have all those permutations ofA that maintain the combinatorial structure
of A. This means we know all permutationsπ with the following property: whenever
(Z+, Z−) is a circuit inA, then(π(Z+), π(Z−)) is also a circuit inA.

In an ordinary breadth-first-search (BFS) in the flip graph we would like to maintain
only two sets of nodes: the set of currentlyopen(unprocessed) nodesC and the set of new
open nodesN. A step in the BFS corresponds to the following: for all triangulations in
C we flip all their unmarked flips, add the resulting triangulation toN, and mark all the
“backward”-flips; finally, we setC := N andN := ∅. In other words, we forget about
closed nodes, nodes all of whose edges have been processed already.

In the equivariant BFS, we do not want to store the complete orbits of triangulation. We
rather want to store just those representatives that we meet first in the enumeration process.
For every new triangulation we check whether one of the stored representatives is in the
orbit of the new triangulation.

However, then it is not at all clear that we can never re-enter a symmetry class whose
representative we have forgotten already. The trick is that we additionally mark flips that
are equivalent to “backward flips” via the same combinatorial symmetry that transforms
the new triangulation into one of the known representatives. More accurately, we do the
following: whenever we find via the flipf a triangulationT with π(T) = T ′ for some
stored representativeT ′ ∈ C and some combinatorial symmetryπ, we markπ(f−1) in T ′;
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one can prove that this way we can forget about all nodes whose edges have been pro-
cessed completely; we will never enter their symmetry class again. See the appendix for
an example.

Moreover, whenever a flip in a triangulation node is marked, we also mark all equivalent
flips corresponding to the automorphism group of the triangulation: they would hit the
same symmetry classes as the originally marked flip.

3.4. Application IV: Computing all triangulations. For a long time it was an open
problem whether or not the flip graph of any point configuration is connected. Recently,
in [San00] an example of a six-dimensional point configuration with a triangulation with-
out flips was presented. The configuration has324 points; the triangulations has over
25, 000 simplices [Ram00]. Therefore, in general, we cannot compute all triangulations by
flipping.

Here is another method of enumerating triangulations using the combinatorial charac-
terization. We build up triangulations by adding one simplex at a time. Then we try to add
new simplices maintaining (IP’) for the complex built so far. As soon as (UP’) is satisfied
we have reached a triangulation.

Trying all possibilities by backtracking in this method yields an enumeration tree of all
partial triangulations with triangulations as leaves. Since there are far more partial triangu-
lations than triangulations, this method is not as fast as the flipping method, whenever the
number of simplices in a triangulation is large (say at least ten).

4. IMPLEMENTING THE IDEAS: TOPCOM

All of the above (and some more) has been implemented in the package TOPCOM
(Triangulations of Point Configurations and Oriented Matroids). TOPCOM is software
under the GNU public license [Ram99] and contains collection of clients for computations
in point configurations, oriented matroids, and triangulations. Given a point configuration,
TOPCOM can compute, for example,

• its chirotope,
• its circuits,
• its cocircuits,
• its facets,
• a placing triangulation,
• flips in a triangulation,
• the flip graph component of a triangulation,
• all triangulations.

This is done fairly quickly by using data structures custom-made for exploiting the
combinatorial algorithms presented in this exposition.

Some numbers computed with TOPCOM that were unknown before can be found in
Table 1. The number of triangulations of lattice points in dimension two can by now
be computed much more efficiently by a special two-dimensional method [Aic99]; for
(2×n)- and(3×n)-grids a recursion formula for the number of triangulations was found
by Ziegler.

All figures could be computed in less than a day on Pentium III 1GHz computers with at
most 2GB RAM (needed for the four-cube) running Linux. Checking the result of Santos
requires sophisticated use of alazychirotope: preprocessing is prohibitive for324 points
in dimension six.

The latest addition in TOPCOM allows to checkregularity or coherenceof a triangu-
lation with the help of an LP solver with exact arithmetics, like, e.g.,cdd [Fuk01]. This
concept is—in contrast to all the other ones presented in this exposition—not combinato-
rial: whether or not a triangulation is regular depends on the specific coordinates of the
points.
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what configuration description result

# triangulations C(12, 5) cyclic polytope 5,049,932
# triangulations C(13, 7) cyclic polytope 6,429,428
# fine triangulations (4× 5)-lattice two-dimensional lattice (20 points) 2,822,648
# flip graph component ∆3 × ∆3 product of tetrahedra 4,533,408
# flip graph component C4 four-dimensional cube 92,487,256
check (IP’) & (UP’) Santos triangulation six-dimensional construction okay
# flips Santos triangulation six-dimensional construction 0

TABLE 1. Some figures computed by TOPCOM for the first time; cyclic
polytopes have connected flip graphs [Ram97]; so have two-dimensional
point sets; fine triangulations use all the vertices

Why this concept is nevertheless important is the subject of the remaining sections of
this paper.

5. EXPLORING FURTHER STRUCTURES

We have seen in Section 3.2 that flipping is a natural way to locally modify a given
triangulation. In this section, we will build on this concept and present one of the most
striking and beautiful constructions of the theory of polyhedral subdivisions, which shows
that a certain subclass of triangulations of a point configuration carries quite strong struc-
tural properties. Namely, we will outline the construction of thesecondary polytopeof a
point configuration, briefly sketch one situation where it can be useful, and indicate how to
calculate some interesting examples by integrating TOPCOM and thePOLYMAKE [GJ01]
framework.

5.1. The convex hull of triangulations: Secondary polytopes.Let us define aregularor
coherenttriangulation of a point configurationA in Rd as one that arises by projecting the
“lower” facets (with respect to some fixed direction) of a(d + 1)-dimensional polytopẽP
to Rd, in such a way that the “lower” vertices of̃P project exactly to the points inA.
Another way of stating this condition is to ask for a convex lifting function fromRd to
R
d+1 that is linear on the simplices of the triangulation. More generally, we will also

considerregular subdivisionsofA, that is to say collections of affinely independent subsets
(cells) ofA of cardinality at leastd+ 1 that satisfy (UP), (IP), and (the obvious adaptation
of) the regularity property. See Figure 10.

Regular triangulations correspond in a one-to-one fashion to the vertices of a convex
polytopeΣ(A) that only depends on the point configuration, the so-calledsecondary poly-
tope ofA. Moreover, this correspondence is not just bijective, but structural: Two regular
triangulationsT andT ′ are connected by a flip if and only if the verticesvT andvT ′ lie
on an edge of the convex hull ofΣ(A). It turns out that this correspondence extends to
the whole face lattice of the secondary polytope, such that to each faceF of Σ(A) there
corresponds some regular subdivisionσ(F) of A. Furthermore, ifF ⊂ G are two faces
of Σ(A), thenσ(F) is arefinementof σ(G), which means that any cell ofσ(G) is the union
of cells ofσ(F).

As an example, let us construct the secondary polytope of the point configurationA
formed by the vertices of a prismP over a triangle. The homogeneous coordinates ofP are
given by the columns of the following matrix.
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FIGURE 10. Convex lifting function and regular subdivision [Rei]

A =


0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

1 1 1 1 1 1

 3

2

5

6

4

1

Any triangulation ofP must contain one of the tetrahedra formed by the base{1, 2, 3}

and one vertexi in the set{4, 5, 6}, where the point labels correspond to the column indices
of A. This leaves two choices for the apex of the tetrahedron with base{4, 5, 6}, and each
one determines the last tetrahedron of the triangulation uniquely. We see that there are six
distinct triangulations ofP in total, namely,

{{1,2,3,4},{2,3,4,5},{3,4,5,6}}, {{1,2,3,4},{2,3,4,6},{2,4,5,6}},
{{1,2,3,5},{1,3,4,5},{3,4,5,6}}, {{1,2,3,5},{1,3,5,6},{1,4,5,6}},
{{1,2,3,6},{1,2,4,6},{2,4,5,6}}, {{1,2,3,6},{1,2,5,6},{1,4,5,6}}.

It turns out that all these triangulations are regular, and therefore we know that they all
correspond to vertices ofΣ(A).

One way to construct the secondary polytope is to start by calculating a basis for the
(right) kernel ofA, i.e. a matrixB with AB = 0. SinceA has full rank, its kernel has
dimension2, and one possible basis is given by the columns of the following matrixB.

B =


1 1

−1 0

0 −1
−1 −1
1 0

0 1


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1

3
4

5

6

1 2

5

5

6

4

1
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2

44
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FIGURE 11. The hexagon as the secondary polytope of the prismP.
Left: One maximal cone of the secondary fan is highlighted. Pairs of dig-
its inside such a coneσ index verticesbi in whose positive spanσ lies,
and the complementary 4-tuples label the simplex of the triangulation
of A thatσ corresponds to.Right: Triangulations corresponding to ver-
tices ofΣ(P). Edges ofΣ(P) representing flips between triangulations.

By interpreting therows of B as six pointsb1, b2, . . . , b6 in R2, we arrive at theGale
transformA∗ of A. In general, ifA consists ofn points ind-space (andA does not
lie in any lower-dimensional subspace), thenA∗ is made up ofn points in(n − d − 1)-
space. Now consider the setC(A) of all full-dimensional positive cones spanned by the
points inA∗ with apex in0, together with the setR of all their facets. Thechamber
complexC̃(A) of C(A) is the union of all full-dimensional polyhedral cones whose facets
are facets of cones inC(A), but whose relative interior is not crossed by any member ofR.
In our two-dimensional example, the setR consists of the six rays

R =
{
R≥0〈bi〉 : 1 ≤ i ≤ 6

}
,

so C̃(A) is given by the following list of cones. See Figure 11 (left).

C̃(A) =
{
R≥0〈b1, b6〉, R≥0〈b6, b2〉, R≥0〈b2, b4〉,

R≥0〈b4, b3〉, R≥0〈b3, b5〉, R≥0〈b5, b1〉
}

We now consider each coneσ ∈ C̃(A) in turn, and write down the generators of all
cones inC(A) that containσ. For instance,σ = R≥0〈b1, b6〉 lies in the conesR≥0〈b5, b6〉,
R≥0〈b1, b6〉, and R≥0〈b1, b2〉 of C(A), and thecomplements{1, 2, 3, 4}, {2, 3, 4, 5}, and
{3, 4, 5, 6} of these index sets correspond precisely to a triangulation ofP! Since there are
six maximal cones iñC(A), we expect each one of them to correspond to one of the six
regular triangulations ofP.

In fact this is true, and even more: The setC̃(A) is a complete polyhedral fan, which
means that the cones iñC(A) intersect precisely in common faces, and together span all
of Rn−d−1. This fan is called thesecondary fanofA. It has the additional property that it
is thenormal fanof a certain polytope inRn−d−1, which says that the vectors contained
in a fixed cone of̃C(A) are just the normal vectors of hyperplanes supporting exactly one
face of this polytope. It now comes as no surprise that this polytope is the one defined to
be thesecondary polytopeΣ(A) of A. Of course, this construction only determinesΣ(A)
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up tonormal equivalence, i.e. any polytope with the same normal fan is also a secondary
polytope ofA. In any case, passing from one maximal cone ofC̃(A) to an adjacent one
corresponds to going from one vertex of the secondary polytope to the next, and therefore
to a flip between these triangulations. This is illustrated in Figure 11 (right).

We summarize our discussion in the following theorem.

Theorem 5.1. (GEL’ FAND, KAPRANOV, and ZELEVINSKY [Gel94])

(1) The dimension of the secondary polytopeΣ(A) of a configuration ofn points in
R
d isn− d− 1.

(2) The faces ofΣ(A) correspond to the regular subdivisions ofA.
(3) If F ⊂ G are faces ofΣ(A), then the subdivision ofA corresponding toF refines

the subdivision corresponding toG. In particular, the vertices ofΣ(A) encode the
regular triangulations ofA.

5.2. Hypergeometric Differential Equations and Secondary Polytopes.In this section,
we briefly present the connection between secondary polytopes and (initial ideals of) a
certain class of systems of partial differential equations.

To the matrixA from the preceding section we can associate the following ideal in
the (commutative) polynomial ring of differential operatorsk[∂] = k[∂1, ∂2, . . . , ∂n] with
n = 6:

IA = 〈∂u − ∂v : Au = Av, u, v ∈ N6〉
= 〈∂1∂5 − ∂2∂4, ∂1∂6 − ∂3∂4, ∂3∂5 − ∂2∂6〉,

which corresponds to the system of differential equations

(9)

∂2

∂x1 ∂x5
f(x1, x2, . . . , x6) =

∂2

∂x2 ∂x4
f(x1, x2, . . . , x6),

∂2

∂x1 ∂x6
f(x1, x2, . . . , x6) =

∂2

∂x3 ∂x4
f(x1, x2, . . . , x6),

∂2

∂x3 ∂x5
f(x1, x2, . . . , x6) =

∂2

∂x2 ∂x6
f(x1, x2, . . . , x6)

for a (formal) power seriesf in six variables. Notice how the differential operators that
generateIA correspond to elements of the kernel ofA. The general theory developed
in [SST00] tells us that a first step in constructing a series solution of (9) is to calculate the
initial ideals inω(IA) for all term orders≺ω onk[∂] induced by weight vectorsω ∈ Zn.
The positive hull of the weight vectors that select a given initial ideal ofIA is a polyhedral
cone inRn, and it is readily seen that the set of all such cones forms a polyhedral fan, the
Gröbner fanof IA. It is then also clear that the weight vectors in themaximalcones of the
Gröbner fan selectmonomialinitial ideals, while those in lower-dimensional cones lead to
initial ideals whose generators have more than one term.

Just as for the secondary fan, there exists an equivalence class of polytopes whose nor-
mal fan coincides with the Gröbner fan. Any representative from this class is called astate
polytope[Stu96, Chapter 2] ofA. By the preceding paragraph, the vertices of the state
polytope exactly correspond to the monomial initial ideals ofIA.

In general [Stu96, Prop. 8.15], the Gröbner fan refines the secondary fan; an equivalent
way of putting this is to say that the secondary polytope is aMinkowski summandof the
state polytope. However, for a certain subclass of point configurations it is known that the
Gröbner fan coincides with the secondary fan, and that therefore also the state polytope and
the secondary polytope are the same (up to normal equivalence). These are theunimodular
point configurations: those configurationsall of whose triangulations are entirely made up
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FIGURE 12. How to construct geometrically the six initial ideals of the
unimodular idealIA = 〈∂1∂5 − ∂2∂4, ∂1∂6 − ∂3∂4, ∂3∂5 − ∂2∂6〉:
The generators of each initial ideal are precisely the minimal non-faces
of the corresponding regular triangulation ofA.

of simplices of unit volume (appropriately normalized for the dimension of the ambient
space).

Therefore, for differential ideals coming from unimodular point configurationsA, we
can calculate the Gröbner fan via geometrical techniques. We only need to enumerate
all triangulationsT of A, and for each of them construct the following ideal, called the
Stanley-Reisner idealof T :〈∏

j∈J

∂j : J does not index a face ofT

〉
=
⋂
σ∈T

〈∂j : j /∈ σ〉 ⊂ k[∂].

By unraveling definitions, this is exactly the initial ideal ofIA selected by any weight
vector in the cone of the secondary fan which is dual to the vertexvT of Σ(A). See
Figure 12. Note that this initial ideal is square-free by construction.

If the point configuration is not unimodular, i.e. if it admits some triangulation with at
least one simplex of non-unit volume, then as we saw above the Gröbner fan is a proper
refinement of the secondary fan. The Stanley-Reisner ideal of such a triangulationT is
then only theradical of the initial ideals selected by weight vectors in those Gröbner cones
that refine the cone corresponding toT . It therefore does not properly reflect the algebraic
structure ofIA anymore. However, calculating all regular triangulations ofA at least gives
a lower bound for the number of monomial initial ideals ofIA.

We now proceed to present a way of actually computing the secondary polytope of a
point configuration.

5.3. The GKZ vectors. The original construction of the secondary polytope—presented
by GELFAND and ZELEVINSKY in 1989—remained somewhat mysterious; as we will see,
it gives rise to a straightforward recipe for calculating secondary polytopes, but it is not at
all so straightforward to understand what is happening geometrically. In 1992, BILLERA

and STURMFELS [BS92] finally presented secondary polytopes as thefiber polytopesof
the projection of the(n − 1)-dimensional simplex to a configurationA of n points. We
will not develop this theory here, but instead refer the interested reader to [BS92], where
also the formulation in terms of Gale transforms was first given, and especially to Chapter 9
of [Zie95].
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The GKZ construction proceeds as follows. We associate ann-dimensional vectorvT
to any given triangulationT of A, in such a way that thei-th coordinate ofvT is the sum
of the volumes of all simplices inT incident to the pointi.

(vT )i =
∑

σ: σ∈T, i∈σ

vol convσ

This gives us onen-dimensional vector for each triangulation ofA. Thesecondary poly-
topeΣ(A) ⊂ Rn of A is then defined as the convex hull of all such vectors obtained by
considering every possible triangulation ofA.

Σ(A) = conv{vT : T triangulation ofA}

It turns out that the secondary polytope defined in this way is not full-dimensional, but
resides in an(n − d − 1)-dimensional subspace. However, the fact that this polytope
coincides, up to scaling and normal equivalence, with the secondary polytope as defined
earlier definitely comes as a surprise!

5.4. How to find the face lattice of the secondary.To actually calculate the face lat-
tice of the secondary polytope of a point configuration inRd, we combine the methods
presented in Sections 3.1, 3.3, and 5.3. First, we calculate a placing triangulation ofA,
which is known to be regular. Now we could proceed as in Section 3.4 by completing
partial triangulations, but in fact the faster method described in Section 3.3 of generating
the connected component of the flip graph that contains the placing triangulation is suf-
ficient for our purposes. Since flips correspond to edges of the secondary polytope, and
the1-skeleton of any convex polytope of dimension at least2 is connected, we know that
this component contains at least all regular triangulations ofA—possibly along with some
non-regular ones.

Next, we embed the nodes of the flip graph inRn via their GKZ coordinates, project the
resulting point configuration toRn−d−1, and calculate (the vertex-facet incidence matrix
of) the convex hull of the result.

We have achieved an embedding not only of the vertices corresponding to regular tri-
angulations, but of the entire flip graph. This allows to investigate, for example, theflip
distanceof a non-regular triangulation to the nearest regular one. Of course, our “fast”
procedure following Section 3.3 misses all connected components of the flip graph that do
not contain any regular triangulation.

6. IMPLEMENTING THE IDEAS: SOFTWARE INTEGRATION WITH POLYMAKE

We have integrated the tools available in TOPCOM andPOLYMAKE by writing clients
that interchange between the respective data representations and implement the procedure
described in the previous section using the standardPOLYMAKE rule base.

To calculate the secondary polytope of a configurationA of n points inRd, the user ex-
ecutes the commandsecondary point-conf , wherepoint-conf is the name of
a POLYMAKE file containing the homogeneous coordinates ofA. The clientsecondary
converts this data to TOPCOM format, requests a list of all triangulations ofA, and for
each one calculates the coordinates of its GKZ embedding inR

n. Next, the client asks for
these points to be projected toRn−d−1, and then to calculate the convex hull of these pro-
jected points. These requests are all answered by thePOLYMAKE server, which in turn calls
the appropriate clients for each task as specified in the rule base. Finally, thesecondary
client outputs the flip graph ofA both with its embedding and as an abstract (.gml -)graph,
and marks points corresponding to non-regular triangulations. If dimension permits, this
embedded flip graph can then be visualized, e.g. withJavaview[Pol01].

In Figures 13 and 14, we present the results of four such calls tosecondary . All
running times, excluding the computation of the convex hull, remained well under one
minute on a Sun Blade. The bottleneck is calculating the convex hull: The longest such
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FIGURE 13. Left: Secondary polytope of the cyclic 4-polytope with
8 vertices. All 40 triangulations are regular.Right: Secondary of a dif-
ferent neighborly 4-polytope with 8 vertices [Grü67, Ch. 7], which has
one nonregular triangulation (circled; in the interior of the convex hull)
among 41

FIGURE 14. Left: Schlegel diagram of the secondary polytope of the
3-cube [P00a]. All 74 triangulations are regular.Right: Secondary
of the cyclic 8-polytope with 12 vertices, realized on the Carathéodory
curve [P00b]. There are 42 nonregular triangulations among 244 in all

computation withcdd [Fuk01] for the secondary of the cyclic 8-polytope with 12 vertices
realized on the Carathéodory curve took 2 minutes.

With a view towards future developments, we remark that the computation of the en-
tire vertex-facet incidence matrix of the secondary polytope seems wasteful if all one is
interested in is the information which edges of the embedded flip graph actually lie on the
convex hull of the secondary polytope.

Moreover, while TOPCOM is fine-tuned to exploit symmetries of a point configuration,
at this moment there is no convex hull code available that could do likewise. However,
implementing an algorithm that simultaneously inserts all points of an orbit under a given
symmetry group may well prove to be a non-trivial task.

In the future, perhaps it will be possible to exploit the fact that TOPCOM not only
provides a list of points corresponding to triangulations, but in fact a connected component
of the flip-graph that includes the entire1-skeleton of the polytope.
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7. CONCLUSION

Oriented matroids are a suitable interface between calculations in coordinates and com-
putations in combinatorial geometry. In this exposition, we have presented the computation
of triangulations of a point configuration using oriented matroids. After the computation
of the chirotope, all other required operations can be performed in a purely combinatorial
way. The package TOPCOM implements this concept. Regular triangulations provide a
beautiful connection to algebraic structures. Their handling, however, requires the integra-
tion of additional software; we have shown examples thatPOLYMAKE is a suitable tool for
this.
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APPENDIX A. EQUIVARIANT BFS: AN EXAMPLE RUN FOR THE SIX-GON

Here, we show how the equivariant BFS behaves on the graph of triangulations of the
six-gon. We invite the interested reader to look for the symmetries that induce the marking
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operations on flips. Only the marking in picture 12 is critical and prevents the algorithm
from returning to an old symmetry class. The other marking operations hit already marked
edges.

one symmetry class found → two symmetry classes found

→

Symmetry

→
Mark

→ →
Symmetry

→
Mark

→
first symmetry class closed
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→ → three symmetry classes found

→

Symmetry

→

Mark

→
second symmetry class closed

→

→

Symmetry

→

Mark
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→
last symmetry class closed

no more open nodes: end
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